Nothing Special   »   [go: up one dir, main page]

JP2006252638A - Polarization diffraction element and optical head apparatus - Google Patents

Polarization diffraction element and optical head apparatus Download PDF

Info

Publication number
JP2006252638A
JP2006252638A JP2005065628A JP2005065628A JP2006252638A JP 2006252638 A JP2006252638 A JP 2006252638A JP 2005065628 A JP2005065628 A JP 2005065628A JP 2005065628 A JP2005065628 A JP 2005065628A JP 2006252638 A JP2006252638 A JP 2006252638A
Authority
JP
Japan
Prior art keywords
liquid crystal
diffraction element
crystal layer
alignment
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065628A
Other languages
Japanese (ja)
Inventor
Koichi Murata
浩一 村田
Atsushi Matsuo
淳 松尾
Yasunaga Nishikawa
泰永 西川
Michihisa Tomita
倫央 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005065628A priority Critical patent/JP2006252638A/en
Publication of JP2006252638A publication Critical patent/JP2006252638A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polarization diffraction element capable of attaining a narrow pitch and high diffraction efficiency, easily performing positioning and simplifying a manufacturing process and to provide an optical head apparatus. <P>SOLUTION: The polarization diffraction element whose diffraction efficiency is different according to the polarization direction of incident light by spatial and periodical change of the refractive index of an optically anisotropic medium having double refraction is provided with substrates 101 and 102, alignment layers 104a, 104b and 105a provided on the substrates 101 and 102 and a liquid crystal layer 103 wherein the optically anisotropic medium is constituted of a layer-shaped liquid crystal or the like. The alignment direction of the liquid crystal or the like is periodically changed in a first surface of the liquid crystal layer 103 and the alignment direction of second surface of the liquid crystal layer or the like is uniformly the same direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、入射する光の偏光方向に応じて回折効率を変えて回折させる回折素子(以下、偏光回折素子という。)、および、光ディスク等の光記録媒体への記録または光記録媒体からの再生(以下、記録再生という。)を行う光ヘッド装置に関する。   The present invention relates to a diffraction element that changes diffraction efficiency according to the polarization direction of incident light (hereinafter referred to as a polarization diffraction element), and recording on an optical recording medium such as an optical disk or reproduction from the optical recording medium. The present invention relates to an optical head device that performs (hereinafter referred to as recording / reproduction).

近年、偏光回折素子を作製する方法として、入射する光の偏光方向に応じて屈折率が空間的に周期的に変化するように複屈折媒質を空間的に周期的に配置する方法が提案されている。そして、偏光回折素子には、複屈折媒質として低分子液晶を用い、回折効率を電気的に変化させることが可能な可変偏光回折素子(例えば、特許文献1参照。)と、回折効率を変化させることができない偏光回折素子(以下、固定偏光回折素子という。)とがある。   In recent years, as a method of manufacturing a polarization diffractive element, a method has been proposed in which birefringent media are spatially and periodically arranged so that the refractive index changes spatially and periodically according to the polarization direction of incident light. Yes. The polarization diffraction element uses a low-molecular liquid crystal as a birefringent medium and can change the diffraction efficiency electrically (for example, see Patent Document 1), and the diffraction efficiency is changed. There are polarization diffractive elements that cannot be used (hereinafter referred to as fixed polarization diffractive elements).

ここで、これらの偏光回折素子は光通信装置、表示装置、計測装置等に用いられ、特に光ヘッド装置に偏光回折素子を用いることによって、光の利用効率を向上させたり、規格の異なる複数の光ディスクを1つの光ヘッド装置で記録再生できるようにしたりできる。   Here, these polarization diffraction elements are used in optical communication devices, display devices, measurement devices, etc., and in particular, by using a polarization diffraction element in an optical head device, the light utilization efficiency can be improved, or a plurality of different standards can be used. An optical disk can be recorded and reproduced by one optical head device.

上記の特許文献1に開示された従来技術では、可変偏光回折素子に印加する電圧を変えることによって回折効率を変化できる例が示されている。ここで、可変偏光回折素子の回折効率を変化させる機能を実現するための第1の方法として、ホモジニアス型と90度ツイストネマティック型の2つの配向状態を有する低分子液晶を交互に可変偏光回折素子に周期的に配置することによって光を回折させ、可変偏光回折素子中の低分子液晶に電圧を印加して液晶分子を電界方向(厚さ方向)に配向させ、回折効率を低下またはゼロにするという方法がある。以下、第1の方法によって作製された可変偏光回折素子を、第1例の可変偏光回折素子という。   In the prior art disclosed in the above Patent Document 1, an example is shown in which the diffraction efficiency can be changed by changing the voltage applied to the variable polarization diffraction element. Here, as a first method for realizing the function of changing the diffraction efficiency of the variable polarization diffractive element, a low polarization liquid crystal having two alignment states of a homogeneous type and a 90 degree twisted nematic type is alternately changed into a variable polarization diffractive element. The light is diffracted by periodically arranging them, and a voltage is applied to the low-molecular liquid crystal in the variable polarization diffractive element to align the liquid crystal molecules in the electric field direction (thickness direction), thereby reducing or reducing the diffraction efficiency to zero. There is a method. Hereinafter, the variable polarization diffraction element manufactured by the first method is referred to as a variable polarization diffraction element of the first example.

また、第2の方法として、ホモジニアス配向した低分子液晶を挟持する1対のガラス基板のうち、一方のガラス基板にストライプ状の透明電極を形成し、他方のガラス基板のほぼ全面に透明電極(以下、対向透明電極という。)を形成し、ストライプ状の透明電極と対向透明電極との間に電圧を印加して低分子液晶の屈折率を変化させ、これによって回折か透過かを制御するという方法がある。第2の方法に係る回折素子は位相変調型回折格子であるため、第1の方法に係る回折素子に比べ回折効率が大きくなる。以下、第2の方法によって作製された可変偏光回折素子を、第2例の可変偏光回折素子という。   As a second method, a striped transparent electrode is formed on one glass substrate of a pair of glass substrates sandwiching a homogeneously aligned low-molecular liquid crystal, and a transparent electrode ( Hereinafter, the counter transparent electrode is formed), and a voltage is applied between the striped transparent electrode and the counter transparent electrode to change the refractive index of the low-molecular liquid crystal, thereby controlling the diffraction or transmission. There is a way. Since the diffraction element according to the second method is a phase modulation type diffraction grating, the diffraction efficiency is higher than that of the diffraction element according to the first method. Hereinafter, the variable polarization diffraction element manufactured by the second method is referred to as a variable polarization diffraction element of the second example.

一方、固定偏光回折素子としては、上記の第1の方法に係る配向状態および液晶の配置を保存しながら、液晶分子を高分子化した高分子液晶を用いて、回折効率を固定するようにした回折格子(以下、第1例の固定偏光回折素子という。)も実現可能である。また、一様にホモジニアス配向した高分子液晶薄膜をエッチングして凹凸を作製し、その凹部に複屈折のない等方性媒質を充填して固定偏光回折素子(以下、第2例の固定偏光回折素子という。)を作製する方法も提案されている。第2例の固定偏光回折素子は、光学特性的には非常に優れた偏光回折素子が得られる。   On the other hand, as the fixed polarization diffraction element, the diffraction efficiency is fixed using a polymer liquid crystal obtained by polymerizing liquid crystal molecules while preserving the alignment state and the arrangement of the liquid crystal according to the first method. A diffraction grating (hereinafter referred to as a fixed polarization diffraction element of the first example) can also be realized. Further, a uniform liquid crystal thin film that is homogeneously oriented is etched to produce irregularities, and the concave portions are filled with an isotropic medium having no birefringence, and a fixed polarization diffraction element (hereinafter referred to as the second example of fixed polarization diffraction). A method for manufacturing an element is also proposed. The fixed polarization diffraction element of the second example can provide a polarization diffraction element that is very excellent in optical characteristics.

特開2001−33734号公報JP 2001-33734 A

しかし、このような従来の第1例の可変偏光回折素子では、電圧を印加しない電圧無印加状態で、液晶がツイスト配向した領域に入射した光もホモジニアス配向した領域に入射した光も、各領域を透過する際の実効的光路長はほとんど同じであり、領域が異なることによる位相差はなく、透過する光の偏光方向のみに応じて各領域での光路長が異なることにより光が回折するために、一般的な位相変調型回折格子に比して回折効率が非常に低いという問題があった。また、透過光の偏光状態が入射光の偏光状態と異なるものになってしまうという問題もあり、応用が非常に制限されている。   However, in such a variable polarization diffraction element of the first example of the prior art, in a state where no voltage is applied, no light is applied to the region where the liquid crystal is twist-aligned, and the light which is incident to the homogeneously aligned region is The effective optical path length when transmitting light is almost the same, there is no phase difference due to different regions, and light is diffracted by different optical path lengths in each region depending only on the polarization direction of the transmitted light In addition, there is a problem that the diffraction efficiency is very low as compared with a general phase modulation type diffraction grating. In addition, there is a problem that the polarization state of the transmitted light is different from the polarization state of the incident light, and the application is very limited.

また、第1例の可変偏光回折素子に比して回折効率が高い第2例の可変偏光回折素子では、ストライプ状の電極と対向透明電極との間に電圧を印加した場合、ストライプ状の電極からの電界漏れがあり、位相格子の境界がぼやけるという問題や、格子ピッチを小さくできないという問題があった。また、2つの基板ともストライプ電極を形成して対向させることで電界漏れの問題は若干解消するが、格子ピッチの小さな回折素子では2つのストライプ電極の位置を適切に位置合わせすることが非常に困難であり、実質上、格子ピッチには下限があった。   In the variable polarization diffraction element of the second example, which has higher diffraction efficiency than the variable polarization diffraction element of the first example, when a voltage is applied between the stripe electrode and the counter transparent electrode, the stripe electrode There is a problem that the phase grating boundary is blurred and the grating pitch cannot be reduced. In addition, the problem of electric field leakage is slightly solved by forming the stripe electrodes on the two substrates so as to face each other, but it is very difficult to properly align the positions of the two stripe electrodes with a diffraction element having a small grating pitch. In effect, there was a lower limit to the lattice pitch.

また、高分子液晶を用いた第1例の固定偏光回折素子においても、第1例の可変偏光回折素子と同様の問題があった。これに対して第2例の固定偏光回折素子では、上記の問題は解消されているが、高分子液晶薄膜をエッチングして等方性媒質を充填する必要があり、製造工程が複雑になるという問題があった。   Further, the fixed polarization diffraction element of the first example using the polymer liquid crystal has the same problem as the variable polarization diffraction element of the first example. On the other hand, in the fixed polarization diffraction element of the second example, the above problem has been solved, but it is necessary to etch the polymer liquid crystal thin film and fill it with an isotropic medium, which complicates the manufacturing process. There was a problem.

本発明はこのような問題を解決するためになされたもので、従来の偏光回折素子よりも狭いピッチかつ高い回折効率を実現できると共に、位置合わせを容易にし製造工程を簡素化することが可能な偏光回折素子および光ヘッド装置を提供するものである。   The present invention has been made to solve such problems, and can realize a narrower pitch and higher diffraction efficiency than the conventional polarization diffraction element, and can facilitate alignment and simplify the manufacturing process. A polarization diffraction element and an optical head device are provided.

以上の点を考慮して、請求項1に係る発明は、複屈折を有する光学異方性媒質の屈折率が空間的に周期的に変化することによって、入射する光の偏光方向に応じて回折効率が異なる偏光回折素子において、前記光学異方性媒質が、層状をなし、液晶、または、液晶を高分子化した高分子液晶によって構成される液晶層を備え、前記液晶層の対向する2つの面であって前記光が通過する2つの面のうちの第1の面で、前記液晶または前記高分子液晶の分子の配向方向が周期的に変化し、前記液晶層の対向する2つの面であって前記光が通過する2つの面のうちの第2の面で、前記液晶または前記高分子液晶の分子の配向方向が一様に同一方向になる構成を有している。   Considering the above points, the invention according to claim 1 diffracts according to the polarization direction of the incident light by spatially periodically changing the refractive index of the optically anisotropic medium having birefringence. In the polarization diffraction element having different efficiencies, the optically anisotropic medium includes a liquid crystal layer formed of a liquid crystal or a polymer liquid crystal obtained by polymerizing the liquid crystal, and the two liquid crystal layers facing each other. In the first surface of the two surfaces through which the light passes, the orientation direction of the molecules of the liquid crystal or the polymer liquid crystal changes periodically, and the two surfaces facing the liquid crystal layer Thus, the second surface of the two surfaces through which the light passes has a configuration in which the orientation directions of the molecules of the liquid crystal or the polymer liquid crystal are uniformly the same.

この構成により、液晶層の1の面で配向方向が周期的に変化し、他の面で配向方向が一様に同一方向になるようにしたため、光の偏光方向に応じて光路長を変化させることができ、従来の偏光回折素子よりも狭いピッチかつ高い回折効率を実現できると共に、位置合わせを容易にし製造工程を簡素化することが可能な偏光回折素子を実現できる。   With this configuration, the alignment direction is periodically changed on one surface of the liquid crystal layer, and the alignment direction is uniformly the same on the other surface, so that the optical path length is changed according to the polarization direction of the light. Therefore, it is possible to realize a polarization diffraction element that can realize a narrower pitch and higher diffraction efficiency than the conventional polarization diffraction element, and that can facilitate alignment and simplify the manufacturing process.

また、請求項2に係る発明は、請求項1において、前記液晶層の前記第1の面で、前記液晶または前記高分子液晶の分子の配向方向が前記液晶層の面内方向に対して垂直な領域と、前記液晶または前記高分子液晶の分子の配向方向が前記液晶層の面内方向に水平な領域とが周期的に配列し、前記液晶層の前記第2の面で、前記液晶または前記高分子液晶の分子の配向方向が、前記液晶層の面内方向に対して一様に垂直、または、前記液晶層の面内方向に一様に水平になる構成を有している。   According to a second aspect of the present invention, in the first aspect of the present invention, in the first surface of the liquid crystal layer, the orientation direction of the molecules of the liquid crystal or the polymer liquid crystal is perpendicular to the in-plane direction of the liquid crystal layer. And a region where the alignment direction of molecules of the liquid crystal or the polymer liquid crystal is horizontal to the in-plane direction of the liquid crystal layer is periodically arranged, and the liquid crystal or the liquid crystal The alignment direction of the molecules of the polymer liquid crystal is uniformly perpendicular to the in-plane direction of the liquid crystal layer, or uniformly horizontal to the in-plane direction of the liquid crystal layer.

この構成により、請求項1の効果に加え、配向方向が液晶層の面に垂直または水平になるため、さらに、回折効率を向上させることが可能な偏光回折素子を実現できる。   With this configuration, in addition to the effect of the first aspect, since the alignment direction is perpendicular or horizontal to the surface of the liquid crystal layer, a polarization diffraction element capable of further improving the diffraction efficiency can be realized.

また、請求項3に係る発明は、請求項1または2において、前記液晶層の前記第1の面における配向方向に配向させる第1の配向膜と、前記液晶層の前記第2の面における配向方向に配向させる第2の配向膜と、前記第1の配向膜が前記液晶層の前記第1の面と接するように形成された第1の基板と、前記第2の配向膜が前記液晶層の前記第2の面と接するように形成された第2の基板とを備えた構成を有している。   According to a third aspect of the present invention, in the first or second aspect, the first alignment film is aligned in the alignment direction on the first surface of the liquid crystal layer, and the alignment is performed on the second surface of the liquid crystal layer. A second alignment film that is aligned in a direction, a first substrate formed so that the first alignment film is in contact with the first surface of the liquid crystal layer, and the second alignment film is the liquid crystal layer. And a second substrate formed so as to be in contact with the second surface.

この構成により、請求項1または2の効果に加え、配向膜を用いて液晶層の分子を配向させるため、配向方向の制御が容易な偏光回折素子を実現できる。   According to this configuration, in addition to the effect of the first or second aspect, since the molecules of the liquid crystal layer are aligned using the alignment film, a polarization diffraction element in which the alignment direction can be easily controlled can be realized.

また、請求項4に係る発明は、請求項3において、前記第1の基板と前記第2の基板の対向する2つの面であって、前記光が通過する2つの面のそれぞれに形成され、前記液晶層間に電圧を印加するための電極を備えた構成を有している。   The invention according to claim 4 is the invention according to claim 3, wherein the first substrate and the second substrate are opposed to each other, and are formed on each of the two surfaces through which the light passes. An electrode for applying a voltage between the liquid crystal layers is provided.

この構成により、請求項3の効果に加え、電極を介して液晶層間に電圧を印加し、配向方向を変化させることができるため、回折効率を電気的に変化させることが可能な偏光回折素子を実現できる。   With this configuration, in addition to the effect of the third aspect, since a voltage can be applied between the liquid crystal layers through the electrodes to change the orientation direction, a polarization diffraction element capable of electrically changing the diffraction efficiency is provided. realizable.

また、請求項5に係る発明は、請求項3または4において、第3の基板と、前記第1の基板または第2の基板間と前記第3の基板との間に挟持され光学異方性媒質の液晶層からなる付加液晶層とを備え、前記付加液晶層の分子の配向方向が一様に同一方向になる構成を有している。   The invention according to claim 5 is the optical anisotropy sandwiched between the third substrate and between the first substrate or the second substrate and the third substrate in claim 3 or 4. And an additional liquid crystal layer composed of a liquid crystal layer as a medium, and the alignment direction of molecules of the additional liquid crystal layer is uniform in the same direction.

この構成により、請求項3または4の効果に加え、配向方向が一様に同一方向の付加液晶層を新たな光学素子として一体化できるため、部品点数を削減することが可能な偏光回折素子を実現できる。   With this configuration, in addition to the effect of the third or fourth aspect, an additional liquid crystal layer having a uniform alignment direction and the same direction can be integrated as a new optical element. Therefore, a polarization diffraction element capable of reducing the number of parts is provided. realizable.

また、請求項6に係る発明は、光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された光を検出する光検出器とを備える光ヘッド装置において、前記対物レンズと前記光源との間の光路中に、請求項1から5までのいずれか1項に記載の前記偏光回折素子が配置されている構成を有している。   The invention according to claim 6 detects a light source, an objective lens for condensing the light emitted from the light source onto an optical recording medium, and light collected by the objective lens and reflected by the optical recording medium. An optical head device comprising a photodetector, wherein the polarization diffraction element according to any one of claims 1 to 5 is disposed in an optical path between the objective lens and the light source. Have.

この構成により、請求項1から5までのいずれか1項の効果を有し、かつ、光利用効率を向上させることが可能な光ヘッド装置を実現できる。   With this configuration, an optical head device having the effect of any one of claims 1 to 5 and capable of improving light utilization efficiency can be realized.

本発明は、液晶層の1の面で配向方向が周期的に変化し、他の面で配向方向が一様に同一方向になるようにしたため、光の偏光方向に応じて光路長を変化させることができ、従来の偏光回折素子よりも狭いピッチかつ高い回折効率を実現できると共に、位置合わせを容易にし製造工程を簡素化することが可能な光ヘッド装置を実現できる。   In the present invention, since the alignment direction periodically changes on one surface of the liquid crystal layer and the alignment direction is uniformly the same on the other surface, the optical path length is changed according to the polarization direction of light. Therefore, it is possible to realize an optical head device that can realize a narrower pitch and higher diffraction efficiency than the conventional polarization diffraction element, and can easily align and simplify the manufacturing process.

以下、本発明の実施の形態について、図面を用いて説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る偏光回折素子の概念的な構成を示す断面図である。図1(a)に示す偏光回折素子100は、ガラス、樹脂等からなる透明な2枚の基板101、102と、2枚の基板101、102間に挟持された液晶層103と、基板101、102と液晶層103との間の界面に設けられた配向膜104a、104b、105aとによって構成される。以下では、液晶層103は、複屈折を有する光学異方性媒質としての高分子液晶からなるものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a cross-sectional view showing a conceptual configuration of a polarization diffraction element according to the first embodiment of the present invention. A polarizing diffraction element 100 shown in FIG. 1A includes two transparent substrates 101 and 102 made of glass, resin, etc., a liquid crystal layer 103 sandwiched between the two substrates 101 and 102, a substrate 101, And alignment films 104a, 104b, and 105a provided at the interface between the liquid crystal layer 103 and the liquid crystal layer 103. In the following, it is assumed that the liquid crystal layer 103 is made of a polymer liquid crystal as an optically anisotropic medium having birefringence.

図1(a)に示す偏光回折素子100を構成する液晶層103は、液晶分子106の配向状態が異なる2種類の領域1031、1032が周期的に繰り返される構成となっている。第1の領域1031では、配向膜104aと配向膜105aとのいずれもが液晶分子106をほぼ基板101、102にほぼ平行な同一方向に配向させるようになっており、液晶分子106は、均質に配向したホモジニアス配向状態になっている。   The liquid crystal layer 103 constituting the polarization diffraction element 100 shown in FIG. 1A has a configuration in which two types of regions 1031 and 1032 having different alignment states of the liquid crystal molecules 106 are periodically repeated. In the first region 1031, both the alignment film 104 a and the alignment film 105 a align the liquid crystal molecules 106 in the same direction substantially parallel to the substrates 101 and 102. It is in an oriented homogeneous alignment state.

一方、第2の領域1032では、配向膜104bが液晶分子106を第1の基板101に対してほぼ垂直に配向させ、配向膜105aが液晶分子106を第2の基板102にほぼ平行に配向させるようになっている。そのため、液晶分子106は、液晶層103の第1の基板101側の面である第1の面(以下、第1の界面という。)107付近で第1の基板101に対してほぼ垂直に配向し、液晶層103の第2の基板102側の面である第2の面(以下、第2の界面という。)108a付近で第2の基板102にほぼ平行に配向する、いわゆる、ハイブリッド配向状態になっている。上記のように、液晶層103の両界面107、108a付近では配向状態が異なり、第1の界面107付近では、第1の基板101にほぼ平行な配向状態と第1の基板101に対してほぼ垂直な配向状態とが周期的に繰り返される。   On the other hand, in the second region 1032, the alignment film 104 b aligns the liquid crystal molecules 106 substantially perpendicularly to the first substrate 101, and the alignment film 105 a aligns the liquid crystal molecules 106 substantially parallel to the second substrate 102. It is like that. Therefore, the liquid crystal molecules 106 are aligned almost perpendicularly to the first substrate 101 in the vicinity of a first surface (hereinafter referred to as a first interface) 107 that is the surface of the liquid crystal layer 103 on the first substrate 101 side. The so-called hybrid alignment state in which the liquid crystal layer 103 is aligned substantially parallel to the second substrate 102 in the vicinity of the second surface (hereinafter referred to as the second interface) 108a that is the surface on the second substrate 102 side. It has become. As described above, the alignment state is different in the vicinity of both the interfaces 107 and 108 a of the liquid crystal layer 103, and in the vicinity of the first interface 107, the alignment state is substantially parallel to the first substrate 101 and substantially the same as the first substrate 101. The vertical alignment state is periodically repeated.

係る構成では、図1(a)に示す偏光回折素子の断面に平行な直線偏光の光が透過した場合、液晶層103の第1の領域1031と第2の領域1032とで液晶分子106の配向が異なることにより屈折率が異なるため、液晶層103を透過した光は領域1031、1032の周期性に基づく屈折率の周期的な変化により位相変調を受け、回折する。   In such a configuration, when linearly polarized light parallel to the cross section of the polarization diffraction element shown in FIG. 1A is transmitted, the alignment of the liquid crystal molecules 106 in the first region 1031 and the second region 1032 of the liquid crystal layer 103 is performed. Therefore, the light transmitted through the liquid crystal layer 103 undergoes phase modulation due to a periodic change in the refractive index based on the periodicity of the regions 1031 and 1032 and is diffracted.

つまり、第1の領域1031を透過する光の光路長は、高分子液晶の異常光屈折率neと高分子液晶からなる液晶層103の厚さdとの積ne×dとなる。これに対して、第2の領域1032では、第1の界面107から第2の界面108aまでの間で高分子液晶の配向状態が滑らかに変化し、第2の領域1032を透過する光の光路長は、(no+Δn・A)dとなる。ここで、Δnは、異常光屈折率neと常光屈折率noの差である。また、Aは常光屈折率noおよび異常光屈折率neの関数であり、詳細な検討の結果、実用上、A=1/2+0.037Δnにより近似できることがわかった。   That is, the optical path length of the light transmitted through the first region 1031 is the product ne × d of the extraordinary refractive index ne of the polymer liquid crystal and the thickness d of the liquid crystal layer 103 made of the polymer liquid crystal. On the other hand, in the second region 1032, the alignment state of the polymer liquid crystal smoothly changes between the first interface 107 and the second interface 108 a, and the optical path of light transmitted through the second region 1032. The length is (no + Δn · A) d. Here, Δn is the difference between the extraordinary refractive index ne and the ordinary refractive index no. A is a function of the ordinary light refractive index no and the extraordinary light refractive index ne. As a result of detailed examination, it was found that A can be approximated by A = 1/2 + 0.037Δn.

その結果、第1の領域1031と第2の1032とを透過する光の光路長の差(以下、単に光路長差という。)はΔn・(1−A)・dとなり、液晶層103を透過した光は波面変調を受けて回折することになる。ここで、透過した光の偏光状態は変わらない。この場合、光路長差Δn・(1−A)・dは、使用する波長λの1/2と整数iとの積に±20%の範囲内で一致するようにすると回折効率が高くなり好ましい。   As a result, the difference between the optical path lengths of light passing through the first region 1031 and the second 1032 (hereinafter simply referred to as optical path length difference) is Δn · (1−A) · d, which is transmitted through the liquid crystal layer 103. The received light undergoes wavefront modulation and is diffracted. Here, the polarization state of the transmitted light does not change. In this case, it is preferable that the optical path length difference Δn · (1−A) · d coincides with the product of ½ of the wavelength λ to be used and the integer i within a range of ± 20%. .

さらに好ましくは±10%範囲内、さらに好ましくは±5%範囲内とし、さらにΔn・(1−A)・d=i・λ/2となるようにすることが同様の理由で好ましい。換言すれば、(Δn/2−0.037Δn)・d=i・λ/2に等しくすることが同様の理由で好ましい。 More preferably, it is within the range of ± 10%, more preferably within the range of ± 5%, and further, Δn · (1−A) · d = i · λ / 2 is preferable for the same reason. In other words, it is preferable to make it equal to (Δn / 2−0.037Δn 2 ) · d = i · λ / 2 for the same reason.

これに対して、図1(a)に示す偏光回折素子の断面に垂直な直線偏光の光が透過した場合、高分子液晶の屈折率が第1の領域1031でも第2の領域1032でも常光屈折率noとなり、液晶層103を透過する光は位相変調を受けないため、回折はほとんど生じない。この様に、液晶層103に入射する光の偏光方向によって回折効率が異なる偏光回折素子を実現することができる。   On the other hand, when linearly polarized light perpendicular to the cross section of the polarization diffraction element shown in FIG. 1 (a) is transmitted, the refractive index of the polymer liquid crystal is ordinary light refraction in both the first region 1031 and the second region 1032. Since the light is transmitted through the liquid crystal layer 103 without being phase-modulated, the diffraction hardly occurs. In this way, it is possible to realize a polarization diffraction element having a diffraction efficiency different depending on the polarization direction of light incident on the liquid crystal layer 103.

図1(b)に、液晶層103中の液晶分子106の配向状態が異なる偏光回折素子の例を示す。この例では、偏光回折素子110は、第2の基板102と液晶層103との間の界面に設けられた配向膜105bが、液晶分子106を第2の基板102に対してほぼ垂直に配向させるようになっている。このような配向膜105bを有する偏光回折素子110は、偏光回折素子100と同様に、液晶層103内に液晶分子106の配向状態が異なる2種類の領域1033、1034が周期的に繰り返される構成となっている。   FIG. 1B shows an example of a polarization diffraction element in which the alignment state of the liquid crystal molecules 106 in the liquid crystal layer 103 is different. In this example, in the polarization diffraction element 110, the alignment film 105b provided at the interface between the second substrate 102 and the liquid crystal layer 103 aligns the liquid crystal molecules 106 substantially perpendicularly to the second substrate 102. It is like that. Like the polarization diffraction element 100, the polarization diffraction element 110 having such an alignment film 105b has a configuration in which two types of regions 1033 and 1034 having different alignment states of the liquid crystal molecules 106 are periodically repeated in the liquid crystal layer 103. It has become.

第3の領域1033では、配向膜104bと配向膜105bとのいずれもが液晶分子106を第1の基板101に対してほぼ垂直に配向させるようになっており、液晶分子106は、均質に配向した垂直配向状態になっている。一方、第4の領域1034では、配向膜104aが液晶分子106を第1の基板101にほぼ平行に配向させ、配向膜105bが液晶分子106を第2の基板102に対してほぼ垂直に配向させるようになっている。   In the third region 1033, both the alignment film 104b and the alignment film 105b align the liquid crystal molecules 106 substantially perpendicularly to the first substrate 101, and the liquid crystal molecules 106 are aligned uniformly. It is in the vertical alignment state. On the other hand, in the fourth region 1034, the alignment film 104 a aligns the liquid crystal molecules 106 substantially parallel to the first substrate 101, and the alignment film 105 b aligns the liquid crystal molecules 106 approximately perpendicular to the second substrate 102. It is like that.

そのため、液晶分子106は、第1の基板101との第1の界面107付近で第1の基板101にほぼ平行に配向し、第2の基板102との第2の界面108b付近で第2の基板102に対してほぼ垂直に配向するハイブリッド配向状態になっている。上記のように、液晶層103の両界面107、108b付近では配向状態が異なり、第1の界面107付近では、第1の基板101にほぼ平行な配向状態と第1の基板101に対してほぼ垂直な配向状態とが周期的に繰り返される。   Therefore, the liquid crystal molecules 106 are aligned substantially parallel to the first substrate 101 in the vicinity of the first interface 107 with the first substrate 101, and the second interface 108b in the vicinity of the second interface 108b with the second substrate 102. It is in a hybrid alignment state in which it is aligned substantially perpendicular to the substrate 102. As described above, the alignment state is different in the vicinity of both the interfaces 107 and 108 b of the liquid crystal layer 103, and the alignment state substantially parallel to the first substrate 101 and the first substrate 101 is approximately in the vicinity of the first interface 107. The vertical alignment state is periodically repeated.

係る構成では、図1(b)に示す偏光回折素子の断面に対して垂直な直線偏光の光が透過した場合、液晶層103の第3の領域1033と第4の領域1034とで液晶分子106の配向が異なる影響を受けて屈折率が異なるため、液晶層103を透過した光は領域1033、1034の周期性に基づく屈折率の周期的な変化により位相変調を受け、回折する。   In such a configuration, when linearly polarized light perpendicular to the cross section of the polarization diffraction element shown in FIG. 1B is transmitted, the liquid crystal molecules 106 in the third region 1033 and the fourth region 1034 of the liquid crystal layer 103 are transmitted. Therefore, the light transmitted through the liquid crystal layer 103 undergoes phase modulation due to a periodic change in the refractive index based on the periodicity of the regions 1033 and 1034 and is diffracted.

つまり、第3の領域1033を透過する光の光路長は、高分子液晶の異常光屈折率noと高分子液晶の厚さdとの積no×dとなる。これに対して、第4の領域1034では、第1の界面107から第2の界面108bまでの間で高分子液晶の配向状態が滑らかに変化し、第4の領域1034を透過する光の光路長は、(no+Δn・A)dとなる。   That is, the optical path length of the light transmitted through the third region 1033 is the product no × d of the extraordinary refractive index no of the polymer liquid crystal and the thickness d of the polymer liquid crystal. On the other hand, in the fourth region 1034, the alignment state of the polymer liquid crystal changes smoothly between the first interface 107 and the second interface 108b, and the optical path of the light transmitted through the fourth region 1034 The length is (no + Δn · A) d.

その結果、第3の領域1033と第4の領域1034とを透過する光の光路長差はΔn・A・dとなり、液晶層103を透過した光は波面変調を受けて回折することになる。ここで、透過した光の偏光状態は変わらない。この場合、光路長差Δn・A・dは、使用する波長λの1/2と整数iとの積と±20%の範囲内で一致するようにすると回折効率が高くなり好ましい。さらに好ましくは±10%範囲内、さらに好ましくは±5%範囲内とし、さらにΔn・A・d=i・λ/2となるようにすることが同様の理由で好ましい。換言すれば、(Δn/2+0.037Δn)・d=i・λ/2と等しくすることが同様の理由で好ましい。 As a result, the optical path length difference of the light transmitted through the third region 1033 and the fourth region 1034 becomes Δn · A · d, and the light transmitted through the liquid crystal layer 103 undergoes wavefront modulation and is diffracted. Here, the polarization state of the transmitted light does not change. In this case, it is preferable that the optical path length difference Δn · A · d is made to coincide with the product of ½ of the wavelength λ to be used and the integer i within a range of ± 20%. More preferably, it is within the range of ± 10%, more preferably within the range of ± 5%, and further, Δn · A · d = i · λ / 2 is preferable for the same reason. In other words, it is preferable to make it equal to (Δn / 2 + 0.037Δn 2 ) · d = i · λ / 2 for the same reason.

これに対して、図1(b)に示す偏光回折素子の断面に垂直な直線偏光の光が透過した場合、高分子液晶の屈折率が第3の領域1033でも第4の領域1034でも常光屈折率noとなり、液晶層103を透過する光は位相変調を受けないため回折はほとんど生じない。この様に、液晶層103に入射する光の偏光方向によって回折効率が異なる偏光回折素子を実現することができる。   On the other hand, when linearly polarized light perpendicular to the cross section of the polarization diffraction element shown in FIG. 1B is transmitted, the refractive index of the polymer liquid crystal is ordinary light refraction in both the third region 1033 and the fourth region 1034. The light becomes a rate no, and light transmitted through the liquid crystal layer 103 is not subjected to phase modulation, so that almost no diffraction occurs. In this way, it is possible to realize a polarization diffraction element having a diffraction efficiency different depending on the polarization direction of light incident on the liquid crystal layer 103.

以上のように、図1(a)に示す偏光回折素子100または図1(b)に示す偏光回折素子110のいずれもが、偏光方向に応じて入射する光を透過または回折させると共に、透過または回折後の光の偏光方向を入射したときの偏光方向に維持することができる。   As described above, either the polarization diffraction element 100 shown in FIG. 1A or the polarization diffraction element 110 shown in FIG. 1B transmits or diffracts incident light according to the polarization direction and transmits or diffracts it. The polarization direction of the diffracted light can be maintained in the polarization direction when incident.

上記で説明したように、液晶層103中の液晶分子106の配向方向の制御は、液晶層103の界面に配向膜を設けて行うことが好ましい。具体的には、第1の界面107付近の配向状態は、液晶分子106を水平配向させる配向膜104aと垂直配向させる配向膜104bとを交互に周期的に繰り返して配置することによって、周期的に変化するように制御される。   As described above, the alignment direction of the liquid crystal molecules 106 in the liquid crystal layer 103 is preferably controlled by providing an alignment film at the interface of the liquid crystal layer 103. Specifically, the alignment state in the vicinity of the first interface 107 is periodically changed by periodically and repeatedly arranging the alignment film 104a for horizontally aligning the liquid crystal molecules 106 and the alignment film 104b for vertically aligning the liquid crystal molecules 106. Controlled to change.

また、図1(a)に示す第2の界面108a付近の配向状態は、液晶分子106を水平配向させる配向膜105aを用いることによって制御され、図1(b)に示す第2の界面108b付近の配向状態は、液晶分子106を垂直配向させる配向膜105bを用いることによって制御される。このように単一の配向膜を用いることによって、第2の界面108a、108b付近での配向状態を一様にするものである。   Further, the alignment state in the vicinity of the second interface 108a shown in FIG. 1A is controlled by using the alignment film 105a for horizontally aligning the liquid crystal molecules 106, and in the vicinity of the second interface 108b shown in FIG. The alignment state is controlled by using an alignment film 105b that vertically aligns the liquid crystal molecules 106. By using a single alignment film in this way, the alignment state in the vicinity of the second interfaces 108a and 108b is made uniform.

第1の基板101に上記の2種類の配向膜104a、104bを交互に周期的に作製し、第2の基板102に上記の1種類の配向特性を示す配向膜105aまたは配向膜105bを一様に作製し、第1の基板101上の配向膜と第2の基板102上の配向膜とを対向させ、その間に液晶を入れ高分子化することによって、周期的に配向状態が変化する液晶層103を実現できる。このとき、第2の基板102に設けられた配向膜は均質なため、第1の基板101と第2の基板102のパターンを合わせる位置合わせの必要がなく、低コストで位置ずれによる歩留り低下や特性劣化もなく、偏光回折素子を実現できる。   The two types of alignment films 104a and 104b are alternately and periodically formed on the first substrate 101, and the alignment film 105a or the alignment film 105b having the one type of alignment characteristics is uniformly formed on the second substrate 102. The alignment layer on the first substrate 101 and the alignment layer on the second substrate 102 are made to face each other, and a liquid crystal is polymerized by inserting a liquid crystal between them. 103 can be realized. At this time, since the alignment film provided on the second substrate 102 is homogeneous, it is not necessary to align the patterns of the first substrate 101 and the second substrate 102, and the yield is reduced due to misalignment at low cost. A polarization diffraction element can be realized without deterioration of characteristics.

ここで、上記の配向膜用の膜として、ポリイミド、ポリビニルアルコール(PVA)等の有機の膜や、SiO等の無機の膜等を用いることができる。液晶分子を所定の方向に配向させるように上記の各膜に配向特性を持たせる方法としては、上記の各膜をラビングする方法および紫外線等を照射して光配向させる方法がある。   Here, as the film for the alignment film, an organic film such as polyimide and polyvinyl alcohol (PVA), an inorganic film such as SiO, and the like can be used. As a method for imparting alignment characteristics to each of the above films so that liquid crystal molecules are aligned in a predetermined direction, there are a method of rubbing each of the above films and a method of photo-alignment by irradiating ultraviolet rays or the like.

ここで、光配向とは、基板上の膜に偏光等の光学的な異方性を有する光を照射して、基板上の膜内の分子の再配列や異方的な化学反応を誘起し、これによって、基板上の膜に異方性を与えて液晶分子を配向させるものである。光配向は、部分的に紫外線を照射することで配向パターンを形成することができるので好ましい。また、同様の理由で水平配向させるポリイミドを部分的に紫外線や熱を加えて垂直配向させる配向特性に変化させることも好ましい。   Here, the photo-alignment refers to irradiating the film on the substrate with light having optical anisotropy such as polarized light to induce rearrangement of molecules in the film on the substrate or anisotropic chemical reaction. Thus, anisotropy is given to the film on the substrate to align the liquid crystal molecules. Photo-alignment is preferable because an alignment pattern can be formed by partially irradiating ultraviolet rays. Also, for the same reason, it is also preferable to change the orientation property of the polyimide to be horizontally oriented to a vertical orientation by partially applying ultraviolet rays or heat.

以上説明したように、本発明の第1の実施の形態に係る偏光回折素子は、液晶層の一方で配向方向が周期的に変化し、他の面で配向方向が一様にほぼ同一方向になるようにしたため、光の偏光方向に応じて光路長を変化させることができ、従来の偏光回折素子よりも狭いピッチかつ高い回折効率を実現できると共に、位置合わせを容易にし製造工程を簡素化できる。   As described above, in the polarization diffraction element according to the first embodiment of the present invention, the orientation direction periodically changes on one side of the liquid crystal layer, and the orientation direction is uniformly uniform in almost the same direction on the other surface. As a result, the optical path length can be changed according to the polarization direction of light, and a narrower pitch and higher diffraction efficiency can be realized than the conventional polarization diffraction element, and alignment can be facilitated and the manufacturing process can be simplified. .

また、配向方向が液晶層の面にほぼ垂直またはほぼ水平になるため、さらに、回折効率を向上できる。   In addition, since the alignment direction is substantially perpendicular or substantially horizontal to the surface of the liquid crystal layer, the diffraction efficiency can be further improved.

また、配向膜を用いて液晶層を配向させるため、配向方向の制御が容易にできる。   In addition, since the liquid crystal layer is aligned using the alignment film, the alignment direction can be easily controlled.

(第2の実施の形態)
図2は、本発明の第2の実施の形態に係る偏光回折素子の概念的な構成を示す断面図である。図2において、偏光回折素子200は、図1(b)に示す偏光回折素子110と同様の配向状態を有し、偏光回折素子110を構成する第2の基板102と配向膜105bとを取り除いた構成を有する。一般に、液晶分子は空気や真空との界面で垂直配向するものが多いため、このような特性を有する液晶を用い、図2に示すように片面に配向膜を設けることによって、偏光回折素子110と同様の配向状態を有する偏光回折素子200を実現できる。
(Second Embodiment)
FIG. 2 is a sectional view showing a conceptual configuration of the polarization diffraction element according to the second embodiment of the present invention. In FIG. 2, the polarization diffraction element 200 has the same alignment state as the polarization diffraction element 110 shown in FIG. 1B, and the second substrate 102 and the alignment film 105b constituting the polarization diffraction element 110 are removed. It has a configuration. In general, since many liquid crystal molecules are vertically aligned at the interface with air or vacuum, using the liquid crystal having such characteristics and providing an alignment film on one side as shown in FIG. A polarization diffraction element 200 having a similar orientation state can be realized.

本発明の第2の実施の形態に係る偏光回折素子は、本発明の第1の実施の形態の効果に加え、製作工程の工程数を削減して製作を容易にできると共に、部材も削減できることから好ましい。また、液晶に界面活性剤を添加するなどによって液晶の特性を変え、空気や真空との界面で液晶分子を水平配向させることができる。これによって、図1(a)に示す偏光回折素子100と同様の配向状態を有する偏光回折素子を実現でき、好ましい。   In addition to the effects of the first embodiment of the present invention, the polarization diffraction element according to the second embodiment of the present invention can be manufactured easily by reducing the number of manufacturing steps, and the number of members can also be reduced. To preferred. In addition, by adding a surfactant to the liquid crystal, the characteristics of the liquid crystal can be changed, and the liquid crystal molecules can be horizontally aligned at the interface with air or vacuum. Accordingly, a polarization diffraction element having the same orientation state as that of the polarization diffraction element 100 shown in FIG.

(第3の実施の形態)
偏光回折格子と光の偏光状態を変える波長板(例えば、1/4波長板や1/2波長板など)とは、組み合わされて使用される場合が多い。本発明に係る偏光回折素子と上記の波長板とを一体化した偏光回折素子とすることで、部品点数を減らせるため好ましい。この波長板は、ポリカーボネート等のポリマーフィルム、高分子液晶等の有機材料、水晶、LiNbO等の単結晶等によって作成することができる。
(Third embodiment)
In many cases, a polarization grating and a wave plate (for example, a quarter wave plate or a half wave plate) that changes the polarization state of light are used in combination. A polarization diffraction element in which the polarization diffraction element according to the present invention and the wave plate are integrated is preferable because the number of parts can be reduced. This wave plate can be made of a polymer film such as polycarbonate, an organic material such as polymer liquid crystal, a single crystal such as quartz, LiNbO 3, or the like.

図3は、本発明に係る偏光回折素子と波長板とを一体化した概略の構成例を概念的に示す断面図である。以下、偏光回折素子と波長板とを一体化して得られる素子を波長板付き偏光回折素子という。図3において、波長板付き偏光回折素子は、3枚の基板101、102、303と、基板101、102間に挟持され周期的に配向状態が変化する液晶層103と、基板102、303間に挟持され均質な配向状態の液晶層(以下、付加液晶層という。)304によって構成される。   FIG. 3 is a cross-sectional view conceptually showing a schematic configuration example in which the polarization diffraction element and the wave plate according to the present invention are integrated. Hereinafter, an element obtained by integrating a polarization diffraction element and a wave plate is referred to as a polarization diffraction element with a wave plate. In FIG. 3, the polarization diffraction element with a wave plate is provided between three substrates 101, 102, and 303, a liquid crystal layer 103 that is sandwiched between the substrates 101 and 102, and the alignment state changes periodically, and the substrates 102 and 303. A liquid crystal layer (hereinafter referred to as an additional liquid crystal layer) 304 that is sandwiched and has a uniform alignment state is formed.

付加液晶層304は、均質な配向状態(図3では、基板にほぼ平行な配向状態。)を有し、入射する光の偏光状態を変化させる波長板として機能する。他方の液晶層103は、上記で説明したように偏光回折格子として機能する。この構成例では、各基板101、102、303に応じた配向特性の配向膜を形成した後、1回の工程で液晶を挟持させ重合を起こさせて波長板付き偏光回折素子を作製できるので好ましい。   The additional liquid crystal layer 304 has a uniform alignment state (an alignment state substantially parallel to the substrate in FIG. 3), and functions as a wave plate that changes the polarization state of incident light. The other liquid crystal layer 103 functions as a polarization diffraction grating as described above. This configuration example is preferable because a polarizing diffraction element with a wavelength plate can be produced by forming an alignment film having an alignment characteristic according to each of the substrates 101, 102, and 303 and sandwiching liquid crystal in one step to cause polymerization. .

以上説明したように、本発明の第3の実施の形態に係る偏光回折素子は、本発明の第1の実施の形態の効果に加え、配向方向が一様に同一方向の付加液晶層を新たな光学素子として一体化できるため、部品点数を削減できる。   As described above, in the polarization diffraction element according to the third embodiment of the present invention, in addition to the effect of the first embodiment of the present invention, an additional liquid crystal layer having a uniform alignment direction in the same direction is newly added. Since it can be integrated as a simple optical element, the number of parts can be reduced.

(第4の実施の形態)
次に、光学異方性媒質として低分子の液晶を用いた場合について説明する。低分子の液晶は、電圧を印加すること、または、印加した電圧を変化させることで配向状態が変化するため、回折効率が可変な可変偏光回折素子を実現することができる。図4(a)は、本発明の第4の実施の形態に係る可変偏光回折素子の概念的な構成の一例を示す断面図である。
(Fourth embodiment)
Next, a case where a low molecular liquid crystal is used as the optical anisotropic medium will be described. A low-molecular liquid crystal changes its alignment state by applying a voltage or changing the applied voltage, so that a variable polarization diffraction element having a variable diffraction efficiency can be realized. FIG. 4A is a cross-sectional view showing an example of a conceptual configuration of a variable polarization diffraction element according to the fourth embodiment of the present invention.

図4(a)において、可変偏光回折素子400は、基板401、402と、基板401、402上に形成された電極403、404と、電極403、404上に形成された配向膜405a、405b、406と、配向膜405a、405b、406間に挟持された低分子液晶層407とによって構成される。ここで、電極403、404としては、可変偏光回折素子400を反射型回折素子として利用する場合、ITO等の透明電極を用い、反射型回折素子として利用する場合、金属等の光を反射する電極を用いることができる。   4A, the variable polarization diffraction element 400 includes substrates 401 and 402, electrodes 403 and 404 formed on the substrates 401 and 402, and alignment films 405a and 405b formed on the electrodes 403 and 404, respectively. 406 and a low-molecular liquid crystal layer 407 sandwiched between the alignment films 405a, 405b, and 406. Here, as the electrodes 403 and 404, when the variable polarization diffraction element 400 is used as a reflection type diffraction element, a transparent electrode such as ITO is used, and when it is used as a reflection type diffraction element, an electrode that reflects light such as metal. Can be used.

また、配向膜405a、405bは、上記で、偏光回折素子110(図1(b)参照。)を構成する配向膜104a、104bと同様の配向特性を有するように形成され、配向膜405a、405bと配向膜406との間に挟持された低分子液晶層407の液晶分子が、低分子液晶層407と配向膜405a、405bとの界面付近で、第1の基板401にほぼ平行な配向状態と、第1の基板101に対してほぼ垂直な配向状態とが周期的に繰り返されるようになっている(図4(a)参照。)。   The alignment films 405a and 405b are formed to have the same alignment characteristics as the alignment films 104a and 104b constituting the polarization diffraction element 110 (see FIG. 1B), and the alignment films 405a and 405b. The liquid crystal molecules of the low-molecular liquid crystal layer 407 sandwiched between the alignment film 406 and the alignment film 406 are aligned substantially parallel to the first substrate 401 in the vicinity of the interface between the low-molecular liquid crystal layer 407 and the alignment films 405a and 405b. The alignment state substantially perpendicular to the first substrate 101 is periodically repeated (see FIG. 4A).

なお、図4(a)では省略したが、挟持した液晶が漏れないようにシール材を設けたり、絶縁性を向上させるために電極403、404と配向膜405a、405b、406との間に絶縁膜を設けたりするのでもよい。このように構成された可変偏光回折素子400の電極403、404は、スイッチ409を介して電源408に接続され、所定の電圧が印加されたとき、以下のように動作する。   Although not shown in FIG. 4A, a sealant is provided so that the sandwiched liquid crystal does not leak, or insulation is provided between the electrodes 403 and 404 and the alignment films 405a, 405b, and 406 in order to improve insulation. A film may be provided. The electrodes 403 and 404 of the variable polarization diffraction element 400 thus configured are connected to the power source 408 via the switch 409, and operate as follows when a predetermined voltage is applied.

まず、電極403、404間に電圧を印加しない場合、液晶分子の配向状態が図4(a)に示すように周期的に変化するため、入射する光の偏光方向に応じて光を回折させることができる。次に、配向膜405a、405b、406が液晶分子を配向させる力より強い力で液晶分子を配向させる電圧を電極403、404間に印加した場合、液晶分子の配向方向は図4(b)に示すように一様になるため、入射する光を回折させることができなくなる。電極403、404間に印加する電圧を所定の電圧範囲で徐々に変化させることによって、回折効率を電圧に応じて変化させることもできる。   First, when no voltage is applied between the electrodes 403 and 404, the alignment state of the liquid crystal molecules periodically changes as shown in FIG. 4A, so that light is diffracted according to the polarization direction of incident light. Can do. Next, when a voltage for aligning liquid crystal molecules is applied between the electrodes 403 and 404 with a force stronger than the alignment film 405a, 405b, and 406, the alignment direction of the liquid crystal molecules is shown in FIG. As shown in the figure, the incident light cannot be diffracted. By gradually changing the voltage applied between the electrodes 403 and 404 within a predetermined voltage range, the diffraction efficiency can be changed according to the voltage.

なお、上記では、電圧を印加しない状態で可変偏光回折素子400における液晶分子が、図1(b)に示す偏光回折素子110における液晶分子と同様に配向する例について説明したが、配向膜406に、図1(a)に示す偏光回折素子100を構成する配向膜105aと同様な配向特性を持たせることによって、電圧を印加しない状態で、図1(a)に示す偏光回折素子100における液晶分子の配向状態の可変偏光回折素子を実現することができる。   In the above description, an example in which the liquid crystal molecules in the variable polarization diffraction element 400 are aligned in the same manner as the liquid crystal molecules in the polarization diffraction element 110 illustrated in FIG. The liquid crystal molecules in the polarization diffractive element 100 shown in FIG. 1 (a) without applying voltage by giving the same alignment characteristics as the alignment film 105a constituting the polarization diffractive element 100 shown in FIG. 1 (a). It is possible to realize a variable polarization diffractive element in the orientation state.

この場合、電圧を印加したときに、液晶分子が基板にほぼ平行な方向になるような誘電率異方性が負の液晶を用いることによって、電圧印加時に光を回折しない素子を作成することができる。このように構成される上記の2つの可変偏光回折素子は、基板402の配向膜は均質なため、基板401と基板402のパターンを位置合わせする必要がないため、位置ずれによる歩留りの低下や特性の劣化等がない偏光回折素子を低コストで作成できる。   In this case, an element that does not diffract light when a voltage is applied can be created by using a liquid crystal having a negative dielectric anisotropy so that liquid crystal molecules are in a direction substantially parallel to the substrate when a voltage is applied. it can. In the two variable polarization diffraction elements configured as described above, since the alignment film of the substrate 402 is uniform, it is not necessary to align the patterns of the substrate 401 and the substrate 402. It is possible to produce a polarization diffraction element that is free from deterioration and the like at low cost.

ここで、上記の配向膜405a、405b、406用の膜として、ポリイミド、ポリビニルアルコール(PVA)等の有機の膜や、SiOなどの無機の膜等を用いることができる。また、上記の液晶層103を用いた偏光回折素子と同様に、偏光回折素子と波長板とを一体化することも可能である。   Here, as the films for the alignment films 405a, 405b, and 406, organic films such as polyimide and polyvinyl alcohol (PVA), inorganic films such as SiO, and the like can be used. Further, similarly to the polarization diffraction element using the liquid crystal layer 103, the polarization diffraction element and the wave plate can be integrated.

以上説明したように、本発明の第4の実施の形態に係る偏光回折素子は、本発明の第1の実施の形態および本発明の第3の実施の形態の効果に加え、電極を介して液晶層間に電圧を印加し、配向方向を変化させることができるため、回折効率を電気的に変化させることができる。   As described above, the polarization diffraction element according to the fourth embodiment of the present invention is not limited to the effects of the first embodiment of the present invention and the third embodiment of the present invention. Since a voltage can be applied between the liquid crystal layers to change the orientation direction, the diffraction efficiency can be electrically changed.

なお、本発明の第4の実施の形態に係る偏光回折素子に、本発明の第3の実施の形態に係る偏光回折素子を構成する付加液晶層304と基板303とを基板402側に付加し、波長板等の光学素子と一体化するのでもよい。これによって、部品点数を削減できる。   An additional liquid crystal layer 304 and a substrate 303 constituting the polarization diffraction element according to the third embodiment of the present invention are added to the polarization diffraction element according to the fourth embodiment of the present invention on the substrate 402 side. Alternatively, it may be integrated with an optical element such as a wave plate. Thereby, the number of parts can be reduced.

(第5の実施の形態)
次に、本発明に係る偏光回折素子を光ヘッド装置に用いた例について説明する。図5は、本発明に係る偏光回折素子を用いた光ヘッド装置の一構成例を概念的に示した図である。図5において、光ヘッド装置は、所定の波長の光束を出射する光源501と、上記で説明したいずれかの偏光回折素子503と波長板504とが一体化した波長板付き偏光回折素子502と、入射光を平行光にするコリメーターレンズ505と、入射した光を光ディスク507に集光する対物レンズ506と、光ディスク507で反射して波長板付き偏光回折素子502に戻る光(以下、戻り光という。)を検出する光検出器508とによって構成される。ここで、光源501としては、例えば半導体レーザを用いることができる。
(Fifth embodiment)
Next, an example in which the polarization diffraction element according to the present invention is used in an optical head device will be described. FIG. 5 is a diagram conceptually showing a configuration example of an optical head device using the polarization diffraction element according to the present invention. In FIG. 5, an optical head device includes a light source 501 that emits a light beam having a predetermined wavelength, a polarization diffraction element 502 with a wavelength plate in which any of the polarization diffraction elements 503 and the wavelength plate 504 described above are integrated, A collimator lens 505 that converts incident light into parallel light, an objective lens 506 that condenses incident light on the optical disk 507, and light that is reflected by the optical disk 507 and returns to the polarization diffraction element 502 with a wavelength plate (hereinafter referred to as return light). .) Is detected by a photodetector 508. Here, as the light source 501, for example, a semiconductor laser can be used.

光源501が出射した光は、波長板付き偏光回折素子502を透過し、コリメーターレンズ505および対物レンズ506によって光ディスク507に集光される。光ディスク507からの戻り光は、対物レンズ506およびコリメーターレンズ505を順次透過し、波長板付き偏光回折素子502によって光検出器508に到達する。光検出器508に到達した戻り光に基づいて、光ディスク507に記録された情報を読みとることができる。   The light emitted from the light source 501 is transmitted through the polarization diffraction element 502 with a wave plate, and is condensed on the optical disk 507 by the collimator lens 505 and the objective lens 506. Return light from the optical disk 507 sequentially passes through the objective lens 506 and the collimator lens 505, and reaches the photodetector 508 by the polarization diffraction element 502 with a wave plate. Information recorded on the optical disc 507 can be read based on the return light that has reached the photodetector 508.

ここで、本発明に係る波長板付き偏光回折素子502は、光ディスク507からの戻り光を光検出器508に導くために用いられ、波長板付き偏光回折素子502が戻り光を光検出器508に向けて回折させるように構成されている。波長板付き偏光回折素子502としては、例えば、波長板504として1/4波長板を用い、この波長板504と上記の偏光回折素子503とを一体化したものを用いるのでもよい。   Here, the polarization diffraction element 502 with a wavelength plate according to the present invention is used to guide the return light from the optical disk 507 to the photodetector 508, and the polarization diffraction element 502 with a wavelength plate transmits the return light to the photodetector 508. It is comprised so that it may diffract toward. As the polarization diffraction element 502 with a wave plate, for example, a quarter wave plate may be used as the wave plate 504, and the wave plate 504 and the polarization diffraction element 503 may be integrated.

このとき、偏光回折格子503の透過率の高い(回折効率の低い)方向に直線偏光した光を光源501から出射すると、出射された光は偏光回折格子503をほとんど回折することなく直線的に透過し、1/4波長板である波長板504により円偏光に変換され、光ディスク507に到達する。光ディスク507からの戻り光は、1/4波長板である波長板504によって往路での入射光の偏光方向と直交した直線偏光となる。   At this time, when light linearly polarized in the direction of high transmittance (low diffraction efficiency) of the polarization diffraction grating 503 is emitted from the light source 501, the emitted light is transmitted linearly without being diffracted by the polarization diffraction grating 503. Then, it is converted into circularly polarized light by the wave plate 504 that is a quarter wave plate, and reaches the optical disk 507. The return light from the optical disk 507 becomes linearly polarized light orthogonal to the polarization direction of the incident light in the forward path by the wave plate 504 which is a quarter wave plate.

上記のように、波長板504によって入射光の偏光方向に対して直交する方向に偏光方向が変わった戻り光は、偏光回折素子503による回折の回折効率が高い偏光方向となるため、効率よく光検出器508に光が到達する。これによって、光ディスク507に少ないロスで光を照射し、かつ、効率よく戻り光を光検出器508に導くことができ好ましい。   As described above, the return light whose polarization direction is changed in the direction orthogonal to the polarization direction of the incident light by the wave plate 504 becomes a polarization direction in which the diffraction efficiency of diffraction by the polarization diffraction element 503 is high. Light reaches the detector 508. This is preferable because the optical disk 507 can be irradiated with light with a small loss and the return light can be efficiently guided to the photodetector 508.

また、本発明の第4の実施の形態において説明した可変偏光回折素子を光ヘッド装置に用いることは、例えば、CD、DVD、および、400nm帯の波長の光源を用いる大容量光ディスクを、3ビームを出射する光源を用いて1つの光ヘッド装置で記録再生する場合に、ディスクの種類や光源の波長に応じて、3ビーム用に可変偏光回折素子の回折効率を変更することができ、望ましい。   Further, the use of the variable polarization diffraction element described in the fourth embodiment of the present invention for an optical head device means that, for example, a CD, a DVD, and a large capacity optical disk using a light source having a wavelength of 400 nm band, In the case of recording and reproducing with one optical head device using a light source that emits light, it is desirable that the diffraction efficiency of the variable polarization diffraction element can be changed for three beams according to the type of the disk and the wavelength of the light source.

また、複数種類の光ディスクを1つの光ディスク装置で記録再生する場合において、例えば、光源が1つで、可変偏光回折素子による回折の回折効率を切り替えて上記の各種類の光ディスク用の光束を生成するようにした構成では、可変偏光回折素子に印加する電圧のON/OFFや印加電圧の調整により発生させるビームを変えることができ、好ましい。また、3ビーム等の複数のビームを発生させる用途以外にも、これら複数種類の光ディスク用に1つの光源が複数の波長の光束を出射する構成では、色収差、ディスク厚さ等による収差の補正に回折効率が可変な可変偏光回折素子を用いることは非常に有効である。   Further, when a plurality of types of optical discs are recorded and reproduced by a single optical disc device, for example, a single light source is used to switch the diffraction efficiency of diffraction by the variable polarization diffractive element to generate a light beam for each type of optical disc described above. Such a configuration is preferable because the generated beam can be changed by ON / OFF of the voltage applied to the variable polarization diffraction element and adjustment of the applied voltage. In addition to the use of generating a plurality of beams such as three beams, a configuration in which one light source emits a light beam having a plurality of wavelengths for these plural types of optical discs can be used to correct aberrations due to chromatic aberration, disc thickness, etc. It is very effective to use a variable polarization diffraction element having a variable diffraction efficiency.

以上説明したように、本発明の第5の実施の形態に係る光ヘッド装置は、本発明の第1の実施の形態から本発明の第4の実施の形態のいずれかの効果に加え、光ディスクに入射する光または光ディスクからの戻り光の光利用効率を向上できる。   As described above, in the optical head device according to the fifth embodiment of the present invention, in addition to the effects of any one of the first embodiment to the fourth embodiment of the present invention, the optical disc The light utilization efficiency of the light incident on the optical disk or the return light from the optical disk can be improved.

なお、本発明の第5の実施の形態では、コリメーターレンズを用いた構成の光ヘッド装置について説明したが、コリメーターレンズは必ずしも本発明の光ヘッド装置に必要な構成要素ではなく、コリメーターレンズを省略しても上記と同様の効果を得ることができる。   In the fifth embodiment of the present invention, the optical head device having the configuration using the collimator lens has been described. However, the collimator lens is not necessarily a component necessary for the optical head device of the present invention. Even if the lens is omitted, the same effect as described above can be obtained.

本発明の偏光回折素子および光ディスク装置のさらなる特徴については、以下に示す実施例により具体的に説明する。   Further features of the polarization diffraction element and the optical disk apparatus of the present invention will be specifically described by the following examples.

図1(a)は、本発明の第1の実施の形態に係る偏光回折素子の概念的な構成を示す断面図である。まず、ガラス、樹脂等からなる透明な2枚の基板101、102の対向する面に液晶を配向させる配向膜104a、104b、105aを形成する。第1の基板101には、基板101にほぼ平行な配向状態を得ることができる配向膜104bと、基板101にほぼ垂直な配向状態を得ることができる配向膜104aとをストライプ状に交互に周期的に形成する。   FIG. 1A is a cross-sectional view showing a conceptual configuration of the polarization diffraction element according to the first embodiment of the present invention. First, alignment films 104a, 104b, and 105a for aligning liquid crystals are formed on opposing surfaces of two transparent substrates 101 and 102 made of glass, resin, or the like. In the first substrate 101, an alignment film 104b capable of obtaining an alignment state substantially parallel to the substrate 101 and an alignment film 104a capable of obtaining an alignment state substantially perpendicular to the substrate 101 are alternately cycled in a stripe pattern. Form.

このストライプ状の形状の周期的な繰り返しは、直線的な繰り返しに限らず、同心円の輪帯状の繰り返しでもよい。また、湾曲した曲線的な繰り返しでもよい。このストライプ状の形状により、回折光の方向や波面形状を変えることができる。これに対して、第2の基板102には、基板102にほぼ平行な配向が得られる配向膜105aを形成する。以下、このような配向膜104a、104b、105aで得られる配向を平行配向という。   The periodic repetition of the stripe shape is not limited to a linear repetition, and may be a concentric ring-shaped repetition. Further, it may be curved and curved. The direction of the diffracted light and the wavefront shape can be changed by the stripe shape. On the other hand, an alignment film 105 a that can obtain an alignment substantially parallel to the substrate 102 is formed on the second substrate 102. Hereinafter, the alignment obtained by the alignment films 104a, 104b, and 105a is referred to as parallel alignment.

平行配向の場合、基板101、102面内の配向方向は、第1の基板101と第2の基板102間で等しいか、または、180度反転した方向とする。基板101、102面内の配向方向は、ラビング法や光配向法によって実現できる。この2枚の基板101、102を、配向膜104a、104bと配向膜105aとが向き合うように、ギャップをあけて積層する。   In the case of parallel orientation, the orientation directions in the planes of the substrates 101 and 102 are the same between the first substrate 101 and the second substrate 102, or are directions reversed by 180 degrees. The alignment direction in the planes of the substrates 101 and 102 can be realized by a rubbing method or an optical alignment method. The two substrates 101 and 102 are stacked with a gap so that the alignment films 104a and 104b and the alignment film 105a face each other.

このギャップは、0.5μm以上50μmの範囲内であることが好ましく、さらに好ましくは1μm以上20μm以下が好ましい。また、この2枚の基板101、102を積層する際の位置合わせの精度は、従来のような高い精度で行う必要はなく、従来に比して非常にラフな位置合わせでも偏光回折素子としての機能を得ることができる。   The gap is preferably in the range of 0.5 μm to 50 μm, more preferably 1 μm to 20 μm. In addition, the alignment accuracy when the two substrates 101 and 102 are stacked does not need to be performed with high accuracy as in the past, and even a very rough alignment as compared with the conventional method can be used as a polarization diffraction element. Function can be obtained.

次に、真空注入法等によって液晶をこのギャップの中に挟みこむ。液晶分子106は、第2の領域1032では、厚さ方向に垂直配向から水平配向に変化するハイブリッド配向となり、第1の領域1031では厚さ方向全体に水平配向となる。このように構成することによって、周期的に液晶の配向状態を変化させることができる。この液晶として、重合を可能とする、例えば、アクリル基を付加した液晶を用いることで、紫外線等を照射して重合させ高分子化させることが可能となり、周期的に配向状態の異なる液晶層103を形成することができる。   Next, liquid crystal is sandwiched in this gap by a vacuum injection method or the like. In the second region 1032, the liquid crystal molecules 106 have a hybrid alignment that changes from vertical alignment to horizontal alignment in the thickness direction, and in the first region 1031, the liquid crystal molecules 106 have horizontal alignment in the entire thickness direction. By comprising in this way, the orientation state of a liquid crystal can be changed periodically. As this liquid crystal, it is possible to polymerize, for example, by using a liquid crystal to which an acrylic group is added, it becomes possible to polymerize by irradiation with ultraviolet rays or the like, and the liquid crystal layers 103 having different alignment states periodically. Can be formed.

波長λが650nmで回折効率が大きくなる偏光回折素子を作成する場合、上記の異常光屈折率neと常光屈折率noとの差Δnが0.1の高分子液晶を用い、液晶層103の厚さdを6.6μmとし、概ね(Δn/2−0.037Δn)・d=λ/2の関係を満たすようにすることが好ましい。 When a polarization diffractive element having a large diffraction efficiency at a wavelength λ of 650 nm is produced, a polymer liquid crystal having a difference Δn between the extraordinary refractive index ne and the ordinary refractive index no is 0.1, and the thickness of the liquid crystal layer 103 is increased. It is preferable to set the length d to 6.6 μm so that the relationship of approximately (Δn / 2−0.037Δn 2 ) · d = λ / 2 is satisfied.

上記のように作製した偏光回折素子に、高分子液晶の配向方向と同じ方向(異常光方向)の直線偏光の光を入射することによって、約40%の高い、±1次回折光の回折効率が得られる。一方、高分子液晶の配向方向に対して直交する偏光方向(常光屈折率方向)の光を入射すると、95%以上の高い0次透過率を得ることができ、回折はほとんど生じない。この様に、偏光方向により回折効率の異なる偏光回折格子を実現できる。さらに、1/4波長板を高分子液晶を用いて作成することによって、図3に示すような、波長板付き偏光回折素子を作成することができる。   The incidence of linearly polarized light in the same direction as the alignment direction of the polymer liquid crystal (the direction of extraordinary light) is incident on the polarization diffraction element produced as described above, so that the diffraction efficiency of ± 1st order diffracted light is about 40%. can get. On the other hand, when light having a polarization direction (ordinary refractive index direction) perpendicular to the alignment direction of the polymer liquid crystal is incident, a high zero-order transmittance of 95% or more can be obtained, and diffraction hardly occurs. In this way, a polarization diffraction grating having different diffraction efficiency depending on the polarization direction can be realized. Furthermore, by producing a ¼ wavelength plate using a polymer liquid crystal, a polarization diffraction element with a wavelength plate as shown in FIG. 3 can be produced.

以下、波長板付き偏光回折素子を、光ヘッド装置に用いる例について説明する。図5は本実施例に係る偏光回折素子を用いた光ヘッド装置の一構成例を概念的に示した図である。光源501である半導体レーザが出射した光は、波長板付き偏光回折素子502を透過し、コリメーターレンズ505および対物レンズ506によって光ディスク507に集光される。光ディスク507からの戻り光は、対物レンズ506およびコリメーターレンズ505を順次透過し、波長板付き偏光回折素子502によって光検出器508に到達する。光検出器508に到達した戻り光に基づいて、光ディスク507の情報を読みとることができる。   Hereinafter, an example in which the polarization diffraction element with a wave plate is used in an optical head device will be described. FIG. 5 is a diagram conceptually illustrating a configuration example of an optical head device using the polarization diffraction element according to the present embodiment. The light emitted from the semiconductor laser as the light source 501 passes through the polarization diffraction element 502 with a wave plate, and is condensed on the optical disk 507 by the collimator lens 505 and the objective lens 506. Return light from the optical disk 507 sequentially passes through the objective lens 506 and the collimator lens 505, and reaches the photodetector 508 by the polarization diffraction element 502 with a wave plate. Information on the optical disk 507 can be read based on the return light that has reached the photodetector 508.

ここで、光ディスク507からの戻り光を光検出器508に導くのに本発明の波長板付き偏光回折素子502を用い、戻り光を回折させて光検出器508に到達させるようになっている。本実施例に係る光ヘッド装置は、本発明の偏光回折格子503と1/4波長板である波長板504とを一体化した波長板付き偏光回折素子502を用いた一例である。   Here, the polarization diffraction element 502 with a wave plate of the present invention is used to guide the return light from the optical disk 507 to the photodetector 508, and the return light is diffracted to reach the photodetector 508. The optical head device according to the present embodiment is an example using a polarization plate 502 having a wavelength plate in which a polarization diffraction grating 503 of the present invention and a wavelength plate 504 that is a quarter wavelength plate are integrated.

このとき、偏光回折格子503の透過率の高い(回折効率の低い)方向に直線偏光した光を光源501から出射すると、出射された光は偏光回折格子503をほとんど回折することなく直線的に透過し、1/4波長板である波長板504により円偏光に変換され、光ディスク507に到達する。光ディスク507からの戻り光は、1/4波長板である波長板504によって往路での入射光の偏光方向と直交した直線偏光となる。   At this time, when light linearly polarized in the direction of high transmittance (low diffraction efficiency) of the polarization diffraction grating 503 is emitted from the light source 501, the emitted light is transmitted linearly without being diffracted by the polarization diffraction grating 503. Then, it is converted into circularly polarized light by the wave plate 504 that is a quarter wave plate, and reaches the optical disk 507. The return light from the optical disk 507 becomes linearly polarized light orthogonal to the polarization direction of the incident light in the forward path by the wave plate 504 which is a quarter wave plate.

上記のように波長板504によって直線偏光に偏光方向が変わった戻り光は、偏光回折素子503による回折の回折効率が高い偏光方向となるため、効率よく光検出器508に光が到達する。これによって、光ディスク507に少ないロスで光を照射し、かつ、効率よく戻り光を光検出器508に導くことができ好ましい。   As described above, the return light whose polarization direction has been changed to linearly polarized light by the wave plate 504 becomes a polarization direction with high diffraction efficiency of diffraction by the polarization diffraction element 503, so that the light efficiently reaches the photodetector 508. This is preferable because the optical disk 507 can be irradiated with light with a small loss and the return light can be efficiently guided to the photodetector 508.

本発明に係る回折素子および光ヘッド装置は、従来の偏光回折素子よりも狭いピッチかつ高い回折効率を実現できると共に、位置合わせを容易にし製造工程を簡素化できるという効果が有用な偏光回折素子および光ヘッド装置等として有用である。   The diffraction element and the optical head device according to the present invention can realize a narrower pitch and higher diffraction efficiency than the conventional polarization diffraction element, and also have a useful effect of facilitating alignment and simplifying the manufacturing process. It is useful as an optical head device or the like.

本発明の第1の実施の形態に係る偏光回折素子の概念的な構成を示す断面図。1 is a cross-sectional view showing a conceptual configuration of a polarization diffraction element according to a first embodiment of the present invention. 本発明の第2の実施の形態に係る偏光回折素子の概念的な構成を示す断面図。Sectional drawing which shows the notional structure of the polarization | polarized-light diffraction element which concerns on the 2nd Embodiment of this invention. 本発明に係る偏光回折素子と波長板とを一体化した概略の構成例を概念的に示す断面図。Sectional drawing which shows notionally the structural example which integrated the polarization | polarized-light diffraction element and wavelength plate which concern on this invention. 本発明の第4の実施の形態に係る可変偏光回折素子の概念的な構成の一例を示す断面図。Sectional drawing which shows an example of a notional structure of the variable polarization | polarized-light diffraction element which concerns on the 4th Embodiment of this invention. 本発明に係る偏光回折素子を用いた光ヘッド装置の一構成例を概念的に示した図。The figure which showed notionally one structural example of the optical head apparatus using the polarization | polarized-light diffraction element which concerns on this invention.

符号の説明Explanation of symbols

100、110、200、503 偏光回折素子
101、102、303、401、402 基板
103、407 液晶層
1031 液晶層の第1の領域
1032 液晶層の第2の領域
1033 液晶層の第3の領域
1034 液晶層の第4の領域
104a、104b、105a、105b、405a、405b、406 配向膜
106 液晶分子
107 液晶層の第1の面(第1の界面)
108a、108b 液晶層の第2の面(第2の界面)
300、502 波長板付き偏光回折素子
304 付加液晶層
400 可変偏光回折素子
403、404 電極
408 電源
409 スイッチ
501 光源
504 波長板
505 コリメーターレンズ
506 対物レンズ
507 光ディスク
508 光検出器
100, 110, 200, 503 Polarization diffraction element 101, 102, 303, 401, 402 Substrate 103, 407 Liquid crystal layer 1031 First region of liquid crystal layer 1032 Second region of liquid crystal layer 1033 Third region of liquid crystal layer 1034 Fourth region of liquid crystal layer 104a, 104b, 105a, 105b, 405a, 405b, 406 Alignment film 106 Liquid crystal molecule 107 First surface (first interface) of liquid crystal layer
108a, 108b Second surface (second interface) of liquid crystal layer
300, 502 Polarization diffraction element with wave plate 304 Additional liquid crystal layer 400 Variable polarization diffraction element 403, 404 Electrode 408 Power supply 409 Switch 501 Light source 504 Wave plate 505 Collimator lens 506 Objective lens 507 Optical disk 508 Photo detector

Claims (6)

複屈折を有する光学異方性媒質の屈折率が空間的に周期的に変化することによって、入射する光の偏光方向に応じて回折効率が異なる偏光回折素子において、
前記光学異方性媒質が、層状をなし、液晶、または、液晶を高分子化した高分子液晶によって構成される液晶層を備え、
前記液晶層の対向する2つの面であって前記光が通過する2つの面のうちの第1の面で、前記液晶または前記高分子液晶の分子の配向方向が周期的に変化し、
前記液晶層の対向する2つの面であって前記光が通過する2つの面のうちの第2の面で、前記液晶または前記高分子液晶の分子の配向方向が一様に同一方向になるようにしたことを特徴とする偏光回折素子。
In the polarization diffraction element in which the diffraction efficiency varies depending on the polarization direction of the incident light, because the refractive index of the optically anisotropic medium having birefringence changes periodically in space,
The optically anisotropic medium comprises a liquid crystal layer comprising a liquid crystal or a polymer liquid crystal obtained by polymerizing a liquid crystal.
The alignment direction of the molecules of the liquid crystal or the polymer liquid crystal is periodically changed on the first two of the two surfaces of the liquid crystal layer that face each other and through which the light passes.
The alignment direction of the molecules of the liquid crystal or the polymer liquid crystal is uniformly the same in the second surface of the two surfaces of the liquid crystal layer that face each other and through which the light passes. A polarized light diffraction element characterized by comprising:
前記液晶層の前記第1の面で、前記液晶または前記高分子液晶の分子の配向方向が前記液晶層の面内方向に対して垂直な領域と、前記液晶または前記高分子液晶の分子の配向方向が前記液晶層の面内方向に水平な領域とが周期的に配列し、前記液晶層の前記第2の面で、前記液晶または前記高分子液晶の分子の配向方向が、前記液晶層の面内方向に対して一様に垂直、または、前記液晶層の面内方向に一様に水平になるようにした請求項1に記載の偏光回折素子。   A region in which the alignment direction of the molecules of the liquid crystal or the polymer liquid crystal is perpendicular to the in-plane direction of the liquid crystal layer on the first surface of the liquid crystal layer, and the alignment of the molecules of the liquid crystal or the polymer liquid crystal A region whose direction is horizontal to the in-plane direction of the liquid crystal layer is periodically arranged, and on the second surface of the liquid crystal layer, the alignment direction of the molecules of the liquid crystal or the polymer liquid crystal is 2. The polarization diffraction element according to claim 1, wherein the polarization diffraction element is uniformly perpendicular to the in-plane direction or uniformly horizontal in the in-plane direction of the liquid crystal layer. 前記液晶層の前記第1の面における配向方向に配向させる第1の配向膜と、前記液晶層の前記第2の面における配向方向に配向させる第2の配向膜と、前記第1の配向膜が前記液晶層の前記第1の面と接するように形成された第1の基板と、前記第2の配向膜が前記液晶層の前記第2の面と接するように形成された第2の基板とを備えた請求項1または2に記載の偏光回折素子。   A first alignment film that is aligned in the alignment direction on the first surface of the liquid crystal layer, a second alignment film that is aligned in the alignment direction on the second surface of the liquid crystal layer, and the first alignment film A first substrate formed so as to be in contact with the first surface of the liquid crystal layer, and a second substrate formed so that the second alignment film is in contact with the second surface of the liquid crystal layer The polarization diffraction element according to claim 1, comprising: 前記第1の基板と前記第2の基板の対向する2つの面であって、前記光が通過する2つの面のそれぞれに形成され、前記液晶層間に電圧を印加するための電極を備えた請求項3に記載の偏光回折素子。   An electrode for applying a voltage between the liquid crystal layers formed on each of two opposing surfaces of the first substrate and the second substrate and through which the light passes. Item 4. The polarization diffraction element according to Item 3. 第3の基板と、前記第1の基板または第2の基板間と前記第3の基板との間に挟持され光学異方性媒質の液晶層からなる付加液晶層とを備え、前記付加液晶層の分子の配向方向が一様に同一方向になるようにした請求項3または4に記載の偏光回折素子。   A third substrate; and an additional liquid crystal layer formed of a liquid crystal layer of an optically anisotropic medium sandwiched between the first substrate or the second substrate and the third substrate. The polarization diffraction element according to claim 3 or 4, wherein the orientation directions of the molecules are uniformly in the same direction. 光源と、前記光源からの出射光を光記録媒体へ集光する対物レンズと、前記対物レンズによって集光され前記光記録媒体により反射された光を検出する光検出器とを備える光ヘッド装置において、前記対物レンズと前記光源との間の光路中に、請求項1から5までのいずれか1項に記載の前記偏光回折素子が配置されていることを特徴とする光ヘッド装置。   In an optical head device comprising: a light source; an objective lens that condenses light emitted from the light source onto an optical recording medium; and a photodetector that detects light collected by the objective lens and reflected by the optical recording medium. An optical head device, wherein the polarization diffraction element according to any one of claims 1 to 5 is disposed in an optical path between the objective lens and the light source.
JP2005065628A 2005-03-09 2005-03-09 Polarization diffraction element and optical head apparatus Pending JP2006252638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065628A JP2006252638A (en) 2005-03-09 2005-03-09 Polarization diffraction element and optical head apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065628A JP2006252638A (en) 2005-03-09 2005-03-09 Polarization diffraction element and optical head apparatus

Publications (1)

Publication Number Publication Date
JP2006252638A true JP2006252638A (en) 2006-09-21

Family

ID=37092967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065628A Pending JP2006252638A (en) 2005-03-09 2005-03-09 Polarization diffraction element and optical head apparatus

Country Status (1)

Country Link
JP (1) JP2006252638A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139684A (en) * 2006-12-04 2008-06-19 Ricoh Co Ltd Polarization converting element and polarization conversion device
WO2008126512A1 (en) * 2007-03-28 2008-10-23 Nec Corporation Optical head device, and optical information recording/reproducing device and optical information recording/reproducing method using the optical head device
WO2009084604A1 (en) * 2007-12-27 2009-07-09 Asahi Glass Co., Ltd. Liquid crystal element, optical head device, and variable optical modulation element
EP2395376A1 (en) * 2009-02-03 2011-12-14 Toppan Printing Co., Ltd. Phase type diffraction element, manufacturing method thereof, and image capture device
JP2012009126A (en) * 2010-05-21 2012-01-12 Arisawa Mfg Co Ltd Optical diffraction element, optical pickup and method for manufacturing optical diffraction element
WO2012160740A1 (en) * 2011-05-20 2012-11-29 株式会社有沢製作所 Optical diffraction element, optical pickup, and method for fabricating optical diffraction element
CN110192146A (en) * 2016-11-18 2019-08-30 奇跃公司 Spatially-variable liquid crystal diffraction grating
JP2020126174A (en) * 2019-02-05 2020-08-20 株式会社豊田中央研究所 Polarization state controlling device and program
KR20220132403A (en) * 2021-03-23 2022-09-30 경북대학교 산학협력단 Privacy barrier optical film and manufacturing method of the privacy barrier optical film
US11693282B2 (en) 2016-11-18 2023-07-04 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249831A (en) * 1999-02-26 2000-09-14 Asahi Glass Co Ltd Optical device and optical head device
JP2004039004A (en) * 2002-06-28 2004-02-05 Asahi Glass Co Ltd Optical head device
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249831A (en) * 1999-02-26 2000-09-14 Asahi Glass Co Ltd Optical device and optical head device
JP2004039004A (en) * 2002-06-28 2004-02-05 Asahi Glass Co Ltd Optical head device
JP2006215186A (en) * 2005-02-02 2006-08-17 Ricoh Co Ltd Diffraction element, manufacturing method of the same, and polarization selecting device using diffraction element

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139684A (en) * 2006-12-04 2008-06-19 Ricoh Co Ltd Polarization converting element and polarization conversion device
WO2008126512A1 (en) * 2007-03-28 2008-10-23 Nec Corporation Optical head device, and optical information recording/reproducing device and optical information recording/reproducing method using the optical head device
WO2009084604A1 (en) * 2007-12-27 2009-07-09 Asahi Glass Co., Ltd. Liquid crystal element, optical head device, and variable optical modulation element
US8300512B2 (en) 2007-12-27 2012-10-30 Asahi Glass Company, Limited Liquid crystal element, optical head device, and variable optical modulation element
EP2395376A1 (en) * 2009-02-03 2011-12-14 Toppan Printing Co., Ltd. Phase type diffraction element, manufacturing method thereof, and image capture device
EP2395376A4 (en) * 2009-02-03 2012-10-24 Toppan Printing Co Ltd Phase type diffraction element, manufacturing method thereof, and image capture device
JP2012009126A (en) * 2010-05-21 2012-01-12 Arisawa Mfg Co Ltd Optical diffraction element, optical pickup and method for manufacturing optical diffraction element
WO2012160740A1 (en) * 2011-05-20 2012-11-29 株式会社有沢製作所 Optical diffraction element, optical pickup, and method for fabricating optical diffraction element
CN103547950A (en) * 2011-05-20 2014-01-29 株式会社有泽制作所 Optical diffraction element, optical pickup, and method for fabricating optical diffraction element
KR101527074B1 (en) * 2011-05-20 2015-06-09 가부시키가이샤 아리사와 세이사쿠쇼 Optical diffraction element, optical pickup, and method for fabricating optical diffraction element
US9594276B2 (en) 2011-05-20 2017-03-14 Arisawa Mfg. Co., Ltd. Optical diffraction element, optical pickup, and optical diffraction element manufacturing method
JP2019537061A (en) * 2016-11-18 2019-12-19 マジック リープ, インコーポレイテッドMagic Leap,Inc. Spatial variable liquid crystal diffraction grating
CN110192146A (en) * 2016-11-18 2019-08-30 奇跃公司 Spatially-variable liquid crystal diffraction grating
JP7116058B2 (en) 2016-11-18 2022-08-09 マジック リープ, インコーポレイテッド Spatial variable liquid crystal diffraction grating
JP2022145751A (en) * 2016-11-18 2022-10-04 マジック リープ, インコーポレイテッド Spatially variable liquid crystal diffraction gratings
US11586065B2 (en) 2016-11-18 2023-02-21 Magic Leap, Inc. Spatially variable liquid crystal diffraction gratings
US11693282B2 (en) 2016-11-18 2023-07-04 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
JP7331216B2 (en) 2016-11-18 2023-08-22 マジック リープ, インコーポレイテッド Spatial variable liquid crystal diffraction grating
US12001091B2 (en) 2016-11-18 2024-06-04 Magic Leap, Inc. Spatially variable liquid crystal diffraction gratings
JP7536149B2 (en) 2016-11-18 2024-08-19 マジック リープ, インコーポレイテッド Spatially variable liquid crystal diffraction grating
JP2020126174A (en) * 2019-02-05 2020-08-20 株式会社豊田中央研究所 Polarization state controlling device and program
JP7188756B2 (en) 2019-02-05 2022-12-13 株式会社豊田中央研究所 Polarization state controller and program
KR20220132403A (en) * 2021-03-23 2022-09-30 경북대학교 산학협력단 Privacy barrier optical film and manufacturing method of the privacy barrier optical film
KR102651004B1 (en) 2021-03-23 2024-03-26 경북대학교 산학협력단 Privacy barrier optical film and manufacturing method of the privacy barrier optical film

Similar Documents

Publication Publication Date Title
JP2006252638A (en) Polarization diffraction element and optical head apparatus
US8300512B2 (en) Liquid crystal element, optical head device, and variable optical modulation element
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
US20090009668A1 (en) Non-Etched Flat Polarization-Selective Diffractive Optical Elements
JP3620145B2 (en) Optical head device
JP4508048B2 (en) Liquid crystal lens and optical head device
KR100975120B1 (en) Polarization diffraction device with phase delay
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
JP4930084B2 (en) Broadband wave plate
US7782738B2 (en) Phase plate and optical head device
JP4387141B2 (en) Polarization diffraction grating
US7835252B2 (en) Optical head apparatus
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP5131244B2 (en) Laminated phase plate and optical head device
JP5152366B2 (en) Isolator and variable voltage attenuator
JP2001344800A (en) Optical head device
JP4626026B2 (en) Optical head device
JP3829356B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP3528381B2 (en) Optical head device
JP3509399B2 (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100611

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100702