Nothing Special   »   [go: up one dir, main page]

JP5152366B2 - Isolator and variable voltage attenuator - Google Patents

Isolator and variable voltage attenuator Download PDF

Info

Publication number
JP5152366B2
JP5152366B2 JP2011129353A JP2011129353A JP5152366B2 JP 5152366 B2 JP5152366 B2 JP 5152366B2 JP 2011129353 A JP2011129353 A JP 2011129353A JP 2011129353 A JP2011129353 A JP 2011129353A JP 5152366 B2 JP5152366 B2 JP 5152366B2
Authority
JP
Japan
Prior art keywords
light
diffraction grating
grating
polarizer
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011129353A
Other languages
Japanese (ja)
Other versions
JP2011191787A (en
Inventor
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011129353A priority Critical patent/JP5152366B2/en
Publication of JP2011191787A publication Critical patent/JP2011191787A/en
Application granted granted Critical
Publication of JP5152366B2 publication Critical patent/JP5152366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Polarising Elements (AREA)

Description

本発明は、アイソレータおよび電圧可変アッテネータに関する。   The present invention relates to an isolator and a voltage variable attenuator.

CD、DVDなど光ディスクの情報読み出し用光ヘッド装置において、例えば図10に示す偏光性の回折格子400が偏光ビームスプリッタとして用いられている。透光性基板4であるガラス基板の片面に、常光屈折率nおよび異常光屈折率n(n≠n)を有する複屈折性材料層で回折格子1を形成し、断面形状が凹凸状で段差dの周期構造となるようにする。 In an optical head device for reading information from an optical disc such as a CD or DVD, for example, a polarizing diffraction grating 400 shown in FIG. 10 is used as a polarizing beam splitter. The diffraction grating 1 is formed of a birefringent material layer having a normal light refractive index n o and an extraordinary light refractive index n e (n o ≠ n e ) on one side of a glass substrate which is a translucent substrate 4, and the cross-sectional shape is A periodic structure with unevenness and a step difference d is formed.

周期構造の凹凸部を埋めるように常光屈折率nとほぼ等しい屈折率nの等方性透明材料3を充填し、透光性基板5であるガラス基板を等方性透明材料3に重ねて偏光性の回折格子400を形成する。ここで、|n−n|×dが入射光の波長λの半分とすることにより、常光偏光(常光屈折率を与える偏光方向)の入射光は回折されずに直進透過し、異常光偏光(異常光屈折率を与える偏光方向)の入射光は回折されて直進透過しない、偏光性の回折格子となる。 The isotropic transparent material 3 having a refractive index n s almost equal to the ordinary light refractive index n o is filled so as to fill the irregular portion of the periodic structure, and a glass substrate which is a translucent substrate 5 is overlaid on the isotropic transparent material 3. Thus, a polarizing diffraction grating 400 is formed. Here, by setting | n e −n s | × d to half the wavelength λ of the incident light, the incident light of ordinary light polarized light (polarization direction giving the ordinary light refractive index) is transmitted straight without being diffracted, and abnormal light The incident light of polarized light (polarization direction giving an extraordinary light refractive index) is diffracted and does not pass straight, but becomes a polarizing diffraction grating.

このような偏光性の回折格子を、波長帯域1400〜1700nmの光通信用のアイソレータとして使用したとき、消光比が充分得られない問題があった。すなわち、特定の単一波長λに着目すると、直進透過する第1の直線偏光(例えば常光偏光)の光量をI、第1の直線偏光と直交する偏光方向を有する第2の直線偏光(異常光偏光)の回折されずに直進透過する光量をIとするとき、比率I/I(以下、消光比という)が−20dB以下となる。しかし、異常光偏光の直進透過光の透過率はcos(0.5×π×λ/λ)で記述されるため、波長λがλと異なるほど入射光に対しては回折されないで直進透過する成分が発生し消光比が劣化する。 When such a polarizing diffraction grating is used as an isolator for optical communication having a wavelength band of 1400 to 1700 nm, there has been a problem that a sufficient extinction ratio cannot be obtained. That is, when paying attention to a specific single wavelength λ 0 , the amount of first linearly polarized light (for example, ordinary polarized light) that is transmitted in a straight line is I 1 , and the second linearly polarized light having a polarization direction orthogonal to the first linearly polarized light ( when the amount of light straightly transmitted without being diffracted for extraordinarily polarized light) and I 2, the ratio I 2 / I 1 (hereinafter, referred to as the extinction ratio) of -20dB or less. However, since the transmissivity of the linearly transmitted light of the extraordinary light polarization is described by cos 2 (0.5 × π × λ 0 / λ), the incident light is not diffracted as the wavelength λ is different from λ 0. Components that pass straight through are generated and the extinction ratio deteriorates.

また、特定の単一波長に対して高い消光比を実現するためには、凹凸状の周期構造の段差dを正確に加工する必要があり、再現性よく消光比の高い偏光性の回折格子を得ることは困難であった。   In addition, in order to realize a high extinction ratio for a specific single wavelength, it is necessary to accurately process the step d of the irregular periodic structure, and a polarizing diffraction grating having a high extinction ratio with high reproducibility is required. It was difficult to get.

本発明は上述の実情に鑑み、安定して高い消光比が実現できるアイソレータおよび電圧可変アッテネータを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an isolator and a voltage variable attenuator that can stably realize a high extinction ratio.

本発明は、少なくとも、偏光子と、集光レンズとを備えるアイソレータであって、前記偏光子として、第1の偏光方向を有する入射光に対しては回折格子として作用せず直進透過し、第1の偏光方向と直交する第2の偏光方向を有する入射光に対しては回折格子として作用して回折する、複屈折性材料を備える偏光性の回折格子を、少なくとも2つ積層した複層回折格子で形成された複層回折型偏光子を備え、前記各偏光性の回折格子は、少なくとも1枚の透光性基板を備え、前記透光性基板上に形成された常光屈折率n および異常光屈折率n (n ≠n )の高分子液晶からなる複屈折性材料層が、その断面形状を入射光の波長λより大きな周期の周期的な凹凸状に加工されており、また、少なくとも凹部には屈折率がn またはn に等しい等方性透明材料が充填されており、さらに偏光性の回折格子における格子長手方向が各偏光性の回折格子でそれぞれ異なり、第1の偏光方向を有する入射光は、前記偏光子を直進透過して前記集光レンズにより、前記集光レンズの光軸の焦点面上に焦点を結び、第2の偏光方向を有する入射光は、前記偏光子により回折されて前記集光レンズにより、前記集光レンズの光軸外の焦点面上に焦点を結ぶことを特徴とするアイソレータを提供する。 The present invention is an isolator including at least a polarizer and a condensing lens, and as the polarizer, incident light having a first polarization direction does not act as a diffraction grating and transmits straight, Multi-layer diffraction in which at least two polarizing diffraction gratings including a birefringent material are diffracted by acting as a diffraction grating for incident light having a second polarization direction orthogonal to one polarization direction. A multi-layer diffractive polarizer formed of a grating, and each polarizing diffraction grating includes at least one translucent substrate, the ordinary refractive index n o formed on the translucent substrate, and A birefringent material layer made of a polymer liquid crystal having an extraordinary refractive index n e (n o ≠ n e ) has been processed into a periodic concavo-convex shape whose cross-sectional shape is longer than the wavelength λ of incident light, the refractive index at least in recesses n o or n e is the isotropic transparent material is filled equal, unlike each further grating longitudinal direction of polarization of the diffraction grating in the polarizing diffraction grating, the incident light having the first polarization direction, the polarizer The incident light having a second polarization direction is diffracted by the polarizer and is focused by the condenser lens. An isolator is characterized in that a focal point is formed on a focal plane outside the optical axis of the condenser lens.

また、本発明は、電極付き透光性基板間に液晶層が挟持されてなる液晶セルの光入射面および光出射面の透光性基板表面に、第1の偏光方向を有する入射光に対しては回折格子として作用せず直進透過し、第1の偏光方向と直交する第2の偏光方向を有する入射光に対しては回折格子として作用して回折する、複屈折性材料を備える偏光性の回折格子を、少なくとも2つ積層した複層回折格子で形成された複層回折型偏光子を積層した複合型液晶素子を備え、前記各偏光性の回折格子は、少なくとも1枚の透光性基板を備え、前記透光性基板上に形成された常光屈折率n および異常光屈折率n (n ≠n )の高分子液晶からなる複屈折性材料層が、その断面形状を入射光の波長λより大きな周期の周期的な凹凸状に加工されており、また、少なくとも凹部には屈折率がn またはn に等しい等方性透明材料が充填されており、前記液晶層に印加する電圧によって特定偏光方向の直進透過光量を調整することを特徴とする電圧可変アッテネータを提供する。 Further, the present invention provides a light incident surface having a first polarization direction on a light incident surface and a light emitting surface of a liquid crystal cell in which a liquid crystal layer is sandwiched between electrodes. Polarization with a birefringent material that does not act as a diffraction grating and transmits straight, and diffracts incident light having a second polarization direction orthogonal to the first polarization direction. A composite liquid crystal element in which a multilayer diffractive polarizer formed by a multilayer diffraction grating in which at least two of the above diffraction gratings are stacked is laminated, and each polarizing diffraction grating has at least one light transmitting property A birefringent material layer made of a polymer liquid crystal having an ordinary light refractive index n o and an extraordinary light refractive index n e (n o ≠ n e ) formed on the translucent substrate , Processed into periodic irregularities with a period longer than the wavelength λ of the incident light Further, wherein the refractive index at least recesses for adjusting the straight transmission light amount of a specific polarization direction by n o or equal isotropic transparent material to n e and is filled, the voltage applied to the liquid crystal layer A variable voltage attenuator is provided.

本発明によれば、複層回折型偏光子が、広い波長帯域の入射光に対して高い消光比を有するので、この複層回折型偏光子を用いることにより、高性能のアイソレータが得られる。また、この複層回折型偏光子と液晶セルを一体化した複合型液晶素子は、液晶セルに印加する電圧を所定の大きさに設定することにより、特定偏光方向の直進透過光量を所望の大きさに調整できるため、この複合型液晶素子を用いることにより、高性能の電圧可変アッテネータが得られる。   According to the present invention, since the multilayer diffractive polarizer has a high extinction ratio with respect to incident light in a wide wavelength band, a high performance isolator can be obtained by using the multilayer diffractive polarizer. In addition, the composite liquid crystal element in which the multilayer diffractive polarizer and the liquid crystal cell are integrated with each other can set the voltage applied to the liquid crystal cell to a predetermined magnitude so that the linearly transmitted light amount in a specific polarization direction has a desired magnitude. Therefore, a high performance voltage variable attenuator can be obtained by using this composite type liquid crystal element.

本発明の第1の実施態様の複層回折型偏光子の構成例を示す側面図。The side view which shows the structural example of the multilayer diffraction type polarizer of the 1st embodiment of this invention. 図1に示す複層回折型偏光子に異常光偏光が入射した場合の作用を示す側面図。The side view which shows an effect | action when extraordinary-light polarized light injects into the multilayer diffraction type polarizer shown in FIG. 図1に示す複層回折型偏光子に常光偏光が入射した場合の作用を示す側面図。The side view which shows an effect | action when normal light polarized light injects into the multilayer diffraction type polarizer shown in FIG. 図1に示す複層回折型偏光子を構成する2種の回折格子パターンの一例を示す平面図。The top view which shows an example of the 2 types of diffraction grating pattern which comprises the multilayer diffraction type polarizer shown in FIG. 図1に示す複層回折型偏光子が直進透過光と回折光とを分離する光学系を構成する一例を示す側面図。The side view which shows an example which comprises the optical system in which the multilayered diffraction type polarizer shown in FIG. 1 isolate | separates a straight transmission light and diffracted light. 図1に示す複層回折型偏光子を透過した光の、集光レンズの焦点面における直進透過光と回折光の集光位置の一例を示す平面図。The top view which shows an example of the condensing position of the linearly transmitted light and diffracted light in the focal plane of the condensing lens of the light which permeate | transmitted the multilayer diffraction type polarizer shown in FIG. 本発明の複層回折型偏光子における異常光偏光透過率の波長依存性(計算値)の一例を示すグラフ。The graph which shows an example of the wavelength dependence (calculated value) of the extraordinary light polarization | polarized-light transmittance in the multilayer diffraction type polarizer of this invention. 本発明の第3の実施態様の複合型液晶素子の構成例を示す側面図。The side view which shows the structural example of the composite type liquid crystal element of the 3rd embodiment of this invention. 本発明の複合型液晶素子の他の構成例を示す側面図。The side view which shows the other structural example of the composite type liquid crystal element of this invention. 従来の複層回折型偏光子の構成例を示す側面図。The side view which shows the structural example of the conventional multilayer diffraction type polarizer.

本発明は、まず、第1の偏光方向を有する入射光に対しては回折格子として作用せず直進透過し、第1の偏光方向と直交する第2の偏光方向を有する入射光に対しては回折格子として作用して回折する複屈折性材料を備える偏光性の回折格子を得て、この偏光性の回折格子を2つ以上積層した複層回折型偏光子を得る。複層回折型偏光子をこのように構成することにより、消光比を高くする効果を生ずる。   In the present invention, first, incident light having a first polarization direction does not act as a diffraction grating and transmits straight, and for incident light having a second polarization direction orthogonal to the first polarization direction. A polarizing diffraction grating having a birefringent material that acts as a diffraction grating and diffracts is obtained, and a multilayer diffraction polarizer in which two or more polarizing diffraction gratings are stacked is obtained. By configuring the multi-layer diffractive polarizer in this way, the effect of increasing the extinction ratio is produced.

[第1の実施態様]
図1は本発明の複層回折型偏光子の構成の第1の実施態様を示す側面図である。透光性基板4および透光性基板5のそれぞれの片面に、常光屈折率nおよび異常光屈折率n(n≠n)の複屈折性材料層を、その進相軸(常光屈折率を示す方向)が図1のX軸方向に揃うように形成する。次に複屈折性材料層を、断面形状が段差dかつ格子ピッチpの凹凸状の周期構造を有する回折格子1と、断面形状が段差dかつ格子ピッチpの凹凸状の周期構造を有する回折格子2とに加工する。
[First Embodiment]
FIG. 1 is a side view showing a first embodiment of the constitution of the multilayer diffraction type polarizer of the present invention. In each of one surface of the translucent substrate 4 and the transparent substrate 5, a birefringent material layer of the ordinary refractive index n o and extraordinary refractive index n e (n o ≠ n e ), the fast axis (ordinary The direction in which the refractive index is indicated) is aligned with the X-axis direction in FIG. Next, the birefringent material layer is divided into a diffraction grating 1 having an uneven periodic structure with a cross-sectional shape of step d 1 and a grating pitch p 1, and an uneven periodic structure with a cross-sectional shape of step d 2 and a grating pitch p 2. To a diffraction grating 2 having

その後、少なくともそれぞれの凹部に屈折率n(常光屈折率nまたは異常光屈折率nに等しい)の等方性透明材料3を充填して偏光性の回折格子を透光性基板4および透光性基板5上に形成した後、透光性基板4と透光性基板5と透光性基板6とを積層して、複層回折型偏光子100とする。ここで、少なくともそれぞれの凹部にという意味は、凹部のみを充填してもよいし、凹凸部を埋めるように充填してもよい。なお等方性透明材料とは、屈折率が等方的な透明材料のことである。格子凹部の溝方向である格子長手方向は、透光性基板4と透光性基板5との間で、平行であってもよいし、直交していてもよいし、所定の角度をなしていてもよい。回折格子により発生する回折光は格子長手方向に直交する方向であるため、回折格子1と回折格子2の格子長手方向を所定の角度とすることにより回折光を所望の方向に発生させることができる。 Thereafter, the optical substrate 4 permeable at least to the respective concave refractive index n s (ordinary refractive index n o or equal to the extraordinary refractive index n e) a diffraction grating polarizing isotropic transparent material 3 is filled in and After forming on the translucent substrate 5, the translucent substrate 4, the translucent substrate 5, and the translucent substrate 6 are laminated | stacked, and it is set as the multilayer diffraction type polarizer 100. FIG. Here, the meaning of at least each of the recesses may be that only the recesses are filled, or that the recesses and projections are filled. The isotropic transparent material is a transparent material having an isotropic refractive index. The longitudinal direction of the lattice, which is the groove direction of the lattice concave portion, may be parallel or orthogonal to the translucent substrate 4 and the translucent substrate 5, or at a predetermined angle. May be. Since the diffracted light generated by the diffraction grating is perpendicular to the grating longitudinal direction, the diffracted light can be generated in a desired direction by setting the grating longitudinal directions of the diffraction grating 1 and the diffraction grating 2 to a predetermined angle. .

ここで、例えば屈折率nが常光屈折率nとほぼ等しい等方性透明材料3を用い、リタデーション値|n−n|×dおよび|n−n|×dが入射光の波長の(m+1/2)倍(mは0または正の整数)となる段差dおよびdとすることが次の理由により好ましい。その理由とは、第2の偏光方向を有する入射光に対する直進透過光の光量比が最小となり、高い消光比が得られるためである。ここで、(m+1/2)倍とは、(m+1/2)の±10%以内の倍率変化を含んでいてもよく、本発明における効果は変わらない。 Here, for example, the refractive index n s is using approximately equal isotropic transparent material 3 and the ordinary refractive index n o, the retardation value | is × d 2 | n e -n s | × d 1 and | n e -n s Steps d 1 and d 2 that are (m + ½) times the wavelength of incident light (m is 0 or a positive integer) are preferable for the following reason. The reason for this is that the ratio of the amount of light transmitted in a straight line to the incident light having the second polarization direction is minimized, and a high extinction ratio is obtained. Here, (m + 1/2) times may include a change in magnification within ± 10% of (m + 1/2), and the effect in the present invention does not change.

このような複層回折型偏光子100に、異常光偏光(S偏光)が入射した場合、図2に示すように本発明における回折格子1および回折格子2からなるそれぞれの偏光性の回折格子は、凹凸状の周期構造により屈折率nと屈折率nの位相変調型回折格子として作用し回折光が発生する。以下において、回折格子1とは、回折格子1からなる偏光性の回折格子1を意味し、回折格子2についても同様である。 When extraordinary polarized light (S-polarized light) is incident on such a multilayer diffractive polarizer 100, the polarizing diffraction gratings comprising the diffraction grating 1 and the diffraction grating 2 in the present invention are as shown in FIG. The concavo-convex periodic structure acts as a phase modulation type diffraction grating having a refractive index ne and a refractive index n s to generate diffracted light. Hereinafter, the diffraction grating 1 means a polarizing diffraction grating 1 composed of the diffraction grating 1, and the same applies to the diffraction grating 2.

複層回折型偏光子において、回折効率の波長依存性を抑制できるようにし、かつ加工段差を浅くできるようにするため、リタデーション値|n−n|×dおよび|n−n|×dは出射光の波長の1/2倍(m=0に相当)とすることが好ましい。ここでも上述のように、1/2倍の±10%以内の倍率変化を含んでいてもよい。すなわち、0.55〜0.45の範囲の倍率であればよい。 In the multilayer diffractive polarizer, the retardation values | n e −n s | × d 1 and | n e −n s can be used to suppress the wavelength dependence of diffraction efficiency and reduce the processing step. | × d 2 is preferably ½ times the wavelength of the emitted light (corresponding to m = 0). Here, as described above, a magnification change within ± 10% of ½ times may be included. That is, the magnification may be in the range of 0.55 to 0.45.

ここで、回折格子1で回折されずに直進透過した異常光偏光(S偏光)の一部は回折格子2で回折されるため、複層回折型偏光子100を直進透過する異常光偏光は極めてわずかとなる。   Here, a part of the extraordinary light polarized light (S-polarized light) that has been transmitted straight without being diffracted by the diffraction grating 1 is diffracted by the diffraction grating 2, so that the extraordinary light polarized light that passes straight through the multilayer diffraction polarizer 100 is extremely high. Slightly.

一方、複層回折型偏光子100に常光偏光(P偏光)が入射した場合、図3に示すように本発明における回折格子1および回折格子2は、凹凸状の周期構造を有していても屈折率nの媒質と同等となり、入射光は回折されず直進透過する。 On the other hand, when ordinary light polarized light (P-polarized light) is incident on the multilayer diffractive polarizer 100, the diffraction grating 1 and the diffraction grating 2 in the present invention may have an irregular periodic structure as shown in FIG. This is equivalent to a medium having a refractive index of n s , and incident light is transmitted straight without being diffracted.

したがって、常光偏光の透過率が90%以上で、常光偏光の偏光方向と直交する偏光方向を有する異常光偏光の透過率が5%以下である回折格子1と回折格子2とを積層することにより、異常光偏光の入射光においては直進透過光が入射光の0.5%以下である複層回折型偏光子が得られる。   Therefore, by laminating the diffraction grating 1 and the diffraction grating 2 having a transmittance of ordinary light polarization of 90% or more and a transmittance of extraordinary light polarization having a polarization direction orthogonal to the polarization direction of ordinary light polarization of 5% or less. In the incident light of extraordinary light polarization, a multilayer diffractive polarizer in which the linearly transmitted light is 0.5% or less of the incident light is obtained.

ここで、図4の2種の回折格子パターンおよび図1に示すように、回折格子1を格子ピッチpで格子長手方向の角度がX軸に対してθの直線格子とし、回折格子2を格子ピッチpで格子長手方向の角度がX軸に対してθの直線格子とする。 Here, as shown in the two types of diffraction grating patterns in FIG. 4 and FIG. 1, the diffraction grating 1 is a linear grating having a grating pitch p 1 and an angle in the longitudinal direction of the grating θ 1 with respect to the X axis. Is a linear lattice having a lattice pitch p 2 and an angle in the lattice longitudinal direction of θ 2 with respect to the X axis.

一般に回折格子1で回折された光が回折格子2でも回折されて、直進透過光に重畳すると結果的に直進透過光成分が増加して消光比が劣化する。しかし、格子ピッチpと格子ピッチpが異なるように、または格子長手方向の角度θと角度θとが異なるようにすれば、このような消光比の変化を防げる。すなわち、構成要素である各回折格子の格子ピッチまたは格子長手方向が一致しないように設定することが、回折格子1と回折格子2との多重回折光が直進透過光に重畳せず、消光比の劣化を招かず好ましい。たとえそれぞれの回折格子の段差dとdとが同じであっても、pとp、またはθとθとが異なっていれば、消光比は劣化しない。 In general, when the light diffracted by the diffraction grating 1 is also diffracted by the diffraction grating 2 and superimposed on the straight transmitted light, the result is that the straight transmitted light component increases and the extinction ratio deteriorates. However, if the grating pitch p 1 is different from the grating pitch p 2 or the angle θ 1 and the angle θ 2 in the grating longitudinal direction are different, such a change in the extinction ratio can be prevented. That is, setting so that the grating pitch or the grating longitudinal direction of each diffraction grating as a constituent element does not coincide with each other does not cause the multiple diffracted lights of the diffraction grating 1 and the diffraction grating 2 to be superimposed on the straight transmitted light, and the extinction ratio is reduced. It is preferable without causing deterioration. Even if the steps d 1 and d 2 of the respective diffraction gratings are the same, the extinction ratio does not deteriorate as long as p 1 and p 2 or θ 1 and θ 2 are different.

図5は本発明の複層回折型偏光子100を用いて、消光比の高いアイソレータとする場合の光学系構成の一例を示す側面図である。複層回折型偏光子100に常光偏光と異常光偏光とが混在した平行光が入射し、出射側に集光レンズ7を配置した場合、複層回折型偏光子100を直進透過した常光偏光は集光レンズ7の光軸上の焦点面に集光される。一方、複層回折型偏光子100で回折された異常光偏光は集光レンズ7の光軸外の焦点面に集光される。   FIG. 5 is a side view showing an example of an optical system configuration in the case where an isolator having a high extinction ratio is formed using the multilayer diffraction polarizer 100 of the present invention. When parallel light in which ordinary light polarization and extraordinary light polarization are mixed is incident on the multilayer diffractive polarizer 100 and the condenser lens 7 is arranged on the exit side, the ordinary light polarized light transmitted straight through the multilayer diffractive polarizer 100 is The light is condensed on the focal plane on the optical axis of the condenser lens 7. On the other hand, the extraordinary light polarized light diffracted by the multilayer diffraction polarizer 100 is condensed on the focal plane outside the optical axis of the condenser lens 7.

したがって、集光レンズ7の光軸上の焦点面に開口部を有する開口絞り8を配置することにより、常光偏光のみを透過し異常光偏光を遮断するアイソレータとなる。ここで、開口絞り8の代わりに開口部に相当する受光部を有する光検出器を配置することにより常光偏光の成分のみを検出できる。また、光伝送用の光ファイバーのコア部を開口部の代わりに配置すれば常光偏光のみを伝送できる。   Therefore, by disposing the aperture stop 8 having an opening on the focal plane on the optical axis of the condenser lens 7, an isolator that transmits only ordinary light polarization and blocks abnormal light polarization is obtained. Here, only the component of ordinary light polarization can be detected by arranging a photodetector having a light receiving portion corresponding to the opening instead of the aperture stop 8. Further, if the core portion of the optical fiber for optical transmission is arranged instead of the opening portion, only ordinary polarized light can be transmitted.

図4に示す、格子長手方向の角度θで格子ピッチpの回折格子1と格子長手方向の角度θで格子ピッチpの回折格子2において、θ=θ=0゜とし、pをpの2倍とした場合、図5の集光レンズ7の焦点面に発生する直進透過光と回折光の集光位置の一例を図6に示す。 4, in the diffraction grating 2 of the grating pitch p 2 in the grating longitudinal direction of the angle theta 1 with the diffraction grating 1 and the grating longitudinal direction of the angle theta 2 of the grating pitch p 1, θ 1 = θ 2 = 0 to °, FIG. 6 shows an example of the condensing position of the linearly transmitted light and the diffracted light generated on the focal plane of the condensing lens 7 in FIG. 5 when p 2 is twice as large as p 1 .

常光偏光(P偏光)は回折格子1および回折格子2により回折されず(0次回折光がさらに、0次回折光となって)光軸上の◎で示される位置に集光される。これを、0次×0次と表現する。また、回折格子1および回折格子2により、同じ符号でかつ同じ次数の光として回折された(±1次回折光がさらに回折されて、それぞれ±1次回折光となった)異常光偏光(S偏光)は△または▽で示される位置に集光される。これを、1次×1次、−1次×−1次と表現する。以下、同様である。また、回折格子1により±1次光として回折されるが、回折格子2により回折されずに0次回折光となった異常光偏光は○で示される位置に集光される。   Ordinary polarized light (P-polarized light) is not diffracted by the diffraction grating 1 and the diffraction grating 2 (0th-order diffracted light is further converted to 0th-order diffracted light) and is collected at a position indicated by ◎ on the optical axis. This is expressed as 0th order × 0th order. Also, extraordinary light polarization (S-polarized light) diffracted by the diffraction grating 1 and the diffraction grating 2 as light having the same sign and the same order (± 1st-order diffracted light is further diffracted into ± 1st-order diffracted light, respectively) Is condensed at a position indicated by Δ or ▽. This is expressed as first order × first order and −1st order × −1 order. The same applies hereinafter. The extraordinary light polarized light that is diffracted as ± first-order light by the diffraction grating 1 but is not diffracted by the diffraction grating 2 and becomes zero-order diffracted light is condensed at a position indicated by ◯.

また、回折格子2により±1次光として回折されるが、回折格子1により回折されない(0次回折光)異常光偏光と、回折格子1および回折格子2により異なる符号でかつ、異なる次数で回折された(+1次回折光が回折されて、−1次回折光となる、または−1次回折光が回折されて+1次回折光となる)異常光偏光は□で示される位置に集光される。   Further, it is diffracted by the diffraction grating 2 as ± first-order light but not diffracted by the diffraction grating 1 (0th-order diffracted light), and is diffracted by different orders and different orders by the diffraction grating 1 and the diffraction grating 2. The extraordinary light polarization (which is diffracted into + 1st order diffracted light or diffracted into + 1st order diffracted light into + 1st order diffracted light) is collected at a position indicated by □.

異常光偏光の回折方向は回折格子1と回折格子2の格子長手方向の角度θ、θにより定まり、回折光の集光位置の光軸からの距離は入射光の波長、格子ピッチp、pおよび集光レンズ7の焦点距離により定まる。 The diffraction direction of the extraordinary light polarization is determined by the angles θ 1 and θ 2 of the grating longitudinal direction of the diffraction grating 1 and the diffraction grating 2, and the distance from the optical axis of the condensing position of the diffracted light is the wavelength of the incident light and the grating pitch p 1. , P 2 and the focal length of the condenser lens 7.

[第2の実施態様]
次に、回折格子1と回折格子2を構成する複屈折性材料層の段差dとdとを異なるようにすることが好ましい。さらに、入射光の波長がλ〜λの範囲にあるとき波長λ、λと、複屈折性材料層の常光屈折率と異常光屈折率との差△nとの比、λ/(2×△n)とλ/(2×△n)との間にdおよびdが存在することが好ましい。このように構成することが広い波長帯域の入射光に対しても比較的高い消光比が得られる。
[Second Embodiment]
Next, it is preferable to make the steps d 1 and d 2 of the birefringent material layers constituting the diffraction grating 1 and the diffraction grating 2 different. Furthermore, the ratio of the wavelength lambda 1 when the wavelength of the incident light is in the range of lambda 1 to [lambda] 2, and lambda 2, the difference △ n of the ordinary refractive index and an extraordinary refractive index of the birefringent material layer, lambda 1 It is preferable that d 1 and d 2 exist between / (2 × Δn) and λ 2 / (2 × Δn). A relatively high extinction ratio can be obtained even for incident light having a wide wavelength band.

この本発明の複層回折型偏光子における第2の実施態様について説明する。本態様の複層回折型偏光子に波長λの異常光偏光が入射した場合、回折格子1および回折格子2によって回折されない直進透過光(0次回折光)の透過率ηは、η=(cos(φ/2))により近似的に記述される。ここで、φ=2×π×△n×d/λ、△n=|n−n|>0で、nとnはほぼ等しく、また、回折格子1ではd=d、回折格子2ではd=dとする。 A second embodiment of the multilayer diffractive polarizer of the present invention will be described. When extraordinary light polarized light having a wavelength λ is incident on the multilayer diffractive polarizer of this embodiment, the transmittance η 0 of straight transmitted light (0th-order diffracted light) that is not diffracted by the diffraction grating 1 and the diffraction grating 2 is η 0 = ( cos (φ / 2)) 2 is approximately described. Here, φ = 2 × π × △ n × d / λ, △ n = | n e -n s |> 0 in, n o and n s is substantially equal, The diffraction grating 1, d = d 1, In the diffraction grating 2 and d = d 2.

入射光の波長がλ〜λの範囲にあるとき、この波長帯域で高い回折効率を実現するためには、dおよびdをλ/(2×△n)とλ/(2×△n)との間の異なる値とすることが有効である。入射光の波長が1400〜1700nmの範囲にあるとき、△n=0.15の複屈折性材料を用いて凹凸状の周期構造を形成し、段差をd=4.8μmおよびd=5.5μmとした場合、異常光偏光の直進透過率ηの波長依存性を計算した結果を図7に示す。なお、λ/(2×△n)=4.67μm、λ/(2×△n)=5.67μmであり、dおよびdはその間の値となっている。 When the wavelength of the incident light is in the range of lambda 1 to [lambda] 2, in order to achieve a high diffraction efficiency at this wavelength band, the d 1 and d 2 λ 1 / (2 × △ n) and lambda 2 / ( It is effective to have a different value between 2 × Δn). When the wavelength of the incident light is in the range of 1400 to 1700 nm, a concavo-convex periodic structure is formed using a birefringent material with Δn = 0.15, and the steps are d 1 = 4.8 μm and d 2 = 5. FIG. 7 shows the result of calculating the wavelength dependence of the straight-line transmittance η 0 of extraordinary light polarization when .5 μm is set. Note that λ 1 /(2×Δn)=4.67 μm and λ 2 /(2×Δn)=5.67 μm, and d 1 and d 2 are values therebetween.

図7において、単体の回折格子1および回折格子2に対する異常光偏光の直進透過率ηをそれぞれ△と□とで、複層回折型偏光子100全体の異常光偏光の直進透過率ηを○で表わした。常光偏光の入射光はほとんど回折されず、入射光の90%以上が直進透過するため、1400〜1700nmの波長帯域で−35dB以下の消光比を有するアイソレータとなる。 7, a single diffraction grating 1 and the extraordinarily polarized light with respect to the diffraction grating 2 rectilinear transmittance eta 0 de respectively △ and □ and, the rectilinear transmittance eta 0 of multilayer diffraction type polarizer 100 as a whole extraordinarily polarized beam Indicated by ○. The incident light of ordinary light polarization is hardly diffracted, and 90% or more of the incident light is transmitted in a straight line, so that the isolator has an extinction ratio of −35 dB or less in the wavelength band of 1400 to 1700 nm.

なお、本発明の複層回折型偏光子100を直列にさらに積層することにより、いっそう高い消光比が得られる。   In addition, a higher extinction ratio can be obtained by further laminating the multilayer diffractive polarizer 100 of the present invention in series.

[第3の実施態様]
次に、図8に複層回折型偏光子110および120を液晶セル130と組み合わせた本発明の第3の実施態様である複合型液晶素子の構成例の側面図を示す。液晶セル130は、基板片面に例えばITOからなる透明電極膜71、72および配向処理された例えばポリイミドからなる配向膜(図示せず)がそれぞれ形成された透光性基板61と透光性基板62とを用い、液晶分子の配向方向が揃った例えばネマティック液晶の液晶層9がシール材10によりセル化封入されて構成されている。
[Third Embodiment]
Next, FIG. 8 shows a side view of a configuration example of a composite type liquid crystal element which is the third embodiment of the present invention in which the multilayer diffraction polarizers 110 and 120 are combined with the liquid crystal cell 130. The liquid crystal cell 130 includes a translucent substrate 61 and a translucent substrate 62 in which transparent electrode films 71 and 72 made of, for example, ITO and alignment films (not shown) made of, for example, polyimide that have been subjected to alignment treatment are formed on one side of the substrate. For example, a liquid crystal layer 9 of nematic liquid crystal in which alignment directions of liquid crystal molecules are aligned is formed into cells by a sealing material 10.

図8に示すように、電極付き透光性基板間に液晶層が挟持されてなる液晶セルの少なくとも一方の透光性基板表面に、上記の実施態様で説明した複層回折型偏光子が積層されている複合型液晶素子構成とすることは、素子の小型化および安定した消光比が得られるため好ましい。   As shown in FIG. 8, the multilayer diffractive polarizer described in the above embodiment is laminated on the surface of at least one light transmitting substrate of a liquid crystal cell in which a liquid crystal layer is sandwiched between electrodes. It is preferable to use the composite liquid crystal element configuration as described above because the element can be downsized and a stable extinction ratio can be obtained.

ここで、透明電極膜71、72には外部交流電源11より例えば、矩形波状の交流電圧が印加される。また、配向膜の配向処理方向を図8のX軸方向とすることで、電圧無印加時に液晶分子が液晶セル130内で基板面に対して平行でかつ、X軸方向に配向する。液晶分子の常光屈折率n(LC)と異常光屈折率n(LC)との差を△n(LC)とすると、液晶層の厚さd(LC)を入射光の波長λに対して、△n(LC)×d(LC)=λ/2としている。 Here, for example, a rectangular wave AC voltage is applied to the transparent electrode films 71 and 72 from the external AC power supply 11. In addition, by setting the alignment treatment direction of the alignment film to the X-axis direction in FIG. 8, the liquid crystal molecules are aligned in the X-axis direction parallel to the substrate surface in the liquid crystal cell 130 when no voltage is applied. When the difference between the ordinary refractive index n o (LC) and the extraordinary refractive index n e (LC) of the liquid crystal molecules is Δn (LC), the thickness d (LC) of the liquid crystal layer is set to the wavelength λ of the incident light. Δn (LC) × d (LC) = λ / 2.

また、液晶セル130に透明接着剤(図示せず)などを用いて接合された複層回折型偏光子110および120は、上記の第1および第2の実施形態で説明した複層回折型偏光子であり、各複層回折型偏光子を構成する複屈折性材料層の進相軸方向(常光屈折率を与える方向)が図8のXY平面内でX軸方向に対して、複層回折型偏光子110では45゜の角度をなすように、複層回折型偏光子120では135゜の角度をなすように形成されている。すなわち、複層回折型偏光子110の2つの回折格子は直線状格子であり、その格子長手方向はX軸方向に対していずれも45゜の角度をなし、複層回折型偏光子120の2つの回折格子も直線状格子で、その格子長手方向はいずれもX軸方向に対して135゜の角度をなしている。   The multilayer diffraction polarizers 110 and 120 joined to the liquid crystal cell 130 using a transparent adhesive (not shown) or the like are the multilayer diffraction polarizations described in the first and second embodiments. The fast axis direction (direction in which the ordinary refractive index is given) of the birefringent material layer constituting each multi-layer diffractive polarizer is multi-layer diffracted with respect to the X-axis direction in the XY plane of FIG. The multi-layer diffractive polarizer 120 is formed at an angle of 45 °, while the multi-layer diffractive polarizer 120 is formed at an angle of 45 °. That is, the two diffraction gratings of the multilayer diffractive polarizer 110 are linear gratings, and the longitudinal direction of the grating is at an angle of 45 ° with respect to the X-axis direction. The two diffraction gratings are also linear gratings, and the longitudinal direction of the gratings is at an angle of 135 ° with respect to the X-axis direction.

このような構成の複合型液晶素子200に波長λの光が複層回折型偏光子110側から入射すると、偏光方向がX軸と45゜の角度をなす第1の直線偏光は、複層回折型偏光子110により回折されずに透過し、偏光方向がX軸と135゜の角度をなす第2の直線偏光は、複層回折型偏光子110により回折されて透過し、それぞれ液晶セル130に入射する。   When light having a wavelength λ enters the composite liquid crystal element 200 having such a configuration from the multi-layer diffractive polarizer 110 side, the first linearly polarized light whose polarization direction forms an angle of 45 ° with the X axis is the multi-layer diffraction. The second linearly polarized light, which is transmitted without being diffracted by the polarizing polarizer 110 and whose polarization direction forms an angle of 135 ° with the X axis, is diffracted and transmitted by the multilayer diffracting polarizer 110, and passes through the liquid crystal cell 130. Incident.

液晶セル130への電圧無印加時には、第1および第2の入射直線偏光に対して液晶セル130は位相差πの位相板として作用する。すなわち、1/2波長板として作用するため、複層回折型偏光子110により回折されない直進透過光はX軸と135゜の角度をなす直線偏光に変換され、複層回折型偏光子110により回折された透過光はX軸と225゜の角度をなす直線偏光に変換される。   When no voltage is applied to the liquid crystal cell 130, the liquid crystal cell 130 acts as a phase plate having a phase difference π with respect to the first and second incident linearly polarized light. That is, since it acts as a half-wave plate, the straight transmitted light that is not diffracted by the multilayer diffractive polarizer 110 is converted into linearly polarized light having an angle of 135 ° with the X axis, and is diffracted by the multilayer diffractive polarizer 110. The transmitted light is converted into linearly polarized light having an angle of 225 ° with the X axis.

その結果、複層回折型偏光子110により回折されない直進透過光は複層回折型偏光子120に常光偏光として入射するため、回折されずに直進透過する。一方、複層回折型偏光子110により回折された光は複層回折型偏光子120に異常光偏光として入射するため、回折される。したがって、複合型液晶素子200への入射光のうち、第1の直線偏光は回折されずに直進透過し、第1の直線偏光の偏光方向に直交する偏光方向を有する第2の直線偏光は回折されて出射する。ここで、複層回折型偏光子110を構成する回折格子と複層回折型偏光子120を構成する回折格子の格子長手方向とは異なるため、発生する多重回折光は直進透過する光軸上の光に重畳しない。   As a result, the linearly transmitted light that is not diffracted by the multilayer diffractive polarizer 110 enters the multilayer diffractive polarizer 120 as ordinary light polarization, and thus travels straight without being diffracted. On the other hand, the light diffracted by the multilayer diffractive polarizer 110 is diffracted because it enters the multilayer diffractive polarizer 120 as extraordinary light polarization. Accordingly, of the incident light to the composite liquid crystal element 200, the first linearly polarized light is transmitted straight without being diffracted, and the second linearly polarized light having a polarization direction orthogonal to the polarization direction of the first linearly polarized light is diffracted. Is emitted. Here, since the diffraction grating constituting the multilayer diffractive polarizer 110 and the diffraction grating constituting the multilayer diffractive polarizer 120 are different from each other in the longitudinal direction of the grating, the generated multiple diffracted light is on the optical axis through which the light travels straight. Does not overlap with light.

また、液晶セル130への電圧印加時には、透明電極71、72に電圧が印加されるため、液晶セル130内の液晶分子のダイレクター(異常光屈折率n(LC)が基板面に対して垂直方向に揃う。したがって、液晶層は入射光の偏光方向に関係なくほぼ均一な常光屈折率n(LC)層として作用するため、入射光は位相差変化を生じず偏光状態を保ったまま出射する。 In addition, when a voltage is applied to the liquid crystal cell 130, a voltage is applied to the transparent electrodes 71 and 72. Therefore, a director of liquid crystal molecules in the liquid crystal cell 130 (abnormal light refractive index ne (LC) is relative to the substrate surface). aligned in the vertical direction. Accordingly, since the liquid crystal layer acting as a substantially uniform ordinary refractive index n o (LC) layer, regardless of the polarization direction of the incident light, while the incident light was kept the polarization state without causing phase difference change Exit.

その結果、複層回折型偏光子110により回折されない直進透過光は複層回折型偏光子120に異常光偏光として入射するため回折される。一方、複層回折型偏光子110により回折された透過光は複層回折型偏光子120に常光偏光として入射するため回折されない。したがって、複合型液晶素子200への入射光の、第1の直線偏光および第2の直線偏光のいずれも回折されて出射する。すなわち、入射光はその偏光状態にかかわらず回折され、直進透過する光軸上には存在しない。   As a result, the linearly transmitted light that is not diffracted by the multilayer diffractive polarizer 110 is diffracted because it enters the multilayer diffractive polarizer 120 as extraordinary light polarization. On the other hand, the transmitted light diffracted by the multilayer diffractive polarizer 110 is not diffracted because it enters the multilayer diffractive polarizer 120 as ordinary light polarized light. Therefore, both the first linearly polarized light and the second linearly polarized light of the incident light to the composite liquid crystal element 200 are diffracted and emitted. That is, incident light is diffracted regardless of its polarization state, and does not exist on the optical axis through which light passes straight.

したがって、液晶セル130に印加する電圧をオン・オフすることにより直進透過光と回折光とを分離する図5に示す。図5において複層回折型偏光子100の代わりに複合型液晶素子200を配置することにより、消光比の高い偏光性のスイッチング素子が実現できる。また、印加電圧をオン・オフせずに、所定の大きさの電圧を設定することにより特定偏光方向の直進透過光量を所望の大きさに調整できるため、電圧可変アッテネータとして機能する。   Accordingly, FIG. 5 shows that the straight transmitted light and the diffracted light are separated by turning on and off the voltage applied to the liquid crystal cell 130. In FIG. 5, by arranging the composite liquid crystal element 200 in place of the multilayer diffractive polarizer 100, a polarizing switching element with a high extinction ratio can be realized. In addition, since a linearly transmitted light amount in a specific polarization direction can be adjusted to a desired magnitude by setting a voltage having a predetermined magnitude without turning on and off the applied voltage, it functions as a voltage variable attenuator.

図9に複層回折型偏光子120と液晶セル130とを組み合わせた複合型液晶素子300の他の構成例を示す。複合型液晶素子300の光入射側に、偏光分離膜12と全反射ミラー13が形成されたプリズムに1/2波長板14が接合された偏光変換素子15が配置されている。   FIG. 9 shows another configuration example of the composite liquid crystal element 300 in which the multilayer diffraction polarizer 120 and the liquid crystal cell 130 are combined. On the light incident side of the composite liquid crystal element 300, a polarization conversion element 15 in which a half-wave plate 14 is bonded to a prism on which the polarization separation film 12 and the total reflection mirror 13 are formed is disposed.

偏光変換素子15に入射する2つの直線偏光のうち、一方の直線偏光は偏光分離膜12を透過し、偏光方向が直交する他方の直線偏光は偏光分離膜12と全反射ミラー膜13により反射された後1/2波長板14により偏光面(偏光方向)が90°回転し、一方と同じ偏光方向を有する直線偏光となって複合型液晶素子300に入射する。その結果、入射光の偏光状態にかかわらず挿入損失の少ないスイッチング素子やアッテネータが実現できる。   Of the two linearly polarized light incident on the polarization conversion element 15, one linearly polarized light is transmitted through the polarization separation film 12, and the other linearly polarized light whose polarization direction is orthogonal is reflected by the polarization separation film 12 and the total reflection mirror film 13. After that, the polarization plane (polarization direction) is rotated by 90 ° by the half-wave plate 14, and becomes linearly polarized light having the same polarization direction as one side and enters the composite liquid crystal element 300. As a result, a switching element or attenuator with little insertion loss can be realized regardless of the polarization state of incident light.

本実施態様では液晶セルの液晶分子の配向方向を平行としたが、透光性基板61と透光性基板62のそれぞれの配向膜の配向処理方向を特定の角度をなすようにすることにより、液晶層の厚さ方向の軸の回りに液晶分子の配向がツイストした構造としてもよい。また、配向膜の配向処理方法と液晶材料との選択により、液晶分子の配向方向が一方の透光性基板面に対して垂直で、他方の透光性基板面に対して平行となるいわゆるハイブリッド配向構造としてもよい。   In this embodiment, the alignment direction of the liquid crystal molecules of the liquid crystal cell is parallel, but by making the alignment treatment directions of the alignment films of the translucent substrate 61 and the translucent substrate 62 form a specific angle, A structure in which the alignment of liquid crystal molecules is twisted around an axis in the thickness direction of the liquid crystal layer may be employed. Also, by selecting the alignment treatment method of the alignment film and the liquid crystal material, a so-called hybrid in which the alignment direction of the liquid crystal molecules is perpendicular to one light-transmitting substrate surface and parallel to the other light-transmitting substrate surface. An oriented structure may be adopted.

また、本実施態様では複層回折型偏光子110と複層回折型偏光子120の複屈折性材料層の進相軸が互いに直交する構成としたが、互いに平行な構成としてもよい。この場合、直進透過光の透過率が液晶セルへの電圧非印加時に最小で、電圧印加時に最大となる。また、液晶セルの透明電極膜71、72をパターニングして各パターン電極に独立に電圧を印加することにより、パターニング形状に応じた直進透過光の空間的な透過率を調整できる。   In the present embodiment, the fast axes of the birefringent material layers of the multilayer diffractive polarizer 110 and the multilayer diffractive polarizer 120 are orthogonal to each other, but may be parallel to each other. In this case, the transmittance of the linearly transmitted light is minimum when no voltage is applied to the liquid crystal cell and is maximum when a voltage is applied. Further, by patterning the transparent electrode films 71 and 72 of the liquid crystal cell and applying a voltage independently to each pattern electrode, the spatial transmittance of the straight transmitted light according to the patterning shape can be adjusted.

本実施例の複層回折型偏光子について、図1を用いて説明する。ガラス基板からなる透光性基板4および透光性基板5のそれぞれの片面上に、複屈折性材料層として常光屈折率n=1.55および異常光屈折率n=1.70の高分子液晶層を形成し、フォトリソグラフィーとエッチングの技術により直線状の回折格子1、2を形成した。回折格子1と2の格子ピッチp、pはそれぞれ20μmと40μmとし、それぞれの格子長手方向は平行とし、回折格子1と2の高分子液晶層のそれぞれの凹部深さ、すなわち段差dおよびdをそれぞれ4.8μmおよび5.6μmとした。 The multilayer diffraction polarizer of this example will be described with reference to FIG. On each side of the light-transmitting substrate 4 and the light-transmitting substrate 5 made of a glass substrate, a birefringent material layer having a high ordinary light refractive index n o = 1.55 and an extraordinary light refractive index n e = 1.70. A molecular liquid crystal layer was formed, and linear diffraction gratings 1 and 2 were formed by photolithography and etching techniques. The grating pitches p 1 and p 2 of the diffraction gratings 1 and 2 are 20 μm and 40 μm, respectively, the respective grating longitudinal directions are parallel, and the respective concave depths of the polymer liquid crystal layers of the diffraction gratings 1 and 2, that is, the step d 1. and d 2 were set to 4.8μm and 5.6μm, respectively.

さらに、屈折率n=1.55の均質透明樹脂からなる等方性透明材料3を高分子液晶層の凹凸状に加工された凹部に充填し、ガラス基板からなる透光性基板6を積層して、回折格子1からなる偏光性の回折格子と回折格子2からなる偏光性の回折格子とが積層された複層回折型偏光子100を作製した。ここで高分子液晶層は、配向膜(配向処理済み)が形成された基板間に液晶モノマーの溶液を注入し、紫外線を照射して液晶モノマーを重合固化することにより作製した。また、透光性基板4および透光性基板6と、空気との界面には反射防止膜が形成されている。 Further, an isotropic transparent material 3 made of a homogeneous transparent resin having a refractive index n s = 1.55 is filled in a concave portion processed into a concavo-convex shape of a polymer liquid crystal layer, and a translucent substrate 6 made of a glass substrate is laminated. Thus, the multilayer diffraction polarizer 100 in which the polarizing diffraction grating composed of the diffraction grating 1 and the polarizing diffraction grating composed of the diffraction grating 2 were laminated was manufactured. Here, the polymer liquid crystal layer was produced by injecting a liquid crystal monomer solution between the substrates on which the alignment film (alignment treatment completed) was formed, and irradiating with ultraviolet rays to polymerize and solidify the liquid crystal monomer. Further, an antireflection film is formed at the interface between the light-transmitting substrate 4 and the light-transmitting substrate 6 and air.

このようにして得られた複層回折型偏光子100に波長が1400〜1700nm帯域の平行光を入射したところ、常光偏光はほとんど回折されず入射光の97%が直進透過し、偏光方向が常光偏光と直交する異常光偏光はほとんど回折され0.05%以下が直進透過した。図5に示すように集光レンズ7を用いて複層回折型偏光子100の透過光を焦点面に集光し、光軸上の直進透過光のみが光ファイバのコア部(図示せず)に結像するようにした。その結果、1400〜1700nmの波長帯域で、異常光偏光の常光偏光に対する消光比が−30dB以下の高い消光比を有するアイソレータとなった。   When parallel light having a wavelength of 1400 to 1700 nm is incident on the multilayer diffractive polarizer 100 thus obtained, ordinary light polarization is hardly diffracted, and 97% of the incident light is transmitted straight through, and the polarization direction is ordinary light. The extraordinary light polarized light orthogonal to the polarized light was almost diffracted and 0.05% or less passed straight. As shown in FIG. 5, the converging lens 7 is used to condense the light transmitted through the multilayer diffractive polarizer 100 on the focal plane, and only the straight transmitted light on the optical axis is the core of the optical fiber (not shown). It was made to form an image. As a result, in the wavelength band of 1400 to 1700 nm, an isolator having a high extinction ratio of -30 dB or less of the extraordinary light polarization to the ordinary light polarization was obtained.

以上説明したように、上述の複層回折型偏光子は、広い波長帯域の入射光に対して高い消光比を有するので、このような複層回折型偏光子を用いることにより、高性能のアイソレータが得られる。   As described above, the multi-layer diffractive polarizer described above has a high extinction ratio with respect to incident light in a wide wavelength band. Therefore, by using such a multi-layer diffractive polarizer, a high-performance isolator is used. Is obtained.

さらに、この複層回折型偏光子と液晶セルを一体化した複合型液晶素子は、液晶セルに印加する電圧をオン・オフすることにより高い消光比を有するスイッチング動作が実現できるため、このような複合型液晶素子を用いることにより、高性能のスイッチング素子が得られる。また、印加する電圧を所定の大きさに設定することにより、特定偏光方向の直進透過光量を所望の大きさに調整できるため、このような複合型液晶素子を用いることにより、高性能の電圧可変アッテネータが得られる。   Furthermore, the composite type liquid crystal element in which the multilayer diffractive polarizer and the liquid crystal cell are integrated can realize a switching operation having a high extinction ratio by turning on and off the voltage applied to the liquid crystal cell. By using the composite liquid crystal element, a high-performance switching element can be obtained. In addition, by setting the applied voltage to a predetermined level, the amount of linearly transmitted light in a specific polarization direction can be adjusted to a desired level. An attenuator is obtained.

1、2 偏光性の回折格子
3 等方性透明材料
4、5、6、61、62 透光性基板
7 集光レンズ
8 開口絞り
9 液晶層
10 シール材
11 外部交流電源
12 偏光分離膜
13 全反射ミラー
14 1/2波長板
15 偏光変換素子
71、72 透明電極膜
100、110、120、300 複層回折型偏光子
130 液晶セル
200 複合型液晶素子
DESCRIPTION OF SYMBOLS 1, 2 Polarizing diffraction grating 3 Isotropic transparent material 4, 5, 6, 61, 62 Translucent substrate 7 Condensing lens 8 Aperture stop 9 Liquid crystal layer 10 Sealing material 11 External AC power supply 12 Polarization separation film 13 All Reflective mirror 14 Half-wave plate 15 Polarization conversion element 71, 72 Transparent electrode film 100, 110, 120, 300 Multilayer diffractive polarizer 130 Liquid crystal cell 200 Composite liquid crystal element

Claims (7)

少なくとも、偏光子と、集光レンズとを備えるアイソレータであって、
前記偏光子として、第1の偏光方向を有する入射光に対しては回折格子として作用せず直進透過し、第1の偏光方向と直交する第2の偏光方向を有する入射光に対しては回折格子として作用して回折する、複屈折性材料を備える偏光性の回折格子を、少なくとも2つ積層した複層回折格子で形成された複層回折型偏光子を備え、
前記各偏光性の回折格子は、少なくとも1枚の透光性基板を備え、前記透光性基板上に形成された常光屈折率n および異常光屈折率n (n ≠n )の高分子液晶からなる複屈折性材料層が、その断面形状を入射光の波長λより大きな周期の周期的な凹凸状に加工されており、また、少なくとも凹部には屈折率がn またはn に等しい等方性透明材料が充填されており、さらに偏光性の回折格子における格子長手方向が各偏光性の回折格子でそれぞれ異なり、
第1の偏光方向を有する入射光は、前記偏光子を直進透過して前記集光レンズにより、前記集光レンズの光軸の焦点面上に焦点を結び、
第2の偏光方向を有する入射光は、前記偏光子により回折されて前記集光レンズにより、前記集光レンズの光軸外の焦点面上に焦点を結ぶ
ことを特徴とするアイソレータ。
An isolator comprising at least a polarizer and a condenser lens,
As the polarizer, it does not act as a diffraction grating for incident light having the first polarization direction and transmits straight, and diffracts for incident light having the second polarization direction orthogonal to the first polarization direction. A multi-layer diffractive polarizer formed by a multi-layer diffraction grating having at least two laminated polarizing diffraction gratings that function as a grating and diffract the birefringent material;
Wherein each polarizing diffraction grating, the at least one light-transmitting comprises a substrate, the translucent ordinary refractive index is formed on a substrate n o and an extraordinary refractive index n e (n o ≠ n e ) birefringent material layer comprising a polymer liquid crystal, are processed into a periodic uneven larger period than the wavelength of the incident light λ its cross-sectional shape, also the refractive index in the at least recess is n o or n e Is filled with an isotropic transparent material, and the longitudinal direction of the grating in the polarizing diffraction grating is different in each polarizing diffraction grating,
Incident light having a first polarization direction travels straight through the polarizer and is focused on the focal plane of the optical axis of the condenser lens by the condenser lens;
Incident light having a second polarization direction is diffracted by the polarizer and focused on a focal plane outside the optical axis of the condenser lens by the condenser lens.
前記各偏光性の回折格子の複屈折性材料層の凹凸の段差をそれぞれdとするとき、前記各偏光性の回折格子の複屈折性材料層のリタデーション値|nRetardation value | n of the birefringent material layer of each of the polarizing diffraction gratings, where d is the uneven step of the birefringent material layer of each of the polarizing diffraction gratings e −n-N o |×dが入射光の波長λの(m+1/2)倍(mは0または正の整数)である| × d is (m + 1/2) times the wavelength λ of incident light (m is 0 or a positive integer).
請求項1に記載のアイソレータ。The isolator according to claim 1.
前記複層回折格子は、断面形状が段差dThe multilayer diffraction grating has a cross-sectional shape of a step d. 1 の周期的な凹凸状に加工されている複屈折性材料層を有する第1の偏光性の回折格子と、断面形状が段差dA first polarizing diffraction grating having a birefringent material layer processed into a periodic uneven shape and a step shape d 2 の周期的な凹凸状に加工されている複屈折性材料層を有する第2の偏光性の回折格子とを積層しており、And a second polarizing diffraction grating having a birefringent material layer processed into a periodic uneven shape of
前記段差dStep d 1 および段差dAnd step d 2 は、ともに入射光の波長範囲であるλIs the wavelength range of the incident light. 1 からλTo λ 2 に対してλFor λ 1 /(2×|n/ (2 × | n e −n-N o |)とλ|) And λ 2 /(2×|n/ (2 × | n e −n-N o |)との間にあり、かつ互いに異なる値である|) And different values
請求項1または請求項2に記載のアイソレータ。The isolator according to claim 1 or 2.
電極付き透光性基板間に液晶層が挟持されてなる液晶セルの光入射面および光出射面の透光性基板表面に、第1の偏光方向を有する入射光に対しては回折格子として作用せず直進透過し、第1の偏光方向と直交する第2の偏光方向を有する入射光に対しては回折格子として作用して回折する、複屈折性材料を備える偏光性の回折格子を、少なくとも2つ積層した複層回折格子で形成された複層回折型偏光子を積層した複合型液晶素子を備え、
光入射面および光出射面に積層される前記複層回折型偏光子の各偏光性の回折格子は、少なくとも1枚の透光性基板を備え、前記透光性基板上に形成された常光屈折率n および異常光屈折率n (n ≠n )の高分子液晶からなる複屈折性材料層が、その断面形状を入射光の波長λより大きな周期の周期的な凹凸状に加工されており、また、少なくとも凹部には屈折率がn またはn に等しい等方性透明材料が充填されており、
前記液晶層に印加する電圧によって特定偏光方向の直進透過光量を調整する
ことを特徴とする電圧可変アッテネータ。
Acts as a diffraction grating for incident light having the first polarization direction on the light incident surface and light emitting surface of the liquid crystal cell in which the liquid crystal layer is sandwiched between the translucent substrates with electrodes. A polarizing diffraction grating comprising a birefringent material that diffracts by acting as a diffraction grating with respect to incident light that passes straight through and has a second polarization direction orthogonal to the first polarization direction, A composite liquid crystal element in which a multilayer diffraction polarizer formed of two multilayer diffraction gratings is stacked,
Each polarizing diffraction grating of the multi-layer diffractive polarizer laminated on the light incident surface and the light emitting surface includes at least one light transmissive substrate, and ordinary light refraction formed on the light transmissive substrate. A birefringent material layer made of a polymer liquid crystal having a refractive index n o and an extraordinary light refractive index n e (n o ≠ n e ) is processed into a periodic uneven shape having a period larger than the wavelength λ of incident light. are, also, are equal isotropic transparent material the refractive index is at least recess is n o or n e is filled,
A voltage variable attenuator, wherein the amount of linearly transmitted light in a specific polarization direction is adjusted by a voltage applied to the liquid crystal layer.
光入射面に積層される前記複層回折型偏光子を形成する第1の複層回折格子の各偏光性の回折格子における格子長手方向または格子ピッチが互いに異なり、A grating longitudinal direction or a grating pitch in each polarizing diffraction grating of the first multilayer diffraction grating forming the multilayer diffraction polarizer laminated on the light incident surface is different from each other,
光出射面に積層される前記複層回折型偏光子を形成する第2の複層回折格子の各偏光性の回折格子における格子長手方向または格子ピッチが互いに異なり、A grating longitudinal direction or a grating pitch in each polarizing diffraction grating of the second multilayer diffraction grating forming the multilayer diffraction polarizer laminated on the light exit surface is different from each other,
前記第1の複層回折格子の各偏光性の回折格子の格子長手方向と、前記第2の複層回折格子の各偏光性の回折格子の格子長手方向とが互いに異なっているThe longitudinal direction of each polarizing diffraction grating of the first multilayer diffraction grating and the longitudinal direction of each polarizing diffraction grating of the second multilayer diffraction grating are different from each other.
請求項4に記載の電圧可変アッテネータ。The voltage variable attenuator according to claim 4.
前記各偏光性の回折格子の複屈折性材料層の凹凸の段差をそれぞれdとするとき、前記各偏光性の回折格子の複屈折性材料層のリタデーション値|nRetardation value | n of the birefringent material layer of each of the polarizing diffraction gratings, where d is the uneven step of the birefringent material layer of each of the polarizing diffraction gratings e −n-N o |×dが入射光の波長λの(m+1/2)倍(mは0または正の整数)である| × d is (m + 1/2) times the wavelength λ of incident light (m is 0 or a positive integer).
請求項4または請求項5に記載の電圧可変アッテネータ。The voltage variable attenuator according to claim 4 or 5.
前記各複層回折格子は、断面形状が段差dEach of the multilayer diffraction gratings has a step d in cross-sectional shape. 1 の周期的な凹凸状に加工されている複屈折性材料層を有する第1の偏光性の回折格子と、断面形状が段差dA first polarizing diffraction grating having a birefringent material layer processed into a periodic uneven shape and a step shape d 2 の周期的な凹凸状に加工されている複屈折性材料層を有する第2の偏光性の回折格子とを積層しており、And a second polarizing diffraction grating having a birefringent material layer processed into a periodic uneven shape of
前記段差dStep d 1 および段差dAnd step d 2 は、ともに入射光の波長範囲であるλIs the wavelength range of the incident light. 1 からλTo λ 2 に対してλFor λ 1 /(2×|n/ (2 × | n e −n-N o |)とλ|) And λ 2 /(2×|n/ (2 × | n e −n-N o |)との間にあり、かつ互いに異なる値である|) And different values
請求項4から請求項6のうちのいずれか1項に記載の電圧可変アッテネータ。The voltage variable attenuator according to any one of claims 4 to 6.
JP2011129353A 2011-06-09 2011-06-09 Isolator and variable voltage attenuator Expired - Fee Related JP5152366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011129353A JP5152366B2 (en) 2011-06-09 2011-06-09 Isolator and variable voltage attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011129353A JP5152366B2 (en) 2011-06-09 2011-06-09 Isolator and variable voltage attenuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001254700A Division JP4792679B2 (en) 2001-08-24 2001-08-24 Isolator and variable voltage attenuator

Publications (2)

Publication Number Publication Date
JP2011191787A JP2011191787A (en) 2011-09-29
JP5152366B2 true JP5152366B2 (en) 2013-02-27

Family

ID=44796686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011129353A Expired - Fee Related JP5152366B2 (en) 2011-06-09 2011-06-09 Isolator and variable voltage attenuator

Country Status (1)

Country Link
JP (1) JP5152366B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI521497B (en) * 2014-02-11 2016-02-11 友達光電股份有限公司 Liquid crystal lens
US11347070B2 (en) * 2016-10-13 2022-05-31 Lg Chem, Ltd. Optical isolation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241723A (en) * 1985-04-17 1986-10-28 ラ−クマン・エレクトロ・オプテイクス・インコ−ポレイテツド Variable attenuation of laser beam
JP2710809B2 (en) * 1988-12-19 1998-02-10 株式会社クラレ Crossed diffraction grating and polarization rotation detector using the same
JPH02178604A (en) * 1988-12-28 1990-07-11 Kuraray Co Ltd Cross diffraction grating and polarized wave rotation detecting device using same
JP2803181B2 (en) * 1989-06-28 1998-09-24 日本電気株式会社 Birefringent diffraction grating polarizer
JP2810281B2 (en) * 1992-09-28 1998-10-15 シャープ株式会社 Polarization detector
JP2008070624A (en) * 2006-09-14 2008-03-27 Ricoh Co Ltd Polarization converting element and its manufacturing method
JP2009294604A (en) * 2008-06-09 2009-12-17 Asahi Glass Co Ltd Optical modulation liquid crystal element and variable optical attenuator

Also Published As

Publication number Publication date
JP2011191787A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
KR101098202B1 (en) Polarized diffractive filter and layered polarized diffractive filter
KR102484474B1 (en) Bragg liquid crystal polarization gratings
KR101330860B1 (en) Liquid crystal element, optical head device, and variable optical modulation element
KR101105186B1 (en) Polarizing diffraction element and optical head device
JP4792679B2 (en) Isolator and variable voltage attenuator
JP4508048B2 (en) Liquid crystal lens and optical head device
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP2009294604A (en) Optical modulation liquid crystal element and variable optical attenuator
WO1997027583A1 (en) Optical head, method of manufacturing the same, and diffraction element suitable therefor
JP2009015995A (en) Liquid crystal diffractive lens element and optical head device
JP6168642B2 (en) Diffraction grating and manufacturing method thereof, optical waveguide
JP4106981B2 (en) Optical attenuator
JP4923615B2 (en) Optical isolator and bidirectional optical transceiver
JP5152366B2 (en) Isolator and variable voltage attenuator
JP4269788B2 (en) Reflective light modulator and variable optical attenuator
JP5195024B2 (en) Diffraction element, optical attenuator, optical head device, and projection display device
US20080253265A1 (en) Optical head apparatus
JP3598703B2 (en) Optical head device and manufacturing method thereof
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP5131244B2 (en) Laminated phase plate and optical head device
US8040781B2 (en) Wavelength selecting wavelength plate and optical head device using it
JP2010032807A (en) Polarized beam splitter, optical isolator, and optical device using the same
JP2008197182A (en) Light flux splitting element and light flux splitting method
JP2010009690A (en) Optical head device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees