Nothing Special   »   [go: up one dir, main page]

JP2006156723A - Method for manufacturing thermally conductive substrate - Google Patents

Method for manufacturing thermally conductive substrate Download PDF

Info

Publication number
JP2006156723A
JP2006156723A JP2004345368A JP2004345368A JP2006156723A JP 2006156723 A JP2006156723 A JP 2006156723A JP 2004345368 A JP2004345368 A JP 2004345368A JP 2004345368 A JP2004345368 A JP 2004345368A JP 2006156723 A JP2006156723 A JP 2006156723A
Authority
JP
Japan
Prior art keywords
conductive substrate
heat conductive
thermosetting composition
preliminary
forming mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004345368A
Other languages
Japanese (ja)
Inventor
Tetsuya Tsumura
哲也 津村
Michihiro Miyauchi
美智博 宮内
Etsuo Tsujimoto
悦夫 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004345368A priority Critical patent/JP2006156723A/en
Publication of JP2006156723A publication Critical patent/JP2006156723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive substrate in which voids are reduced by performing lamination in vacuum atmosphere thereby preventing entailment of air between a thermosetting resin composition and a lead frame. <P>SOLUTION: In the method for producing a thermally conductive substrate, a metal plate 14 for heat dissipation is applied to a thermally conductive sheet-like matter 6 of a soft thermosetting resin composition 1 and then a lead frame 2 is applied thereto in vacuum atmosphere. Subsequently, it is hot pressed in a formation die and subjected to primary curing while sustaining flexibility. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器における大電力回路などに使用される、樹脂と無機フィラーの混合物を使用してなる熱伝導性基板(または高放熱性基板)の製造方法に関するものである。   The present invention relates to a method for manufacturing a heat conductive substrate (or a high heat dissipation substrate) using a mixture of a resin and an inorganic filler, which is used for a high power circuit in an electronic device.

近年、電子機器の高性能化、小型化の要求にともない、半導体の高密度化や高機能化が要求されている。   In recent years, with the demand for higher performance and miniaturization of electronic devices, higher density and higher functionality of semiconductors are required.

これにより、それらを実装するための回路基板もまた小型高密度で、かつ、熱伝導性、放熱性の優れた構造が必要となり、その結果、熱硬化性樹脂に無機の熱伝導性フィラーを充填した熱硬化性組成物を、リードフレームや放熱用金属板と一体化した熱伝導性基板が提案されていた。   As a result, the circuit boards on which they are mounted must also have a compact, high-density structure with excellent thermal conductivity and heat dissipation. As a result, the thermosetting resin is filled with an inorganic thermal conductive filler. A thermally conductive substrate in which the thermosetting composition thus obtained is integrated with a lead frame or a metal plate for heat dissipation has been proposed.

従来における熱伝導性基板の製造方法を、図4の概要製造工程図を用いて説明する。すなわち図4において、1は熱硬化性樹脂と熱伝導性フィラーを成分として含む軟体の熱硬化性組成物である。2は、配線、電極あるいは取出端子を構成する複数の貫通孔3を有したリードフレームであり、その材料として高熱伝導性または高電導性の鉄、銅、アルミニウムあるいはそれらの合金などの板状金属材が用いられている。4はリードフレーム2の一部を曲げ加工して形成した接続用あるいは放熱用などの端子である。   A conventional method for manufacturing a thermally conductive substrate will be described with reference to a schematic manufacturing process diagram of FIG. That is, in FIG. 4, 1 is a soft thermosetting composition containing a thermosetting resin and a heat conductive filler as components. 2 is a lead frame having a plurality of through-holes 3 constituting wirings, electrodes or lead terminals, and the material thereof is a plate metal such as iron, copper, aluminum or alloys thereof having high thermal conductivity or high conductivity. The material is used. Reference numeral 4 denotes a terminal for connection or heat dissipation formed by bending a part of the lead frame 2.

まず、図4(a)に示す熱伝導シート状物6と放熱用金属板14を用意し、図4(b)に示すように、ローラー13で熱伝導シート状物6を放熱用金属板14に空気を挟み込まないように積層した後フィルム12を剥がす。   First, the heat conductive sheet 6 and the heat radiating metal plate 14 shown in FIG. 4A are prepared. As shown in FIG. Then, the film 12 is peeled off after being laminated so as not to sandwich air.

次に図4(c)に示すように、この放熱用金属板14と一体化した熱伝導シート状物6をリードフレーム2の所定位置に重ね合せて積層する。   Next, as shown in FIG. 4 (c), the heat conductive sheet 6 integrated with the heat radiating metal plate 14 is overlapped and laminated at a predetermined position of the lead frame 2.

そして、図4(d)に示すように、この放熱用金属板14と一体化した熱伝導シート状物6とリードフレーム2を形成用金型(図示せず)により加圧し、熱伝導シート状物6の一部をリードフレーム2の貫通孔3に浸入させ、さらに170℃、6時間、加熱して、熱伝導シート状物6を熱硬化させてリードフレーム2と一体化させる。   Then, as shown in FIG. 4D, the heat conductive sheet 6 integrated with the heat radiating metal plate 14 and the lead frame 2 are pressed by a forming die (not shown) to form a heat conductive sheet. A part of the object 6 is allowed to enter the through-hole 3 of the lead frame 2 and further heated at 170 ° C. for 6 hours to thermally cure the heat conductive sheet 6 to be integrated with the lead frame 2.

その後、図4(e)に示すように、リードフレーム2の不要部分を切断して除去するとともに、曲げ加工により端子4を形成して、熱伝導性基板21を完成するのである。   Thereafter, as shown in FIG. 4E, unnecessary portions of the lead frame 2 are cut and removed, and the terminals 4 are formed by bending to complete the thermally conductive substrate 21.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2003−152148号公報
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
JP 2003-152148 A

しかしながら、前記従来の熱伝導性基板の製造方法では、熱硬化性組成物1をリードフレーム2に積層し、加圧しながら熱硬化させたときに、熱伝導シート状物6とリードフレーム2の間に空気が噛み込み、ボイドが発生し、そのボイドが熱伝導率の低下、あるいは耐電圧の低下を招くという問題点を有していた。   However, in the conventional method for manufacturing a thermally conductive substrate, when the thermosetting composition 1 is laminated on the lead frame 2 and thermally cured while being pressurized, the space between the thermally conductive sheet 6 and the lead frame 2 is reduced. However, there is a problem in that air is entrained and voids are generated, and the voids cause a decrease in thermal conductivity or a decrease in withstand voltage.

そこで本発明は、ボイドを発生しない生産性の高い熱伝導性基板の製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a method for producing a highly conductive thermally conductive substrate that does not generate voids.

前記目的を達成するために本発明の熱伝導性基板の製造方法は、以下の構成を有する。   In order to achieve the above object, a method for producing a thermally conductive substrate of the present invention has the following configuration.

本発明の請求項1に記載の発明は、無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物をシート形状にした熱伝導シート状物の片面に放熱用金属板を積層したものを真空雰囲気中にてリードフレームと積層し、形成用金型内で加熱加圧して軟質を有したまま一次硬化させることにより前記リードフレームと前記放熱用金属板および前記熱硬化性組成物を所定形状に一体化して予備熱伝導性基板を形成し、前記予備熱伝導性基板を前記形成用金型から取り出した後、前記熱伝導シート状物を硬化させる熱伝導性基板の製造方法であり、真空雰囲気中で積層を行うため前記熱硬化性組成物とリードフレームとの間に空気が噛み込むことがなく、ボイドの少ない熱伝導性基板を製作することができるという作用効果を奏する。   The invention according to claim 1 of the present invention is a sheet-shaped soft thermosetting composition comprising a thermally conductive filler made of an inorganic material, a thermosetting resin, a curing agent and a curing accelerator as components. By laminating a metal plate for heat dissipation on one side of the heat conductive sheet-like material, laminated with a lead frame in a vacuum atmosphere, and heating and pressurizing in a forming mold to perform primary curing while having softness A lead frame, the heat-dissipating metal plate, and the thermosetting composition are integrated into a predetermined shape to form a preliminary heat conductive substrate, and after the preliminary heat conductive substrate is taken out of the forming mold, the heat A method for producing a thermally conductive substrate for curing a conductive sheet-like material. Since lamination is performed in a vacuum atmosphere, air does not get caught between the thermosetting composition and the lead frame, and heat with less voids. Conductive substrate Operational effects of being able fabricated to.

本発明の請求項2に記載の発明は、無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物を放熱用金属板に塗布してシート状にしたものを真空雰囲気中にてリードフレームと積層することを特徴とする請求項1に記載の熱伝導性基板の製造方法であり、真空雰囲気中で積層を行うため前記熱硬化性組成物とリードフレームとの間に空気が噛み込むことがなく、ボイドの少ない熱伝導性基板を製作することができるという作用効果を奏する。   According to a second aspect of the present invention, there is provided a heat-dissipating metal comprising a soft thermosetting composition comprising, as components, a thermally conductive filler made of an inorganic material, a thermosetting resin, a curing agent and a curing accelerator. 2. The method of manufacturing a thermally conductive substrate according to claim 1, wherein the sheet-like material coated on a plate is laminated with a lead frame in a vacuum atmosphere. Air does not get caught between the thermosetting composition and the lead frame, and there is an effect that a heat conductive substrate with few voids can be manufactured.

本発明の請求項3に記載の発明は、前記熱硬化性組成物が積層、あるいは塗布された前記放熱用金属板と前記リードフレームを、あらかじめ50〜90℃に加熱された形成用金型に投入し、前記熱硬化性組成物が積層、あるいは塗布された前記放熱用金属板と前記リードフレームが50〜90℃に昇温した後に真空雰囲気中にて前記形成用金型内で加圧一体化され、その後100℃以上に加熱して前記予備熱伝導性基板を形成することを特徴とする請求項1〜請求項2のいずれか一つに記載の熱伝導性基板の製造方法であり、前記熱硬化性組成物が50〜90℃で低粘度になった時に前記形成用金型内で加圧一体化することにより前記熱硬化性組成物が隅々まで流れ、未充填を防ぐことができるという作用効果を奏する。   In the invention according to claim 3 of the present invention, the metal plate for heat dissipation and the lead frame on which the thermosetting composition is laminated or applied are formed on a forming mold heated to 50 to 90 ° C. in advance. The heat-dissipating metal plate and the lead frame to which the thermosetting composition is laminated or applied are heated up to 50 to 90 ° C., and then pressed and integrated in the forming mold in a vacuum atmosphere The method for producing a thermally conductive substrate according to any one of claims 1 to 2, wherein the preliminary thermally conductive substrate is formed by heating to 100 ° C or higher after that, When the thermosetting composition becomes low viscosity at 50 to 90 ° C., the thermosetting composition flows to every corner by pressing and integrating in the forming mold to prevent unfilling. There is an effect of being able to.

本発明の請求項4に記載の発明は、前記形成用金型内で予備熱伝導性基板を形成した後、前記形成用金型を70℃以下に冷却してから前記予備熱伝導性基板を前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、前記形成用金型内の前記予備熱伝導性基板を冷却することにより前記予備熱伝導性基板の硬度を高めることにより取り出す時に変形しにくくするという作用効果を有する。   According to a fourth aspect of the present invention, after the preliminary heat conductive substrate is formed in the forming mold, the forming mold is cooled to 70 ° C. or lower, and then the preliminary heat conductive substrate is mounted. It takes out from the said metal mold | die, It is a manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3, The said preliminary | backup heat conductive board | substrate in the said metal mold | die By cooling the substrate, the hardness of the preliminary heat conductive substrate is increased to make it difficult to be deformed when taken out.

本発明の請求項5に記載の発明は、前記熱硬化性組成物を、あらかじめ50〜90℃に加熱された前記形成用金型に投入し、その前記形成用金型をあらかじめ上下熱盤の温度が50〜90℃に設定された熱プレスの下熱盤の上に設置し、周囲を真空雰囲気の状態にし、前記熱硬化性組成物が50〜90℃に昇温した後に前記熱プレスの前記上下熱盤でこれを挟んで加熱と加圧を行い、その状態で加圧したまま前記上下熱盤を100℃以上に昇温して前記予備熱伝導性基板を形成することを特徴とする請求項3に記載の熱伝導性基板の製造方法であり、前記形成用金型の温度は前記熱プレスの下熱盤の設定された温度とほぼ同一になるため、加圧する時の温度を正確に管理することができるという作用効果を有する。   In the invention according to claim 5 of the present invention, the thermosetting composition is put into the forming mold heated in advance to 50 to 90 ° C., and the forming mold is preliminarily placed on the upper and lower heating plates. It is installed on a lower heating plate of a heat press set at a temperature of 50 to 90 ° C., the surroundings are in a vacuum atmosphere, and the temperature of the thermosetting composition is raised to 50 to 90 ° C. Heating and pressing is performed with the upper and lower heating plates being sandwiched, and the preliminary heating conductive substrate is formed by raising the temperature of the upper and lower heating plates to 100 ° C. or higher while being pressed in this state. 4. The method of manufacturing a thermally conductive substrate according to claim 3, wherein the temperature of the forming die is substantially the same as the set temperature of the lower heating plate of the hot press. It has the effect that it can be managed.

本発明の請求項6に記載の発明は、前記熱硬化性組成物を、あらかじめ50〜90℃に加熱された前記形成用金型に投入し、その前記形成用金型をあらかじめ上下熱盤の温度が100℃以上に設定された熱プレスの下熱盤の上に設置し、周囲を真空雰囲気の状態にし、前記熱硬化性組成物が50〜90℃に昇温した後に前記熱プレスの前記上下熱盤でこれを挟んで加熱と加圧を行い、前記予備熱伝導性基板を形成することを特徴とする請求項3に記載の熱伝導性基板の製造方法であり、前記形成用金型の温度は前記熱プレスの下熱盤によって昇温していくため、加圧するタイミングをあらかじめ実測しておく必要があるが、前記請求項5のように前記熱プレスの上下熱盤が100℃以上に昇温するまで待つ必要がなく生産効率を上げることができるという作用効果を有する。   According to a sixth aspect of the present invention, the thermosetting composition is put into the forming mold heated in advance to 50 to 90 ° C., and the forming mold is preliminarily placed on an upper and lower heating plate. It is installed on a lower heating plate of a heat press set at a temperature of 100 ° C. or higher, the surroundings are in a vacuum atmosphere, and the temperature of the thermosetting composition is raised to 50 to 90 ° C. The method for producing a thermally conductive substrate according to claim 3, wherein the preliminary thermally conductive substrate is formed by heating and pressing the sandwiched plate between upper and lower heating plates. Since the temperature of the hot press is raised by the lower hot platen of the hot press, it is necessary to actually measure the timing of pressurization in advance. To increase production efficiency without having to wait until the temperature rises It has the effect that kill.

本発明の請求項7に記載の発明は、予備熱伝導性基板を形成用金型から取り出した後、恒温炉で前記予備熱伝導性基板の前記熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、前記熱硬化性組成物を軟質のまま一次硬化させて所定形状に一体化した前記予備熱伝導性基板を前記形成用金型から取り出すことにより前記形成用金型に付着する前記熱硬化性組成物のバリも軟質とすることができ、前記形成用金型から容易に除去でき、加えて、前記熱硬化性組成物を確実に硬化することができるという作用効果を奏する。   The invention according to claim 7 of the present invention is that the thermosetting composition of the preliminary thermal conductive substrate is cured in a constant temperature furnace after the preliminary thermal conductive substrate is taken out of the forming mold. 4. The method for producing a thermally conductive substrate according to claim 3, wherein the preliminary thermally conductive substrate in which the thermosetting composition is first cured while being soft and integrated into a predetermined shape is formed. The burrs of the thermosetting composition adhering to the forming mold can be made soft by taking out from the forming mold, and can be easily removed from the forming mold, and in addition, the thermosetting composition There exists an effect that a thing can be hardened certainly.

本発明の請求項8に記載の発明は、予備熱伝導性基板を、雰囲気内温度が150〜200℃の恒温炉内に1〜6時間放置して硬化させることを特徴とする請求項7に記載の熱伝導性基板の製造方法であり、前記恒温炉内で確実に前記予備熱伝導性基板を硬化させることができるという作用効果を有する。   The invention according to claim 8 of the present invention is characterized in that the preliminary thermal conductive substrate is left to cure in a constant temperature oven having an atmospheric temperature of 150 to 200 ° C. for 1 to 6 hours. It is a manufacturing method of the heat conductive board | substrate of description, and has the effect that the said preliminary | backup heat conductive board | substrate can be hardened reliably in the said thermostat.

本発明の請求項9に記載の発明は、予備熱伝導性基板を、雰囲気内温度が室温の恒温炉内に配置し、150〜200℃に昇温した後に1〜6時間放置して硬化させることを特徴とする請求項8に記載の熱伝導性基板の製造方法であり、前記恒温炉内に配置する際の不要な熱ストレスを加えること無く前記熱硬化性組成物を損傷なく均一に硬化することができるという作用効果を有する。   In the invention according to claim 9 of the present invention, the preliminary thermal conductive substrate is placed in a constant temperature furnace having an ambient temperature of room temperature, and is heated to 150 to 200 ° C. and then left to cure for 1 to 6 hours. 9. The method for producing a thermally conductive substrate according to claim 8, wherein the thermosetting composition is uniformly cured without applying unnecessary thermal stress when being placed in the constant temperature furnace. It has the effect of being able to do.

本発明の請求項10に記載の発明は、予備熱伝導性基板を形成用金型から取り出した後、加圧オーブンにより加圧した状態で加熱硬化し、その後、恒温炉で前記予備熱伝導性基板の前記熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、加圧雰囲気中で前記予備熱伝導性基板を硬化することにより熱伝導性基板内に潜在する微小な空気などのボイドが膨張して拡大するのを抑制することができるという作用効果を奏する。   According to the tenth aspect of the present invention, after the preliminary thermal conductive substrate is taken out of the forming mold, it is cured by heating in a state of being pressurized by a pressure oven, and then the preliminary thermal conductivity in a constant temperature furnace. The method for producing a thermally conductive substrate according to any one of claims 1 to 3, wherein the thermosetting composition of the substrate is cured, and the preliminary thermally conductive substrate is cured in a pressurized atmosphere. As a result, there is an effect that it is possible to suppress expansion and expansion of voids such as minute air latent in the heat conductive substrate.

本発明の請求項11に記載の発明は、予備熱伝導性基板を形成用金型から取り出した後、加圧オーブンで前記予備熱伝導性基板の前記熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、加圧雰囲気中で前記予備熱伝導性基板を硬化することにより熱伝導性基板内に潜在する微小な空気などのボイドが膨張して拡大するのを抑制することができるという作用効果を奏する。   According to an eleventh aspect of the present invention, the thermosetting composition of the preliminary thermal conductive substrate is cured in a pressure oven after the preliminary thermal conductive substrate is taken out of the forming mold. It is a manufacturing method of the heat conductive board according to any one of claims 3 to 6, and the minute air which is latent in the heat conductive board by hardening the preliminary heat conductive board in a pressurized atmosphere, etc. It is possible to prevent the voids from expanding and expanding.

本発明の請求項12に記載の発明は、予備熱伝導性基板を、その予備熱伝導性基板の少なくとも平面方向に対して拘束せずに加圧オーブン内に配置し、熱伝導シート状物を硬化させることを特徴とする請求項11に記載の熱伝導性基板の製造方法であり、前記熱硬化性組成物の面全体に偏った不要なストレスをかけること無く、均一な硬化をすることができ、また、前記予備熱伝導性基板を前記加圧オーブン内で手軽に大量に処理することで、生産性を向上させることができるという作用効果を有する。   According to a twelfth aspect of the present invention, the preliminary heat conductive substrate is disposed in a pressure oven without being constrained to at least the plane direction of the preliminary heat conductive substrate, and the heat conductive sheet-like material is arranged. The method for producing a thermally conductive substrate according to claim 11, wherein curing is performed without applying unnecessary stress to the entire surface of the thermosetting composition. Moreover, it has the effect that productivity can be improved by processing the preliminary | backup heat conductive board | substrate easily in large quantities in the said pressurization oven.

本発明の請求項13に記載の発明は、真空雰囲気とは50000Pa以下であることを特徴とする請求項1〜請求項6のいずれか一つに記載の熱伝導性基板の製造方法であり、この程度の真空雰囲気にすることにより一般的に用いられる基板の熱伝導性や耐電圧特性を著しく低下させる空気層やボイドの発生を防ぐことができ、比較的短時間で所定の真空雰囲気レベルにすることが可能で生産性の向上が図れるという作用効果を有する。   Invention of Claim 13 of this invention is a manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-6 characterized by the vacuum atmosphere being 50000 Pa or less, By creating a vacuum atmosphere of this level, it is possible to prevent the generation of air layers and voids that significantly reduce the thermal conductivity and withstand voltage characteristics of commonly used substrates. This has the effect of improving productivity.

本発明の請求項14に記載の発明は、あらかじめ50〜90℃に加熱された形成用金型に投入された前記熱硬化性組成物とリードフレームとは前記形成用金型内で加圧一体化される前は真空雰囲気中にて接触していないことを特徴とする請求項1〜請求項6のいずれか一つに記載の熱伝導性基板の製造方法であり、前記熱硬化性組成物とリードフレームとの間の空気の噛み込みを防ぐという作用効果を有する。   According to the fourteenth aspect of the present invention, the thermosetting composition and the lead frame, which are put in a forming mold heated in advance to 50 to 90 ° C., are integrated with pressure in the forming mold. The method for producing a thermally conductive substrate according to any one of claims 1 to 6, wherein the thermosetting composition is not in contact in a vacuum atmosphere before being formed. And an effect of preventing air from being caught between the lead frame and the lead frame.

本発明の請求項15に記載の発明は、予備熱伝導性基板を、3気圧以上の雰囲気で、150〜200℃の温度の加圧オーブン内に10分以上放置して硬化させることを特徴とする請求項11に記載の熱伝導性基板の製造方法であり、前記加圧オーブン内で確実に前記予備熱伝導性基板を完全に硬化することができるという作用効果を有する。   The invention according to claim 15 of the present invention is characterized in that the preliminary heat conductive substrate is left to be cured in an atmosphere of 3 atm or more in a pressure oven at a temperature of 150 to 200 ° C. for 10 minutes or more. It is a manufacturing method of the heat conductive substrate of Claim 11, and has the effect that the said preliminary | backup heat conductive substrate can be hardened | cured completely reliably in the said pressurization oven.

本発明の請求項16に記載の発明は、予備熱伝導性基板を、雰囲気内温度が室温の加圧オーブン内に配置し、3気圧以上の雰囲気で、150〜200℃の温度に昇温した後に10分以上放置して硬化させることを特徴とする請求項15に記載の熱伝導性基板の製造方法であり、前記加圧オーブン内に配置する際の不要な熱ストレスを加えること無く、熱伝導シート状物を損傷なく均一に硬化することができるという作用効果を有する。   According to the sixteenth aspect of the present invention, the preliminary thermal conductive substrate is placed in a pressure oven having an atmospheric temperature of room temperature, and is heated to a temperature of 150 to 200 ° C. in an atmosphere of 3 atm or more. The method for producing a thermally conductive substrate according to claim 15, wherein the substrate is left to be cured for 10 minutes or longer, without applying unnecessary thermal stress when placed in the pressure oven. It has an effect that the conductive sheet can be uniformly cured without damage.

本発明の請求項17に記載の発明は、前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物の溶融粘度を100Pa・s以下にしてから加圧することを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、前記熱硬化性組成物は前記リードフレーム(あるいは放熱用金属板)の表面の空気を除去しながらより確実に前記リードフレーム(あるいは放熱用金属板)の表面に広がり、その結果、前記熱硬化性組成物と前記リードフレーム(あるいは放熱用金属板)との密着性を向上させ、また未充填を防ぐという作用効果を有する。   In the invention according to claim 17 of the present invention, the temperature of the thermosetting composition is raised in a forming mold, and the melt viscosity of the thermosetting composition is reduced to 100 Pa · s or less, and then the pressure is applied. It is a manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3 characterized by the above-mentioned, The said thermosetting composition removes the air of the surface of the said lead frame (or metal plate for heat dissipation). More reliably spread on the surface of the lead frame (or heat radiating metal plate) while removing, and as a result, improve the adhesion between the thermosetting composition and the lead frame (or heat radiating metal plate), and It has the effect of preventing unfilling.

本発明の請求項18に記載の発明は、前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物を100℃以上の温度で30s以上維持して予備熱伝導性基板を形成し、その後前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、所定形状を有した前記予備熱伝導性基板を確実に形成し、後工程の取り扱いを容易にするという作用効果を有する。   According to an eighteenth aspect of the present invention, the temperature of the thermosetting composition is increased in a forming mold, and the thermosetting composition is maintained at a temperature of 100 ° C. or higher for 30 seconds or longer to perform preliminary heat conduction. A method for producing a thermally conductive substrate according to any one of claims 1 to 3, wherein the conductive substrate is formed and then taken out from the forming mold. The preliminary heat conductive substrate is reliably formed, and it has an effect of facilitating the handling of the subsequent process.

本発明の請求項19に記載の発明は、前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物の粘度を1000Pa・s以上にして予備熱伝導性基板を形成し、その後前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、所定形状を有した前記予備熱伝導性基板をより確実に形成し、後工程の取り扱いを容易にするという作用効果を有する。   According to the nineteenth aspect of the present invention, the temperature of the thermosetting composition is raised in a forming mold so that the viscosity of the thermosetting composition is 1000 Pa · s or more and a preliminary heat conductive substrate is formed. 4. The method of manufacturing a thermally conductive substrate according to claim 1, wherein the preliminary thermal conduction has a predetermined shape, which is formed and then taken out from the forming mold. This has the effect of forming the conductive substrate more reliably and facilitating the handling of the subsequent process.

本発明の請求項20に記載の発明は、熱硬化性組成物は、液状の熱硬化性樹脂と熱可塑性樹脂パウダーとを成分として含み、かつ前記熱可塑性樹脂パウダーが液状の前記熱硬化性樹脂の液状成分を吸収して膨潤することにより固形状になるものを用いる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法であり、前記予備熱伝導性基板を短時間で確実に形成することができ、前記形成用金型から短時間で取り出せ、生産効率を高めることができるという作用効果を有する。   According to a twentieth aspect of the present invention, the thermosetting composition includes a liquid thermosetting resin and a thermoplastic resin powder as components, and the thermoplastic resin powder is a liquid. The method for producing a thermally conductive substrate according to any one of claims 1 to 3, wherein a material that becomes solid by absorbing and swelling the liquid component is used. It can be reliably formed in a short time, can be taken out from the forming mold in a short time, and has the effect of increasing production efficiency.

以上のように本発明は、無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物を真空雰囲気中でリードフレームに積層し、前記リードフレームに積層した前記熱硬化性組成物を形成用金型で加熱加圧して軟質を有したまま一次硬化させることにより前記リードフレームと前記熱硬化性組成物を所定形状に一体化して予備熱伝導性基板を形成し、前記予備熱伝導性基板を前記形成用金型から取り出した後、前記熱硬化性組成物を硬化させる熱伝導性基板の製造方法であり、真空雰囲気中で積層を行うため前記熱硬化性組成物とリードフレームとの間に空気が噛み込むことがなく、ボイドの少ない熱伝導性基板を製作することができるという絶大なる効果を奏するものである。   As described above, according to the present invention, a soft thermosetting composition containing, as components, a thermally conductive filler made of an inorganic material, a thermosetting resin, a curing agent, and a curing accelerator is used as a lead frame in a vacuum atmosphere. The lead frame and the thermosetting composition are integrated into a predetermined shape by laminating and first-curing the thermosetting composition laminated on the lead frame by heating and pressurizing with a forming mold while having softness. Forming a preliminary heat conductive substrate, taking out the preliminary heat conductive substrate from the forming mold, and then curing the thermosetting composition, in a vacuum atmosphere As a result of the lamination, the air does not get caught between the thermosetting composition and the lead frame, and it is possible to produce a heat conductive substrate with few voids.

以下、本発明の実施の形態における熱伝導性基板の製造方法について図面を用いて説明する。図1は本発明の実施の形態における熱伝導性基板の製造方法を説明する製造工程図、図2は同熱硬化性組成物と放熱用金属板の積層を示す断面図、図3は同熱伝導性基板の形成状況を形成金型の図を加えて具体的に説明した構成図、図4は従来の熱伝導性基板の製造方法を説明する製造工程図である。   Hereinafter, the manufacturing method of the heat conductive board | substrate in embodiment of this invention is demonstrated using drawing. FIG. 1 is a production process diagram for explaining a method for producing a thermally conductive substrate in an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the lamination of the thermosetting composition and a metal plate for heat dissipation, and FIG. FIG. 4 is a manufacturing process diagram for explaining a conventional method for manufacturing a heat conductive substrate. FIG.

なお、従来の技術で説明した構成部材については同一の符号を付与し、詳細な説明は簡略化する。   In addition, the same code | symbol is provided about the structural member demonstrated by the prior art, and detailed description is simplified.

図1(a)は、硬化性樹脂となるエポキシ樹脂と、アルミナ、窒化アルミ、あるいは炭化珪素などの無機の熱伝導性フィラーとを含んだ室温領域(30から50℃)における溶融粘度が5〜100Pa・sの熱硬化性組成物1を、モーノポンプ5により放熱用金属板14上に一筆書きを描くように塗布した状態である。   FIG. 1A shows a melt viscosity of 5 to 5 in a room temperature region (30 to 50 ° C.) containing an epoxy resin as a curable resin and an inorganic thermally conductive filler such as alumina, aluminum nitride, or silicon carbide. 100 Pa · s of the thermosetting composition 1 is applied by the MONO pump 5 so as to draw a single stroke on the metal plate 14 for heat dissipation.

この時、複数列の塗布が行われているが最初の列は長さが短く、この部分の樹脂量を調整している。   At this time, a plurality of rows are applied, but the length of the first row is short, and the amount of resin in this portion is adjusted.

図1(b)は前記塗布された熱硬化性組成物1を一定時間(常温で24時間)放置後の状態を示す。熱硬化性組成物1は放熱用金属板14上でシート状に広がり、加圧時に熱硬化性組成物1が素早く隅々まで行き渡ることができ、充填不足を防ぐことができる状態になっている。   FIG. 1B shows a state after the applied thermosetting composition 1 is left for a certain period of time (24 hours at room temperature). The thermosetting composition 1 spreads in the form of a sheet on the heat-dissipating metal plate 14, and the thermosetting composition 1 can quickly spread to every corner at the time of pressurization, so that insufficient filling can be prevented. .

次に、図1(c)に示すように、放熱用金属板14を形成した面とは反対の熱硬化性組成物1側面にリードフレーム2を真空雰囲気中(100トール程度)で積層し、リードフレーム2または放熱用金属板14を保持して加熱加圧する硬化工程に移動し、加熱しながら放熱用金属板14を介して熱硬化性組成物1の全面を同時に加圧させる。   Next, as shown in FIG. 1 (c), the lead frame 2 is laminated in a vacuum atmosphere (about 100 Torr) on the side surface of the thermosetting composition 1 opposite to the surface on which the metal plate for heat dissipation 14 is formed, It moves to the hardening process which hold | maintains the lead frame 2 or the metal plate 14 for heat dissipation, and heat-presses, and pressurizes the whole surface of the thermosetting composition 1 simultaneously via the metal plate 14 for heat dissipation, heating.

すると、図1(d)に示すように熱硬化性組成物1の一部が、リードフレーム2の貫通孔3に浸入し、熱硬化性組成物1中の樹脂が熱硬化するとともに、熱硬化性組成物1とリードフレーム2、および放熱用金属板14は一体化された構成となる。   Then, as shown in FIG.1 (d), a part of thermosetting composition 1 permeates into the through-hole 3 of the lead frame 2, and the resin in the thermosetting composition 1 is thermoset and thermoset. The composition 1, the lead frame 2, and the heat radiating metal plate 14 are integrated.

次に図1(e)に示すように、前記硬化工程終了後、リードフレーム2の不要部分を切断除去し、かつ折り曲げ加工により外部回路との接続用の端子4を形成して、電子機器用の大電力回路を構成する所定の熱伝導性基板21を形成する。なお、この熱伝導性基板21のリードフレーム2の配線パターン上には、後工程にて電子部品などを搭載する。   Next, as shown in FIG. 1E, after completion of the curing step, unnecessary portions of the lead frame 2 are cut and removed, and terminals 4 for connection to external circuits are formed by bending, so that the electronic device is used. A predetermined thermally conductive substrate 21 constituting the large power circuit is formed. An electronic component or the like is mounted on the wiring pattern of the lead frame 2 of the heat conductive substrate 21 in a later process.

なお、熱硬化性組成物1は、押し出し成形方法でシート形状に形成して従来技術の説明図である図4の(b)のごとく放熱用金属板14上に積層してもよい。   The thermosetting composition 1 may be formed into a sheet shape by an extrusion molding method and laminated on the heat radiating metal plate 14 as shown in FIG.

また、図2に示す、本発明に使用するリードフレーム2は、例えば鉄、アルミニウム、銀、銅あるいはそれらの合金材などでなる導電性および熱伝導性金属板よりなり、電子部品を搭載するための所定の配線パターンを有し、また、外部回路との接続用の端子4も有している。そのリードフレーム2の少なくとも片面(図2の上面側)は、熱硬化性組成物1に対して密着性をよくするためにエッチング、サンドブラストあるいはグラインダーなどにより粗面化しており、また、端子4部は、腐食防止用、かつ半田付け性向上のためのめっきを施してある。なお、リードフレーム2の材質は、配線パターンを形成して高効率に電気信号を伝えるために、特に高導電性の銅材とすることで、特に電気特性の良好な熱伝導性金属板を構成することができる。   Further, the lead frame 2 used in the present invention shown in FIG. 2 is made of a conductive and thermally conductive metal plate made of, for example, iron, aluminum, silver, copper, or an alloy material thereof, and is used for mounting electronic components. And a terminal 4 for connection to an external circuit. At least one surface of the lead frame 2 (the upper surface side in FIG. 2) is roughened by etching, sandblasting, grinder or the like in order to improve adhesion to the thermosetting composition 1, and 4 terminals Is plated to prevent corrosion and improve solderability. The lead frame 2 is made of a highly conductive copper material to form a wiring pattern and transmit an electrical signal with high efficiency, thereby forming a heat conductive metal plate having particularly good electrical characteristics. can do.

14は、熱伝導性の高い、鉄、銅、アルミニウムあるいはそれらの合金などの金属材でなる放熱用金属板である。この放熱用金属板14は、リードフレーム2を設けた熱硬化性組成物1の面とは反対の面に積層して設け、熱伝導性基板21を構成している。これにより、熱伝導性基板21の熱伝導性および放熱性を、一層、向上することができる。   Reference numeral 14 denotes a heat radiating metal plate made of a metal material such as iron, copper, aluminum, or an alloy thereof having high thermal conductivity. The heat radiating metal plate 14 is laminated on the surface opposite to the surface of the thermosetting composition 1 on which the lead frame 2 is provided, and constitutes a thermally conductive substrate 21. Thereby, the heat conductivity and heat dissipation of the heat conductive substrate 21 can be further improved.

なお、放熱用金属板14の少なくとも片面(図2の下面側)を、エッチング、サンドブラストあるいはグラインダーなどにより粗面化して、その粗面化した面を熱硬化性組成物11に当接させて形成することにより、放熱用金属板14の密着強度の高い熱伝導性金属板を構成することができる。   In addition, at least one surface (the lower surface side in FIG. 2) of the heat radiating metal plate 14 is roughened by etching, sandblasting or grinder, and the roughened surface is brought into contact with the thermosetting composition 11. By doing so, a heat conductive metal plate with high adhesion strength of the heat radiating metal plate 14 can be configured.

次に、図3を用いて形成状況を具体的に説明する。図3において1は放熱用金属板14に積層し貼付あるいは塗布された熱硬化性組成物であり2はリードフレームである。   Next, the formation state will be specifically described with reference to FIG. In FIG. 3, reference numeral 1 denotes a thermosetting composition laminated and pasted or applied to the heat radiating metal plate 14, and 2 is a lead frame.

7は鋼製の形成金型(下型)であり、上面の所定箇所にリードフレーム2が載置されている。またこの形成金型(下型)7にはバネ15により浮かされたピン10が内蔵されている。このピン10は放熱用金属板14の熱硬化性組成物1が貼られていない部分に接して熱硬化性組成物14を保持しており熱硬化性組成物1とリードフレーム2の間に空間を形成し、真空雰囲気になる前に空気中で熱硬化性組成物14とリードフレーム2が接触して空気を噛み込むのを防いでいる。   7 is a steel forming die (lower die), and the lead frame 2 is placed at a predetermined position on the upper surface. The forming mold (lower mold) 7 includes a pin 10 floated by a spring 15. This pin 10 is in contact with the portion of the heat-dissipating metal plate 14 where the thermosetting composition 1 is not attached, and holds the thermosetting composition 14. A space between the thermosetting composition 1 and the lead frame 2 is retained. This prevents the thermosetting composition 14 and the lead frame 2 from coming into contact with each other in the air before entering the vacuum atmosphere.

8は、鋼製の形成金型(上型)であり、バネ9により形成金型(下型)7から浮かされており、真空雰囲気になる前に空気中で熱硬化性組成物14とリードフレーム2が接触して空気を噛み込まないようにしている。   Reference numeral 8 denotes a steel forming die (upper die), which is floated from the forming die (lower die) 7 by a spring 9, and before being in a vacuum atmosphere, the thermosetting composition 14 and the lead frame in air. 2 is prevented from coming into contact with air.

16と17は、それぞれ熱プレスにおける熱盤(上)と熱盤(下)である。   Reference numerals 16 and 17 respectively denote a hot platen (upper) and a hot platen (lower) in the hot press.

図3(a)における形成金型(下型)7及び形成金型(上型)8はあらかじめ70℃に昇温されており、これにリードフレーム2と熱硬化性組成物1が積層し貼付あるいは塗布された放熱用金属板14がそれぞれ図のごとく設置されている。この場合、リードフレーム2は形成金型(下型)7に設置後数秒で70℃に昇温するが放熱用金属板14に貼付あるいは塗布された熱硬化性組成物1は常温の状態で設置した場合は70℃に昇温するまでの時間をあらかじめ測定しておく必要がある。加圧するのは熱硬化性組成物1が低粘度になった状態が望ましく70〜80℃の範囲が最も粘度が低くなるからである。また、金型に投入する前にあらかじめ70℃に昇温しておけば熱硬化性組成物1の温度管理はより容易になる。   The forming mold (lower mold) 7 and the forming mold (upper mold) 8 in FIG. 3 (a) have been heated to 70 ° C. in advance, and the lead frame 2 and the thermosetting composition 1 are laminated and pasted thereto. Alternatively, the applied heat radiating metal plate 14 is installed as shown in the figure. In this case, the lead frame 2 is heated to 70 ° C. within a few seconds after being placed on the forming die (lower die) 7, but the thermosetting composition 1 affixed or applied to the heat radiating metal plate 14 is placed at room temperature. In this case, it is necessary to measure in advance the time until the temperature is raised to 70 ° C. The reason why the pressure is applied is that the thermosetting composition 1 is desirably in a low viscosity state, and the viscosity is lowest in the range of 70 to 80 ° C. Moreover, if the temperature is raised to 70 ° C. before putting into the mold, the temperature control of the thermosetting composition 1 becomes easier.

図3(b)のように設定した形成金型をあらかじめ100℃に昇温された熱プレスの熱盤(下)17上に置く。その後、真空チャンバー(上、下)18をパッキン19を介して閉じ、内部を真空状態(100トール程度)にする。この間、約30秒の間に70℃であった形成金型は徐々に昇温し、内部の熱硬化性組成物1が70〜80℃の最も粘度が低くなる温度になる。真空度をあまり高くすると熱硬化性組成物1からも気泡が出てくるため穴が明き、真空を解除した時に空気を巻き込みやすくなるから注意が必要である。また、熱プレスの熱盤(上、下)16,17をあらかじめ70℃に設定しておいて形成金型を設置して真空雰囲気にしてから100℃に昇温していく方法もあり温度管理が容易にできるという利点があるが昇温に時間を要するのが難である。   The forming mold set as shown in FIG. 3B is placed on a hot platen (lower) 17 of a hot press heated to 100 ° C. in advance. Thereafter, the vacuum chamber (upper and lower) 18 is closed via the packing 19, and the inside is brought into a vacuum state (about 100 Torr). During this time, the forming mold that was 70 ° C. in about 30 seconds gradually increases in temperature, and the internal thermosetting composition 1 reaches a temperature at which the viscosity becomes the lowest of 70 to 80 ° C. If the degree of vacuum is too high, air bubbles are also generated from the thermosetting composition 1, so that holes are formed and air is easily trapped when the vacuum is released. In addition, there is a method in which the heating plates (upper and lower) 16 and 17 of the hot press are set to 70 ° C. in advance, a forming mold is placed and a vacuum atmosphere is set, and then the temperature is raised to 100 ° C. However, it is difficult to increase the temperature.

次に図3(c)のように熱プレスを閉じることにより形成金型が閉じられ、形成用金型を加熱加圧して熱硬化性組成物1の一部がリードフレーム2の貫通孔3に浸入し、熱硬化性組成物1とリードフレーム2が一体化した形状の予備熱伝導性基板となる。この時、形成金型が閉じられた後は真空状態を解除してもかまわない。   Next, as shown in FIG. 3C, the forming die is closed by closing the heat press, and the forming die is heated and pressurized to partially transfer the thermosetting composition 1 to the through hole 3 of the lead frame 2. It penetrates and becomes a preliminary heat conductive substrate having a shape in which the thermosetting composition 1 and the lead frame 2 are integrated. At this time, the vacuum state may be released after the forming mold is closed.

その後、形成用金型を70℃以下に冷却して熱硬化性組成物1の硬度が上がってから形成用金型から予備熱伝導性基板を取り出す。この時、冷却が不十分で熱硬化性組成物1の硬度が低い場合は取り出す時に熱硬化性組成物1の一部が形成用金型に付着して予備熱伝導性基板の表面に凹みが生ずる場合があるので注意が必要である。取り出した後は恒温炉内などの所定の温度雰囲気中に所定時間放置して、熱硬化性組成物1の硬化を完了させる(図示せず)。   Thereafter, the forming mold is cooled to 70 ° C. or less, and after the hardness of the thermosetting composition 1 is increased, the preliminary heat conductive substrate is taken out from the forming mold. At this time, when the cooling is insufficient and the thermosetting composition 1 has a low hardness, a part of the thermosetting composition 1 adheres to the forming mold when taking out and there is a dent on the surface of the preliminary heat conductive substrate. Care must be taken because it may occur. After taking out, the thermosetting composition 1 is left to stand in a predetermined temperature atmosphere such as a constant temperature furnace for a predetermined time to complete the curing of the thermosetting composition 1 (not shown).

この時、恒温炉内などで昇温させると、熱硬化性組成物1の樹脂が反応して硬化する前に予備熱伝導性基板内の微細なボイドが熱膨張するため拡大することがある。この対策として予備熱伝導性基板を大気圧よりも高圧となる3気圧以上、たとえば5気圧の雰囲気の中に入れて微細なボイドが熱膨張しないようにした状態で加熱する方法がある。一般には炉内を加圧して加熱することができる加圧オーブンと呼ばれる炉を用いてこのプロセスを行う。この炉で1時間以内の短時間で前記樹脂を硬化させてから恒温炉に1時間以上入れて硬化を完了させる方法もあるし、加圧オーブンにそのまま長時間入れて硬化を完了させてもよい。ただ、加圧オーブンは一般の恒温炉に比して容量のわりには価格が高いためなるべく短時間で稼動させることが望ましい。本実施の形態では加圧オーブンに入れてから5気圧に昇圧した後炉を常温から170℃まで昇温させた。昇温に約15分要し、170℃で約30分間加熱した後取り出した。その後、炉の温度が70℃程度にまで下がった時点で前記基板を投入し、加圧しながら昇温したがボイドの拡大は見られなかった。すなわち、樹脂粘度を低下させボイドの熱膨張が発生する温度までは硬化のスタート温度を上げることができるのであるが、本実施の形態のように常温から加熱を始めるほうが前記基板に与えるストレスは小さくでき、その結果、基板の異種材料の界面における強度を高めることができるものである。また基板に余分なストレスを与えないようにするために炉内での基板の配置状態は特にどの方向にも拘束しない自然な状態であることが望ましい。   At this time, if the temperature is raised in a constant temperature furnace or the like, the fine voids in the preliminary thermal conductive substrate may expand due to thermal expansion before the resin of the thermosetting composition 1 reacts and cures. As a countermeasure, there is a method in which the preliminary heat conductive substrate is heated in a state in which fine voids are not thermally expanded by being placed in an atmosphere of 3 atm or higher, for example, 5 atm, which is higher than atmospheric pressure. In general, this process is performed using a furnace called a pressure oven that can pressurize and heat the inside of the furnace. There is a method in which the resin is cured in a short time within 1 hour in this furnace, and then the curing is completed by putting it in a constant temperature furnace for 1 hour or more. . However, it is desirable to operate the pressurized oven in as short a time as possible because the pressure oven is more expensive than the ordinary constant temperature furnace for its capacity. In the present embodiment, the furnace is heated from room temperature to 170 ° C. after being pressurized to 5 atm after being placed in a pressure oven. It took about 15 minutes to raise the temperature, and after heating at 170 ° C. for about 30 minutes, it was taken out. After that, when the temperature of the furnace was lowered to about 70 ° C., the substrate was put in and the temperature was raised while being pressurized, but no expansion of voids was observed. In other words, the starting temperature of curing can be increased up to a temperature at which the resin viscosity is lowered and the thermal expansion of the void occurs, but the stress applied to the substrate is smaller when heating is started from room temperature as in this embodiment. As a result, the strength at the interface between different materials on the substrate can be increased. Further, it is desirable that the arrangement state of the substrate in the furnace is a natural state that is not constrained in any direction so as not to apply excessive stress to the substrate.

熱硬化性組成物は、液状の熱硬化性樹脂と熱可塑性樹脂パウダーとを成分として含み、かつ前記熱可塑性樹脂パウダーが液状の前記熱硬化性樹脂の液状成分を吸収して膨潤することにより固形状になるものを用いることにより、熱硬化性樹脂成分を時間をかけて重合させて硬化させなくても短時間で半硬化状態にすることができるため予備熱伝導性基板を短時間で確実に形成することができ、また、形成用金型から短時間で取り出せるため、生産効率を高めることができる。   The thermosetting composition contains a liquid thermosetting resin and a thermoplastic resin powder as components, and the thermoplastic resin powder absorbs and swells the liquid component of the liquid thermosetting resin. By using a material that has a shape, the thermosetting resin component can be brought into a semi-cured state in a short time without being polymerized and cured over time, so that the preliminary heat conductive substrate can be reliably obtained in a short time. Since it can be formed and can be taken out from the forming mold in a short time, the production efficiency can be improved.

上記の製造方法によれば各種のパターンのリードフレームへの熱硬化性組成物の積層を容易かつ確実に行うことができ、その結果、さまざまな種類の熱伝導性基板を製造することができるという作用効果を奏するものである。   According to the above manufacturing method, the thermosetting composition can be easily and reliably laminated on the lead frame of various patterns, and as a result, various types of thermally conductive substrates can be manufactured. There is an effect.

本発明は、無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物を真空雰囲気中でリードフレームに積層し、前記リードフレームに積層した前記熱硬化性組成物を形成用金型で加熱加圧して軟質を有したまま一次硬化させることにより前記リードフレームと前記熱硬化性組成物を所定形状に一体化して予備熱伝導性基板を形成し、前記予備熱伝導性基板を前記形成用金型から取り出した後、前記熱硬化性組成物を硬化させる熱伝導性基板の製造方法であり、真空雰囲気中で積層を行うため前記熱硬化性組成物とリードフレームとの間に空気が噛み込むことがなく、ボイドの少ない熱伝導性基板を製作することができるという絶大なる効果を奏し、電子機器における大電力回路などに使用される熱伝導性基板の製造方法などの用途として有用である。   The present invention comprises laminating a soft thermosetting composition comprising a thermally conductive filler made of an inorganic material, a thermosetting resin, a curing agent and a curing accelerator as components in a lead frame in a vacuum atmosphere, The thermosetting composition laminated on the lead frame is heated and pressed with a forming die and is first cured while having a softness so that the lead frame and the thermosetting composition are integrated into a predetermined shape and preheated. A method for producing a heat conductive substrate in which a conductive substrate is formed, the preliminary heat conductive substrate is taken out from the forming mold, and then the thermosetting composition is cured, and lamination is performed in a vacuum atmosphere. Therefore, air does not get caught between the thermosetting composition and the lead frame, and it is possible to produce a heat conductive substrate with few voids. It is useful as applications such as the manufacture method of the thermally conductive substrate, such as those used in the road.

(a)〜(e)本発明の一実施の形態の製造工程を示す斜視図と断面図(A)-(e) The perspective view and sectional drawing which show the manufacturing process of one embodiment of this invention 同熱硬化性組成物と放熱用金属板の積層断面図Laminated cross section of the thermosetting composition and metal plate for heat dissipation (a)〜(c)同熱伝導性基板の形成状況を具体的に説明した構成図(A)-(c) The block diagram which demonstrated the formation condition of the thermally conductive board | substrate concretely (a)〜(e)従来の熱伝導性基板の製造工程を示す断面図(A)-(e) Sectional drawing which shows the manufacturing process of the conventional heat conductive board | substrate.

符号の説明Explanation of symbols

1 熱硬化性組成物
2 リードフレーム
3 貫通孔
4 端子
5 モーノポンプ
6 熱伝導シート状物
7 形成金型(下型)
8 形成金型(上型)
9 バネ
10 ピン
12 フィルム
13 ローラー
14 放熱用金属板
15 バネ
16 熱盤(上)
17 熱盤(下)
18 真空チャンバー
19 パッキン
21 熱伝導性基板
DESCRIPTION OF SYMBOLS 1 Thermosetting composition 2 Lead frame 3 Through-hole 4 Terminal 5 Mono pump 6 Thermal conductive sheet-like material 7 Mold (lower mold)
8 Mold (Upper mold)
9 Spring 10 Pin 12 Film 13 Roller 14 Heat Dissipation Metal Plate 15 Spring 16 Heating Plate (Top)
17 Heating board (bottom)
18 Vacuum chamber 19 Packing 21 Thermally conductive substrate

Claims (20)

無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物をシート形状にした熱伝導シート状物の片面に放熱用金属板を積層したものを真空雰囲気中にてリードフレームと積層し、形成用金型内で加熱加圧して軟質を有したまま一次硬化させることにより前記リードフレームと前記放熱用金属板および前記熱硬化性組成物を所定形状に一体化して予備熱伝導性基板を形成し、前記予備熱伝導性基板を前記形成用金型から取り出した後、前記熱伝導シート状物を硬化させる熱伝導性基板の製造方法。 A heat-dissipating metal on one side of a sheet of heat-conductive sheet-like material comprising a heat-conductive filler composed of an inorganic material, a thermosetting resin, a curing agent and a curing accelerator as components. A laminate of plates is laminated with a lead frame in a vacuum atmosphere, and the lead frame, the heat-dissipating metal plate, and the thermosetting are heated and pressed in a forming mold and primarily cured while having a softness. A heat conductive substrate is formed by integrating a heat conductive composition into a predetermined shape to form a preliminary heat conductive substrate, and taking out the preliminary heat conductive substrate from the forming mold, and then curing the heat conductive sheet. Production method. 無機材料からなる熱伝導性フィラーと、熱硬化性樹脂と、硬化剤および硬化促進剤とを成分として含む軟体の熱硬化性組成物を放熱用金属板に塗布したものを真空中にてリードフレームと積層することを特徴とする請求項1に記載の熱伝導性基板の製造方法。 A lead frame in a vacuum in which a heat-dissipating metal plate coated with a soft thermosetting composition containing inorganic conductive materials, thermosetting resin, curing agent and curing accelerator as components is applied. The method for manufacturing a thermally conductive substrate according to claim 1, wherein: 前記熱硬化性組成物が積層、あるいは塗布された前記放熱用金属板と前記リードフレームを、あらかじめ50〜90℃に加熱された形成用金型に投入し、前記熱硬化性組成物が積層、あるいは塗布された前記放熱用金属板と前記リードフレームが50〜90℃に昇温した後に真空雰囲気中にて前記形成用金型内で加圧一体化され、その後100℃以上に加熱して前記予備熱伝導性基板を形成することを特徴とする請求項1〜請求項2のいずれか一つに記載の熱伝導性基板の製造方法。 The heat-dissipating metal plate and the lead frame to which the thermosetting composition is laminated or applied are put into a forming mold heated in advance to 50 to 90 ° C., and the thermosetting composition is laminated, Alternatively, the coated metal plate for heat dissipation and the lead frame are heated and integrated in the forming mold in a vacuum atmosphere after the temperature is raised to 50 to 90 ° C., and then heated to 100 ° C. or higher to A pre-heat conductive substrate is formed, The manufacturing method of the heat conductive substrate as described in any one of Claims 1-2 characterized by the above-mentioned. 前記形成用金型内で予備熱伝導性基板を形成した後、前記形成用金型を70℃以下に冷却してから前記予備熱伝導性基板を前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 After the preliminary thermal conductive substrate is formed in the forming mold, the preliminary thermal conductive substrate is taken out of the forming mold after the forming mold is cooled to 70 ° C. or lower. The manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3. 前記熱硬化性組成物を、あらかじめ50〜90℃に加熱された前記形成用金型に投入し、その前記形成用金型をあらかじめ上下熱盤の温度が50〜90℃に設定された熱プレスの下熱盤の上に設置し、周囲を真空雰囲気の状態にし、前記熱硬化性組成物が50〜90℃に昇温した後に前記熱プレスの前記上下熱盤でこれを挟んで加熱と加圧を行い、その状態で加圧したまま前記上下熱盤を100℃以上に昇温して前記予備熱伝導性基板を形成することを特徴とする請求項3に記載の熱伝導性基板の製造方法。 The thermosetting composition is charged into the forming mold heated in advance to 50 to 90 ° C., and the forming mold is preliminarily heated at a temperature of the upper and lower heating plates set to 50 to 90 ° C. After the temperature of the thermosetting composition is raised to 50 to 90 ° C., it is sandwiched by the upper and lower heating plates of the hot press and heated and heated. 4. The heat conductive substrate according to claim 3, wherein the preliminary heat conductive substrate is formed by raising the temperature of the upper and lower heating plates to 100 ° C. or higher while applying pressure. Method. 前記熱硬化性組成物を、あらかじめ50〜90℃に加熱された前記形成用金型に投入し、その前記形成用金型をあらかじめ上下熱盤の温度が100℃以上に設定された熱プレスの下熱盤の上に設置し、周囲を真空雰囲気の状態にし、前記熱硬化性組成物が50〜90℃に昇温した後に前記熱プレスの前記上下熱盤でこれを挟んで加熱と加圧を行い、前記予備熱伝導性基板を形成することを特徴とする請求項3に記載の熱伝導性基板の製造方法。 The thermosetting composition is charged into the forming mold heated in advance to 50 to 90 ° C., and the forming mold is preliminarily heated at a temperature of an upper and lower heating plate set to 100 ° C. or higher. Installed on a lower heating plate, the surroundings are in a vacuum atmosphere, and after the thermosetting composition has been heated to 50-90 ° C., it is heated and pressed by sandwiching it with the upper and lower heating plates of the hot press The method for manufacturing a thermally conductive substrate according to claim 3, wherein the preliminary thermally conductive substrate is formed. 前記予備熱伝導性基板を前記形成用金型から取り出した後、恒温炉で前記予備熱伝導性基板の熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 4. The thermosetting composition of the preliminary thermal conductive substrate is cured in a constant temperature furnace after the preliminary thermal conductive substrate is taken out of the forming mold. 5. A method for manufacturing a thermally conductive substrate. 前記予備熱伝導性基板を、雰囲気内温度が150〜200℃の恒温炉内に1〜6時間放置して硬化させることを特徴とする請求項7に記載の熱伝導性基板の製造方法。 The method for producing a thermally conductive substrate according to claim 7, wherein the preliminary thermally conductive substrate is left to cure in a constant temperature furnace having an atmospheric temperature of 150 to 200 ° C for 1 to 6 hours. 予備熱伝導性基板を、雰囲気内温度が室温の恒温炉内に配置し、150〜200℃に昇温した後に1〜6時間放置して硬化させることを特徴とする請求項8に記載の熱伝導性基板の製造方法。 9. The heat according to claim 8, wherein the preliminary heat conductive substrate is placed in a constant temperature oven having an atmospheric temperature of room temperature, and is heated to 150 to 200 ° C. and then left to cure for 1 to 6 hours. A method for manufacturing a conductive substrate. 予備熱伝導性基板を形成用金型から取り出した後、加圧オーブンにより加圧した状態で加熱硬化し、その後、恒温炉で前記予備熱伝導性基板の熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 Claims: After the preliminary heat conductive substrate is taken out of the forming mold, it is cured by heating in a state of being pressurized by a pressure oven, and then the thermosetting composition of the preliminary heat conductive substrate is cured in a constant temperature oven. The manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3. 予備熱伝導性基板を形成用金型から取り出した後、加圧オーブンで前記予備熱伝導性基板の熱硬化性組成物を硬化させる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 The heat according to any one of claims 1 to 3, wherein after the preliminary heat conductive substrate is taken out of the forming mold, the thermosetting composition of the preliminary heat conductive substrate is cured in a pressure oven. A method for manufacturing a conductive substrate. 予備熱伝導性基板を、その予備熱伝導性基板の少なくとも平面方向に対して拘束せずに加圧オーブン内に配置し、熱伝導シート状物を硬化させることを特徴とする請求項11に記載の熱伝導性基板の製造方法。 The preliminary heat conductive substrate is placed in a pressure oven without being constrained to at least the plane direction of the preliminary heat conductive substrate, and the heat conductive sheet is cured. Of manufacturing a thermally conductive substrate. 真空雰囲気とは50000Pa以下であることを特徴とする請求項1〜請求項6のいずれか一つに記載の熱伝導性基板の製造方法。 The method for producing a thermally conductive substrate according to claim 1, wherein the vacuum atmosphere is 50000 Pa or less. あらかじめ50〜90℃に加熱された形成用金型に投入された前記熱硬化性組成物とリードフレームとは前記形成用金型内で加圧一体化される前は真空雰囲気中にて互いに接触していないことを特徴とする請求項1〜請求項6のいずれか一つに記載の熱伝導性基板の製造方法。 The thermosetting composition and the lead frame that have been put in a forming mold heated to 50 to 90 ° C. in advance contact each other in a vacuum atmosphere before being pressure-integrated in the forming mold. It is not carried out, The manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-6 characterized by the above-mentioned. 予備熱伝導性基板を、3気圧以上の雰囲気で、150〜200℃の温度の加圧オーブン内に10分以上放置して硬化させることを特徴とする請求項11に記載の熱伝導性基板の製造方法。 12. The heat conductive substrate according to claim 11, wherein the preliminary heat conductive substrate is cured by being left in a pressure oven at a temperature of 150 to 200 ° C. for 10 minutes or more in an atmosphere of 3 atm or more. Production method. 予備熱伝導性基板を、雰囲気内温度が室温の加圧オーブン内に配置し、3気圧以上の雰囲気で、150〜200℃の温度に昇温した後に10分以上放置して硬化させることを特徴とする請求項15に記載の熱伝導性基板の製造方法。 The preliminary heat conductive substrate is placed in a pressure oven having an atmospheric temperature of room temperature, heated to a temperature of 150 to 200 ° C. in an atmosphere of 3 atmospheres or more, and then left to be cured for 10 minutes or more. A method for producing a thermally conductive substrate according to claim 15. 前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物の溶融粘度を100Pa・s以下にしてから加圧することを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 The temperature of the thermosetting composition is increased in a mold for forming, and the melt viscosity of the thermosetting composition is set to 100 Pa · s or less, followed by pressurization. The manufacturing method of the heat conductive board | substrate as described in any one. 前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物を100℃以上の温度で30s以上維持して予備熱伝導性基板を形成し、その後前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 The thermosetting composition is heated in a mold for forming, and the thermosetting composition is maintained at a temperature of 100 ° C. or higher for 30 seconds or more to form a preliminary heat conductive substrate, and then the mold for forming is formed. The method for producing a thermally conductive substrate according to claim 1, wherein the thermal conductive substrate is taken out from the substrate. 前記熱硬化性組成物を形成用金型内で昇温し、前記熱硬化性組成物の粘度を1000Pa・s以上にして予備熱伝導性基板を形成し、その後前記形成用金型から取り出すことを特徴とする請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 The thermosetting composition is heated in a forming mold, the viscosity of the thermosetting composition is set to 1000 Pa · s or more to form a preliminary heat conductive substrate, and then taken out from the forming mold. The manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3 characterized by these. 熱硬化性組成物は、液状の熱硬化性樹脂と熱可塑性樹脂パウダーとを成分として含み、かつ前記熱可塑性樹脂パウダーが液状の前記熱硬化性樹脂の液状成分を吸収して膨潤することにより固形状になるものを用いる請求項1〜請求項3のいずれか一つに記載の熱伝導性基板の製造方法。 The thermosetting composition contains a liquid thermosetting resin and a thermoplastic resin powder as components, and the thermoplastic resin powder absorbs and swells the liquid component of the liquid thermosetting resin. The manufacturing method of the heat conductive board | substrate as described in any one of Claims 1-3 which uses what becomes a shape.
JP2004345368A 2004-11-30 2004-11-30 Method for manufacturing thermally conductive substrate Pending JP2006156723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345368A JP2006156723A (en) 2004-11-30 2004-11-30 Method for manufacturing thermally conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345368A JP2006156723A (en) 2004-11-30 2004-11-30 Method for manufacturing thermally conductive substrate

Publications (1)

Publication Number Publication Date
JP2006156723A true JP2006156723A (en) 2006-06-15

Family

ID=36634620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345368A Pending JP2006156723A (en) 2004-11-30 2004-11-30 Method for manufacturing thermally conductive substrate

Country Status (1)

Country Link
JP (1) JP2006156723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142071A1 (en) 2006-06-05 2007-12-13 Shin-Etsu Handotai Co., Ltd. Light emitting element and method for fabricating the same
JP2008004785A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Manufacturing method of heat conducting substrate and heat conducting substrate manufactured by method
WO2024150537A1 (en) * 2023-01-10 2024-07-18 日本発條株式会社 Apparatus for producing circuit board and method for producing circuit board
WO2024150533A1 (en) * 2023-01-10 2024-07-18 日本発條株式会社 Circuit board manufacturing device and circuit board manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142071A1 (en) 2006-06-05 2007-12-13 Shin-Etsu Handotai Co., Ltd. Light emitting element and method for fabricating the same
JP2008004785A (en) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd Manufacturing method of heat conducting substrate and heat conducting substrate manufactured by method
WO2024150537A1 (en) * 2023-01-10 2024-07-18 日本発條株式会社 Apparatus for producing circuit board and method for producing circuit board
WO2024150533A1 (en) * 2023-01-10 2024-07-18 日本発條株式会社 Circuit board manufacturing device and circuit board manufacturing method

Similar Documents

Publication Publication Date Title
JP4001112B2 (en) Method for manufacturing thermally conductive substrate
JP2010153498A (en) Resin-sealed package and method for manufacturing the same
JP2002033558A (en) Circuit board and its manufacturing method
JP2014165486A (en) Power device module and manufacturing method thereof
JP2006156723A (en) Method for manufacturing thermally conductive substrate
JP2010245563A (en) Component unit
JP2002355835A (en) Method for producing heat conductive substrate
JP4348893B2 (en) Method for manufacturing thermally conductive substrate
KR20090062590A (en) Pad for thermocompression bonding and method for thermocompression bonding cover layer to printed circuit board
JP2008294380A (en) Module with built-in component and its production method
WO2018012006A1 (en) Circuit board manufacturing method and circuit board
JP3985558B2 (en) Method for manufacturing thermally conductive substrate
JP4933893B2 (en) Heat press method
JP2007015325A (en) Molding method for thermally conductive substrate
JP2006156721A5 (en)
JP3922058B2 (en) Circuit board manufacturing method
JP3948317B2 (en) Method for manufacturing thermally conductive substrate
JP4013945B2 (en) Manufacturing method of component unit
JP4581655B2 (en) Heat sink
JP2015005588A (en) Heat conductive substrate and method for manufacturing the same
JP2002270744A (en) Lead frame, method for manufacturing the same, and method for manufacturing heat conductive substrate
JP2006156725A (en) Method for manufacturing heat dissipation plate
JP2006120815A (en) Packaging method
JP2008263149A (en) Semiconductor device and method of manufacturing the same, and manufacturing device
JP4096711B2 (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219