Nothing Special   »   [go: up one dir, main page]

JP2006063136A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device Download PDF

Info

Publication number
JP2006063136A
JP2006063136A JP2004245087A JP2004245087A JP2006063136A JP 2006063136 A JP2006063136 A JP 2006063136A JP 2004245087 A JP2004245087 A JP 2004245087A JP 2004245087 A JP2004245087 A JP 2004245087A JP 2006063136 A JP2006063136 A JP 2006063136A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
general formula
semiconductor
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245087A
Other languages
Japanese (ja)
Inventor
Daisuke Oka
大祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2004245087A priority Critical patent/JP2006063136A/en
Publication of JP2006063136A publication Critical patent/JP2006063136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor-sealing epoxy resin composition excellent in flowability, moldability including curability, flame retardancy, high-temperature storage characteristics, and resistance to soldering, while not substantially containing a halogen-based flame retardant, nor an antimony compound. <P>SOLUTION: This semiconductor-sealing epoxy resin composition contains (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, (D) aluminum hydroxide in a specified amount, (E) a compound expressed by general formula (1): Mg<SB>a</SB>Al<SB>b</SB>(OH)<SB>2a+3b-2c</SB>(CO<SB>3</SB>)<SB>c</SB>(a, b and c satisfy: 0<b/a≤1; and 0≤c/b<1.5) and/or a compound expressed by general formula (2): Mg<SB>x</SB>Al<SB>y</SB>O<SB>x+1.5y</SB>(x and y satisfy: 0<y/x≤1) in specified amounts, and (F) an inorganic filling material other than the components (D) and (E) as essential components. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、エポキシ樹脂組成物及び半導体装置に関するものである。とりわけ、実質的にハロゲン系難燃剤、アンチモン化合物を含まずとも、難燃性に優れる半導体封止用エポキシ樹脂組成物及び半導体装置に関するものである。   The present invention relates to an epoxy resin composition and a semiconductor device. In particular, the present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device which are excellent in flame retardancy even when substantially free of halogenated flame retardants and antimony compounds.

従来、ダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物で封止されている。これらのエポキシ樹脂組成物中には難燃性を付与するために、通常ハロゲン系難燃剤及び三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等のアンチモン化合物が配合されている。しかしながら、世界的な環境保護の意識の高まりの中、ハロゲン系難燃剤やアンチモン化合物を使用しないで、難燃性を有するエポキシ樹脂組成物の要求が大きくなってきている。   Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. In order to impart flame retardancy, these epoxy resin compositions usually contain a halogen-based flame retardant and an antimony compound such as antimony trioxide, antimony tetroxide, and antimony pentoxide. However, with the growing awareness of environmental protection worldwide, there is a growing demand for epoxy resin compositions having flame retardancy without using halogen-based flame retardants or antimony compounds.

また、ハロゲン系難燃剤及びアンチモン化合物を含むエポキシ樹脂組成物で封止された半導体装置を高温下で保管した場合、これらの難燃剤成分から熱分解したハロゲン化物が遊離し、半導体素子の接合部を腐食し、半導体装置の信頼性を損なうことが知られており、こうした点からも難燃剤としてハロゲン系難燃剤とアンチモン化合物を使用しなくても難燃グレードがUL−94のV−0を達成できるエポキシ樹脂組成物が要求されている。
このように、半導体装置を高温下(例えば185℃等)に保管した後の半導体素子の接合部(ボンディングパッド部)の耐腐食性のことを高温保管特性といい、この高温保管特性を改善する手法としては、五酸化二アンチモンを使用する方法(例えば、特許文献1参照。)や、酸化アンチモンと有機ホスフィンとを組み合わせる方法(例えば、特許文献2参照。)等が提案され、効果が確認されているが、最近の半導体装置に対する高温保管特性の高い要求レベルに対して、エポキシ樹脂組成物の種類によっては不満足なものもある。
In addition, when a semiconductor device sealed with an epoxy resin composition containing a halogen-based flame retardant and an antimony compound is stored at a high temperature, the thermally decomposed halide is liberated from these flame retardant components, and the junction of the semiconductor element It is known that the reliability of semiconductor devices is impaired, and from this point, flame retardant grade is V-0 with UL-94 even without using halogen flame retardant and antimony compound as flame retardant. There is a need for an epoxy resin composition that can be achieved.
As described above, the corrosion resistance of the joint portion (bonding pad portion) of the semiconductor element after the semiconductor device is stored at a high temperature (for example, 185 ° C. or the like) is referred to as a high temperature storage property, and this high temperature storage property is improved. As a method, a method using diantimony pentoxide (for example, refer to Patent Document 1), a method of combining antimony oxide and an organic phosphine (for example, refer to Patent Document 2), etc. have been proposed, and the effect has been confirmed. However, there are some types of epoxy resin compositions that are unsatisfactory with respect to the required level of high-temperature storage characteristics for recent semiconductor devices.

これらの要求に対して、種々の難燃剤が検討されている。例えば水酸化アルミニウムや水酸化マグネシウム等の金属水酸化物、ホウ素系化合物等が検討されてきた(例えば、特許文献3参照。)が、これらは多量に配合しないと難燃性の効果が発現せず、しかも硬化性を低下させるおそれがある。また半導体装置の表面実装化が一般的になってきている現状では、吸湿した半導体装置が半田処理時に高温にさらされ、気化した水蒸気の爆発的応力により半導体装置にクラックが発生したり或いは半導体素子やリードフレームとエポキシ樹脂組成物の硬化物との界面に剥離が発生することにより、電気的信頼性を大きく損なう不良が生じ、これらの不良の防止、即ち耐半田性の向上が大きな課題となっていた。   In response to these requirements, various flame retardants have been studied. For example, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, boron compounds, etc. have been studied (for example, see Patent Document 3). In addition, the curability may be reduced. Also, in the present situation where surface mounting of semiconductor devices is becoming common, moisture-absorbing semiconductor devices are exposed to high temperatures during solder processing, and cracks are generated in the semiconductor devices due to the explosive stress of vaporized water vapor, or semiconductor elements As a result of the occurrence of peeling at the interface between the lead frame and the cured product of the epoxy resin composition, defects that greatly impair the electrical reliability occur, and prevention of these defects, that is, improvement of solder resistance is a major issue. It was.

更に、近年の環境問題に関連して半導体装置の実装時に用いる半田の無鉛化に伴い半田処理温度が、従来より高くなり、要求される耐半田性はより厳しくなってきている。この耐半田性の向上のために、無機充填材を多量に配合することにより、低吸湿化、低熱膨張化、高強度化を図ってきている。このため、エポキシ樹脂としては低粘度型のものや、常温では結晶性であるが融点を越えると極めて低粘性を示す結晶性エポキシ樹脂を使用して、無機充填材の配合量の増加に伴うエポキシ樹脂組成物の成形時の流動性の低下を防止する手法が一般的にとられている(例えば、特許文献4参照。)。結晶性エポキシ樹脂はガラス転移温度が低いため、高温保管特性を向上させる必要がある。これらの状況から、難燃性を維持し、流動性、硬化性等の成形性、高温保管特性、耐半田性に優れ、ハロゲン系難燃剤、アンチモン化合物を使用しないエポキシ樹脂組成物が求められている。   Furthermore, in connection with recent environmental problems, the soldering temperature has become higher than before in connection with the lead-free solder used when mounting semiconductor devices, and the required solder resistance has become stricter. In order to improve the solder resistance, low moisture absorption, low thermal expansion, and high strength have been achieved by blending a large amount of inorganic filler. For this reason, low-viscosity epoxy resins or crystalline epoxy resins that are crystalline at room temperature but exhibit extremely low viscosity when the melting point is exceeded can be used to increase the amount of inorganic fillers. A technique for preventing a decrease in fluidity during molding of a resin composition is generally taken (see, for example, Patent Document 4). Since the crystalline epoxy resin has a low glass transition temperature, it is necessary to improve the high-temperature storage characteristics. Under these circumstances, there is a demand for an epoxy resin composition that maintains flame retardancy, has excellent moldability such as fluidity and curability, high-temperature storage characteristics, and solder resistance, and does not use halogen-based flame retardants or antimony compounds. Yes.

特開昭55−146950号公報(第1〜8頁)JP 55-146950 A (pages 1 to 8) 特開昭61−53321号公報(第1〜7頁)JP-A-61-53321 (pages 1-7) 特開2003−206391号公報(第2〜5頁)JP 2003-206391 A (pages 2 to 5) 特開平7−130919号公報(第2〜4項)Japanese Patent Laid-Open No. 7-130919 (paragraphs 2 to 4)

本発明は、実質的にハロゲン系難燃剤、アンチモン化合物を含まずとも、流動性、硬化性等の成形性、難燃性及び高温保管特性、耐半田性に優れた特性を有する半導体封止用エポキシ樹脂組成物及びこれを用いた半導体装置を提供するものである。   The present invention is for semiconductor encapsulation having substantially excellent moldability such as fluidity and curability, flame retardancy, high temperature storage characteristics, and solder resistance, substantially free of halogenated flame retardants and antimony compounds. An epoxy resin composition and a semiconductor device using the same are provided.

本発明は、
[1](A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)水酸化アルミニウム、(E)一般式(1)で示される化合物及び/又は一般式(2)で示される化合物、並びに(F)前記(D)成分及び前記(E)成分を除く無機充填材、とを必須成分とし、前記(D)水酸化アルミニウムの含有量が全エポキシ樹脂組成物に対して0.5〜5重量%であり、前記(E)一般式(1)で示される化合物及び/又は一般式(2)で示される化合物の含有量が全エポキシ樹脂組成物に対して0.01〜1重量%であることを特徴とする半導体封止用エポキシ樹脂組成物、
MgAl(OH)2a+3b−2c(CO (1)
(ただし、上記一般式(1)中、0<b/a≦1、0≦c/b<1.5)
MgAlx+1.5y (2)
(ただし、上記一般式(2)中、0<y/x≦1)
[2]全エポキシ樹脂組成物中に含有される臭素原子及びアンチモン原子が、ともに0.01重量%未満である請求項1記載の半導体封止用エポキシ樹脂組成物、
[3]第[1]又は[2]項に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置、
である。
The present invention
[1] (A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) aluminum hydroxide, (E) compound represented by general formula (1) and / or general formula (2) And (F) the inorganic filler excluding the component (D) and the component (E) as essential components, and the content of the aluminum hydroxide (D) relative to the total epoxy resin composition The content of the compound represented by (E) the general formula (1) and / or the compound represented by the general formula (2) is 0.01 to 5% by weight with respect to the total epoxy resin composition. Epoxy resin composition for semiconductor encapsulation, characterized in that it is ˜1% by weight,
Mg a Al b (OH) 2a + 3b-2c (CO 3 ) c (1)
(However, in the above general formula (1), 0 <b / a ≦ 1, 0 ≦ c / b <1.5)
Mg x Al y O x + 1.5y (2)
(However, in the above general formula (2), 0 <y / x ≦ 1)
[2] The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein both the bromine atom and the antimony atom contained in the total epoxy resin composition are less than 0.01% by weight,
[3] A semiconductor device comprising a semiconductor element sealed using the epoxy resin composition for semiconductor sealing according to the item [1] or [2],
It is.

本発明に従うと、実質的にハロゲン系難燃剤、アンチモン化合物を含まずとも、流動性、硬化性等の成形性に優れた半導体封止用エポキシ樹脂組成物が得られ、これを用いた半導体装置は難燃性、高温保管特性、耐半田性に優れている。   According to the present invention, an epoxy resin composition for semiconductor encapsulation excellent in moldability such as fluidity and curability can be obtained without substantially containing a halogen-based flame retardant and an antimony compound, and a semiconductor device using the same Has excellent flame retardancy, high-temperature storage characteristics, and solder resistance.

本発明は、(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)特定量の水酸化アルミニウム、(E)特定量の上記一般式(1)で示される化合物及び/又は上記一般式(2)で示される化合物、並びに(F)前記(D)成分及び前記(E)成分を除く無機充填材、とを必須成分とすることにより、実質的にハロゲン系難燃剤、アンチモン化合物を含まずとも、流動性、硬化性等の成形性に優れた半導体封止用エポキシ樹脂組成物、及び難燃性、高温保管特性、耐半田性に優れる半導体装置が得られるものである。
以下、本発明について詳細に説明する。
The present invention includes (A) an epoxy resin, (B) a phenol resin, (C) a curing accelerator, (D) a specific amount of aluminum hydroxide, (E) a specific amount of the compound represented by the above general formula (1), and / Or a halogen-based flame retardant substantially by using the compound represented by the general formula (2) and (F) the inorganic filler excluding the component (D) and the component (E) as essential components. Even without an antimony compound, an epoxy resin composition for semiconductor encapsulation excellent in moldability such as fluidity and curability, and a semiconductor device excellent in flame retardancy, high-temperature storage characteristics and solder resistance can be obtained. is there.
Hereinafter, the present invention will be described in detail.

本発明に用いるエポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、ナフトール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは単独でも併用しても良い。これらの内では、特にビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が好ましい。   The epoxy resin used in the present invention refers to monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, biphenyl type epoxy resins, Bisphenol type epoxy resin, stilbene type epoxy resin, naphthol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, epoxy resin containing triazine nucleus, di Examples thereof include a cyclopentadiene-modified phenol type epoxy resin, a phenol aralkyl type epoxy resin (having a phenylene skeleton, a biphenylene skeleton, etc.), and these may be used alone or in combination. Among these, a biphenyl type epoxy resin, a phenol aralkyl type epoxy resin (having a phenylene skeleton, a biphenylene skeleton, etc.) and the like are particularly preferable.

本発明に用いるフェノール樹脂としては、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般を言い、その分子量、分子構造を特に限定するものではないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)、ナフトールアラルキル樹脂等が挙げられ、これらは単独でも併用しても良い。これらの内では、特にフェノールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、テルペン変性フェノール樹脂等が好ましい。   The phenol resin used in the present invention includes monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol Examples include novolak resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, triphenolmethane type resin, phenol aralkyl resin (having phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl resin, and the like. Also good. Of these, phenol novolac resins, dicyclopentadiene modified phenol resins, phenol aralkyl resins, terpene modified phenol resins and the like are particularly preferable.

本発明に用いる硬化促進剤としては、エポキシ基とフェノール性水酸基との硬化反応を促進させるものであれば良く、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体、トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物、2−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート等のテトラ置換ホスホニウム・テトラ置換ボレート等が挙げられ、これらは単独でも併用してもよい。   The curing accelerator used in the present invention is not particularly limited as long as it accelerates the curing reaction between the epoxy group and the phenolic hydroxyl group, and those generally used for semiconductor sealing materials can be used. Not what you want. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, amine compounds such as tributylamine and benzyldimethylamine, imidazole compounds such as 2-methylimidazole, and triphenyl Examples include organic phosphines such as phosphine and methyldiphenylphosphine, and tetrasubstituted phosphonium / tetrasubstituted borates such as tetraphenylphosphonium / tetraphenylborate and tetraphenylphosphonium / tetrabenzoate borate, and these may be used alone or in combination. .

本発明に用いる水酸化アルミニウムは、難燃剤として作用するものであり、一般式(3)で示されるものである。一般式(3)で示される水酸化アルミニウムは、従来から難燃剤として用いられている結晶水が3つの水酸化アルミニウムである。
Al(HO) (3)
本発明に用いる水酸化アルミニウムの平均粒径は、特に限定するものではないが、0.01〜14μmであることが好ましい。平均粒径が下限値を下回ると、流動性が低下し、更に硬化物の抽出時の不純物量が増加するために耐湿信頼性の低下が生じる恐れがある。平均粒径が上限値を越えると、充分な難燃性が得られない恐れがある。本発明での粒径は、レーザー回折法で測定した値を用い、平均粒径は50重量%の累積になった時の粒径である。
水酸化アルミニウムの比表面積としては、0.1〜40m/gであることが好ましく、0.1〜10m/gであることがより好ましい。下限値を下回ると難燃性に劣る傾向にあり、上限値を越えると硬化性、流動性が低下する恐れがあり好ましくない。比表面積は、BET法で窒素ガスを用いて測定したものである。また、粒子の形状は限りなく球状に近いものが流動性の向上に効果があり好ましい。
本発明に用いる水酸化アルミニウムの配合量は、全エポキシ樹脂組成物中に0.5〜5重量%である必要がある。下限値を下回ると難燃性が不足し、上限値を越えると耐半田性、硬化性が低下する恐れがあり好ましくない。
Aluminum hydroxide used in the present invention acts as a flame retardant and is represented by the general formula (3). In the aluminum hydroxide represented by the general formula (3), the crystal water conventionally used as a flame retardant is three aluminum hydroxides.
Al 2 O 3 (H 2 O) 3 (3)
Although the average particle diameter of the aluminum hydroxide used for this invention is not specifically limited, It is preferable that it is 0.01-14 micrometers. When the average particle size is below the lower limit, the fluidity is lowered, and further, the amount of impurities during the extraction of the cured product is increased, so that the moisture resistance reliability may be lowered. If the average particle size exceeds the upper limit, sufficient flame retardancy may not be obtained. The particle size in the present invention is a value measured by a laser diffraction method, and the average particle size is the particle size when 50% by weight is accumulated.
The specific surface area of aluminum hydroxide is preferably 0.1~40m 2 / g, more preferably 0.1 to 10 m 2 / g. If the lower limit is not reached, the flame retardancy tends to be inferior. If the upper limit is exceeded, the curability and fluidity may be lowered, which is not preferable. The specific surface area is measured using nitrogen gas by the BET method. Further, the shape of the particles is not limited to a spherical shape because it is effective for improving fluidity and is preferable.
The compounding quantity of the aluminum hydroxide used for this invention needs to be 0.5 to 5 weight% in all the epoxy resin compositions. If the lower limit is not reached, the flame retardancy is insufficient, and if the upper limit is exceeded, the solder resistance and curability may be lowered, which is not preferable.

本発明に用いられる一般式(1)で示される化合物及び一般式(2)で示される化合物は、エポキシ樹脂組成物中に含まれるイオン性不純物を捕捉する作用を有する。一般式(2)で示される化合物は、一般式(1)で示されるハイドロタルサイト類化合物を焼成して得ることもできる。また、一般式(1)で示される化合物、及び一般式(2)で示される化合物は、結晶水を有していてもよい。これらは単独でも2種類以上併用して用いても差し支えない。
MgAl(OH)2a+3b−2c(CO (1)
(ただし、上記一般式(1)中、0<b/a≦1、0≦c/b<1.5)
MgAlx+1.5y (2)
(ただし、上記一般式(2)中、0<y/x≦1)
一般式(1)で示される化合物及び一般式(2)で示される化合物は、イオン性不純物を捕捉すると自身の中にイオン性不純物を吸収する構造となり、イオン性不純物を捕捉して不活性化させる。従って、これらを配合したエポキシ樹脂組成物は、イオン性不純物による半導体回路の腐食を抑え、耐湿信頼性、高温保管性の向上が得られる。一般式(2)で示される化合物は、一般式(1)で示されるハイドロタルサイト類化合物と比較するとイオン捕捉能が高く、耐湿信頼性や高温保管性の向上には効果が高いが、一方では、その分子構造上、粒子間に隙間がたくさんあるため多湿下では吸湿性が高くなり、耐半田リフロー性を低下させ易いので、配合量には注意を払う必要がある。
The compound represented by the general formula (1) and the compound represented by the general formula (2) used in the present invention have an action of capturing ionic impurities contained in the epoxy resin composition. The compound represented by the general formula (2) can also be obtained by baking the hydrotalcite compound represented by the general formula (1). Moreover, the compound shown by General formula (1) and the compound shown by General formula (2) may have crystallization water. These may be used alone or in combination of two or more.
Mg a Al b (OH) 2a + 3b-2c (CO 3 ) c (1)
(However, in the above general formula (1), 0 <b / a ≦ 1, 0 ≦ c / b <1.5)
Mg x Al y O x + 1.5y (2)
(However, in the above general formula (2), 0 <y / x ≦ 1)
The compound represented by the general formula (1) and the compound represented by the general formula (2) have a structure in which the ionic impurity is absorbed in itself when the ionic impurity is captured, and the ionic impurity is captured and inactivated. Let Therefore, the epoxy resin composition containing these suppresses corrosion of the semiconductor circuit due to ionic impurities, and improves moisture resistance reliability and high-temperature storage stability. The compound represented by the general formula (2) has higher ion scavenging ability than the hydrotalcite compound represented by the general formula (1), and is highly effective in improving moisture resistance reliability and high-temperature storage stability. However, due to its molecular structure, since there are many gaps between the particles, the hygroscopicity becomes high under high humidity, and the solder reflow resistance tends to be lowered.

一般式(1)で示される化合物及び一般式(2)で示される化合物は、流動性、充填性を考慮すると、最大粒径としては75μm以下が好ましく、平均粒径は0.5〜25μmが好ましい。粒度分布の広いものが、成形時のエポキシ樹脂組成物の溶融粘度を低減するために有効である。
また、一般式(1)で示される化合物と一般式(2)で示される化合物との合計量としては、全エポキシ樹脂組成物中に0.01〜1重量%である必要がある。下限値を下回ると、イオン捕捉効果が小さいので耐湿信頼性や高温保管性を向上する効果が低く、また、難燃性付与という点でも不十分となる可能性がある。上限値を越えるとエポキシ樹脂組成物の硬化性が低下し、また、半導体素子を搭載する基板との密着力の低下、更には、一般式(2)で示される化合物ではエポキシ樹脂組成物の吸湿率が大きくなり耐半田リフロー性が低下する可能性がある。
The compound represented by the general formula (1) and the compound represented by the general formula (2) are preferably 75 μm or less as the maximum particle size in consideration of fluidity and filling properties, and the average particle size is 0.5 to 25 μm. preferable. A wide particle size distribution is effective for reducing the melt viscosity of the epoxy resin composition during molding.
Moreover, the total amount of the compound represented by the general formula (1) and the compound represented by the general formula (2) needs to be 0.01 to 1% by weight in the total epoxy resin composition. Below the lower limit, since the ion trapping effect is small, the effect of improving the moisture resistance reliability and the high temperature storage property is low, and there is a possibility that the flame retardancy is insufficient. When the upper limit is exceeded, the curability of the epoxy resin composition is lowered, the adhesion with the substrate on which the semiconductor element is mounted is lowered, and further, the compound represented by the general formula (2) absorbs moisture of the epoxy resin composition. The rate may increase and solder reflow resistance may decrease.

本発明に用いる水酸化アルミニウムは、単独でも難燃性を付与することができるが、十分な難燃性を発現させるには配合量を多くする必要がある。しかし配合量を多くすると、流動性、硬化性等の成形性及び硬化物の強度の低下、吸湿率の増加を引き起こす傾向にあり耐半田性が低下する。これらの特性の低下を防ぐためにも配合量は極力低減する必要がある。また、一般式(1)で示される化合物及び一般式(2)で示される化合物は、若干の難燃性を付与する効果もあるが、これらの難燃剤としての効果は、従来の難燃剤として使用される水酸化アルミニウムや水酸化マグネシウム等には及ばない。
本発明者は、水酸化アルミニウムと一般式(1)で示される化合物及び/又は一般式(2)で示される化合物を併用すると、相乗効果として更に難燃性が向上し、水酸化アルミニウムの配合量を低減できることを見出した。理由は定かではないが、両者を併用することにより、互いの能力を補い合うことで高い難燃性が得られ、結果として水酸化アルミニウムの配合量を少なくしても難燃性を維持し、流動性、硬化性等の成形性の低下、強度の低下、吸湿率の増加等を防ぐことができる。
The aluminum hydroxide used in the present invention can impart flame retardancy by itself, but it is necessary to increase the blending amount in order to exhibit sufficient flame retardancy. However, when the blending amount is increased, the moldability such as fluidity and curability and the strength of the cured product tend to be lowered and the moisture absorption rate tends to be increased, so that the solder resistance is lowered. In order to prevent the deterioration of these characteristics, it is necessary to reduce the blending amount as much as possible. Moreover, although the compound shown by General formula (1) and the compound shown by General formula (2) also have the effect which provides some flame retardance, the effect as these flame retardants is as a conventional flame retardant. It does not reach the aluminum hydroxide and magnesium hydroxide used.
When the present inventor uses aluminum hydroxide in combination with the compound represented by the general formula (1) and / or the compound represented by the general formula (2), the flame retardancy is further improved as a synergistic effect. It has been found that the amount can be reduced. The reason is not clear, but by using both together, high flame retardancy can be obtained by complementing each other's ability. As a result, even if the amount of aluminum hydroxide is reduced, the flame retardancy is maintained and fluidized. It is possible to prevent deterioration in moldability such as property and curability, decrease in strength, increase in moisture absorption rate, and the like.

本発明に用いる、無機充填材(前記の水酸化アルミニウム、並びに一般式(1)で示される化合物及び一般式(2)で示される化合物は除く)としては、一般に半導体封止用材料に用いられているものを使用することができ、特に限定するものではない。例えば、溶融シリカ、結晶シリカ、タルク、アルミナ、窒化珪素等が挙げられ、これらは単独でも併用してもよい。平均粒径としては、0.5〜30μm、最大粒径としては75μm以下が好ましい。流動性、硬化性等の成形性と耐半田性のバランスから、前記の水酸化アルミニウム、並びに一般式(1)で示される化合物及び一般式(2)で示される化合物を含めた無機充填材全体の配合量としては、全エポキシ樹脂組成物中に65〜94重量%含有することが好ましく、より好ましくは75〜92重量%である。下限値以下だと吸湿率の上昇に伴う耐半田性が低下し、上限値を越えると、ワイヤースィープ及びパッドシフト等の成形性の問題が生じる可能性がある。   The inorganic filler used in the present invention (excluding the above-mentioned aluminum hydroxide, the compound represented by the general formula (1) and the compound represented by the general formula (2)) is generally used for a semiconductor sealing material. There is no particular limitation. Examples thereof include fused silica, crystalline silica, talc, alumina, silicon nitride and the like, and these may be used alone or in combination. The average particle size is preferably 0.5 to 30 μm, and the maximum particle size is preferably 75 μm or less. From the balance of moldability such as fluidity and curability and solder resistance, the entire inorganic filler including the aluminum hydroxide, the compound represented by the general formula (1) and the compound represented by the general formula (2) As a compounding quantity, it is preferable to contain 65 to 94 weight% in all the epoxy resin compositions, More preferably, it is 75 to 92 weight%. If it is less than the lower limit value, the solder resistance due to the increase in moisture absorption rate decreases, and if it exceeds the upper limit value, there may be a problem in formability such as wire sweep and pad shift.

本発明のエポキシ樹脂組成物は、臭素原子、アンチモン原子の含有率が、ともに全エポキシ樹脂組成物中に0.01重量%未満であることが好ましく、完全に含まれない方がより好ましい。臭素原子、アンチモン原子のいずれかが0.01重量%以上だと、高温下に放置したときに半導体装置の抵抗値が時間と共に増大し、最終的には半導体素子の金線が断線する不良が発生する可能性がある。また環境保護の観点からも、臭素原子、アンチモン原子のそれぞれの含有率が0.01重量%未満で、極力含有されていないことが望ましい。   The epoxy resin composition of the present invention preferably has a bromine atom and antimony atom content of less than 0.01% by weight in the total epoxy resin composition, and more preferably is not completely contained. If either the bromine atom or the antimony atom is 0.01% by weight or more, the resistance value of the semiconductor device increases with time when it is left at a high temperature, and there is a defect that the gold wire of the semiconductor element eventually breaks. May occur. Also, from the viewpoint of environmental protection, it is desirable that the content of each bromine atom and antimony atom is less than 0.01% by weight and is not contained as much as possible.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分を必須成分とするが、これ以外に必要に応じて、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシランカップリング剤、カーボンブラック等の着色剤、カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤及びシリコーンオイル、ゴム等の低応力添加剤等、種々の添加剤を適宜配合しても差し支えない。   The epoxy resin composition of the present invention comprises the components (A) to (F) as essential components. In addition to these, silanes such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane are used. Coupling agents, colorants such as carbon black, natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, mold release agents such as stearic acid and zinc stearate and their metal salts or paraffin, and silicone oil, Various additives such as low-stress additives such as rubber may be appropriately blended.

本発明のエポキシ樹脂組成物は、(A)〜(F)成分及びその他の添加剤等を、ミキサー等を用いて充分に均一に混合した後、更に熱ロール又はニーダー等で溶融混練し、冷却後粉砕して得られる。   In the epoxy resin composition of the present invention, the components (A) to (F) and other additives are sufficiently uniformly mixed using a mixer or the like, and then melt-kneaded with a hot roll or a kneader, and then cooled. Obtained by post-grinding.

本発明のエポキシ樹脂組成物を用いて、半導体素子等の各種の電子部品を封止し、半導体装置を製造するには、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形すればよい。   The epoxy resin composition of the present invention is used to encapsulate various electronic components such as semiconductor elements, and to manufacture semiconductor devices by conventional molding methods such as transfer molding, compression molding, and injection molding. do it.

以下、本発明を実施例で具体的に説明するが、本発明はこれらに限定されるものではない。配合割合は重量部とする。
実施例1
エポキシ樹脂1:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)製、YX−4000H、融点105℃、エポキシ当量195) 6.4重量部
フェノール樹脂1:フェノールアラルキル樹脂(三井化学(株)製、XLC−LL、軟化点75℃、水酸基当量174) 5.55重量部
トリフェニルホスフィン 0.2重量部
水酸化アルミニウムA(住友化学製、CL―303、平均粒径5μm、比表面積1.3m/g) 2.0重量部
Mg0.7Al0.31.15(平均粒径3μm、最大粒径10μm、以下、H1という。) 0.05重量部
球状溶融シリカ(平均粒径20μm) 85.0重量部
γ−グリシジルプロピルトリメトキシシラン 0.3重量部
カーボンブラック 0.2重量部
カルナバワックス 0.3重量部
をミキサーを用いて常温で混合した後、表面温度が90℃と45℃の2本ロールを用いて混練し、冷却後粉砕してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を以下の方法で評価した。結果を表1に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. The blending ratio is parts by weight.
Example 1
Epoxy resin 1: Biphenyl type epoxy resin (Japan Epoxy Resin Co., Ltd., YX-4000H, melting point 105 ° C., epoxy equivalent 195) 6.4 parts by weight Phenol resin 1: Phenol aralkyl resin (Mitsui Chemicals, XLC) -LL, softening point 75 ° C., hydroxyl group equivalent 174) 5.55 parts by weight Triphenylphosphine 0.2 parts by weight Aluminum hydroxide A (manufactured by Sumitomo Chemical Co., Ltd., CL-303, average particle size 5 μm, specific surface area 1.3 m 2 / g) 2.0 parts by weight Mg 0.7 Al 0.3 O 1.15 (average particle size 3 μm, maximum particle size 10 μm, hereinafter referred to as H1) 0.05 parts by weight Spherical fused silica (average particle size 20 μm) 85.0 parts by weight γ-glycidylpropyltrimethoxysilane 0.3 part by weight Carbon black 0.2 part by weight Carnauba wax 0.3 part by weight After mixing at room temperature using a sir, kneading was performed using two rolls having surface temperatures of 90 ° C. and 45 ° C., cooling and pulverization to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following methods. The results are shown in Table 1.

評価方法
スパイラルフロー:EMMI−1−66に準じたスパイラルフロー測定用の金型を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分で測定した。単位はcm。
Evaluation method Spiral flow: Using a mold for spiral flow measurement according to EMMI-1-66, measurement was performed at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The unit is cm.

硬化性:トランスファー成形機を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分で成形した。金型が開いて10秒後のランナーの表面硬度をバコール硬度計#935で測定した。バコール硬度は硬化性の指標であり、数値が大きい方が硬化性が良好である。   Curability: Molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes. The surface hardness of the runner 10 seconds after the mold was opened was measured with a Bacol hardness meter # 935. The Bacol hardness is an index of curability, and the larger the value, the better the curability.

難燃性:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で、試験片(127mm×12.7mm×3.2mm)を成形し、175℃、8時間で後硬化し、UL−94垂直法に準じて難燃性を判定した。   Flame retardancy: Using a transfer molding machine, a test piece (127 mm × 12.7 mm × 3.2 mm) was molded at a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 2 minutes, and 175 ° C., 8 After curing in time, flame retardancy was determined according to the UL-94 vertical method.

吸湿率:トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間2分で、直径50mm、厚さ3mmの円板を成形し、175℃、8時間で後硬化し、85℃、相対湿度85%の環境下で168時間放置し、重量変化を測定して吸湿率を求めた。単位は%。   Moisture absorption: Using a transfer molding machine, a mold with a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, a curing time of 2 minutes, a disk with a diameter of 50 mm and a thickness of 3 mm was molded and post-cured at 175 ° C. for 8 hours The sample was allowed to stand for 168 hours in an environment of 85 ° C. and 85% relative humidity, and the weight change was measured to obtain the moisture absorption rate. Units%.

耐湿信頼性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、16pSOP(厚さ1.95mm、チップサイズ3.5mm×3.0mm)を成形し、175℃、4時間で後硬化した。封止したテスト用素子のプレッシャークッカー試験(125℃、圧力2.2×105Pa)を行い、回路のオープン不良を測定し、不良発生時間で表した。単位は時間。   Moisture resistance reliability: 16 pSOP (thickness 1.95 mm, chip size 3.5 mm × 3.0 mm) under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds using a low-pressure transfer molding machine. Was molded and post-cured at 175 ° C. for 4 hours. A pressure cooker test (125 ° C., pressure 2.2 × 105 Pa) of the sealed test element was performed, and an open circuit failure was measured and expressed as a failure occurrence time. The unit is time.

耐半田性:トランスファー成形機を用いて、金型温度175℃、注入圧力8.3MPa、硬化時間120秒で、80pQFP(2mm厚、チップサイズ9.0mm×9.0mm)を成形し、175℃、4時間で後硬化し、85℃、相対湿度85%で168時間加湿処理し、その後260℃の半田槽に10秒間浸漬した。20個のパッケージを顕微鏡で観察し、クラック発生率[(クラック発生率)=(外部クラック発生パッケージ数)/(全パッケージ数)×100]を求めた。単位は%。また半導体素子とエポキシ樹脂組成物の硬化物との剥離面積の割合を超音波探傷装置を用いて測定し、剥離率[(剥離率)=(剥離面積)/(半導体素子面積)×100]を求めた。単位は%。   Solder resistance: 80 pQFP (2 mm thickness, chip size 9.0 mm × 9.0 mm) was molded using a transfer molding machine at a mold temperature of 175 ° C., an injection pressure of 8.3 MPa, and a curing time of 120 seconds, and 175 ° C. It was post-cured in 4 hours, humidified at 85 ° C. and 85% relative humidity for 168 hours, and then immersed in a solder bath at 260 ° C. for 10 seconds. Twenty packages were observed with a microscope, and a crack generation rate [(crack generation rate) = (number of external crack generation packages) / (total number of packages) × 100] was determined. Units%. Further, the ratio of the peeled area between the semiconductor element and the cured product of the epoxy resin composition was measured using an ultrasonic flaw detector, and the peel rate [(peeling rate) = (peeling area) / (semiconductor element area) × 100] Asked. Units%.

高温保管特性:低圧トランスファー成形機を用いて、金型温度175℃、注入圧力9.8MPa、硬化時間120秒の条件で、16pSOP(厚さ1.95mm、チップサイズ3.5mm×3.5mm)を成形した。得られた16pSOPを175℃で4時間ポストキュアした後、200℃のオーブン中で1000時間熱処理し、処理後に端子間の抵抗値を測定した。抵抗値の平均値が、処理前にくらべ1.0倍以上、1.2倍以下のものを○(合格)、1.2倍を超え10倍以下のものを△、10倍を超えるものを×とした(n=20)。   High-temperature storage characteristics: 16 pSOP (thickness 1.95 mm, chip size 3.5 mm × 3.5 mm) using a low-pressure transfer molding machine under conditions of a mold temperature of 175 ° C., an injection pressure of 9.8 MPa, and a curing time of 120 seconds. Was molded. The obtained 16pSOP was post-cured at 175 ° C. for 4 hours and then heat-treated in an oven at 200 ° C. for 1000 hours, and the resistance value between terminals was measured after the treatment. When the average resistance value is 1.0 times or more and 1.2 times or less compared to before the treatment, ○ (pass), more than 1.2 times and 10 times or less, △ more than 10 times X (n = 20).

実施例2〜11、比較例1〜7
表1、表2の配合に従い、実施例1と同様にしてエポキシ樹脂組成物を得て、実施例1と同様にして評価を行った。結果を表1、表2に示す。
実施例1以外で用いた材料の性状を以下に示す。
エポキシ樹脂2:オルソクレゾールノボラック型エポキシ樹脂(軟化点55℃、エポキシ当量196)
フェノール樹脂2:フェノールノボラック樹脂(軟化点81℃、水酸基当量105)
水酸化アルミニウムB:住友化学製、C−3005、平均粒径0.5μm、比表面積7.9m/g
水酸化アルミニウムC:住友化学製、CL−310、平均粒径14μm、比表面積0.9m/g
Mg0.7Al0.3(OH)1.2(CO0.6(平均粒径3μm、最大粒径10μm、以下、H2という。)
臭素化ビスフェノールA型エポキシ樹脂:(軟化点62℃、エポキシ当量365、臭素原子含有率48重量%)
三酸化二アンチモン
Examples 2-11, Comparative Examples 1-7
According to the composition of Table 1 and Table 2, an epoxy resin composition was obtained in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
Properties of materials used in other than Example 1 are shown below.
Epoxy resin 2: Orthocresol novolac type epoxy resin (softening point 55 ° C., epoxy equivalent 196)
Phenol resin 2: Phenol novolak resin (softening point 81 ° C., hydroxyl group equivalent 105)
Aluminum hydroxide B: manufactured by Sumitomo Chemical Co., Ltd., C-3005, average particle size 0.5 μm, specific surface area 7.9 m 2 / g
Aluminum hydroxide C: manufactured by Sumitomo Chemical Co., Ltd., CL-310, average particle size 14 μm, specific surface area 0.9 m 2 / g
Mg 0.7 Al 0.3 (OH) 1.2 (CO 3 ) 0.6 (average particle size 3 μm, maximum particle size 10 μm, hereinafter referred to as H 2)
Brominated bisphenol A type epoxy resin: (softening point 62 ° C., epoxy equivalent 365, bromine atom content 48% by weight)
Antimony trioxide

Figure 2006063136
Figure 2006063136

Figure 2006063136
Figure 2006063136

本発明によると、実質的にハロゲン系難燃剤、アンチモン化合物を含まずとも、流動性、硬化性等の成形性に優れた半導体封止用エポキシ樹脂組成物、及び難燃性、高温保管特性、耐半田性に優れた半導体装置が得られるので、高温の環境下で使用される半導体装置に好適に用いることができる。   According to the present invention, an epoxy resin composition for semiconductor encapsulation having excellent moldability such as fluidity and curability, and substantially no halogen-based flame retardant and antimony compound, and flame retardancy, high-temperature storage characteristics, Since a semiconductor device having excellent solder resistance can be obtained, it can be suitably used for a semiconductor device used in a high temperature environment.

Claims (3)

(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬化促進剤、(D)水酸化アルミニウム、(E)一般式(1)で示される化合物及び/又は一般式(2)で示される化合物、並びに(F)前記(D)成分及び前記(E)成分を除く無機充填材、とを必須成分とし、前記(D)水酸化アルミニウムの含有量が全エポキシ樹脂組成物に対して0.5〜5重量%であり、前記(E)一般式(1)で示される化合物及び/又は一般式(2)で示される化合物の含有量が全エポキシ樹脂組成物に対して0.01〜1重量%であることを特徴とする半導体封止用エポキシ樹脂組成物。
MgAl(OH)2a+3b−2c(CO (1)
(ただし、上記一般式(1)中、0<b/a≦1、0≦c/b<1.5)
MgAlx+1.5y (2)
(ただし、上記一般式(2)中、0<y/x≦1)
(A) epoxy resin, (B) phenol resin, (C) curing accelerator, (D) aluminum hydroxide, (E) compound represented by general formula (1) and / or compound represented by general formula (2) And (F) the inorganic filler excluding the component (D) and the component (E) as essential components, and the content of the aluminum hydroxide (D) is 0.5 to the total epoxy resin composition. The content of the compound represented by (E) the general formula (1) and / or the compound represented by the general formula (2) is 0.01 to 1% by weight with respect to the total epoxy resin composition. % Epoxy resin composition for semiconductor encapsulation.
Mg a Al b (OH) 2a + 3b-2c (CO 3 ) c (1)
(However, in the above general formula (1), 0 <b / a ≦ 1, 0 ≦ c / b <1.5)
Mg x Al y O x + 1.5y (2)
(However, in the above general formula (2), 0 <y / x ≦ 1)
全エポキシ樹脂組成物中に含有される臭素原子及びアンチモン原子が、ともに0.01重量%未満である請求項1記載の半導体封止用エポキシ樹脂組成物。 The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein both the bromine atom and the antimony atom contained in the total epoxy resin composition are less than 0.01% by weight. 請求項1又は2に記載の半導体封止用エポキシ樹脂組成物を用いて半導体素子を封止してなることを特徴とする半導体装置。 A semiconductor device obtained by sealing a semiconductor element using the epoxy resin composition for semiconductor sealing according to claim 1.
JP2004245087A 2004-08-25 2004-08-25 Epoxy resin composition and semiconductor device Pending JP2006063136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004245087A JP2006063136A (en) 2004-08-25 2004-08-25 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004245087A JP2006063136A (en) 2004-08-25 2004-08-25 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2006063136A true JP2006063136A (en) 2006-03-09

Family

ID=36109904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245087A Pending JP2006063136A (en) 2004-08-25 2004-08-25 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2006063136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098455A1 (en) * 2020-08-19 2022-03-31 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042418A (en) * 1983-08-19 1985-03-06 Toshiba Chem Corp Sealing resin composition
JP2001354839A (en) * 2000-06-15 2001-12-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002080566A (en) * 2000-07-04 2002-03-19 Sumitomo Bakelite Co Ltd Epoxy rein composition and semiconductor device
JP2002294032A (en) * 2001-03-30 2002-10-09 Toshiba Chem Corp Resin composition for liquid sealing
JP2003055535A (en) * 2001-08-21 2003-02-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042418A (en) * 1983-08-19 1985-03-06 Toshiba Chem Corp Sealing resin composition
JP2001354839A (en) * 2000-06-15 2001-12-25 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2002080566A (en) * 2000-07-04 2002-03-19 Sumitomo Bakelite Co Ltd Epoxy rein composition and semiconductor device
JP2002294032A (en) * 2001-03-30 2002-10-09 Toshiba Chem Corp Resin composition for liquid sealing
JP2003055535A (en) * 2001-08-21 2003-02-26 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220098455A1 (en) * 2020-08-19 2022-03-31 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same
US11939494B2 (en) * 2020-08-19 2024-03-26 Lg Chem, Ltd. Resin composition for bonding semiconductor and adhesive film for semiconductor using the same

Similar Documents

Publication Publication Date Title
JP5124808B2 (en) Epoxy resin composition and semiconductor device
JP4692744B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO1999001507A1 (en) Epoxy resin compositions for encapsulating semiconductors, and semiconductor devices
JP3582576B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP4692885B2 (en) Epoxy resin composition and semiconductor device
JP4844725B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2004067717A (en) Epoxy resin composition and semiconductor device
JP2004002574A (en) Epoxy resin composition and semiconductor device
JP4250987B2 (en) Epoxy resin composition and semiconductor device
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP5407767B2 (en) Epoxy resin composition and semiconductor device
JP4765294B2 (en) Semiconductor device
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2002179773A (en) Epoxy resin composition and semiconductor device
JP2007224219A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2006063136A (en) Epoxy resin composition and semiconductor device
JP4380101B2 (en) Epoxy resin composition and semiconductor device
JP5067994B2 (en) Epoxy resin composition and semiconductor device
JP3973137B2 (en) Epoxy resin composition and semiconductor device
JP4899273B2 (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device
JP2002053732A (en) Epoxy resin composition and semiconductor device
JP2003238660A (en) Epoxy resin composition and semiconductor device
JP2002317102A (en) Epoxy resin composition and semiconductor device
JP2003286388A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070330

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525