Nothing Special   »   [go: up one dir, main page]

JP2002080566A - Epoxy rein composition and semiconductor device - Google Patents

Epoxy rein composition and semiconductor device

Info

Publication number
JP2002080566A
JP2002080566A JP2001167683A JP2001167683A JP2002080566A JP 2002080566 A JP2002080566 A JP 2002080566A JP 2001167683 A JP2001167683 A JP 2001167683A JP 2001167683 A JP2001167683 A JP 2001167683A JP 2002080566 A JP2002080566 A JP 2002080566A
Authority
JP
Japan
Prior art keywords
epoxy resin
red phosphorus
resin composition
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001167683A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sashita
暢幸 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001167683A priority Critical patent/JP2002080566A/en
Publication of JP2002080566A publication Critical patent/JP2002080566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an epoxy resin composition for semiconductor sealing use free from any halogen-based flame retardant and antimony compound and excellent in moldability, flame redundancy, high-temperature storability, moistureproof reliability and soldering crack resistance. SOLUTION: The epoxy resin composition for semiconductor sealing use is characterized by essentially comprising (A) an epoxy resin, (B) a phenolic resin, (C) a curing promoter, (D) an inorganic filler, (E) a compound of the formula (2): MgxAlyOz having an average particle size of 0.5-15 μm, containing <=10 wt.% of the particles <=0.2 μm in size and <=3 wt.% of the particles >=20 μm in size and having a specific surface area of <=50 m2/g, obtained by baking a hydrotalcite compound of the formula (1): MgaAlb(OH)c(CO3)d at 300-900 deg.C, and (F) red phosphorus or a red phosphorus-based flame retardant. (In the general formulas (1) and (2), (a), (b), (c), (d), (x), (y) and (z) are each a positive number of >=0.1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン系難燃
剤、アンチモン化合物を含まず、難燃性、高温保管特性
に優れた半導体封止用エポキシ樹脂組成物、及び半導体
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which does not contain a halogen-based flame retardant and an antimony compound and has excellent flame retardancy and high-temperature storage characteristics, and a semiconductor device.

【0002】[0002]

【従来の技術】従来、ダイオード、トランジスタ、集積
回路等の電子部品は、主にエポキシ樹脂組成物で封止さ
れている。これらのエポキシ樹脂組成物中には、難燃性
を付与するためにハロゲン系難燃剤、及びアンチモン化
合物が配合されている。ところが、環境・衛生の点から
ハロゲン系難燃剤、及びアンチモン化合物を使用しない
で、難燃性に優れたエポキシ樹脂組成物の開発が要求さ
れている。又、ハロゲン系難燃剤及びアンチモン化合物
を含むエポキシ樹脂組成物で封止された半導体装置を高
温下で保管した場合、これらの難燃剤成分から熱分解し
たハロゲン化物が遊離し、半導体素子の接合部を腐食
し、半導体装置の信頼性を損なうことが知られており、
難燃剤としてハロゲン系難燃剤とアンチモン化合物を使
用しなくても難燃グレードがUL94のV−0を達成で
きるエポキシ樹脂組成物が要求されている。
2. Description of the Related Art Conventionally, electronic components such as diodes, transistors, and integrated circuits are mainly sealed with an epoxy resin composition. These epoxy resin compositions contain a halogen-based flame retardant and an antimony compound in order to impart flame retardancy. However, development of an epoxy resin composition having excellent flame retardancy without using a halogen-based flame retardant and an antimony compound is demanded from the viewpoint of environment and hygiene. Further, when a semiconductor device sealed with an epoxy resin composition containing a halogen-based flame retardant and an antimony compound is stored at a high temperature, a thermally decomposed halide is liberated from these flame retardant components and the semiconductor element is bonded. Is known to corrode the semiconductor device and impair the reliability of the semiconductor device.
There is a need for an epoxy resin composition that can achieve a flame retardant grade of UL94 V-0 without using a halogen-based flame retardant and an antimony compound as the flame retardant.

【0003】このように、半導体装置を高温下(例え
ば、185℃等)に保管した後の半導体素子の接合部
(ボンディングパッド部)の耐腐食性のことを高温保管
特性といい、この高温保管特性を改善する手法として
は、五酸化二アンチモンを使用する方法(特開昭55−
146950号公報)や、酸化アンチモンと有機ホスフ
ィンとを組み合わせる方法(特開昭61−53321号
公報)等が提案され、効果が確認されているが、最近の
半導体装置に対する高温保管特性の高い要求レベルに対
して、エポキシ樹脂組成物の種類によっては不満足なも
のもある。又、難燃剤として赤燐系難燃剤が提案されて
おり、多量に添加することにより難燃グレードV−0を
達成でき、高温保管特性も問題ないが、副生成物の燐酸
イオンが多量に含まれる場合には耐湿信頼性、成形性、
耐半田クラック性が低下するという問題がある。前記欠
点を改良した技術として、特定の金属水酸化物との使
用、或いは特定の金属水酸化物と特定の金属酸化物の複
合化金属水酸化物を用いることにより、難燃性と耐湿信
頼性を解決する提案がされているが(特開平10−25
1486号公報、特開平11−11945号公報等)、
十分な難燃性を発現させるためには、多量の添加を必要
とし、そのため成形性、耐半田クラック性の低下を引き
おこす問題がある。即ち、難燃性を維持し、成形性、高
温保管特性、耐湿信頼性及び耐半田クラック性に優れ、
ハロゲン系難燃剤、アンチモン化合物を使用しないエポ
キシ樹脂組成物が求められている。
[0003] As described above, the corrosion resistance of the bonding portion (bonding pad portion) of a semiconductor element after storing a semiconductor device at a high temperature (for example, 185 ° C or the like) is called high-temperature storage characteristics. As a method for improving the characteristics, a method using diantimony pentoxide (Japanese Patent Laid-Open No.
146950) and a method of combining antimony oxide with an organic phosphine (Japanese Patent Application Laid-Open No. 61-53321) have been proposed and their effects have been confirmed. On the other hand, some types of epoxy resin compositions are not satisfactory. In addition, a red phosphorus-based flame retardant has been proposed as a flame retardant. A flame retardant grade V-0 can be achieved by adding a large amount thereof, and there is no problem in high-temperature storage characteristics, but a large amount of phosphate ions as a by-product is contained. If required, moisture resistance reliability, moldability,
There is a problem that solder crack resistance is reduced. As a technique for improving the above-mentioned disadvantage, the use of a specific metal hydroxide, or the use of a composite metal hydroxide of a specific metal hydroxide and a specific metal oxide provides flame retardancy and moisture resistance reliability. Has been proposed to solve the problem (Japanese Patent Laid-Open No. 10-25 / 1998).
1486, JP-A-11-11945, etc.),
In order to exhibit sufficient flame retardancy, a large amount of addition is required, and thus there is a problem that the moldability and the solder crack resistance are reduced. In other words, maintaining flame retardancy, excellent in moldability, high-temperature storage characteristics, moisture resistance reliability and solder crack resistance,
There is a need for epoxy resin compositions that do not use halogen-based flame retardants or antimony compounds.

【0004】[0004]

【発明が解決しようとする課題】本発明は、ハロゲン系
難燃剤、アンチモン化合物を含まず、成形性、難燃性、
高温保管特性、耐湿信頼性、耐半田クラック性に優れた
半導体封止用エポキシ樹脂組成物、及びこれを用いて半
導体素子を封止してなる半導体装置を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention does not include a halogen-based flame retardant and an antimony compound, and has good moldability and flame retardancy.
An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation excellent in high-temperature storage characteristics, humidity resistance, and solder crack resistance, and a semiconductor device in which a semiconductor element is encapsulated using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、[1]
(A)エポキシ樹脂、(B)フェノール樹脂、(C)硬
化促進剤、(D)無機充填材、(E)一般式(1)で表
されるハイドロタルサイト類化合物を300〜900℃
で焼成して得られる、平均粒径が0.5〜15μm、粒
径0.2μm以下が10重量%以下、粒径20μm以上
が3重量%以下、比表面積50m2/g以下である一般
式(2)で表される化合物、及び(F)赤燐又は赤燐系
難燃剤を必須成分とすることを特徴とする半導体封止用
エポキシ樹脂組成物、 MgaAlb(OH)c(CO3d (1) MgxAlyz (2) (式中のa、b、c、d、x、y、zは0.1以上の正
数) [2] 一般式(1)で表されるハイドロタルサイト類
化合物を300〜900℃で焼成して得られる、平均粒
径が0.5〜15μm、粒径0.2μm以下が10重量
%以下、粒径20μm以上が3重量%以下、比表面積5
0m2/g以下である一般式(2)で表される化合物
が、全エポキシ樹脂組成物中に0.05〜2重量%であ
る第[1]項記載の半導体封止用エポキシ樹脂組成物、
[3] 赤燐又は赤燐系難燃剤が、平均粒径0.1〜3
0μm、最大粒径75μm以下である第[1]又は
[2]項記載の半導体封止用エポキシ樹脂組成物、
[4] 赤燐系難燃剤が、赤燐の表面を無機化合物及び
/又は硬化性樹脂で被覆したものである第[1]〜
[3]項のいずれかに記載の半導体封止用エポキシ樹脂
組成物、[5] 赤燐系難燃剤が、赤燐の表面を無機化
合物で被覆した後、更にその表面を硬化性樹脂で被覆し
たものである第[4]項記載の半導体封止用エポキシ樹
脂組成物、[6] 赤燐の表面の被覆に用いた無機化合
物が、金属水酸化物又は金属酸化物である第[4]又は
[5]項記載の半導体封止用エポキシ樹脂組成物、
[7] 赤燐の表面の被覆に用いた金属水酸化物が、ア
ルミニウム、マグネシウム、又は亜鉛の水酸化物であ
り、金属酸化物がアルミニウム、マグネシウム、又は亜
鉛の酸化物である第[6]項記載の半導体封止用エポキ
シ樹脂組成物、[8] 赤燐の表面の被覆に用いた硬化
性樹脂が、フェノール樹脂又はエポキシ樹脂である第
[4]〜[7]項のいずれかに記載の半導体封止用エポ
キシ樹脂組成物、[9] 第[1]〜[8]項のいずれ
かに記載の半導体封止用エポキシ樹脂組成物を用いて半
導体素子を封止してなることを特徴とする半導体装置、
である。
Means for Solving the Problems The present invention provides [1]
(A) an epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (E) a hydrotalcite compound represented by the general formula (1) at 300 to 900 ° C.
A general formula having an average particle size of 0.5 to 15 μm, a particle size of 0.2 μm or less being 10% by weight or less, a particle size of 20 μm or more being 3% by weight or less, and a specific surface area of 50 m 2 / g or less. An epoxy resin composition for semiconductor encapsulation comprising, as essential components, a compound represented by (2) and (F) red phosphorus or a red phosphorus-based flame retardant, and Mg a Al b (OH) c (CO 3 ) d (1) Mg x Al y O z (2) (where a, b, c, d, x, y, and z are positive numbers of 0.1 or more) [2] In general formula (1) The hydrotalcite compound represented by baking at 300 to 900 ° C. has an average particle size of 0.5 to 15 μm, a particle size of 0.2 μm or less is 10% by weight or less, and a particle size of 20 μm or more is 3% by weight. Below, specific surface area 5
The epoxy resin composition for semiconductor encapsulation according to item [1], wherein the content of the compound represented by the general formula (2) of 0 m 2 / g or less is 0.05 to 2% by weight in the total epoxy resin composition. ,
[3] Red phosphorus or a red phosphorus flame retardant has an average particle size of 0.1 to 3
The epoxy resin composition for semiconductor encapsulation according to [1] or [2], which has a particle size of 0 μm and a maximum particle size of 75 μm or less,
[4] The red phosphorus-based flame retardant is obtained by coating the surface of red phosphorus with an inorganic compound and / or a curable resin.
[3] The epoxy resin composition for semiconductor encapsulation according to any one of [3] and [5], wherein the red phosphorus-based flame retardant coats the surface of red phosphorus with an inorganic compound, and further coats the surface with a curable resin. [4] The epoxy resin composition for semiconductor encapsulation according to item [4], wherein the inorganic compound used for coating the surface of red phosphorus is a metal hydroxide or metal oxide. Or the epoxy resin composition for semiconductor encapsulation according to [5],
[7] The metal hydroxide used for coating the surface of red phosphorus is a hydroxide of aluminum, magnesium, or zinc, and the metal oxide is an oxide of aluminum, magnesium, or zinc. Item 8. The epoxy resin composition for semiconductor encapsulation according to item [8], wherein the curable resin used for coating the surface of red phosphorus is a phenol resin or an epoxy resin. [9] A semiconductor element is encapsulated by using the epoxy resin composition for semiconductor encapsulation according to any one of [1] to [8]. Semiconductor device,
It is.

【0006】[0006]

【発明の実施の形態】本発明に用いるエポキシ樹脂とし
ては、1分子内にエポキシ基を2個以上有するモノマ
ー、オリゴマー、ポリマー全般を言い、その分子量、分
子構造を特に限定するものではないが、例えば、ビフェ
ニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、
スチルベン型エポキシ樹脂、フェノールノボラック型エ
ポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ト
リフェノールメタン型エポキシ樹脂、アルキル変性トリ
フェノールメタン型エポキシ樹脂、トリアジン核含有エ
ポキシ樹脂、ジシクロペンタジエン変性フェノール型エ
ポキシ樹脂、フェノールアラルキル型エポキシ樹脂(フ
ェニレン骨格、ビフェニレン骨格等を有する)、ナフト
ール型エポキシ樹脂等が挙げられ、これらは1種類を単
独で用いても2種類以上を併用してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The epoxy resin used in the present invention refers to all monomers, oligomers and polymers having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited. For example, biphenyl type epoxy resin, bisphenol type epoxy resin,
Stilbene epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, triphenolmethane epoxy resin, alkyl-modified triphenolmethane epoxy resin, epoxy resin containing triazine nucleus, dicyclopentadiene-modified phenol epoxy resin, phenol aralkyl Type epoxy resin (having a phenylene skeleton, biphenylene skeleton and the like), a naphthol type epoxy resin and the like. These may be used alone or in combination of two or more.

【0007】本発明に用いるフェノール樹脂としては、
1分子内にフェノール性水酸基を2個以上有するモノマ
ー、オリゴマー、ポリマー全般を言い、その分子量、分
子構造を特に限定するものではないが、例えば、フェノ
ールノボラック樹脂、クレゾールノボラック樹脂、ジシ
クロペンタジエン変性フェノール樹脂、テルペン変性フ
ェノール樹脂、トリフェノールメタン型樹脂、フェノー
ルアラルキル樹脂(フェニレン骨格、ビフェニレン骨格
等を有する)、ナフトールアラルキル樹脂等が挙げら
れ、これらは1種類を単独で用いても2種類以上を併用
してもよい。これらの内では特に、フェノールノボラッ
ク樹脂、ジシクロペンタジエン変性フェノール樹脂、フ
ェノールアラルキル樹脂、ナフトールアラルキル樹脂、
テルペン変性フェノール樹脂等が好ましい。これらの配
合量としては、全エポキシ樹脂のエポキシ基数と全フェ
ノール樹脂のフェノール性水酸基数の比で0.8〜1.
3が好ましい。
The phenolic resin used in the present invention includes:
Monomers, oligomers and polymers generally having two or more phenolic hydroxyl groups in one molecule are not particularly limited in molecular weight and molecular structure. For example, phenol novolak resin, cresol novolak resin, dicyclopentadiene-modified phenol Resins, terpene-modified phenolic resins, triphenolmethane-type resins, phenolaralkyl resins (having a phenylene skeleton, biphenylene skeleton, etc.), naphthol aralkyl resins, and the like. These may be used alone or in combination of two or more. May be. Among them, phenol novolak resin, dicyclopentadiene-modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin,
Terpene-modified phenolic resins and the like are preferred. The amount of these components may be 0.8 to 1 in terms of the ratio of the number of epoxy groups of all epoxy resins to the number of phenolic hydroxyl groups of all phenol resins.
3 is preferred.

【0008】本発明に用いる硬化促進剤としては、エポ
キシ基とフェノール性水酸基との硬化反応を促進させる
ものであればよく、一般に封止材料に使用するものを使
用することができる。例えば、1,8−ジアザビシクロ
(5,4,0)ウンデセン−7、トリフェニルホスフィ
ン、2−メチルイミダゾール、テトラフェニルホスホニ
ウム・テトラフェニルボレート等が挙げられ、これらは
1種類を単独で用いても2種類以上を併用してもよい。
As the curing accelerator used in the present invention, any one can be used as long as it promotes a curing reaction between an epoxy group and a phenolic hydroxyl group, and those generally used for a sealing material can be used. For example, 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, 2-methylimidazole, tetraphenylphosphonium / tetraphenylborate and the like can be mentioned. More than one type may be used in combination.

【0009】本発明に用いる無機充填材としては、一般
に封止材料に使用されているものを使用することができ
る。例えば、溶融シリカ、結晶シリカ、タルク、アルミ
ナ、窒化珪素等が挙げられ、これらは1種類を単独で用
いても2種類以上を併用してもよい。これらの内では、
球形度の高い溶融シリカを全量、あるいは一部破砕シリ
カを併用することが好ましい。無機充填材の平均粒径と
しては5〜30μm、最大粒径としては150μm以下
が好ましい。又、粒子の大きさの異なるものを混合する
ことにより充填量を多くすることができる。無機充填材
は、予めシランカップリング剤等で表面処理されている
ものを用いてもよい。無機充填材の配合量としては、赤
燐又は赤燐系難燃剤、及び前記の無機充填材の合計量
で、成形性と耐半田クラック性のバランスから、全エポ
キシ樹脂組成物中に60〜95重量%が好ましい。60
重量%未満だと、吸湿性の上昇に伴い耐半田クラック性
が低下し、95重量%を越えると、ワイヤースィープ及
びパッドシフト等の成形性の問題が生じる可能性があ
る。
As the inorganic filler used in the present invention, those generally used for a sealing material can be used. For example, fused silica, crystalline silica, talc, alumina, silicon nitride and the like can be mentioned, and these may be used alone or in combination of two or more. Of these,
It is preferable to use the fused silica having a high sphericity in its entirety or in combination with partially crushed silica. The average particle size of the inorganic filler is preferably 5 to 30 μm, and the maximum particle size is preferably 150 μm or less. Further, by mixing particles having different particle sizes, the filling amount can be increased. As the inorganic filler, a material which has been surface-treated with a silane coupling agent or the like in advance may be used. The amount of the inorganic filler is the total amount of red phosphorus or a red phosphorus-based flame retardant and the above-mentioned inorganic filler. From the balance of moldability and solder crack resistance, 60 to 95% in all epoxy resin compositions. % By weight is preferred. 60
If it is less than 95% by weight, the solder cracking resistance will decrease with an increase in moisture absorption, and if it exceeds 95% by weight, there may be problems in formability such as wire sweep and pad shift.

【0010】本発明に用いられる一般式(2)で表され
る化合物は、一般式(1)で表されるハイドロタルサイ
ト類化合物を300〜900℃で焼成したもので、一般
式(2)で表される化合物の平均粒径は0.5〜15μ
m、粒径0.2μm以下が10重量%以下、粒径20μ
m以上が3重量%以下の粒度分布で、比表面積50m 2
/g以下の特性を有するものが好ましい。本発明に用い
る一般式(2)の化合物は、一般式(1)のハイドロタ
ルサイト類化合物を焼成して得られるが、焼成温度が3
00℃未満だとハイドロタルサイト類化合物から脱CO
2、脱H2Oが進まず、900℃を越えるとイオン捕捉効
果のないスピネル(MgAl24)が生成するため、焼
成温度は300〜900℃とする必要があり、前記条件
で焼成して初めて一般式(2)の化合物が得られる。得
られた一般式(2)の化合物は、陰イオン不純物を捕捉
すると自身の内に陰イオン不純物を吸収する構造とな
り、陰イオン不純物を不活性化させる。従って、一般式
(2)の化合物を配合したエポキシ樹脂組成物は、陰イ
オン不純物による半導体回路の腐食が抑えられ、耐湿信
頼性、高温保管特性が向上する。又、従来のハイドロタ
ルサイト類化合物や、BiやSbの水酸化物や酸化物等
と比較しても、一般式(2)の化合物は陰イオン捕捉能
が高く、これを配合したエポキシ樹脂組成物は耐湿信頼
性、高温保管特性に向上が認められた。
The general formula (2) used in the present invention is
Is a hydrotalcite compound represented by the general formula (1).
Compounds fired at 300-900 ° C.
The average particle size of the compound represented by the formula (2) is 0.5 to 15 μm.
m, particle size 0.2 μm or less, 10% by weight or less, particle size 20 μm
m is 3% by weight or less in particle size distribution and specific surface area is 50m Two
/ G is preferable. Used in the present invention
The compound of the general formula (2) is
It is obtained by sintering lucite compounds, but the sintering temperature is 3
If the temperature is lower than 00 ° C, CO is removed from hydrotalcite compounds.
Two, De-HTwoO does not advance, and when it exceeds 900 ° C, ion trapping effect
Fruitless spinel (MgAlTwoOFour) To produce,
The formation temperature must be 300-900 ° C.
The compound of the general formula (2) is obtained only after firing. Profit
Compound of general formula (2) captures anionic impurities
Then, it becomes a structure that absorbs anionic impurities in itself.
To inactivate anionic impurities. Therefore, the general formula
The epoxy resin composition containing the compound of (2) is
Corrosion of semiconductor circuits due to ON impurities is suppressed,
Reliability and high-temperature storage characteristics are improved. In addition, conventional hydrota
Lucite compounds, hydroxides and oxides of Bi and Sb, etc.
The compound of the general formula (2) has an anion trapping ability
The epoxy resin composition containing this is highly reliable
Improvements in stability and high-temperature storage characteristics were observed.

【0011】本発明の一般式(2)の化合物は、平均粒
径0.5〜15μmで、粒径0.2μm以下が10重量
%以下、粒径20μm以上が3重量%以下の粒度分布に
調整する必要があり、この範囲を外れると良好な流動
性、充填性に優れたエポキシ樹脂組成物が得られないの
で好ましくない。比表面積としては、50m2/g以下
が好ましい。50m2/gを越えると、吸湿性が高くな
り、耐半田クラック性が低下するので好ましくない。比
表面積を調節するには、一般式(1)の化合物を焼成
し、一般式(2)の化合物を得るとき、1次粒子を大き
くすること、及び該1次粒子の凝集を小さく調整して2
次粒子を形成させることで、50m2/g以下にするこ
とができる。本発明での平均粒径、粒径の測定は、レー
ザー回折式粒度分布測定器を用いて測定した。又、比表
面積の測定は、比表面積測定装置(BET法)を用いて
測定した。配合量としては、全エポキシ樹脂組成物中に
0.05〜2重量%が好ましい。0.05重量%未満だ
と、イオン捕捉効果が小さく耐湿信頼性に効果がなく、
2重量%を越えるとエポキシ樹脂組成物の吸湿率が高く
なり、耐半田クラック性が低下する可能性がある。より
好ましくは0.1〜1重量%である。
The compound of the formula (2) of the present invention has an average particle size of 0.5 to 15 μm, and a particle size distribution of 10% by weight or less for particles having a particle size of 0.2 μm or less and 3% by weight or less for particles having a particle size of 20 μm or more. It is necessary to adjust, and if it is out of this range, it is not preferable because an epoxy resin composition having good fluidity and excellent filling property cannot be obtained. The specific surface area is preferably 50 m 2 / g or less. If it exceeds 50 m 2 / g, the hygroscopicity becomes high, and the solder crack resistance is lowered, which is not preferable. In order to adjust the specific surface area, when the compound of the general formula (1) is calcined to obtain the compound of the general formula (2), the primary particles are made larger and the aggregation of the primary particles is adjusted to be smaller. 2
By forming the secondary particles, it can be reduced to 50 m 2 / g or less. In the present invention, the average particle size and the particle size were measured using a laser diffraction type particle size distribution analyzer. The specific surface area was measured using a specific surface area measuring device (BET method). The compounding amount is preferably 0.05 to 2% by weight in the entire epoxy resin composition. If the content is less than 0.05% by weight, the ion trapping effect is small and the moisture resistance reliability is ineffective,
If it exceeds 2% by weight, the moisture absorption rate of the epoxy resin composition will increase, and the solder crack resistance may decrease. More preferably, it is 0.1 to 1% by weight.

【0012】本発明に用いる赤燐又は赤燐系難燃剤は、
難燃剤として作用するものである。赤燐としては、黄燐
を直接球状体化した赤燐及びその集合体からなる微粒子
が、エポキシ樹脂組成物の成形時の流動性を向上させる
ため好ましい。赤燐系難燃剤としては、特に限定するも
のではないが、赤燐の表面を無機化合物及び/又は硬化
性樹脂で被覆したものが好ましい。被覆に無機化合物と
硬化性樹脂とを併用する場合は、赤燐に被覆する無機化
合物の層と硬化性樹脂との層はいずれが内側でも外側で
もよいし、又、無機化合物と硬化性樹脂とを混合して被
覆に用いてもよい。特に、赤燐の表面を無機化合物で被
覆した後、更にその表面を硬化性樹脂で被覆したものを
用いれば、溶出する燐酸イオン、亜燐酸イオンを抑制す
ることができるので好ましい。
The red phosphorus or red phosphorus flame retardant used in the present invention is:
It acts as a flame retardant. As the red phosphorus, fine particles made of red phosphorus obtained by directly spheroidizing yellow phosphorus and an aggregate thereof are preferable because the fluidity during molding of the epoxy resin composition is improved. The red phosphorus-based flame retardant is not particularly limited, but is preferably one in which the surface of red phosphorus is coated with an inorganic compound and / or a curable resin. When the inorganic compound and the curable resin are used in combination for coating, any of the inorganic compound layer and the curable resin layer coated on the red phosphorus may be either inside or outside, or the inorganic compound and the curable resin. May be mixed and used for coating. In particular, it is preferable to use a material obtained by coating the surface of red phosphorus with an inorganic compound and then further coating the surface with a curable resin, because phosphate ions and phosphite ions that elute can be suppressed.

【0013】被覆に用いる無機化合物としては、特に限
定するものではないが、例えば、金属水酸化物、金属酸
化物、金属の窒化物、無機酸あるいは有機酸との金属塩
等が挙げられる。特に赤燐の加水分解を抑制する効果の
ある金属水酸化物又は金属酸化物が好ましく、更にはア
ルミニウム、マグネシウム、亜鉛の水酸化物又は酸化物
が好ましい。これらの無機化合物は1種類を単独で用い
ても2種類以上を併用してもよい。
The inorganic compound used for the coating is not particularly limited, and examples thereof include metal hydroxides, metal oxides, metal nitrides, metal salts with inorganic or organic acids, and the like. In particular, a metal hydroxide or a metal oxide having an effect of suppressing hydrolysis of red phosphorus is preferable, and a hydroxide or an oxide of aluminum, magnesium, or zinc is more preferable. One of these inorganic compounds may be used alone, or two or more thereof may be used in combination.

【0014】被覆に用いる硬化性樹脂としては、特に限
定するものではないが、例えば、フェノール樹脂、エポ
キシ樹脂、キシレン・ホルムアルデヒド樹脂、ケトン・
ホルムアルデヒド樹脂、尿素樹脂、メラミン樹脂、アニ
リン樹脂、アルキド樹脂、不飽和ポリエステル樹脂等が
挙げられ、特に低吸湿性やエポキシ樹脂組成物の成形時
の流動性や硬化性を低下させないものとしてフェノール
樹脂、エポキシ樹脂が好ましい。これらの硬化性樹脂は
1種類を単独で用いても2種類以上を併用してもよい。
硬化性樹脂の硬化法については、常温でも加熱してもよ
く、特に限定されるものではない。
The curable resin used for the coating is not particularly limited. For example, a phenol resin, an epoxy resin, a xylene / formaldehyde resin, a ketone resin
Formaldehyde resin, urea resin, melamine resin, aniline resin, alkyd resin, unsaturated polyester resin and the like, phenolic resin, especially those that do not decrease the fluidity and curability during molding of the low hygroscopicity and epoxy resin composition, Epoxy resins are preferred. These curable resins may be used alone or in combination of two or more.
The method for curing the curable resin may be normal temperature or heating, and is not particularly limited.

【0015】即ち、本発明の赤燐系難燃剤としては、赤
燐の表面を水酸化アルミニウムで被覆した後、更にフェ
ノール樹脂又はエポキシ樹脂で被覆したものがより好ま
しい。被覆に用いるフェノール樹脂としては、特に限定
するものではないが、1分子内にフェノール性水酸基を
2個以上有するモノマー、オリゴマー、ポリマー全般を
言い、例えば、フェノールノボラック樹脂、クレゾール
ノボラック樹脂等のノボラック型樹脂やレゾール樹脂等
が挙げられ、これらは1種類を単独で用いても2種類以
上を併用してもよい。被覆に用いるエポキシ樹脂として
は、特に限定するものではないが、1分子内にエポキシ
基を2個以上有するモノマー、オリゴマー、ポリマー全
般を言い、例えば、ビフェニル型エポキシ樹脂、ビスフ
ェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等
が挙げられ、これらは1種類を単独で用いても2種類以
上を併用してもよい。被覆の方法については何ら制限を
加えるものではないが、例えば、被覆の均一性の点か
ら、液相中で硫酸アルミニウムや硝酸アルミニウム等を
還元して水酸化アルミニウムに変化させることで赤燐を
被覆し、更にレゾール樹脂溶液中で酸を用い、生成した
フェノール樹脂で被覆し、乾燥する方法等が挙げられ
る。
That is, as the red phosphorus-based flame retardant of the present invention, red phosphorus whose surface is coated with aluminum hydroxide and further coated with a phenol resin or an epoxy resin is more preferable. The phenolic resin used for coating is not particularly limited, but refers to all monomers, oligomers and polymers having two or more phenolic hydroxyl groups in one molecule, and includes, for example, a novolak type such as a phenol novolak resin and a cresol novolak resin. Resins, resol resins, etc., may be used, and these may be used alone or in combination of two or more. The epoxy resin used for coating is not particularly limited, but refers to all monomers, oligomers, and polymers having two or more epoxy groups in one molecule, and includes, for example, biphenyl type epoxy resin, bisphenol type epoxy resin, and novolak type Epoxy resins and the like can be mentioned, and these may be used alone or in combination of two or more. There is no restriction on the coating method, but for example, from the viewpoint of coating uniformity, red phosphorus is coated by reducing aluminum sulfate, aluminum nitrate, etc. in the liquid phase to change to aluminum hydroxide. Further, a method of using an acid in a resole resin solution, coating with a generated phenol resin, and drying is used.

【0016】赤燐系難燃剤中の赤燐の含有量としては、
90〜96重量%が好ましい。90重量%未満だと被覆
層が厚くなり、難燃剤としての効果が低下し、96重量
%を越えると被覆層が薄くなり、水分の存在下で加水分
解反応を起こし、赤燐から容易に燐酸イオンや亜燐酸イ
オンが生成するため、耐湿信頼性の点で問題を生じる可
能性がある。赤燐又は赤燐系難燃剤としては、平均粒径
0.1〜30μm、最大粒径75μm以下のものが好ま
しい。平均粒径が0.1μm未満だと凝集等が起こり、
30μmを越えると分散性が低下する可能性がある。又
絶縁不良対策として最大粒径が75μm以下のものが好
ましい。75μmを越えると絶縁不良等の問題が発生す
る可能性がある。赤燐又は赤燐系難燃剤の配合量として
は、全エポキシ樹脂組成物中に0.05〜2重量%が好
ましい。0.05重量%未満だと難燃性が不足し、2重
量%を越えると耐湿信頼性が大幅に低下する可能性があ
る。
The content of red phosphorus in the red phosphorus flame retardant is as follows:
90-96% by weight is preferred. If it is less than 90% by weight, the coating layer becomes thick and its effect as a flame retardant decreases, and if it exceeds 96% by weight, the coating layer becomes thin and undergoes a hydrolysis reaction in the presence of moisture, so that phosphoric acid is easily converted from red phosphorus. Since ions and phosphite ions are generated, there is a possibility that a problem may occur in terms of humidity resistance reliability. As the red phosphorus or the red phosphorus-based flame retardant, those having an average particle diameter of 0.1 to 30 μm and a maximum particle diameter of 75 μm or less are preferable. If the average particle size is less than 0.1 μm, aggregation or the like occurs,
If it exceeds 30 μm, the dispersibility may decrease. Further, as a measure against insulation failure, the one having a maximum particle size of 75 μm or less is preferable. If it exceeds 75 μm, problems such as poor insulation may occur. The compounding amount of red phosphorus or a red phosphorus-based flame retardant is preferably 0.05 to 2% by weight in the total epoxy resin composition. If it is less than 0.05% by weight, the flame retardancy is insufficient, and if it exceeds 2% by weight, the moisture resistance reliability may be significantly reduced.

【0017】ハイドロタルサイトの焼成物、赤燐又は赤
燐系難燃剤は、各々単独でも難燃性を付与する性質があ
るが、十分な難燃性を発現させるには、多量の配合量が
必要となる。しかし多量に配合すると、成形性及び強度
の低下、吸湿率の上昇を引き起こす傾向にあり、耐半田
クラック性が低下する。これらの諸物性の低下を防ぐた
めにも配合量は極力少なくする必要がある。本発明者
は、本発明のハイドロタルサイトの焼成物と赤燐又は赤
燐系難燃剤とを併用することにより、その相乗効果とし
て更に難燃性が向上し、配合量を低減できることを見い
だした。更に赤燐又は赤燐系難燃剤から副生する燐酸イ
オン等をハイドロタルサイトの焼成物が捕捉することに
より耐湿信頼性、高温保管特性が大幅に向上することを
確認した。つまり両者を併用することにより、互いの能
力を補い合い、その相乗効果として高い難燃性と信頼
性、更には良好な成形性も達成できることが確認され
た。
The fired product of hydrotalcite, red phosphorus or a red phosphorus-based flame retardant has the property of imparting flame retardancy even when used alone. However, in order to exhibit sufficient flame retardancy, a large amount of the compound is required. Required. However, if it is blended in a large amount, the moldability and strength tend to decrease, and the moisture absorption rate tends to increase, and the solder crack resistance decreases. In order to prevent these physical properties from deteriorating, it is necessary to reduce the compounding amount as much as possible. The present inventor has found that by using a fired product of hydrotalcite of the present invention and red phosphorus or a red phosphorus-based flame retardant in combination, flame retardancy is further improved as a synergistic effect, and the amount of the compound can be reduced. . Further, it was confirmed that the moisture resistance reliability and high-temperature storage characteristics were significantly improved by capturing the phosphorous ions and the like produced as a by-product from red phosphorus or a red phosphorus-based flame retardant by the fired product of hydrotalcite. That is, it was confirmed that by using both of them, their abilities complement each other, and high synergistic effects such as high flame retardancy and reliability, and also good moldability can be achieved.

【0018】本発明のエポキシ樹脂組成物は、(A)〜
(F)成分の他、必要に応じて臭素化エポキシ樹脂、三
酸化アンチモン等の難燃剤を含有することは差し支えな
いが、半導体装置の150〜200℃の高温下での電気
特性の安定性が要求される用途では、臭素原子、アンチ
モン原子の含有量が、それぞれ全エポキシ樹脂組成物中
に0.1重量%未満であることが好ましく、完全に含ま
れない方がより好ましい。臭素原子、アンチモン原子の
いずれかが0.1重量%以上だと、高温下に放置したと
きに半導体装置の抵抗値が時間と共に増大し、最終的に
は半導体素子の金線が断線する不良が発生する可能性が
ある。又、環境保護の観点からも、臭素原子、アンチモ
ン原子のそれぞれの含有量が0.1重量%未満で、極力
含有されていないことが望ましい。本発明のエポキシ樹
脂組成物は、(A)〜(F)成分を必須成分とするが、
これ以外に必要に応じてシランカップリング剤、カーボ
ンブラック等の着色剤、天然ワックス、合成ワックス等
の離型剤、及びシリコーンオイル、ゴム等の低応力添加
剤等の種々の添加剤を適宜配合しても差し支えない。
又、本発明のエポキシ樹脂組成物は、(A)〜(F)成
分、及びその他の添加剤等をミキサー等を用いて充分に
均一に混合した後、更に熱ロール又はニーダー等で溶融
混練し、冷却後粉砕して得られる。本発明のエポキシ樹
脂組成物を用いて、半導体素子等の各種の電子部品を封
止し、半導体装置を製造するには、トランスファーモー
ルド、コンプレッションモールド、インジェクションモ
ールド等の従来からの成形方法で硬化成形すればよい。
The epoxy resin composition of the present invention comprises (A)
In addition to the component (F), a flame retardant such as a brominated epoxy resin or antimony trioxide may be contained as necessary, but the stability of the electrical characteristics of the semiconductor device at a high temperature of 150 to 200 ° C. For applications required, the content of bromine atoms and antimony atoms is preferably less than 0.1% by weight in the total epoxy resin composition, and more preferably not completely contained. If either the bromine atom or the antimony atom is 0.1% by weight or more, the resistance value of the semiconductor device will increase with time when left at high temperatures, and eventually the failure of the gold wire of the semiconductor element to break will occur. Can occur. Also, from the viewpoint of environmental protection, it is desirable that the content of each of the bromine atom and the antimony atom is less than 0.1% by weight and that they are not contained as much as possible. The epoxy resin composition of the present invention contains the components (A) to (F) as essential components,
In addition, various additives such as a silane coupling agent, a coloring agent such as carbon black, a release agent such as a natural wax and a synthetic wax, and a low-stress additive such as silicone oil and rubber are appropriately compounded as necessary. No problem.
Further, the epoxy resin composition of the present invention is prepared by sufficiently mixing the components (A) to (F) and other additives and the like with a mixer or the like, followed by melt-kneading with a hot roll or a kneader. , After cooling and pulverized. Various electronic components such as semiconductor elements are encapsulated using the epoxy resin composition of the present invention, and semiconductor devices are manufactured by curing and molding using conventional molding methods such as transfer molding, compression molding, and injection molding. do it.

【0019】[0019]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れらに限定されるものではない。配合割合は重量部とす
る。なお、実施例、及び比較例で用いたエポキシ樹脂、
フェノール樹脂、赤燐系難燃剤の略号及び性状を、以下
にまとめて示す。 エポキシ樹脂(E−1):ビフェニル型エポキシ樹脂
(融点105℃、エポキシ当量190)、 エポキシ樹脂(E−2):ジシクロペンタジエン変性フ
ェノール型エポキシ樹脂(軟化点70℃、エポキシ当量
265)、 フェノール樹脂(H−1):フェノールアラルキル樹脂
(軟化点70℃、水酸基当量165)、 フェノール樹脂(H−2):フェノールノボラック樹脂
(軟化点90℃、水酸基当量104)、 赤燐系難燃剤1:黄燐から直接球状に転化した赤燐の表
面を、水酸化アルミニウムで被覆した後、更にその表面
をフェノール樹脂で被覆したもので、赤燐の含有量96
重量%、平均粒径24μm、最大粒径150μm。 赤燐系難燃剤2:粉砕赤燐の表面を、水酸化アルミニウ
ムで被覆した後、更にその表面をエポキシ樹脂で被覆し
たもので、赤燐の含有量94重量%、平均粒径21μ
m、最大粒径150μm。 赤燐系難燃剤3:黄燐から直接球状に転化した赤燐の表
面を、水酸化マグネシウムで被覆した後、更にその表面
をフェノール樹脂で被覆したもので、赤燐の含有量96
重量%、平均粒径28μm、最大粒径75μm。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to these examples. The mixing ratio is by weight. In addition, the epoxy resin used in the Examples and Comparative Examples,
Abbreviations and properties of the phenolic resin and the red phosphorus flame retardant are summarized below. Epoxy resin (E-1): biphenyl type epoxy resin (melting point 105 ° C., epoxy equivalent 190), epoxy resin (E-2): dicyclopentadiene modified phenol type epoxy resin (softening point 70 ° C., epoxy equivalent 265), phenol Resin (H-1): phenol aralkyl resin (softening point 70 ° C., hydroxyl equivalent 165), phenolic resin (H-2): phenol novolak resin (softening point 90 ° C., hydroxyl equivalent 104), red phosphorus flame retardant 1: The surface of red phosphorus converted directly from yellow phosphorus into a sphere is coated with aluminum hydroxide, and then the surface is further coated with a phenol resin.
% By weight, average particle size 24 μm, maximum particle size 150 μm. Red Phosphorus Flame Retardant 2: A substance obtained by coating the surface of ground red phosphorus with aluminum hydroxide and then further coating the surface with an epoxy resin. The content of red phosphorus is 94% by weight, and the average particle diameter is 21 μm.
m, maximum particle size 150 μm. Red Phosphorus Flame Retardant 3: The surface of red phosphorus converted directly from yellow phosphorus into spheres is coated with magnesium hydroxide, and then the surface is further coated with a phenolic resin.
% By weight, average particle size 28 μm, maximum particle size 75 μm.

【0020】 実施例1 エポキシ樹脂(E−1) 77重量部 フェノール樹脂(H−1) 68重量部 1,8−ジアザビシクロ(5,4,0)ウンデセン−7(以下、DBUという ) 2重量部 溶融球状シリカ 825重量部 Mg0.7Al0.31.15(400℃で焼成、スピネル生成量0%。平均粒径3μ m、粒径0.2μm以下が3重量%、粒径20μm以上が0重量%、比表面積1 5m2/g。以下、M−1という) 10 重量部 赤燐系難燃剤1 5重量部 エポキシシランカップリング剤 5重量部 カーボンブラック 3重量部 カルナバワックス 5重量部 を常温でスーパーミキサーを用いて混合し、70〜10
0℃でロール混練し、冷却後粉砕してエポキシ樹脂組成
物を得た。得られたエポキシ樹脂組成物を以下の方法で
評価した。結果を表1に示す。
Example 1 77 parts by weight of epoxy resin (E-1) 68 parts by weight of phenol resin (H-1) 2 parts by weight of 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) 825 parts by weight of fused spherical silica Mg 0.7 Al 0.3 O 1.15 (calcined at 400 ° C., spinel generation amount 0%. Average particle size 3 μm, particle size 0.2 μm or less 3% by weight, particle size 20 μm or more 0% by weight, Specific surface area 15 m 2 / g; hereinafter referred to as M-1) 10 parts by weight Red phosphorus-based flame retardant 1 5 parts by weight Epoxysilane coupling agent 5 parts by weight Carbon black 3 parts by weight Carnauba wax 5 parts by weight at room temperature And mixed by using
Roll kneading was performed at 0 ° C., followed by cooling and pulverization to obtain an epoxy resin composition. The obtained epoxy resin composition was evaluated by the following method. Table 1 shows the results.

【0021】評価方法 スパイラルフロー:EMMI−1−66に準じたスパイ
ラルフロー測定用金型を用いて、金型温度175℃、圧
力6.9MPa、硬化時間120秒で測定した。単位は
cm。 硬化性:(株)オリエンテック・製、JSRキュラスト
メーターIVPSを用いて、ダイスの直径35mm、振
幅角1°、成形温度175℃、成形開始90秒後のトル
ク値を測定した。数値が大きいほど硬化が速い。単位は
N・m。 難燃性:低圧トランスファー成形機を用いて、成形温度
175℃、圧力6.9MPa、硬化時間120秒で試験
片(127mm×12.7mm×3.2mm)を成形
し、アフターベークとして175℃、8時間処理した
後、UL−94垂直法に準じてΣF、Fmaxを測定し、
難燃性を判定した。 高温保管特性:低圧トランスファー成形機を用いて、成
形温度175℃、圧力6.9MPa、硬化時間120秒
で16pDIP(チップサイズ3.0mm×3.5m
m)を成形し、アフターベークとして175℃、8時間
処理した後、高温保管試験(185℃、1000時間)
を行い、配線間の電気抵抗値が初期値に対し20%増加
したパッケージを不良と判定した。15個のパッケージ
中の不良パッケージ数を示す。 耐湿信頼性:低圧トランスファー成形機を用いて、成形
温度175℃、圧力6.9MPa、硬化時間120秒で
16pDIP(チップサイズ3.0mm×3.5mm)
を成形し、アフターベークとして175℃、8時間処理
した後、20Vのバイアスをかけながら125℃、20
0時間の処理を行った。配線間の導通を確認し、導通が
なくなった状態を不良と判定した。15個のパッケージ
中の不良パッケージ数を示す。
Evaluation method Spiral flow: Measurement was performed using a mold for measuring spiral flow according to EMMI-1-66 at a mold temperature of 175 ° C., a pressure of 6.9 MPa and a curing time of 120 seconds. The unit is cm. Curability: Using a JSR Curastometer IVPS manufactured by Orientec Co., Ltd., the diameter of the die was 35 mm, the amplitude angle was 1 °, the molding temperature was 175 ° C., and the torque value after 90 seconds from the start of molding was measured. The higher the value, the faster the curing. The unit is N · m. Flame retardancy: A test piece (127 mm × 12.7 mm × 3.2 mm) was molded using a low pressure transfer molding machine at a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds. After treatment for 8 hours, ΔF and Fmax were measured according to the UL-94 vertical method,
Flame retardancy was determined. High-temperature storage characteristics: Using a low-pressure transfer molding machine, a molding temperature of 175 ° C., a pressure of 6.9 MPa, and a curing time of 120 seconds, 16 pDIP (chip size: 3.0 mm × 3.5 m)
m) was molded and treated as an after-bake at 175 ° C. for 8 hours, followed by a high-temperature storage test (185 ° C., 1000 hours)
The package in which the electric resistance between the wirings increased by 20% from the initial value was determined to be defective. The number of defective packages in the 15 packages is shown. Moisture resistance reliability: 16pDIP (chip size 3.0mm x 3.5mm) using a low pressure transfer molding machine at a molding temperature of 175 ° C, a pressure of 6.9MPa, and a curing time of 120 seconds.
And then treated at 175 ° C. for 8 hours as an after-bake, and then subjected to 125 ° C., 20 ° C. while applying a bias of 20V.
A 0 hour treatment was performed. The conduction between the wirings was confirmed, and the state where the conduction was lost was determined to be defective. The number of defective packages in the 15 packages is shown.

【0022】実施例2〜6、比較例1〜4 表1の配合に従い、実施例1と同様にしてエポキシ樹脂
組成物を得て、実施例1と同様にして評価した。結果を
表1に示す。比較例1に用いた臭素化ビスフェノールA
型エポキシ樹脂のエポキシ当量は365である。
Examples 2 to 6, Comparative Examples 1 to 4 Epoxy resin compositions were obtained in the same manner as in Example 1 according to the formulations in Table 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. Brominated bisphenol A used in Comparative Example 1
The epoxy equivalent of the type epoxy resin is 365.

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明に従うと、ハロゲン系難燃剤、ア
ンチモン化合物を含まず、成形性に優れた半導体封止用
エポキシ樹脂組成物が得られ、これを用いた半導体装置
は難燃性、高温保管特性、耐湿信頼性、耐半田クラック
性に優れる。
According to the present invention, an epoxy resin composition for encapsulating a semiconductor which does not contain a halogen-based flame retardant or an antimony compound and has excellent moldability can be obtained. Excellent storage characteristics, humidity resistance, and solder crack resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CC03X CC04X CC05X CC07X CD03W CD05W CD06W DA059 DE288 DJ017 EU116 EW016 EW126 EY016 FB079 FB089 FB097 FD017 FD139 FD14X FD156 GQ01 GQ05 4J036 AA01 AC01 AC02 AC03 AD01 AD08 AF01 AF06 AF15 CB22 DC40 DC46 DD07 DD09 FA04 FA05 FB07 JA07 4M109 AA01 CA21 EA02 EB03 EB07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4J002 CC03X CC04X CC05X CC07X CD03W CD05W CD06W DA059 DE288 DJ017 EU116 EW016 EW126 EY016 FB079 FB089 FB097 FD017 FD139 FD14X FD156 GQ01 GQ05 4J036 AA01 DC01 AF02 DD09 FA04 FA05 FB07 JA07 4M109 AA01 CA21 EA02 EB03 EB07

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 (A)エポキシ樹脂、(B)フェノール
樹脂、(C)硬化促進剤、(D)無機充填材、(E)一
般式(1)で表されるハイドロタルサイト類化合物を3
00〜900℃で焼成して得られる、平均粒径が0.5
〜15μm、粒径0.2μm以下が10重量%以下、粒
径20μm以上が3重量%以下、比表面積50m2/g
以下である一般式(2)で表される化合物、及び(F)
赤燐又は赤燐系難燃剤を必須成分とすることを特徴とす
る半導体封止用エポキシ樹脂組成物。 MgaAlb(OH)c(CO3d (1) MgxAlyz (2) (式中のa、b、c、d、x、y、zは0.1以上の正
数)
1. An epoxy resin, (B) a phenolic resin, (C) a curing accelerator, (D) an inorganic filler, and (E) a hydrotalcite compound represented by the general formula (1).
The average particle size obtained by baking at 00 to 900 ° C. is 0.5
1515 μm, particle size 0.2 μm or less 10% by weight or less, particle size 20 μm or more 3% by weight or less, specific surface area 50 m 2 / g
A compound represented by the following general formula (2), and (F)
An epoxy resin composition for semiconductor encapsulation, comprising red phosphorus or a red phosphorus-based flame retardant as an essential component. Mg a Al b (OH) c (CO 3 ) d (1) Mg x Al y O z (2) (where a, b, c, d, x, y, and z are positive numbers of 0.1 or more. )
【請求項2】 一般式(1)で表されるハイドロタルサ
イト類化合物を300〜900℃で焼成して得られる、
平均粒径が0.5〜15μm、粒径0.2μm以下が1
0重量%以下、粒径20μm以上が3重量%以下、比表
面積50m2/g以下である一般式(2)で表される化
合物が、全エポキシ樹脂組成物中に0.05〜2重量%
である請求項1記載の半導体封止用エポキシ樹脂組成
物。
2. A hydrotalcite compound represented by the general formula (1) obtained by firing at 300 to 900 ° C.
An average particle size of 0.5 to 15 μm, and a particle size of 0.2 μm or less is 1
0% by weight or less, a compound represented by the general formula (2) having a particle size of 20 µm or more and 3% by weight or less and a specific surface area of 50 m 2 / g or less is contained in the total epoxy resin composition in an amount of 0.05 to 2% by weight.
The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein
【請求項3】 赤燐又は赤燐系難燃剤が、平均粒径0.
1〜30μm、最大粒径75μm以下である請求項1又
は2記載の半導体封止用エポキシ樹脂組成物。
3. The method according to claim 1, wherein the red phosphorus or the red phosphorus-based flame retardant has an average particle diameter of 0.
The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, having a particle size of 1 to 30 µm and a maximum particle size of 75 µm or less.
【請求項4】 赤燐系難燃剤が、赤燐の表面を無機化合
物及び/又は硬化性樹脂で被覆したものである請求項1
〜3のいずれかに記載の半導体封止用エポキシ樹脂組成
物。
4. The red phosphorus flame retardant wherein the surface of red phosphorus is coated with an inorganic compound and / or a curable resin.
4. The epoxy resin composition for semiconductor encapsulation according to any one of items 1 to 3.
【請求項5】 赤燐系難燃剤が、赤燐の表面を無機化合
物で被覆した後、更にその表面を硬化性樹脂で被覆した
ものである請求項4記載の半導体封止用エポキシ樹脂組
成物。
5. The epoxy resin composition for semiconductor encapsulation according to claim 4, wherein the red phosphorus flame retardant is obtained by coating the surface of red phosphorus with an inorganic compound and then coating the surface with a curable resin. .
【請求項6】 赤燐の表面の被覆に用いた無機化合物
が、金属水酸化物又は金属酸化物である請求項4又は5
記載の半導体封止用エポキシ樹脂組成物。
6. The inorganic compound used for coating the surface of red phosphorus is a metal hydroxide or a metal oxide.
The epoxy resin composition for semiconductor encapsulation according to the above.
【請求項7】 赤燐の表面の被覆に用いた金属水酸化物
が、アルミニウム、マグネシウム、又は亜鉛の水酸化物
であり、金属酸化物がアルミニウム、マグネシウム、又
は亜鉛の酸化物である請求項6記載の半導体封止用エポ
キシ樹脂組成物。
7. The metal hydroxide used for coating the surface of red phosphorus is a hydroxide of aluminum, magnesium or zinc, and the metal oxide is an oxide of aluminum, magnesium or zinc. 7. The epoxy resin composition for semiconductor encapsulation according to 6.
【請求項8】 赤燐の表面の被覆に用いた硬化性樹脂
が、フェノール樹脂又はエポキシ樹脂である請求項4〜
7のいずれかに記載の半導体封止用エポキシ樹脂組成
物。
8. The curable resin used for coating the surface of red phosphorus is a phenol resin or an epoxy resin.
8. The epoxy resin composition for semiconductor encapsulation according to any one of 7.
【請求項9】 請求項1〜8のいずれかに記載の半導体
封止用エポキシ樹脂組成物を用いて半導体素子を封止し
てなることを特徴とする半導体装置。
9. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
JP2001167683A 2000-07-04 2001-06-04 Epoxy rein composition and semiconductor device Pending JP2002080566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167683A JP2002080566A (en) 2000-07-04 2001-06-04 Epoxy rein composition and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000201699 2000-07-04
JP2000-201699 2000-07-04
JP2001167683A JP2002080566A (en) 2000-07-04 2001-06-04 Epoxy rein composition and semiconductor device

Publications (1)

Publication Number Publication Date
JP2002080566A true JP2002080566A (en) 2002-03-19

Family

ID=26595304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167683A Pending JP2002080566A (en) 2000-07-04 2001-06-04 Epoxy rein composition and semiconductor device

Country Status (1)

Country Link
JP (1) JP2002080566A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063136A (en) * 2004-08-25 2006-03-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2006064568A1 (en) * 2004-12-16 2006-06-22 Toagosei Co., Ltd. Anion exchanger and resin composition for electronic part sealing utilizing the same
JP2006299206A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing
WO2008044579A1 (en) * 2006-10-06 2008-04-17 Sumitomo Bakelite Company Limited Epoxy resin composition for sealing of semiconductor and semiconductor device
JP2009029919A (en) * 2007-07-26 2009-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor, and semiconductor device
EP2043147A2 (en) 2007-09-28 2009-04-01 Shin-Etsu Chemical Co., Ltd. Automotive electric/electronic package
US7671160B2 (en) 2005-02-14 2010-03-02 Shin-Etsu Chemical Co., Ltd. Curable perfluoropolyether compositions and rubber or gel articles comprising the cured products of the compositions
CN1908065B (en) * 2005-08-05 2010-12-08 信越化学工业株式会社 Epoxy resin composition and semiconductor device
US7999016B2 (en) 2004-08-02 2011-08-16 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
CN106133055A (en) * 2014-03-24 2016-11-16 住友电木株式会社 Resin composition for sealing and semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999016B2 (en) 2004-08-02 2011-08-16 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
JP2006063136A (en) * 2004-08-25 2006-03-09 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
WO2006064568A1 (en) * 2004-12-16 2006-06-22 Toagosei Co., Ltd. Anion exchanger and resin composition for electronic part sealing utilizing the same
JPWO2006064568A1 (en) * 2004-12-16 2008-06-12 東亞合成株式会社 Anion exchanger and resin composition for sealing electronic parts using the same
US7671160B2 (en) 2005-02-14 2010-03-02 Shin-Etsu Chemical Co., Ltd. Curable perfluoropolyether compositions and rubber or gel articles comprising the cured products of the compositions
JP2006299206A (en) * 2005-04-25 2006-11-02 Matsushita Electric Works Ltd Epoxy resin composition for semiconductor sealing
CN1908065B (en) * 2005-08-05 2010-12-08 信越化学工业株式会社 Epoxy resin composition and semiconductor device
US7906378B2 (en) 2006-10-06 2011-03-15 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for encapsulating semiconductor element and semiconductor device
WO2008044579A1 (en) * 2006-10-06 2008-04-17 Sumitomo Bakelite Company Limited Epoxy resin composition for sealing of semiconductor and semiconductor device
JP5359274B2 (en) * 2006-10-06 2013-12-04 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009029919A (en) * 2007-07-26 2009-02-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor, and semiconductor device
EP2043147A2 (en) 2007-09-28 2009-04-01 Shin-Etsu Chemical Co., Ltd. Automotive electric/electronic package
CN106133055A (en) * 2014-03-24 2016-11-16 住友电木株式会社 Resin composition for sealing and semiconductor device

Similar Documents

Publication Publication Date Title
JP2002080566A (en) Epoxy rein composition and semiconductor device
JP3537082B2 (en) Epoxy resin composition and semiconductor device
JP4779270B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2004067717A (en) Epoxy resin composition and semiconductor device
JPH10152599A (en) Epoxy resin composition
JP4677761B2 (en) Epoxy resin composition and semiconductor device
JP2002187999A (en) Epoxy resin composition and semiconductor device
JP2001354839A (en) Epoxy resin composition and semiconductor device
JP2002212397A (en) Epoxy resin composition and semiconductor device
JP2002356539A (en) Epoxy resin composition and semiconductor device
JP2001323050A (en) Epoxy resin composition and semiconductor device
JP4765150B2 (en) Epoxy resin composition and semiconductor device
JP4345174B2 (en) Epoxy resin composition and semiconductor device
JP2001158852A (en) Epoxy resin composition and semiconductor device
JPH11302501A (en) Epoxy resin composition and semiconductor device
JP2001329147A (en) Epoxy resin composition and semiconductor device
JP2001329144A (en) Epoxy resin composition and semiconductor device
JP2004027062A (en) Epoxy resin composition and semicondcutor device
JP2001354840A (en) Epoxy resin composition and semiconductor device
JP2001226564A (en) Epoxy resin composition and semiconductor device
JP2001192533A (en) Epoxy resin composition and semiconductor device
JP2002069271A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2002201340A (en) Epoxy resin composition and semiconductor device
JP4899273B2 (en) Epoxy resin composition and semiconductor device
JP2004091533A (en) Epoxy resin composition and semiconductor device