Nothing Special   »   [go: up one dir, main page]

JP2005308535A - Planar body for detecting strain and its manufacturing method - Google Patents

Planar body for detecting strain and its manufacturing method Download PDF

Info

Publication number
JP2005308535A
JP2005308535A JP2004125568A JP2004125568A JP2005308535A JP 2005308535 A JP2005308535 A JP 2005308535A JP 2004125568 A JP2004125568 A JP 2004125568A JP 2004125568 A JP2004125568 A JP 2004125568A JP 2005308535 A JP2005308535 A JP 2005308535A
Authority
JP
Japan
Prior art keywords
planar body
protective tube
optical fiber
detecting
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004125568A
Other languages
Japanese (ja)
Other versions
JP4136995B2 (en
Inventor
Takeshi So
曹健
Yoshihiro Yokota
横田善弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP2004125568A priority Critical patent/JP4136995B2/en
Publication of JP2005308535A publication Critical patent/JP2005308535A/en
Application granted granted Critical
Publication of JP4136995B2 publication Critical patent/JP4136995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar body for detecting strain by utilizing an optical fiber, and its manufacturing method. <P>SOLUTION: In this planar body for detecting strain of a prescribed position, a protection tube 21 is integrated beforehand into a planar body material, and then the optical fiber 2 is arranged in the protection tube 21. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ファイバを利用して歪みを検出する面状体及びその製造方法に関するものである。
The present invention relates to a planar body that detects strain using an optical fiber and a method for manufacturing the same.

盛土の変形を検出する方法のひとつとして光ファイバを用いる方法が試みられている。
この方法は、ジオグリッド等の盛土補強材として機能する面状体を盛土に埋設する際に、光ファイバを一緒に埋設し、盛土の性情変化を埋設した光ファイバの歪み変化として測定する方法である。
As one of the methods for detecting the deformation of the embankment, a method using an optical fiber has been tried.
In this method, when embedding a planar body functioning as a fill reinforcement such as geogrid in the embankment, an optical fiber is buried together, and the change in the nature of the embedding is measured as a strain change of the buried optical fiber. is there.

前記した光ファイバと面状体を組み合わせた測定技術にあっては、次のような問題点がある。
(1)光ファイバと面状体を一体化する好適な製造技術が提案されていない。
特に、光ファイバは熱に対して弱いため、溶融した面状体材料を基に格子状の面状体を製造する過程で光ファイバを組み込むことが技術的に難しい。
(2)耐熱性に優れた特殊な光ファイバを面状体の製造時に直接埋設する発明も存在するが(特開2002−122414)、耐熱性に優れた特殊な光ファイバは一般の光ファイバと比べて非常に高額であるため、実用面で改善の余地がある。
(3)光ファイバは損傷し易いから、面状体の外部に光ファイバを後付けしても、変位した時に光ファイバがずれて面状体の変位に追従できなかったり光ファイバが棄損したりするために、後付けする方法も実用的ではない。
(4)以上の理由から、コストや検出精度の面で実用化するまでには至っていない。
The measurement technique combining the optical fiber and the planar body has the following problems.
(1) A suitable manufacturing technique for integrating an optical fiber and a planar body has not been proposed.
In particular, since an optical fiber is weak against heat, it is technically difficult to incorporate an optical fiber in the process of manufacturing a lattice-shaped planar body based on a melted planar body material.
(2) Although there is an invention in which a special optical fiber excellent in heat resistance is directly embedded when manufacturing a planar body (Japanese Patent Laid-Open No. 2002-122414), a special optical fiber excellent in heat resistance is a general optical fiber. Since it is very expensive, there is room for improvement in terms of practical use.
(3) Since an optical fiber is easily damaged, even if an optical fiber is retrofitted to the outside of the planar body, the optical fiber is displaced when it is displaced and cannot follow the displacement of the planar body, or the optical fiber is destroyed. Therefore, the method of retrofitting is not practical.
(4) For the above reasons, it has not yet been put into practical use in terms of cost and detection accuracy.

本発明は以上の点に鑑みて成されたもので、その目的とするところは、つぎの何れかひとつの歪みを検出する面状体及びその製造方法を提供することにある。
(1)面状体に光ファイバを組み付けることを実用化すること。
(2)光ファイバを一体に組み付けた面状体を低廉に製造できること。
(3)面状体を介して歪みを正確に検出できること。
The present invention has been made in view of the above points, and an object thereof is to provide a planar body for detecting any one of the following distortions and a method for manufacturing the same.
(1) Practical use of assembling an optical fiber to a planar body.
(2) A planar body in which optical fibers are integrally assembled can be manufactured at low cost.
(3) The distortion can be accurately detected via the planar body.

本発明に係る歪みを検出する面状体は、所定の位置の歪みを検出するための面状体であって、光ファイバ収納用の保護管を面状体材料に一体に組み込んだことを特徴とするものである。
さらに本発明に係る歪みを検出する面状体は、所定の位置の歪みを検出するための面状体であって、面状体材料に一体に組み込む光ファイバ挿入用の保護管と、前記保護管内に挿入する光ファイバとよりなり、保護管に光ファイバを挿入して一体化したことを特徴とするものである。
さらに本発明に係る歪みを検出する面状体は、前記した何れかの歪みを検出する面状体において、保護管の外周面と自己接着力により面状体材料が一体化していることを特徴とするものである。
さらに本発明に係る歪みを検出する面状体は、前記した何れかの歪みを検出する面状体において、保護管の周面を凹凸形状に形成し、面状体材料と前記保護管の周面とが密着して一体化していることを特徴とするものである。
さらに本発明に係る歪みを検出する面状体は、前記した何れかの歪みを検出する面状体において、保護管と光ファイバの間に接着剤による固結層を形成し、前記固結層を介して保護管と光ファイバが一体化していることを特徴とするものである。
また本発明に係る歪みを検出するための面状体の製造方法は、溶融した面状体材料を格子状にして面状体を形成するときに、溶融した面状体材料内に光ファイバ収納用の保護管を挿入して一体に固着することを特徴とするものである。
本発明に係る歪みを検出するための面状体の製造方法は、溶融した面状体材料を格子状にして面状体を形成するときに、溶融した面状体材料内に光ファイバ収納用の保護管を挿入して一体に固着し、前記面状体の保護管内に光ファイバを収容して保護管と光ファイバとを一体化することを特徴とするものである。
さらに本発明に係る歪みを検出する面状体の製造方法は、前記した何れかの面状体の製造方法において、溶融する面状体材料の自己接着力により保護管の外周面と一体化させることを特徴とするものである。
さらに本発明に係る歪みを検出する面状体の製造方法は、前記した何れかの面状体の製造方法において、周面に凹凸加工を施した保護管を使用し、溶融する面状体材料の自己接着力により前記保護管の凹凸形状を有する外周面と一体化させることを特徴とするものである。保護管の凹凸形状を付与するには、例えば表面に凹凸を加工した2個以上のローラで保護管を押しながら回転して、保護管の周面に凹凸加工を施すことにより形成することができる。
さらに本発明に係る面状体の製造方法は、前記した何れかの面状体の製造方法において、保護管と光ファイバの間を接着剤による固結層により一体化することを特徴とするものである。
上述した各面状体は、補強材、排水材、土木シート、フィルタ、又は遮水シートであることを特徴とするものである。
The planar body for detecting strain according to the present invention is a planar body for detecting strain at a predetermined position, and a protective tube for storing an optical fiber is integrally incorporated in the planar body material. It is what.
Furthermore, the planar body for detecting strain according to the present invention is a planar body for detecting strain at a predetermined position, and includes a protective tube for inserting an optical fiber integrated into the planar body material, and the protection The optical fiber is inserted into the tube, and the optical fiber is inserted into the protective tube and integrated.
Further, in the planar body for detecting strain according to the present invention, the planar body material is integrated with the outer peripheral surface of the protective tube by self-adhesive force in the above-described planar body for detecting strain. It is what.
Furthermore, in the planar body for detecting strain according to the present invention, in the planar body for detecting any one of the above-described strains, the circumferential surface of the protective tube is formed in an uneven shape, and the planar body material and the circumferential surface of the protective tube are formed. The surface is in close contact and integrated.
Furthermore, the planar body for detecting strain according to the present invention is the above-described planar body for detecting strain, wherein a consolidated layer is formed by an adhesive between a protective tube and an optical fiber, and the consolidated layer The protective tube and the optical fiber are integrated with each other.
Also, the method for manufacturing a planar body for detecting strain according to the present invention provides a method for housing an optical fiber in a molten planar body material when forming a planar body by forming a molten planar body material into a lattice shape. For example, the protective tube is inserted and fixed integrally.
The method of manufacturing a planar body for detecting strain according to the present invention is for storing an optical fiber in a molten planar body material when forming the planar body by forming a molten planar body material into a lattice shape. The protective tube is inserted and fixed together, and the optical fiber is accommodated in the planar protective tube, and the protective tube and the optical fiber are integrated.
Furthermore, in the method for manufacturing a planar body for detecting strain according to the present invention, in any one of the above-described planar body manufacturing methods, the self-adhesive force of the melted planar body material is integrated with the outer peripheral surface of the protective tube. It is characterized by this.
Furthermore, the manufacturing method of a planar body for detecting strain according to the present invention is a planar body material that melts using a protective tube having a concavo-convex process on the peripheral surface in any of the above-described manufacturing methods of a planar body. The self-adhesive force is integrated with the outer peripheral surface having the uneven shape of the protective tube. In order to give the uneven shape of the protective tube, it can be formed by, for example, rotating the protective tube while pressing the protective tube with two or more rollers whose surface is processed to provide unevenness on the peripheral surface of the protective tube. .
Furthermore, the method for manufacturing a planar body according to the present invention is characterized in that, in any of the above-described methods for manufacturing a planar body, the protective tube and the optical fiber are integrated with each other by a consolidated layer using an adhesive. It is.
Each planar body described above is a reinforcing material, a drainage material, a civil engineering sheet, a filter, or a water shielding sheet.

本発明は少なくともつぎの一つの効果を得ることができる。
(1)面状体材料に保護管を予め一体に組み込んだ後に、保護管内に光ファイバを配置する構成を採用することで、光ファイバを常温の環境下で面状体に組み付けできることとなり、これまで困難であった光ファイバを組み込んだ歪み検出機能を有する面状体の実用化が可能となる。
(2)光ファイバを高温の環境でなく常温で組み付けできるので、一般の安価な光ファイバの使用が可能となり、歪みを検出する面状体の製造コストを大幅に低減できる。
(3)面状体と保護管と光ファイバの三部材を一体化することで、面状体の変位に保護管と光ファイバが追従できるので、歪みの検出精度が大幅に向上する。
殊に凹凸加工を施した保護管を使用した場合は、凹凸を施さないものと比べて追従性が良くなるので、歪みの検出精度がさらによくなる。
The present invention can obtain at least one of the following effects.
(1) By adopting a configuration in which an optical fiber is arranged in the protective tube after the protective tube is integrated in advance into the planar material, the optical fiber can be assembled to the planar member in a room temperature environment. Thus, it becomes possible to put to practical use a planar body having a strain detection function incorporating an optical fiber, which has been difficult until now.
(2) Since the optical fiber can be assembled at room temperature rather than in a high temperature environment, a general inexpensive optical fiber can be used, and the manufacturing cost of the planar body for detecting strain can be greatly reduced.
(3) By integrating the three members of the planar body, the protective tube, and the optical fiber, the protective tube and the optical fiber can follow the displacement of the planar body, so that the strain detection accuracy is greatly improved.
In particular, when a protective tube having a concavo-convex process is used, the followability is improved as compared with a case where the concavo-convex process is not performed, and therefore the distortion detection accuracy is further improved.

以下図面を参照しながら本発明の好適なト実施の形態について説明する。
<1>歪みの検出技術の概要
図1に歪みを検出できる面状体1の斜視図を示す。
本発明は面状体本体14を製造する際に、溶融した面状体材料に保護管21を一体に組み込んだものであり、光ファイバ2を後から保護管21に挿入して一体化することで歪みを検出できる面状体1が得られる。
面状体本体14に変形や伸張等の変位を生じると、面状体本体14にかかる力がそのまま保護管21を介して保護管21内の光ファイバ2へ伝えられる結果、保護管21と光ファイバ2が面状体本体14に追従して変位する。この光ファイバ2の歪みを電気的に検出することで、面状体本体14の変位の有無とその変位量を測定又は監視するものである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
<1> Outline of strain detection technique FIG. 1 is a perspective view of a planar body 1 capable of detecting strain.
In the present invention, when the planar body 14 is manufactured, the protective tube 21 is integrally incorporated in the melted planar material, and the optical fiber 2 is later inserted into the protective tube 21 and integrated. Thus, the planar body 1 capable of detecting distortion can be obtained.
When a displacement such as deformation or extension occurs in the planar body 14, the force applied to the planar body 14 is transmitted as it is to the optical fiber 2 in the protective tube 21 via the protective tube 21. The fiber 2 is displaced following the planar body 14. By detecting the distortion of the optical fiber 2 electrically, the presence or absence of displacement of the planar body 14 and the amount of displacement are measured or monitored.

図示した歪みを検出できる面状体1について説明すると、面状体本体14は保護管21を有する。保護管21内に設置した光ファイバ2の端は、歪み検出装置23に接続する。面状体1に力が作用し、保護管21の所定個所に歪みが生じると、光ファイバ2を経由して歪み検出装置23でその所定個所の位置と歪みの量を測定することができる。光ファイバ歪み検出装置22は、例えば「BOTDR」(安藤電気株式会社製)が使用できる。   Explaining about the planar body 1 capable of detecting the illustrated distortion, the planar body 14 has a protective tube 21. The end of the optical fiber 2 installed in the protective tube 21 is connected to the strain detection device 23. When a force acts on the planar body 1 and distortion occurs at a predetermined location of the protective tube 21, the position of the predetermined location and the amount of distortion can be measured by the strain detection device 23 via the optical fiber 2. As the optical fiber strain detection device 22, for example, “BOTDR” (manufactured by Ando Electric Co., Ltd.) can be used.

<2>面状体本体
面状体本体14は、2方向又は複数方向に物体があり、その中間に空間がある格子状のものである。
図1に盛土の補強材として一般に使用される格子状の面状体本体14を示す。面状体本体14は、例えばポリエチレン等の樹脂を主材とする縦材12と横材11とを格子状に形成するもので、縦材12又は横材11の何れか一方にはアラミド繊維、炭素繊維やガラス繊維等の補強線13を入れて、強度を増している。
保護管21は、面状体の歪みを検出する必要な位置に配置されるように取り付けられる。保護管21の設置方法については後述する。
図1の格子状の面状体では、保護管21を特定の縦材12に配置した形態を示す。
また、面状体本体14は、上記した樹脂製のネット材の他に、網、織物、編物又は不織布のように糸状材料で形成したものや、板状に形成したものも含むものであり、またその全体形状も正方形や長方形等の矩形の他に、円形や楕円形等の輪郭形状が曲線形であってもよく、特に形状の制約はない。
<2> Planar body main body The planar body main body 14 is a lattice-shaped body with objects in two or more directions and a space in between.
FIG. 1 shows a lattice-like planar body 14 that is generally used as a reinforcing material for embankments. The planar body 14 is formed by, for example, forming a longitudinal member 12 and a transverse member 11 mainly composed of a resin such as polyethylene in a lattice shape, and either one of the longitudinal member 12 or the transverse member 11 has an aramid fiber, A reinforcing wire 13 such as carbon fiber or glass fiber is used to increase the strength.
The protective tube 21 is attached so that it may be arrange | positioned in the required position which detects the distortion of a planar body. A method for installing the protective tube 21 will be described later.
The lattice-shaped planar body in FIG. 1 shows a form in which the protective tube 21 is arranged on a specific longitudinal member 12.
In addition to the above-described resin net material, the planar body main body 14 includes those formed of a thread-like material such as a net, a woven fabric, a knitted fabric or a non-woven fabric, and those formed in a plate shape. In addition to the rectangle such as a square or a rectangle, the overall shape may be a curved shape such as a circle or an ellipse, and there is no particular restriction on the shape.

<3>保護管
保護管21は、面状体本体14に予め組み込んで光ファイバ2の損傷を保護する保護部材である。
本例では面状体本体14内に保護管21を完全に埋設した形態について説明するが、面状体本体14に組み込むその他の形態としては、保護管21を面状体本体14内の表面から一部を露出させて配置する形態や、保護管21を面状体本体14に絡み合わせる形態も含むものである。いずれの組み込み形態においても、面状体本体14の変形や変位などの歪みを保護管21に直接伝達できる設置構造が好ましい。
保護管21は、プラスチック製、金属製など、内部に収容した光ファイバを、熱や外力から物理的に保護できる性質と、面状体本体14の変形や変位に追従して歪みを容易に受ける性質の材質が好ましい。
実用上、保護管21にはステンレス管が望ましい。
<3> Protective tube The protective tube 21 is a protective member that is incorporated in the planar body main body 14 in advance to protect the optical fiber 2 from damage.
In this example, a mode in which the protective tube 21 is completely embedded in the planar body main body 14 will be described. However, as another mode to be incorporated in the planar body main body 14, the protective tube 21 is formed from the surface inside the planar body main body 14. A form in which a part is exposed and a form in which the protective tube 21 is entangled with the planar body 14 are also included. In any of the built-in configurations, an installation structure that can directly transmit distortion such as deformation and displacement of the planar body 14 to the protective tube 21 is preferable.
The protective tube 21 is capable of physically protecting the optical fiber accommodated therein, such as plastic or metal, from heat and external force, and easily receives distortion following the deformation and displacement of the planar body 14. A material of the nature is preferred.
In practice, the protective tube 21 is preferably a stainless steel tube.

保護管21は、少なくともその外周面に凹凸形状を設けて、面状体本体14との一体性を高めて面状体本体14の変形に対する追従性を向上できるようになっている。
凹凸形状は、溝、突起、孔などの形状であり、保護管21の外周全面に亘って設けたり、又はその一部に設けたり、或いは又は、全体的に均一に分散させて設けたりする。要は保護管21と面状体本体14との間の滑り抵抗を増すことができる形状と構造であればよい。
The protective tube 21 is provided with a concavo-convex shape at least on the outer peripheral surface thereof, so that the integrity with the planar body main body 14 can be improved and the followability to deformation of the planar body main body 14 can be improved.
The concavo-convex shape is a shape such as a groove, a protrusion, or a hole, and is provided over the entire outer periphery of the protective tube 21, or a part thereof, or is distributed uniformly throughout. In short, any shape and structure that can increase the slip resistance between the protective tube 21 and the planar body 14 may be used.

<4>保護管の凹凸形状
前記した凹凸形状は、保護管21の外周面にだけ設け、内周面を円滑に形成する形態と、保護管21の内外両面に形成する形態のふたつがある。
保護管21の内外両面に凹凸形状211を形成するには、例えば保護管21を外部から加圧して塑性変形させることで、保護管21の内面にも外周面の凹凸に対応した凹凸形状を形成することができる。
保護管21に凹凸形状211を形成するには、例えば図2に示すように、複数の成形用ローラ51を具備した加工装置を使用して形成することができる。
成形用ローラ51は外周面に歯型を形成した回転ローラで、二個のローラ51を一組として相対向して配置し、成形加工前の保護管21の外径より狭い間隔で配置してある。
図2は一組の成形用ローラ51を配置して保護管21を挟み押圧しながら保護管21の2方向に凹凸形状211を形成した場合を示し、図3は成形用ローラ51を二組配置して保護管21の四方に凹凸形状211を形成する場合を示す。
成形用ローラ51の設置組数や歯型形状については適宜選択するものとする。
<4> Uneven shape of protective tube The above-described uneven shape is provided only on the outer peripheral surface of the protective tube 21, and there are two forms of forming the inner peripheral surface smoothly and forming on the inner and outer surfaces of the protective tube 21.
In order to form the concavo-convex shape 211 on both the inner and outer surfaces of the protective tube 21, for example, by pressing the protective tube 21 from the outside and plastically deforming it, the inner surface of the protective tube 21 is also formed with an concavo-convex shape corresponding to the unevenness of the outer peripheral surface. can do.
In order to form the concavo-convex shape 211 on the protective tube 21, for example, as shown in FIG. 2, it can be formed using a processing apparatus provided with a plurality of molding rollers 51.
The forming roller 51 is a rotating roller having a tooth shape formed on the outer peripheral surface. The two rollers 51 are arranged to face each other, and are arranged at a smaller interval than the outer diameter of the protective tube 21 before forming. is there.
FIG. 2 shows a case where a pair of forming rollers 51 is arranged and the concave and convex shape 211 is formed in two directions of the protective tube 21 while sandwiching and pressing the protective tube 21, and FIG. 3 shows two sets of forming rollers 51 arranged. Then, the case where the concave and convex shape 211 is formed on the four sides of the protective tube 21 is shown.
The number of sets of the forming rollers 51 and the tooth shape are appropriately selected.

<5>保護管の設置方法
本例では面状体本体14を製造する際に保護管21を一緒に組み込む場合について説明する。
図6は面状体本体14を製造する面状体の製造装置4のモデル図で、容器4内には溶融状態で樹脂等の面状体材料が収容してあり、容器4の真下には形成部42が位置し、形成部42の前方には巻取ドラム43が設けられている。
形成部42の後方には、形成部42内へ向けて単数又は複数の凹凸加工を施した保護管21と、図示を省略した補強線13とを連続供給できるようになっている。
そして、容器4内の溶融状態の面状体材料を形成部42に供給し、形成部42の内部で網状に成形するとき、保護管21を溶融状態の面状体本体14の内部に長手方向に向けて埋設する。保護管21を埋設した溶融状態の面状体本体14は、水冷又は空冷による強制冷却を経て巻取ドラム43に巻き取られる。
<5> Installation Method of Protective Tube In this example, a case where the protective tube 21 is incorporated together when the planar body 14 is manufactured will be described.
FIG. 6 is a model diagram of the planar body manufacturing apparatus 4 that manufactures the planar body body 14, and a planar body material such as resin is accommodated in a molten state in the container 4. The forming portion 42 is located, and a winding drum 43 is provided in front of the forming portion 42.
Behind the formation part 42, the protective tube 21 having one or a plurality of concave and convex processes and the reinforcing wire 13 (not shown) can be continuously supplied into the formation part 42.
When the planar material in the molten state in the container 4 is supplied to the forming portion 42 and formed into a net shape inside the forming portion 42, the protective tube 21 is placed in the longitudinal direction inside the planar body 14 in the molten state. Buried toward The molten planar sheet body 14 in which the protective tube 21 is embedded is wound around the winding drum 43 through forced cooling by water cooling or air cooling.

このように凹凸形状211を施した保護管21を面状体本体14の製造時に一緒に埋設させることで、面状体本体14の材料による自己接着力により保護管21の外周面と接着して一体化する。殊に図4に示すように保護管21の外周面の凹凸形状211があると、面状体本体14の母材が互い食い込んで密着度がさらに増すことになる。保護管21に凹凸形状を設けない場合と比べて相互間の抜き取り抵抗は格段に高くなり、保護管21と面状体は実質的に一体化となる。
尚、保護管21の凹凸加工は、面状体本体14を製造する課程で並行して行うか、或いは予め凹凸加工を施した保護管21を使用するかの何れでもよい。
By embedding the protective tube 21 with the uneven shape 211 in this way when the planar body main body 14 is manufactured, the protective tube 21 is bonded to the outer peripheral surface of the protective tube 21 by the self-adhesive force of the material of the planar body main body 14. Integrate. In particular, as shown in FIG. 4, if there is an uneven shape 211 on the outer peripheral surface of the protective tube 21, the base materials of the planar body 14 will bite into each other and the degree of adhesion will further increase. Compared with the case where the protective tube 21 is not provided with a concavo-convex shape, the extraction resistance between the protective tube 21 and the planar body is substantially integrated.
In addition, the uneven | corrugated process of the protective tube 21 may be performed in parallel with the process which manufactures the planar body 14, or the protective tube 21 which gave the uneven | corrugated process previously may be used.

光ファイバ2は保護管21を組み込んで製造した面状体本体14を対象に組み付ける。すなわち、保護管21内に光ファイバ2を挿入して一体に固定して、歪みを検出できる面状体1を得る。
保護管21と光ファイバ2の固定手段としては、接着、圧入等の手段を適用可能で、実用上は挿入直前に光ファイバ2に接着剤を塗布するとよい。接着剤を用いる場合、挿入途中で固結しないように接着剤に固化遅延剤を添加して固結時間を長くするとよい。
The optical fiber 2 is assembled with the planar body 14 manufactured by incorporating the protective tube 21 as a target. That is, the optical fiber 2 is inserted into the protective tube 21 and fixed integrally to obtain the planar body 1 that can detect strain.
As a means for fixing the protective tube 21 and the optical fiber 2, means such as adhesion and press-fitting can be applied. In practice, an adhesive may be applied to the optical fiber 2 immediately before insertion. When using an adhesive, it is advisable to add a solidification retarder to the adhesive to lengthen the consolidation time so that it does not solidify during insertion.

以上のように、保護管21に光ファイバ2を後から挿入して一体化するため、光ファイバ2は面状体本体14を製造する時に発生する熱(熔融熱)の影響をまったく受けずにセットすることができる。
特に、図5に示すように、内外両面に凹凸を形成した保護管21内に接着剤を介して光ファイバ2を固定すると、光ファイバ21と接着剤の固結層22の間を強固に固着できるうえに、保護管21の凹凸形状211に接着剤の固結層22が食い込んで両部材21,22間もより強固に固着することができる。
As described above, since the optical fiber 2 is inserted into the protective tube 21 later and integrated, the optical fiber 2 is not affected by the heat (melting heat) generated when the planar body 14 is manufactured. Can be set.
In particular, as shown in FIG. 5, when the optical fiber 2 is fixed through an adhesive in a protective tube 21 having irregularities on both the inner and outer surfaces, the optical fiber 21 and the adhesive consolidation layer 22 are firmly fixed. In addition, the adhesive consolidated layer 22 can bite into the concave-convex shape 211 of the protective tube 21 so that the members 21 and 22 can be more firmly fixed.

<6>使用方法の一例
歪みを検出できる面状体1の使用方法の一例を図7に示す。
歪みを検出できる面状体1を盛土補強材として盛土3内に水平に敷設し、各層の歪みを検出できる面状体1からのびる光ファイバ2を、公知の歪み検出装置23に接続する。
歪みを検出できる面状体1は、土を拘束して盛土3の滑りを抑える本来の補強機能に加えて、盛土3の変位計測機能を併有する。
すなわち、地盤沈下や土砂崩壊の予兆時には土砂移動が起きる。土砂移動を生じると、その箇所の歪みを検出できる面状体1に引張力や収縮力が働く。その結果、その所定位置にある保護管21と光ファイバ2に歪みが生じる。
<6> Example of Usage Method An example of usage method of the planar body 1 capable of detecting distortion is shown in FIG.
The planar body 1 capable of detecting strain is laid horizontally in the embankment 3 as a bank reinforcement, and the optical fiber 2 extending from the planar body 1 capable of detecting strain of each layer is connected to a known strain detector 23.
The planar body 1 capable of detecting strain has a function of measuring the displacement of the embankment 3 in addition to the original reinforcing function of restraining the soil and restraining the slip of the embankment 3.
In other words, sediment movement occurs when there is a sign of land subsidence or sediment collapse. When the earth and sand movement occurs, a tensile force and a contraction force act on the planar body 1 that can detect the strain at the location. As a result, distortion occurs in the protective tube 21 and the optical fiber 2 at the predetermined positions.

この光ファイバ2の変位を歪み検出装置22で測定することにより、盛土3のどこに土のズレが生じているかを観測することができる。
また、歪みを検出できる面状体1を盛土3に層状に配置することにより、盛土全体の歪みを観測することができる。
By measuring the displacement of the optical fiber 2 with the strain detection device 22, it is possible to observe where the soil displacement occurs in the embankment 3.
Moreover, the distortion | strain of the whole embankment can be observed by arrange | positioning the planar body 1 which can detect distortion on the embankment 3 in layers.

歪みを検出できる面状体1は、図7では盛土補強材として使用した場合について示したが、その他に排水材、土木シート、フィルタ、遮水シートなどの土木用材料の面状体を使用すれば、これらの本来の機能と共に、歪み計としても使用することができる。
また歪みを検出できる面状体1は、トンネル、堤防、ダムなどの各種の土木工事において、歪みの計測だけを目的として使用してもよい。
Although the planar body 1 capable of detecting strain is shown in FIG. 7 as a case where it is used as a bank reinforcement, a planar body made of a civil engineering material such as a drainage material, a civil engineering sheet, a filter, or a water shielding sheet may be used. For example, it can be used as a strain gauge together with these original functions.
The planar body 1 capable of detecting strain may be used only for measuring strain in various civil engineering works such as tunnels, dikes, and dams.

<7>他の実施の形態
図8,9は、保護管211に凹凸形状を設けないで面状体本体14に組み込んだ場合と、この凹凸形状を設けない保護管211に光ファイバ2を収容して歪みを検出できる面状体1を形成した場合を示す。
<7> Other Embodiments FIGS. 8 and 9 show the case where the protective tube 211 is incorporated in the planar body main body 14 without providing an uneven shape, and the optical fiber 2 is accommodated in the protective tube 211 not provided with the uneven shape. Then, the case where the planar body 1 capable of detecting the distortion is formed will be shown.

又、以上は予め保護管21を組み付けてから光ファイバ2を後から挿入してセットする場合について説明したが、予め保護管21に光ファイバ2を挿入しておき、光ファイバ2を挿入した状態の保護管21を面状体本体14の製造時に一緒に組み込んでも良い。この場合、保護管21には光ファイバ2を熔融熱から保護できるだけの断熱性(低熱伝導性)のある素材を用いる必要がある。
In the above description, the protective tube 21 is assembled in advance and the optical fiber 2 is inserted and set later. However, the optical fiber 2 is inserted in the protective tube 21 in advance and the optical fiber 2 is inserted. The protective tube 21 may be incorporated together when the planar body 14 is manufactured. In this case, it is necessary to use a material having a heat insulating property (low thermal conductivity) that can protect the optical fiber 2 from the heat of fusion for the protective tube 21.

格子状の歪みを検出できる面状体の説明図Explanatory drawing of a planar object that can detect lattice distortion 保護管に凹凸形状を形成する加工装置の説明図Explanatory drawing of a processing device that forms irregular shapes on a protective tube 保護管に凹凸形状を形成する他の加工装置の説明図Explanatory drawing of other processing equipment that forms irregularities on the protective tube 保護管を埋設した面状体本体の横断断面図Cross-sectional view of a planar body with a protective tube embedded 保護管に光ファイバを収容した面状体本体の横断断面図Cross-sectional view of planar body with optical fiber in protective tube 格子状の歪みを検出できる面状体の製造方法の説明図Explanatory drawing of the manufacturing method of a planar object which can detect lattice distortion 歪みを検出できる面状体を盛土変位の計測用途に適用した説明図Explanatory drawing applying a planar object that can detect strain to the measurement of embankment displacement 凹凸形状のない保護管に光ファイバを収容した面状体本体の横断断面図Cross-sectional view of a planar body containing an optical fiber in a protective tube without irregularities 凹凸形状のない格子状の歪みを検出できる面状体の説明図Explanatory drawing of a planar body that can detect grid-like distortion without irregularities

符号の説明Explanation of symbols

1・・・歪みを検知できる面状体
11・・横材
12・・縦材
13・・補強線
14・・面状体本体
2・・・光ファイバ
21・・保護管
211・凹凸形状
22・・接着薬の固結層
23・・光ファイバ歪み検出装置
3・・・盛土
4・・・面状体の製造装置
41・・容器
42・・形成部
43・・巻取ドラム
5・・・加工装置
51・・成形用ローラ
DESCRIPTION OF SYMBOLS 1 ... Plane body 11 which can detect distortion | strain ... Cross member 12 ... Vertical member 13 ... Reinforcement wire 14 ... Plane body main body 2 ... Optical fiber 21 ... Protective tube 211 -Adhesive consolidated layer 23-Optical fiber strain detector 3-Embankment 4-Planar body manufacturing device 41-Container 42-Forming part 43-Winding drum 5-Processing Device 51..Forming roller

Claims (10)

所定の位置の歪みを検出するための面状体であって、
光ファイバ収納用の保護管を面状体材料に一体に組み込んだことを特徴とする、
歪みを検出する面状体。
A planar body for detecting distortion at a predetermined position,
A protective tube for optical fiber storage is integrated into the planar material,
Planar body that detects distortion.
所定の位置の歪みを検出するための面状体であって、
面状体材料に一体に組み込む光ファイバ挿入用の保護管と、
前記保護管内に挿入する光ファイバとよりなり、
保護管に光ファイバを挿入して一体化したことを特徴とする、
歪みを検出する面状体。
A planar body for detecting distortion at a predetermined position,
A protective tube for inserting an optical fiber integrated into the planar material; and
An optical fiber inserted into the protective tube,
It is characterized by inserting and integrating an optical fiber into a protective tube,
Planar body that detects distortion.
請求項1または請求項2に記載した歪みを検出する面状体において、保護管の外周面と自己接着力により面状体材料が一体化していることを特徴とする、歪みを検出する面状体。   The planar body for detecting strain according to claim 1 or 2, wherein the planar body material is integrated with the outer peripheral surface of the protective tube by self-adhesive force. body. 請求項1または請求項2に記載した歪みを検出する面状体において、保護管の周面を凹凸形状に形成し、面状体材料と前記保護管の周面とが密着して一体化していることを特徴とする、歪みを検出する面状体。   The planar body for detecting distortion according to claim 1 or 2, wherein the circumferential surface of the protective tube is formed in an uneven shape, and the planar body material and the circumferential surface of the protective tube are in close contact and integrated. A planar body for detecting distortion, characterized in that 請求項2乃至請求項4の何れかに記載した歪みを検出する面状体において、保護管と光ファイバの間に接着剤による固結層を形成し、前記固結層を介して保護管と光ファイバが一体化していることを特徴とする、歪みを検出する面状体。   The planar body for detecting strain according to any one of claims 2 to 4, wherein a consolidating layer is formed between the protective tube and the optical fiber by an adhesive, and the protective tube is interposed through the consolidating layer. A planar body for detecting strain, characterized in that optical fibers are integrated. 歪みを検出するための面状体の製造方法であって、
溶融した面状体材料を格子状にして面状体を形成するときに、溶融した面状体材料内に光ファイバ収納用の保護管を挿入して一体に固着することを特徴とする、歪みを検出する面状体の製造方法。
A method of manufacturing a planar body for detecting distortion,
A strain characterized by inserting a protective tube for housing an optical fiber into the molten planar material and fixing it integrally when forming the planar body by forming a lattice of molten planar material. A method for producing a planar body for detecting odor.
歪みを検出するための面状体の製造方法であって、
溶融した面状体材料を格子状にして面状体を形成するときに、溶融した面状体材料内に光ファイバ収納用の保護管を挿入して一体に固着し、
前記面状体の保護管内に光ファイバを収容して保護管と光ファイバとを一体化することを特徴とする、
歪みを検出する面状体の製造方法。
A method of manufacturing a planar body for detecting distortion,
When forming a planar body by making the melted planar body material into a lattice shape, a protective tube for storing an optical fiber is inserted into the melted planar body material and fixed together.
An optical fiber is housed in the protective tube of the planar body, and the protective tube and the optical fiber are integrated,
A method of manufacturing a planar body for detecting distortion.
請求項6または請求項7に記載した歪みを検出する面状体の製造方法において、溶融する面状体材料の自己接着力により保護管の外周面と一体化させることを特徴とする、歪みを検出する面状体の製造方法。   The method for manufacturing a planar body for detecting strain according to claim 6 or 7, wherein the strain is integrated with the outer peripheral surface of the protective tube by the self-adhesive force of the melted planar body material. Manufacturing method of planar body to be detected. 請求項7または請求項8に記載した歪みを検出する面状体の製造方法において、周面に凹凸加工を施した保護管を使用し、溶融する面状体材料の自己接着力により前記保護管の凹凸形状を有する外周面と一体化させることを特徴とする、歪みを検出する面状体の製造方法。   9. The method for manufacturing a planar body for detecting strain according to claim 7 or 8, wherein a protective tube having an uneven surface is used, and the protective tube is formed by self-adhesive force of the melted planar body material. A method for producing a planar body for detecting distortion, characterized by being integrated with an outer peripheral surface having a concave-convex shape. 請求項7乃至請求項9の何れかに記載した歪みを検出する面状体の製造方法において、保護管と光ファイバの間を接着剤による固結層により一体化することを特徴とする、歪みを検出する面状体の製造方法。   10. The method for manufacturing a planar body for detecting strain according to claim 7, wherein the protective tube and the optical fiber are integrated with each other by a bonding layer made of an adhesive. A method for producing a planar body for detecting odor.
JP2004125568A 2004-04-21 2004-04-21 Planar body for detecting strain and method for manufacturing the same Expired - Fee Related JP4136995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125568A JP4136995B2 (en) 2004-04-21 2004-04-21 Planar body for detecting strain and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004125568A JP4136995B2 (en) 2004-04-21 2004-04-21 Planar body for detecting strain and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005308535A true JP2005308535A (en) 2005-11-04
JP4136995B2 JP4136995B2 (en) 2008-08-20

Family

ID=35437484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125568A Expired - Fee Related JP4136995B2 (en) 2004-04-21 2004-04-21 Planar body for detecting strain and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4136995B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271513A (en) * 2006-03-31 2007-10-18 Occ Corp Optical fiber cable and optical fiber physical quantity variation detecting sensor using the same, and method for detecting physical quantity
JP2010133871A (en) * 2008-12-05 2010-06-17 Sumitomo Denko Steel Wire Kk Tension member
JP2015194522A (en) * 2014-03-31 2015-11-05 株式会社オーシーシー Optical fiber cable and optical signal change detection sensor system
JP2022098725A (en) * 2020-12-22 2022-07-04 鹿島建設株式会社 Deformation measurement method, deformation measurement device, synthesis degree measurement method, and synthesis degree measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271513A (en) * 2006-03-31 2007-10-18 Occ Corp Optical fiber cable and optical fiber physical quantity variation detecting sensor using the same, and method for detecting physical quantity
JP2010133871A (en) * 2008-12-05 2010-06-17 Sumitomo Denko Steel Wire Kk Tension member
JP2015194522A (en) * 2014-03-31 2015-11-05 株式会社オーシーシー Optical fiber cable and optical signal change detection sensor system
JP2022098725A (en) * 2020-12-22 2022-07-04 鹿島建設株式会社 Deformation measurement method, deformation measurement device, synthesis degree measurement method, and synthesis degree measurement device
JP7457639B2 (en) 2020-12-22 2024-03-28 鹿島建設株式会社 Deformation measuring method, deformation measuring device, composite degree measuring method, and composite degree measuring device

Also Published As

Publication number Publication date
JP4136995B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
TWI471543B (en) A device, a system, and a method for detecting and locating malfunction in a hydralic work, and also a hydraulic work fitted with the device
Zhu et al. An optical fibre monitoring system for evaluating the performance of a soil nailed slope
DE102006023588B3 (en) Use of a geo-textile system made from a textile structure and integrated sensor fibers for improving and monitoring a dam
KR100978383B1 (en) Landfill site monitoring system using optical fiber sensor
JP4136995B2 (en) Planar body for detecting strain and method for manufacturing the same
JP5018324B2 (en) Water leakage monitoring system for water shielding material and water shielding wall
JP2013516621A (en) Flexible strip comprising at least one optical fiber for performing deformation and / or temperature measurement
JP6639136B2 (en) Simple alarm system for reinforced earth walls
JP2008115643A (en) Geotextile/geogrid with distortion detecting function, and distortion detecting system
CN105627943B (en) It is a kind of that there is the extra large pipe distributed frame safety monitoring assembly of vibration suppression and its monitoring method
JP5758274B2 (en) Impermeable wall and construction method of impermeable wall
CN103487130B (en) The structure of buried column amplifying fiber vibration induction signal, construction technology and method
JP4792129B1 (en) Earth and sand disaster detection system
JP3602401B2 (en) A method for detecting a state change of a structure using an optical fiber sensor
JP3528083B2 (en) Planar body for detecting distortion and method of manufacturing the same
JP3725513B2 (en) Structure displacement / deformation detector using optical fiber cable
CN214335231U (en) Slope safety three-dimensional monitoring device based on Beidou positioning system
CN211113568U (en) Fiber grating displacement meter gauge length hoisting device
JP2006317461A (en) Optical distortion sensor and bank monitoring system using it
IT201600098298A1 (en) Apparatus and method for applying cables with one or more optical fibers to a pipeline for terrestrial or submarine pipelines
JP2005077113A (en) Distortion detection system
JP4319754B2 (en) Impermeable wall and its construction method
KR102719014B1 (en) Detecting method for underground cavity
CN211401278U (en) Side slope monitoring device
JPH1066945A (en) Method for specifying water leaking point in underground excavated hole

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20040511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees