Nothing Special   »   [go: up one dir, main page]

JP2005308551A - Thermopile type infrared sensor - Google Patents

Thermopile type infrared sensor Download PDF

Info

Publication number
JP2005308551A
JP2005308551A JP2004126028A JP2004126028A JP2005308551A JP 2005308551 A JP2005308551 A JP 2005308551A JP 2004126028 A JP2004126028 A JP 2004126028A JP 2004126028 A JP2004126028 A JP 2004126028A JP 2005308551 A JP2005308551 A JP 2005308551A
Authority
JP
Japan
Prior art keywords
thin film
infrared sensor
film portion
pairs
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004126028A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nakada
嘉昭 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004126028A priority Critical patent/JP2005308551A/en
Publication of JP2005308551A publication Critical patent/JP2005308551A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermopile type infrared sensor capable of acquiring high-speed responsiveness coping sufficiently with an object moving at high speed, by heightening the speed of response without lowering sensor sensitivity. <P>SOLUTION: This sensor has a constitution wherein a thin film part 4 having a plan-viewed elongate shape is formed in a light receiving domain 6 on the center part of a silicon substrate 2, and a plurality of pairs of thermocouples 5 are arranged along long sides 4a, 4a of the thin film part 4 in the state where each warm junction 5h thereof is positioned on the thin film part 4 and each cold junction 5c is positioned on the silicon substrate 2 out of the light receiving domain 6, and the plurality of pairs of thermocouples 5 are connected in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば人体や配電盤、空調機器など各種物体の表面温度分布の計測、あるいは、ビルや高架橋などの建築物の老朽化点検、断熱材の劣化診断、さらには食品の温度検査や衣類の保温効果測定等々に使用されるサーモパイル型赤外線センサに関する。詳しくは、半導体基板の中央部の受光領域内に形成された薄膜部に、複数対の熱電対が、それらの各温接点を前記薄膜部上に位置し、かつ、各冷接点を前記受光領域外の半導体基板上に位置する状態で直列に接続して設けられているサーモパイル型赤外線センサに関する。   The present invention, for example, measures the surface temperature distribution of various objects such as human bodies, switchboards, and air conditioners, or checks the aging of buildings such as buildings and viaducts, diagnoses the deterioration of insulation, and further checks the temperature of food and clothing. The present invention relates to a thermopile type infrared sensor used for measuring a heat insulation effect. Specifically, a plurality of pairs of thermocouples are located on the thin film portion formed in the light receiving region at the center of the semiconductor substrate, their hot junctions are positioned on the thin film portion, and each cold junction is defined as the light receiving region. The present invention relates to a thermopile infrared sensor that is connected in series while being located on an external semiconductor substrate.

この種のサーモパイル型赤外線センサとして、従来、図7の原理図で示すように、半導体基板の一例であるシリコン基板の上面中央部に、例えばSiO2 等の絶縁性薄膜部21を平面視正方形状に形成して受光領域とし、この受光領域となる正方形状の薄膜部21の4辺それぞれに沿って、例えばアルミとポリシリコンという異種金属からなる熱電対22の複数対、例えば1辺あたり3対で合計12対を、それらの各温接点22aが薄膜部21上に位置し、かつ、各冷接点22bが薄膜部21(受光領域)外のシリコン基板上に位置する状態に配置してそれら熱電対22を直列に接続したものが知られている(例えば、特許文献1参照)。
なお、特許文献1では、正方形状薄膜部21の4辺それぞれに配置した複数対の熱電対22の各温接点22aを長方形状に配置した形態のものも開示されているが、受光領域となる薄膜部21は正方形状のままである。
As a thermopile type infrared sensor of this type, as shown in the principle diagram of FIG. 7, an insulating thin film portion 21 such as SiO 2 is formed in a square shape in a plan view at the center of the upper surface of a silicon substrate which is an example of a semiconductor substrate. A plurality of pairs of thermocouples 22 made of dissimilar metals such as aluminum and polysilicon, for example, 3 pairs per side, along each of the four sides of the square-shaped thin film portion 21 serving as the light receiving region. Thus, a total of 12 pairs are arranged in such a state that their respective hot junctions 22a are located on the thin film portion 21 and each cold junction 22b is located on a silicon substrate outside the thin film portion 21 (light receiving region). What connected the pair 22 in series is known (for example, refer patent document 1).
In addition, in patent document 1, although the thing of the form which has arrange | positioned each warm junction 22a of the several pairs of thermocouple 22 arrange | positioned on each of the four sides of the square-shaped thin film part 21 in the rectangular shape is disclosed, it becomes a light-receiving region The thin film portion 21 remains square.

特開2001−194227公報JP 2001-194227 A

上記したように、正方形状の薄膜部21の4辺それぞれに複数対の熱電対22を配置してなる従来のサーモパイル型赤外線センサにおいては、センサ感度と応答速度との間で二律背反の問題がある。すなわち、薄膜部21を、例えば1辺の長さLが1mm程度と長い正方形状に設定したものでは、500Kの対象物(直径10mm、対象物との距離100mm)を測定した場合、100μV程度の大きい感度が得られる反面、そのときのセンサ応答速度は10msec程度と低いという問題がある。   As described above, in the conventional thermopile type infrared sensor in which a plurality of pairs of thermocouples 22 are arranged on each of the four sides of the square-shaped thin film portion 21, there is a tradeoff between sensor sensitivity and response speed. . That is, in the case where the thin film portion 21 is set in a square shape having a long side L of about 1 mm, for example, when measuring a 500K object (diameter 10 mm, distance to the object 100 mm), it is about 100 μV. While high sensitivity can be obtained, there is a problem that the sensor response speed at that time is as low as about 10 msec.

また、高速移動している測定対象物にも対応できるような高速応答性を得るためには、薄膜部の1辺の長さを短くする必要がある。例えば、3msec程度以上の応答速度を得るためには、図8に示すように、薄膜部21の1辺の長さL1を0.3mm程度に短くしなければならない。しかし、薄膜部21を、その1辺の長さL1が0.3mm程度の短い正方形状に設定したものでは、1辺の長さLが1mm程度と長く設定された図7に示すものと比べて、各熱電対22の温接点22aと薄膜部21の端辺との距離によって決定されるところの受光時と非受光時との温度差が1/3程度と小さくなるだけでなく、薄膜部21に同一パターン幅で並置できる熱電対22の数が1辺あたり1対で合計4対と少なくなるので、センサ感度が図7のものに比べて、約1/9の10μV程度と小さくなるという問題がある。   In addition, in order to obtain a high-speed response that can cope with a measurement object moving at high speed, it is necessary to shorten the length of one side of the thin film portion. For example, in order to obtain a response speed of about 3 msec or more, as shown in FIG. 8, the length L1 of one side of the thin film portion 21 must be shortened to about 0.3 mm. However, in the case where the thin film portion 21 is set in a short square shape having a side length L1 of about 0.3 mm, compared with that shown in FIG. 7 in which the length L of one side is set as long as about 1 mm. Thus, not only the temperature difference between the light receiving time and the non-light receiving time, which is determined by the distance between the hot junction 22a of each thermocouple 22 and the edge of the thin film portion 21, is reduced to about 1/3, but the thin film portion Since the number of thermocouples 22 that can be juxtaposed with each other with the same pattern width is reduced to 4 pairs in total, that is, a total of 4 pairs per side, the sensor sensitivity is reduced to about 1/9, about 10 μV, compared to the one of FIG. There's a problem.

本発明は上記のような実情に鑑みてなされたもので、その目的は、センサ感度を低下させることなく、応答速度を速めて高速移動する対象物にも十分に対応する高速応答性が得られるサーモパイル型赤外線センサを提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is to obtain a high-speed response sufficiently corresponding to an object moving at a high speed by increasing the response speed without reducing the sensor sensitivity. The object is to provide a thermopile infrared sensor.

上記目的を達成するために、本発明に係るサーモパイル型赤外線センサは、半導体基板の中央部の受光領域内に形成された薄膜部に、複数対の熱電対が、それらの各温接点を前記薄膜部上に位置させ、かつ、各冷接点を前記受光領域外の半導体基板上に位置させる状態で直列に接続して設けられているサーモパイル型赤外線センサにおいて、前記薄膜部は、隣接する二辺のうち一方の辺が他方の辺より長い細長形状に形成され、この細長形状の薄膜部の長辺に沿って複数対の熱電対が配置されていることを特徴としている。   In order to achieve the above object, a thermopile infrared sensor according to the present invention includes a thin film portion formed in a light receiving region at a central portion of a semiconductor substrate, a plurality of pairs of thermocouples, and each of the hot contacts is connected to the thin film portion. In the thermopile infrared sensor provided in series with each cold junction being positioned on the semiconductor substrate outside the light receiving region, the thin film portion has two adjacent sides. Of these, one side is formed in an elongated shape longer than the other side, and a plurality of pairs of thermocouples are arranged along the long side of the elongated thin film portion.

ここで、前記薄膜部は、例えば細長台形状であってもよいが、特に、請求項2に記載のように、長方形状に形成されていることが望ましい。   Here, the thin film portion may have, for example, an elongated trapezoidal shape, but it is particularly desirable that the thin film portion be formed in a rectangular shape as described in claim 2.

上記のような特徴構成を有する本発明のサーモパイル型赤外線センサによれば、熱電対が長方形などの細長形状の薄膜部の長辺に沿って配置されているので、1辺の長さを短くした正方形状のものと同様に、薄膜部における受光時と非受光時との温度差が小さくなって応答速度を速め、高速移動する対象物に対しても十分に対応する高速応答性を得ることができる。しかも、細長形状の長辺に沿って配置することにより、同一パターン幅で1辺あたりに並置できる熱電対の数を多くすることができるので、受光時と非受光時との温度差が小さくなることに起因して低下するセンサ感度を熱電対の設置数で補い、その結果として、1辺の長さが長い正方形状の薄膜部を用いる従来のものと同等もしくは同等以上のセンサ感度を得ることができる。したがって、薄膜部の形状を工夫するだけの極く簡単な構成改良によって、感度を低下させないで、高速応答性に優れたサーモパイル型赤外線センサを提供できるという効果を奏する。   According to the thermopile type infrared sensor of the present invention having the above-described characteristic configuration, the length of one side is shortened because the thermocouple is disposed along the long side of the thin film portion having an elongated shape such as a rectangle. Similar to the square shape, the temperature difference between light receiving and non-light receiving in the thin film portion is reduced, the response speed is increased, and high-speed response sufficiently corresponding to the object moving at high speed can be obtained it can. In addition, by arranging along the long side of the elongated shape, the number of thermocouples that can be juxtaposed per side with the same pattern width can be increased, so the temperature difference between when light is received and when it is not light is reduced. The sensor sensitivity that decreases due to this is compensated by the number of thermocouples installed, and as a result, a sensor sensitivity equivalent to or higher than that of the conventional one using a square-shaped thin film portion with a long side is obtained. Can do. Therefore, it is possible to provide a thermopile type infrared sensor excellent in high-speed response without deteriorating sensitivity by a very simple configuration improvement that only devise the shape of the thin film portion.

本発明に係るサーモパイル型赤外線センサにおいて、請求項3に記載のように、薄膜部が、円形の受光領域内に互いに平行に複数列並べて形成され、それら複数列の薄膜部の各長辺に沿ってそれぞれ複数対の熱電対が配置されているように構成することにより、いかなる形状の対象物をも高感度かつ高速度に検出することが可能で、汎用性の高い赤外線センサを得ることができる。   In the thermopile type infrared sensor according to the present invention, as described in claim 3, the thin film portions are formed in a plurality of rows parallel to each other in a circular light receiving region, and along each long side of the thin film portions of the plurality of rows. Therefore, it is possible to detect an object of any shape with high sensitivity and high speed and to obtain a highly versatile infrared sensor. .

また、本発明に係るサーモパイル型赤外線センサにおいて、請求項4に記載のように、薄膜部が、長方形の受光領域内に互いに平行に複数列並べて形成され、それら複数列の薄膜部の各長辺に沿ってそれぞれ複数対の熱電対が配置されているように構成することにより、人体のように概ね長方形状や楕円形状を呈する対象物を高感度かつ高速度に検出することが可能で、特に人体検出用の用途に好適なセンサを得ることができる。   Further, in the thermopile type infrared sensor according to the present invention, as described in claim 4, the thin film portions are formed in a plurality of rows parallel to each other in the rectangular light receiving region, and the long sides of the thin film portions of the plurality of rows are arranged. It is possible to detect an object having a generally rectangular shape or an elliptical shape like a human body with high sensitivity and high speed. A sensor suitable for human body detection can be obtained.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は本発明に係る第1実施例のサーモパイル型赤外線センサ1の一部切欠き斜視図、図2は平面図、図3は断面展開図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partially cutaway perspective view of a thermopile type infrared sensor 1 according to a first embodiment of the present invention, FIG. 2 is a plan view, and FIG. 3 is a developed sectional view.

この第1実施例のサーモパイル型赤外線センサ1は、図1、図2に示すように、半導体基板の一例であるシリコン基板2の上面にSiO2 膜等の絶縁膜3を形成し、前記シリコン基板2の中央部を長方形状にエッチングすることにより、例えば短辺が0.3mm、長辺が6mmの長方形状(細長形状の一例)でダイヤフラム構造の絶縁性薄膜部4を形成して、この薄膜部4を長方形の受光領域6としている。この長方形受光領域6を形成する長方形状の薄膜部4の両長辺4a,4aに沿って複数対、例えば18対、合計36対の熱電対(サーモカップル)5を、それらの各温接点5hが薄膜部4上に位置し、かつ、各冷接点5cが前記受光領域外のシリコン基板2上に位置する状態で一定パターン幅に並設するとともに、これら各サーモカップル5を直列に接続して構成されている。 As shown in FIGS. 1 and 2, the thermopile infrared sensor 1 of the first embodiment is formed by forming an insulating film 3 such as a SiO 2 film on the upper surface of a silicon substrate 2 which is an example of a semiconductor substrate. 2 is formed into a rectangular shape (an example of an elongated shape) having a short side of 0.3 mm and a long side of 6 mm, for example. The portion 4 is a rectangular light receiving region 6. A plurality of pairs, for example, 18 pairs, for example, a total of 36 pairs of thermocouples 5 along the long sides 4a and 4a of the rectangular thin film portion 4 forming the rectangular light receiving region 6 are connected to their hot junctions 5h. Are arranged on the thin film portion 4 and the cold junctions 5c are arranged on the silicon substrate 2 outside the light receiving region in parallel with a constant pattern width, and the thermocouples 5 are connected in series. It is configured.

なお、サーモパイル型赤外線センサ1を構成する各サーモカップル5の温接点5h上には、図3に明示するように、赤外線吸収膜7が積層されている。また、サーモカップル5は、アルミ5Aとポリシリコン5Bという異種金属からなり、ペルチェ効果により冷接点5cを熱する方向の熱起電力を発生するように構成されたものである。   An infrared absorption film 7 is laminated on the hot junction 5h of each thermocouple 5 constituting the thermopile infrared sensor 1 as clearly shown in FIG. The thermocouple 5 is made of different metals such as aluminum 5A and polysilicon 5B, and is configured to generate a thermoelectromotive force in a direction in which the cold junction 5c is heated by the Peltier effect.

上記のように構成された第1実施例のサーモカップル型赤外線センサ1は、図4の原理図に示すように、サーモカップル5が長方形状の薄膜部4の両長辺4a,4aに沿って配置されているので、各サーモカップル5の温接点5hと薄膜部4の端辺である長辺4a,4aとの距離で決まる受光時と非受光時との温度差が、1辺の長さの短い図8に示す正方形状の薄膜部を用いる従来のものと同様に小さくなって、3msec程度以上の速い応答速度となり、高速移動する対象物に対しても十分に対応する高速応答性が得られる。   As shown in the principle diagram of FIG. 4, the thermocouple type infrared sensor 1 of the first embodiment configured as described above has a thermocouple 5 along the long sides 4a and 4a of the thin film portion 4 having a rectangular shape. The temperature difference between the time of light reception and the time of non-light reception determined by the distance between the hot junction 5h of each thermocouple 5 and the long sides 4a and 4a that are the end sides of the thin film portion 4 is the length of one side. As shown in FIG. 8, it is smaller than the conventional one using the square thin film portion shown in FIG. 8 and has a fast response speed of about 3 msec or more, and a high-speed response sufficiently corresponding to a high-speed moving object is obtained. It is done.

その上、長方形状薄膜部4の長辺4a,4aに沿ってサーモカップル5を配置することにより、同一パターン幅で1辺あたりに並置できるサーモカップル5の数を、例えば合計36対と多くすることができるので、受光時と非受光時との温度差が小さくなることに起因してセンサ感度は低下するものの、その低下する感度をサーモカップル5の設置数で補うことが可能であり、その結果として、1辺の長さの長い図7に示す正方形状の薄膜部を用いる従来のものと同等もしくは同等以上のセンサ感度が得られる。したがって、薄膜部4の形状を長方形にするだけで、感度を低下させないで、高速応答性に優れたサーモパイル型赤外線センサ1を提供することができる。   In addition, by disposing the thermocouples 5 along the long sides 4a and 4a of the rectangular thin film portion 4, the number of thermocouples 5 that can be juxtaposed per side with the same pattern width is increased to, for example, 36 pairs in total. Therefore, although the sensitivity of the sensor is lowered due to the small temperature difference between the light receiving time and the non-light receiving time, the reduced sensitivity can be compensated by the number of thermocouples 5 installed. As a result, sensor sensitivity equal to or higher than that of the conventional sensor using the square-shaped thin film portion shown in FIG. 7 having a long side is obtained. Therefore, it is possible to provide the thermopile type infrared sensor 1 having excellent high-speed response without reducing the sensitivity only by making the shape of the thin film portion 4 rectangular.

図5は本発明に係る第2実施例のサーモパイル型赤外線センサ1の原理図であり、この第2実施例のサーモパイル型赤外線センサ1は、例えば短辺が0.3mm、長辺が6mmの長方形状でダイヤフラム構造の薄膜部4をその長手方向で3つに分割し、それら3つに分割された長方形状の薄膜部41,42,43を仮想線6’で示す長円形の受光領域内に互いに平行に並べて形成し、これら3列の薄膜部41,42,43の各長辺に沿って複数対、例えば10対,16対,10対、合計36対のサーモカップル5をそれらの各温接点5hが薄膜部41,42,43上に位置し、かつ、各冷接点5cが薄膜部41,42,43外のシリコン基板2上に位置する状態で一定パターン幅に並設するとともに、これら各サーモカップル5を直列に接続して構成されたものである。   FIG. 5 is a diagram showing the principle of the thermopile infrared sensor 1 according to the second embodiment of the present invention. The thermopile infrared sensor 1 according to the second embodiment is, for example, a rectangle having a short side of 0.3 mm and a long side of 6 mm. The diaphragm-shaped thin film portion 4 is divided into three in the longitudinal direction, and the rectangular thin film portions 41, 42, 43 divided into the three are within an elliptical light receiving region indicated by a virtual line 6 '. A plurality of pairs, for example, 10 pairs, 16 pairs, 10 pairs, and a total of 36 pairs of thermocouples 5 are formed along each long side of the three rows of thin film portions 41, 42, 43. The contacts 5h are positioned on the thin film portions 41, 42, 43, and the cold contacts 5c are positioned on the silicon substrate 2 outside the thin film portions 41, 42, 43, and are arranged in parallel with a constant pattern width. Connect each thermocouple 5 in series Those constructed Te.

上記のように構成された第2実施例のサーモカップル型赤外線センサ1は、第1実施例の赤外線センサ1と同様に、感度を低下させないで、3msec程度以上の速い応答速度を有し、高速移動する対象物に対しても十分に対応する高速応答性が得られるのはもとより、受光領域6’が仮想の長円形であることから、いかなる形状の対象物をも高感度かつ高速度に検出することが可能で、汎用性の高い赤外線センサ1を提供することができる。なお、この第2実施例において、仮想の受光領域6’は真円形であっても、楕円形であってもよく、そのような形状とした場合も、同様の効果を奏する。   The thermocouple type infrared sensor 1 of the second embodiment configured as described above has a high response speed of about 3 msec or more without reducing the sensitivity, like the infrared sensor 1 of the first embodiment. Not only can the high-speed response sufficiently correspond to moving objects, but also the light-receiving area 6 'is a virtual oval shape, so any shape of objects can be detected with high sensitivity and high speed. It is possible to provide a highly versatile infrared sensor 1. In the second embodiment, the virtual light receiving region 6 ′ may be a perfect circle or an ellipse, and the same effect can be obtained even when such a shape is adopted.

図6は本発明に係る第3実施例のサーモパイル型赤外線センサ1の原理図であり、この第3実施例のサーモパイル型赤外線センサ1は、例えば短辺が0.3mm、長辺が6mmの長方形状でダイヤフラム構造の薄膜部4をその長手方向で2つに等分分割し、それら2つに等分分割された長方形状の薄膜部41,42を、第1実施例と同様に、長方形の受光領域6’内に互いに平行に並べて形成し、これら2列の薄膜部41,42の各長辺に沿って複数対、例えば18対づつ、合計36対のサーモカップル5を、それらの各温接点5hが薄膜部41,42上に位置し、かつ、各冷接点5cが薄膜部41,42外のシリコン基板2上に位置する状態で一定パターン幅に並設するとともに、これら各サーモカップル5を直列に接続して構成されたものである。   FIG. 6 is a principle diagram of the thermopile infrared sensor 1 of the third embodiment according to the present invention. The thermopile infrared sensor 1 of the third embodiment is, for example, a rectangle having a short side of 0.3 mm and a long side of 6 mm. The diaphragm-shaped thin film portion 4 is equally divided into two in the longitudinal direction, and the rectangular thin film portions 41 and 42 equally divided into two are divided into rectangular shapes as in the first embodiment. A plurality of pairs, for example, 18 pairs, for example, a total of 36 pairs of thermocouples 5 are formed along the long sides of the two thin film portions 41 and 42 in the light receiving region 6 '. The contact 5h is positioned on the thin film portions 41 and 42, and the cold junctions 5c are positioned on the silicon substrate 2 outside the thin film portions 41 and 42, and the thermocouple 5 Connected in series It is.

上記のように構成された第3実施例のサーモカップル型赤外線センサ1は、第1実施例の赤外線センサ1と同様に、感度を低下させないで、3msec程度以上の速い応答速度を有し、高速移動する対象物に対しても十分に対応する高速応答性が得られるのはもとより、受光領域6’が長方形であることから、人体のように概ね長方形状や楕円形状を呈する対象物を高感度かつ高速度に検出することが可能で、特に人体検出用の用途に好適な赤外線センサ1を提供することができる。また、この第3実施例のサーモカップル型赤外線センサ1は、第1実施例のものに比べて、センサ1全体を短辺/長辺の比を小さくしてコンパクトに構成しやすい。なお、この第3実施例において、受光領域6’を正方形としてもよい。   The thermocouple type infrared sensor 1 of the third embodiment configured as described above has a high response speed of about 3 msec or more without reducing the sensitivity, like the infrared sensor 1 of the first embodiment. Since the light-receiving region 6 'is rectangular as well as high-speed response sufficiently corresponding to a moving object, an object having a generally rectangular or elliptical shape like a human body is highly sensitive. In addition, it is possible to provide an infrared sensor 1 that can be detected at a high speed and is particularly suitable for use for detecting a human body. Further, the thermocouple type infrared sensor 1 of the third embodiment can be easily configured compactly by making the ratio of the short side / long side small as compared with that of the first embodiment. In the third embodiment, the light receiving region 6 'may be square.

なお、上記各実施例では、長方形状薄膜部4の長辺合計長さを6mmに設定した場合について示したが、6mmを越える長さとし、それに伴いサーモカップル5の設置数を増やしてセンサ感度を更に大きくしてもよいこともちろんである。   In each of the above embodiments, the case where the total length of the long side of the rectangular thin film portion 4 is set to 6 mm has been shown. However, the sensor sensitivity is increased by increasing the number of thermocouples 5 in association with the length exceeding 6 mm. Of course, it may be larger.

本発明に係る第1実施例のサーモパイル型赤外線センサの一部切欠き斜視図である。1 is a partially cutaway perspective view of a thermopile type infrared sensor according to a first embodiment of the present invention. 図1の平面図である。It is a top view of FIG. 図3は断面展開図である。FIG. 3 is a developed sectional view. 第1実施例のサーモパイル型赤外線センサの原理図である。It is a principle figure of the thermopile type infrared sensor of 1st Example. 本発明に係る第2実施例のサーモパイル型赤外線センサの原理図である。It is a principle figure of the thermopile type infrared sensor of 2nd Example which concerns on this invention. 本発明に係る第3実施例のサーモパイル型赤外線センサの原理図である。It is a principle figure of the thermopile type infrared sensor of 3rd Example which concerns on this invention. 従来のサーモパイル型赤外線センサの原理図である。It is a principle figure of the conventional thermopile type infrared sensor. 従来のサーモパイル型赤外線センサの応答速度改善を図った場合の原理図である。It is a principle figure at the time of improving the response speed of the conventional thermopile type infrared sensor.

符号の説明Explanation of symbols

1 サーモパイル型赤外線センサ
2 シリコン基板(半導体基板)
4,41,42,43 長方形状薄膜部
5 サーモカップル(熱電対)
5h 温接点
5c 冷接点
6,6’ 受光領域
1 Thermopile infrared sensor 2 Silicon substrate (semiconductor substrate)
4, 41, 42, 43 Rectangular thin film part 5 Thermocouple (thermocouple)
5h Hot junction 5c Cold junction 6, 6 'Light receiving area

Claims (4)

半導体基板の中央部の受光領域内に形成された薄膜部に、複数対の熱電対が、それらの各温接点を前記薄膜部上に位置させ、かつ、各冷接点を前記受光領域外の半導体基板上に位置させる状態で直列に接続して設けられているサーモパイル型赤外線センサにおいて、
前記薄膜部は、隣接する二辺のうち一方の辺が他方の辺より長い細長形状に形成され、この細長形状の薄膜部の長辺に沿って複数対の熱電対が配置されていることを特徴とするサーモパイル型赤外線センサ。
A plurality of pairs of thermocouples are positioned in the thin film portion formed in the light receiving region at the center of the semiconductor substrate, their hot junctions are positioned on the thin film portion, and each cold junction is a semiconductor outside the light receiving region. In the thermopile type infrared sensor provided connected in series in a state of being positioned on the substrate,
The thin film portion is formed in an elongated shape in which one of two adjacent sides is longer than the other side, and a plurality of pairs of thermocouples are disposed along the long side of the elongated thin film portion. A thermopile type infrared sensor.
薄膜部が、長方形状に形成されている請求項1に記載のサーモパイル型赤外線センサ。   The thermopile type infrared sensor according to claim 1, wherein the thin film portion is formed in a rectangular shape. 薄膜部が、円形の受光領域内に互いに平行に複数列並べて形成され、それら複数列の薄膜部の各長辺に沿ってそれぞれ複数対の熱電対が配置されている請求項1または2に記載のサーモパイル型赤外線センサ。   3. The thin film portion is formed by arranging a plurality of rows parallel to each other in a circular light receiving region, and a plurality of pairs of thermocouples are disposed along each long side of the plurality of rows of thin film portions. Thermopile infrared sensor. 薄膜部が、長方形の受光領域内に互いに平行に複数列並べて形成され、それら複数列の薄膜部の各長辺に沿ってそれぞれ複数対の熱電対が配置されている請求項1または2に記載のサーモパイル型赤外線センサ。

3. The thin film portion is formed by arranging a plurality of rows in parallel in a rectangular light receiving region, and a plurality of pairs of thermocouples are arranged along each long side of the plurality of rows of thin film portions. Thermopile infrared sensor.

JP2004126028A 2004-04-21 2004-04-21 Thermopile type infrared sensor Pending JP2005308551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126028A JP2005308551A (en) 2004-04-21 2004-04-21 Thermopile type infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126028A JP2005308551A (en) 2004-04-21 2004-04-21 Thermopile type infrared sensor

Publications (1)

Publication Number Publication Date
JP2005308551A true JP2005308551A (en) 2005-11-04

Family

ID=35437498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126028A Pending JP2005308551A (en) 2004-04-21 2004-04-21 Thermopile type infrared sensor

Country Status (1)

Country Link
JP (1) JP2005308551A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002738A (en) * 2007-06-20 2009-01-08 Horiba Ltd Radiation thermometer
JP2009002739A (en) * 2007-06-20 2009-01-08 Horiba Ltd Radiation thermometer
JP2010101730A (en) * 2008-10-23 2010-05-06 Nippon Ceramic Co Ltd Thermopile chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177727A (en) * 1984-09-25 1986-04-21 Matsushita Electric Ind Co Ltd Thermocouple type infrared detecting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177727A (en) * 1984-09-25 1986-04-21 Matsushita Electric Ind Co Ltd Thermocouple type infrared detecting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002738A (en) * 2007-06-20 2009-01-08 Horiba Ltd Radiation thermometer
JP2009002739A (en) * 2007-06-20 2009-01-08 Horiba Ltd Radiation thermometer
JP2010101730A (en) * 2008-10-23 2010-05-06 Nippon Ceramic Co Ltd Thermopile chip

Similar Documents

Publication Publication Date Title
US20090140147A1 (en) Pixel structure having an umbrella type absorber with one or more recesses or channels sized to increase radiation absorption
US8441093B2 (en) Shared membrane thermopile sensor array
KR20150009987A (en) IR thermopile detector
US8921792B2 (en) Vertically stacked thermopile
US20170219434A1 (en) Ir detector array device
US20150115160A1 (en) Thermally Shorted Bolometer
JP2009180682A (en) Infrared sensor
JP2009002739A (en) Radiation thermometer
JP5261102B2 (en) Infrared sensor and infrared sensor module
US20020069910A1 (en) Infrared detecting device
JP2000065639A (en) Infrared sensor
JP2005308551A (en) Thermopile type infrared sensor
JP2007263768A (en) Infrared sensor
JP2007033154A (en) Infrared detector
JP2008082791A (en) Infrared sensor
JP5179004B2 (en) Infrared sensor
JP5540406B2 (en) Infrared sensor device
JP2000230857A (en) Thermal type infrared sensor and thermal type infrared array element
JPH046424A (en) Infrared sensor
JPH02205730A (en) Infrared-ray sensor
JP2005268660A (en) Infrared array sensor
JPH03276772A (en) Thermopile-type infrared sensor
JPH11258040A (en) Thermopile type infrared ray sensor
JP3052329B2 (en) Infrared sensor
JP2001074558A (en) Infra-red sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323