Nothing Special   »   [go: up one dir, main page]

JP2005268660A - Infrared array sensor - Google Patents

Infrared array sensor Download PDF

Info

Publication number
JP2005268660A
JP2005268660A JP2004081480A JP2004081480A JP2005268660A JP 2005268660 A JP2005268660 A JP 2005268660A JP 2004081480 A JP2004081480 A JP 2004081480A JP 2004081480 A JP2004081480 A JP 2004081480A JP 2005268660 A JP2005268660 A JP 2005268660A
Authority
JP
Japan
Prior art keywords
infrared
sensor
elements
temperature
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004081480A
Other languages
Japanese (ja)
Other versions
JP4456385B2 (en
Inventor
Yoshiaki Nakada
嘉昭 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004081480A priority Critical patent/JP4456385B2/en
Publication of JP2005268660A publication Critical patent/JP2005268660A/en
Application granted granted Critical
Publication of JP4456385B2 publication Critical patent/JP4456385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform always stable temperature measuring by rationally and effectively utilizing a condenser lens which is originally equipped in a sensor, and by lessening any influence of an environmental temperature change while suppressing a raise of manufacturing cost as well as a deterioration of manufacturing yield. <P>SOLUTION: A plurality of rows of sensor arrays 6 are formed by making infrared measuring sensor elements 5 on the same plane of a silicon substrate 4 in a length and breadth matrix. A plurality of temperature compensating elements 7 are seriately made at the silicon substrate 4 portion adjacent to the sensor elements 5 residing at each end portion of the sensor arrays 6. There is formed an optical shielding unit 9 inhibiting an infrared incidence at a position corresponding to the temperature compensating elements 7 of a light receiving mirror 3 respectively having a pierced hole 8 for the infrared incidence at positions corresponding to light receiving sections 5a of the infrared measuring sensor elements 5. The light receiving mirror 3 having this optical shielding unit 9 is configured to be closely laminated on the silicon substrate 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば人体や配電盤、空調機器など各種物体の表面温度分布の計測、あるいは、ビルや高架橋などの建築物の老朽化点検、断熱材の劣化診断、さらには食品の温度検査や衣類の保温効果測定等々に使用される赤外線アレイセンサに関する。詳しくは、半導体基板の同一平面上に複数個の赤外線測定用センサ素子を縦横マトリックス状に作製して複数列のセンサアレイを形成してなり、被測定物から放射される赤外線をセンサアレイに入射させることにより、その被測定物表面の複数点の温度を測定し、その測定した温度データとCMOSイメージセンサで撮影した可視画像とを重ねて被測定物における表面温度分布を表示するように用いられる赤外線アレイセンサに関する。   The present invention, for example, measures the surface temperature distribution of various objects such as human bodies, switchboards, and air conditioners, or checks the aging of buildings such as buildings and viaducts, diagnoses the deterioration of insulation, and further checks the temperature of food and clothing. The present invention relates to an infrared array sensor used for measuring a thermal insulation effect. Specifically, a plurality of infrared measuring sensor elements are formed in a vertical and horizontal matrix on the same plane of a semiconductor substrate to form a multi-row sensor array, and infrared rays emitted from the object to be measured are incident on the sensor array. Is used to measure the temperature of a plurality of points on the surface of the object to be measured and to display the surface temperature distribution on the object to be measured by superimposing the measured temperature data and a visible image taken by a CMOS image sensor. The present invention relates to an infrared array sensor.

この種の一般的な赤外線アレイセンサにおいては、被測定物が存在する環境温度の変化に起因する外乱ノイズを軽減するために、赤外線測定用センサ素子とは別に温度補償用素子を併設し、この温度補償用素子からの出力で測定用センサ素子の出力を補正することによって、環境温度が変化した場合の影響を小さくして、安定した赤外線測定が行えるように構成されている。   In this type of general infrared array sensor, in order to reduce disturbance noise caused by changes in the ambient temperature where the object to be measured exists, a temperature compensating element is provided separately from the infrared measuring sensor element. By correcting the output of the sensor element for measurement with the output from the element for temperature compensation, the influence when the environmental temperature changes is reduced, and stable infrared measurement can be performed.

ところで、前記温度補償用素子を併設した赤外線アレイセンサとして、従来、シリコン基板等の半導体基板にその赤外線入射面側から縦横マトリックス状に貫通孔を形成し、これら貫通孔の赤外線非入射面側にボロメータ型の赤外線測定用センサ素子を作製配置する一方、前記半導体基板の赤外線非入射面側で前記各赤外線測定用センサ素子に隣接する位置には縦横マトリックス状に凹部が形成され、これら凹部に測定用センサ素子と同様なメンブレン構造の温度補償用素子を作製配置してなり、半導体基板の赤外線非入射面側に形成された凹部によって温度補償用素子への赤外線の入射を防止するように構成したものが知られている(例えば、特許文献1参照)。   By the way, as an infrared array sensor provided with the temperature compensation element, conventionally, through holes are formed in a vertical and horizontal matrix form from the infrared incident surface side in a semiconductor substrate such as a silicon substrate, and the through holes are formed on the infrared non-incident surface side. While bolometer-type infrared measurement sensor elements are fabricated and arranged, concave portions are formed in a matrix form in a vertical and horizontal matrix at positions adjacent to the infrared measurement sensor elements on the non-infrared incident surface side of the semiconductor substrate. A temperature compensation element having a membrane structure similar to that of the sensor element for manufacturing is manufactured and arranged, and the concave portion formed on the infrared non-incident surface side of the semiconductor substrate is configured to prevent the incidence of infrared rays to the temperature compensation element. Those are known (for example, see Patent Document 1).

特開2001−304973公報JP 2001-304973 A

上記した従来の赤外線アレイセンサは、測定用センサ素子と温度補償用素子とが隣接して配置されているために、環境温度の変化等によって半導体基板内に温度分布が発生しても、両素子をほぼ等しい温度に保って環境温度の変化にかかわらず、常に安定よい出力が得られ、また、特別なカバー等を用いずに温度補償用素子への赤外線の入射を防止することが可能である。   In the conventional infrared array sensor described above, since the sensor element for measurement and the element for temperature compensation are arranged adjacent to each other, even if a temperature distribution is generated in the semiconductor substrate due to a change in environmental temperature or the like, both elements Is maintained at almost the same temperature, and stable output is always obtained regardless of changes in environmental temperature, and it is possible to prevent the incidence of infrared rays into the temperature compensation element without using a special cover. .

しかしながら、従来の赤外線アレイセンサでは、上述のような安定出力及び温度補償用素子への赤外線の入射防止という機能を達成するために、半導体基板に縦横マトリックス状の貫通孔を形成するだけでなく、その基板の赤外線非入射面側にも縦横マトリックス状の凹部を形成することが必要であり、そのため、半導体基板の構造が非常に複雑で基板自体の製作加工が困難な上に、各素子の基板への作り込みも難しい。特に、温度補償用素子については、赤外線の入射防止機能を確実化するために複数個の素子を対応する凹部に個々に作り込む必要があり、その結果、センサ全体の製作工程が多大かつ煩雑となり、製作コストの著しい上昇を招き、また、製造歩留りも悪化しやすいという問題があった。   However, in the conventional infrared array sensor, in order to achieve the function of preventing the incidence of infrared rays to the stable output and the temperature compensating element as described above, not only the vertical and horizontal matrix-shaped through holes are formed in the semiconductor substrate, It is necessary to form vertical and horizontal matrix-shaped recesses on the infrared non-incident surface side of the substrate. Therefore, the structure of the semiconductor substrate is very complicated, and it is difficult to manufacture the substrate itself. It is also difficult to build in. In particular, for temperature compensation elements, it is necessary to individually create a plurality of elements in the corresponding recesses in order to ensure the function of preventing the incidence of infrared rays. As a result, the manufacturing process of the entire sensor becomes large and complicated. However, there has been a problem that the manufacturing cost is significantly increased and the manufacturing yield is easily deteriorated.

本発明は上記のような実情に鑑みてなされたもので、その目的は、この種センサが本来備えている集光レンズを合理的に有効利用することにより、製作コストの上昇並びに製造歩留りの悪化を抑えつつ、環境温度変化の影響が少なく、常に安定した温度測定を行なうことができる赤外線アレイセンサを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to increase the manufacturing cost and the manufacturing yield by rationally and effectively using the condensing lens originally provided in this type of sensor. It is an object to provide an infrared array sensor that is capable of performing stable temperature measurement with little influence of environmental temperature changes while suppressing the above.

上記目的を達成するために、本発明に係る赤外線アレイセンサは、半導体基板の同一平面上に複数個の赤外線測定用センサ素子を縦横マトリックス状に作製して複数列のセンサアレイが形成されているとともに、前記複数個の赤外線測定用センサ素子の受光部に対応する位置にそれぞれ赤外線入射用貫通孔を形成した集光用ミラーが設けられている赤外線アレイセンサであって、前記複数列のセンサアレイの各端部に位置するセンサ素子に隣接する半導体基板部分でそれらセンサ素子と同一平面上には複数個の温度補償用素子が列状に作製され、前記集光用ミラーで前記複数個の温度補償用素子に対応する位置にはそれら温度補償用素子への赤外線の入射を防止する遮光部が形成され、この遮光部及び前記赤外線入射用貫通孔を有する集光用ミラーを前記半導体基板に密接状態に積層して構成されていることを特徴としている。   In order to achieve the above object, an infrared array sensor according to the present invention has a plurality of infrared sensor elements formed in a vertical and horizontal matrix on the same plane of a semiconductor substrate to form a plurality of rows of sensor arrays. In addition, an infrared array sensor provided with a condensing mirror in which infrared incident through holes are respectively formed at positions corresponding to light receiving portions of the plurality of infrared measurement sensor elements, the plurality of rows of sensor arrays A plurality of temperature compensating elements are formed in a row on the same plane as the sensor elements in the semiconductor substrate portion adjacent to the sensor elements located at each end of the sensor element, and the plurality of temperatures are formed by the condensing mirror. A light shielding part for preventing the incidence of infrared rays to the temperature compensating element is formed at a position corresponding to the compensating element, and the light collecting part having the light shielding part and the infrared incident through hole is formed. It is characterized in that the error in the semiconductor substrate which are stacked in close contact.

上記のような特徴構成を有する本発明の赤外線アレイセンサは、赤外線測定用センサ素子と温度補償用素子とが半導体基板の同一平面上に作製されているので、基板内に温度分布が発生しても両素子をほぼ等しい温度に保って、環境温度変化があった場合でも、センサ素子による測定温度を温度補償用素子による出力で補正して常に安定よい出力を得ることができる。しかも、温度補償用素子への赤外線の入射防止のための遮光部が、この種のセンサが本来的に備えている集光用ミラーの一部を利用して形成されているので、特別なカバー等を用いる必要がないのはもとより、従来例のように、半導体基板にマトリックス状に遮光用凹部及び貫通孔を形成することが不要となる。したがって、半導体基板自体の構成及び製作加工が簡単であるだけでなく、その基板に対する各素子の作り込みも容易になり、センサ全体の製作コストの著しい低減及び製造歩留りの改善を図りつつ、上述したとおり環境温度変化などの影響が少なく、常に正確かつ安定のよい温度測定を行なうことができるという効果を奏する。   In the infrared array sensor of the present invention having the above-described characteristic configuration, since the sensor element for infrared measurement and the element for temperature compensation are fabricated on the same plane of the semiconductor substrate, a temperature distribution is generated in the substrate. Even when both elements are kept at substantially the same temperature and the environmental temperature changes, the temperature measured by the sensor element can be corrected by the output from the temperature compensating element to always obtain a stable output. In addition, since the light shielding portion for preventing the incidence of infrared rays to the temperature compensating element is formed by using a part of the condensing mirror that is inherently provided in this type of sensor, a special cover is provided. It is unnecessary to form the light-shielding recesses and the through-holes in a matrix on the semiconductor substrate as in the conventional example. Accordingly, not only the configuration and manufacturing process of the semiconductor substrate itself are simple, but also the fabrication of each element on the substrate is facilitated, and the above-mentioned is achieved while significantly reducing the manufacturing cost of the entire sensor and improving the manufacturing yield. As described above, there is little influence of environmental temperature change and the like, and there is an effect that temperature measurement can always be performed accurately and stably.

特に、本発明に係る赤外線アレイセンサにおいて、請求項2に記載のように、前記複数個の赤外線測定用センサ素子と温度補償用素子を同一のメンブレン構造とすることにより、両素子が同じような環境温度変化を受けたときの影響をほぼ同等にして、誤差の少ない安定した出力を確保することができる。   In particular, in the infrared array sensor according to the present invention, as described in claim 2, the plurality of infrared measurement sensor elements and the temperature compensation element have the same membrane structure, so that both elements are the same. It is possible to secure a stable output with few errors by making the influence when the environmental temperature changes almost equal.

また、本発明に係る赤外線アレイセンサにおいて、請求項3に記載のように、前記集光用ミラーの赤外線入射用貫通孔の周面に、例えば金をスパッタリングするなど高反射率の薄膜を形成することにより、貫通孔に入射する赤外線が孔周面で吸収されることが少なくなり、測定用センサ素子の受光部に集光させて測定精度の一層の向上を図ることができる。   Further, in the infrared array sensor according to the present invention, as described in claim 3, a thin film having a high reflectivity is formed on the peripheral surface of the infrared incident through hole of the condensing mirror, for example, by sputtering gold. Thus, infrared rays incident on the through hole are less absorbed by the hole peripheral surface, and can be focused on the light receiving portion of the measurement sensor element to further improve the measurement accuracy.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は本発明に係る赤外線アレイセンサ1全体の概略平面図、図2は図1のA−A’線に沿った要部の拡大断面図であり、この赤外線アレイセンサ1は、受光チップ2とこれに重ね合わせられた集光用ミラー3とからなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view of the entire infrared array sensor 1 according to the present invention. FIG. 2 is an enlarged cross-sectional view of a main part along the line AA ′ in FIG. 1. The infrared array sensor 1 includes a light receiving chip 2. And the condensing mirror 3 superposed on this.

前記受光チップ2を構成するシリコン基板(半導体基板の一例)4の表面側の同一平面上には、図3の(a)に示すように、縦横方向でm個×n個、例えば8個×7個の赤外線測定用センサ素子5が一定間隔を隔ててドットマトリックス状に作製されており、これによって、m列、例えば8列のセンサアレイ6が形成されているとともに、それら各列のセンサアレイ6の端部に位置するm個の測定用センサ素子5に隣接するシリコン基板2の端部分には、前記各測定用センサ素子5と同一平面上に並べてm個、例えば8個の温度補償用素子7が列状に作製されている。   On the same plane on the surface side of a silicon substrate (an example of a semiconductor substrate) 4 constituting the light receiving chip 2, as shown in FIG. 3A, m × n, for example, 8 × Seven infrared measurement sensor elements 5 are formed in a dot matrix form at regular intervals, thereby forming m rows, for example, eight rows of sensor arrays 6, and sensor arrays in each row. 6 at the end portion of the silicon substrate 2 adjacent to the m measurement sensor elements 5 positioned at the end of 6 are arranged on the same plane as each of the measurement sensor elements 5, for example, eight, for temperature compensation. Elements 7 are formed in a row.

一方、前記集光ミラー3には、図3の(b)に示すように、受光チップ2におけるm個×n個の赤外線測定用センサ素子5の各受光部5aに対応する位置それぞれにm個×n個の赤外線入射用貫通孔8が形成されているとともに、受光チップ2におけるm個の温度補償用素子7に対応する位置に無孔でそれら温度補償用素子7への赤外線IRの入射を防止する帯状の遮光部9が形成されている。なお、各赤外線入射用貫通孔8の周面には、例えば金スパッタリングなどにより高反射率の薄膜18が形成されており、貫通孔8に入射する赤外線IRが孔周面で吸収されることを少なくして、測定用センサ素子5の受光部5aに集光させている。   On the other hand, as shown in FIG. 3B, the condensing mirror 3 has m pieces at each of the positions corresponding to the light receiving portions 5a of the m × n infrared sensor elements 5 in the light receiving chip 2. Xn through-holes 8 for infrared incidence are formed, and infrared IR is incident on the temperature compensation elements 7 without holes at positions corresponding to the m temperature compensation elements 7 in the light receiving chip 2. A strip-shaped light-shielding portion 9 is formed to prevent it. Note that a thin film 18 having a high reflectivity is formed on the peripheral surface of each infrared incident through hole 8 by, for example, gold sputtering, and the infrared IR incident on the through hole 8 is absorbed by the peripheral surface. The light is condensed on the light receiving portion 5a of the measurement sensor element 5 by reducing the number.

そして、図3の(b)に示すような構成の集光ミラー3を、その裏面がシリコン基板4の表面に密接する状態で前記受光チップ2上に積層固着して組付けることにより、図2に明示するように、各赤外線測定用センサ素子5の受光部5a上に赤外線入射用の貫通孔8が位置し、かつ、各温度補償用素子7が集光ミラー3の遮光部9で覆われて赤外線IRの入射が防止される状態の赤外線アレイセンサ1が構成される。   Then, the condenser mirror 3 configured as shown in FIG. 3B is laminated and fixed on the light receiving chip 2 in a state where the back surface thereof is in close contact with the front surface of the silicon substrate 4, so that FIG. As shown in FIG. 4, the infrared incident through hole 8 is positioned on the light receiving portion 5a of each infrared measuring sensor element 5, and each temperature compensating element 7 is covered with the light shielding portion 9 of the condenser mirror 3. Thus, the infrared array sensor 1 in a state in which the incidence of the infrared IR is prevented is configured.

前記赤外線測定用センサ素子5としては、図4及び図5に示すように構成されたものを使用している。すなわち、シリコン基板4の上面にSiO2 薄膜10が形成され、このSiO2 薄膜10上に、サーモパイルセンサ12が積層されたメンブレン構造に構成されており、さらにサーモパイルセンサ12上に絶縁膜13を介して赤外線吸収膜14が積層されている。また、温度補償用素子7は、前記赤外線測定用センサ素子5と同一のメンブレン構造に構成されている。   As the infrared measuring sensor element 5, an element configured as shown in FIGS. 4 and 5 is used. That is, a SiO2 thin film 10 is formed on the upper surface of the silicon substrate 4, and a thermopile sensor 12 is laminated on the SiO2 thin film 10, and an infrared ray is further formed on the thermopile sensor 12 via an insulating film 13. The absorption film 14 is laminated. The temperature compensating element 7 has the same membrane structure as the infrared measuring sensor element 5.

なお、前記赤外線測定用センサ素子5及び温度補償用素子7に使用されているサーモパイルセンサ12は、アルミ12aとポリシリコン12bという異種金属からなり、その温接点12cを冷却しておくことでペルチェ効果により冷接点12dを熱する方向の熱起電力を発生する熱電対(サーモカップル)を直列に数十対つないで構成されたものである。   The thermopile sensor 12 used for the infrared measuring sensor element 5 and the temperature compensating element 7 is made of different metals such as aluminum 12a and polysilicon 12b, and the Peltier effect is obtained by cooling the hot junction 12c. Thus, dozens of thermocouples (thermocouples) that generate thermoelectromotive force in the direction to heat the cold junction 12d are connected in series.

また、前記受光チップ2の周辺には、信号出力部14及び出力選択回路15が形成されており、図6のチップ回路図に示すように、出力選択回路15により所定の電圧が供給されたとき、前記サーモカップル12を使用してなる赤外線測定用センサ素子5に隣接されているスイッチSW及び各センサアレイ6の端部に設けられたスイッチSW1〜SW8を介してセンサ素子5及びセンサアレイ6が選択されて、赤外線IRの受光量に応じた信号を出力部14から信号検出・処理回路17に出力できるように構成されている。   Further, a signal output unit 14 and an output selection circuit 15 are formed around the light receiving chip 2, and when a predetermined voltage is supplied by the output selection circuit 15 as shown in the chip circuit diagram of FIG. The sensor element 5 and the sensor array 6 are connected via the switch SW adjacent to the infrared measuring sensor element 5 using the thermocouple 12 and the switches SW1 to SW8 provided at the end of each sensor array 6. When selected, a signal corresponding to the amount of received infrared IR light can be output from the output unit 14 to the signal detection / processing circuit 17.

以上のように、赤外線測定用センサ素子5と温度補償用素子7とがシリコン基板4表面の同一平面上に作製されてなる赤外線アレイセンサ1においては、シリコン基板4内に温度分布が発生しても両素子5,7をほぼ等しい温度に保って、環境温度変化があった場合でも、センサ素子5による測定温度を温度補償用素子7による出力で補正して常に安定よい出力を得ることができる。   As described above, in the infrared array sensor 1 in which the infrared measurement sensor element 5 and the temperature compensation element 7 are fabricated on the same plane of the surface of the silicon substrate 4, a temperature distribution is generated in the silicon substrate 4. Even when both elements 5 and 7 are maintained at substantially the same temperature, and the environmental temperature changes, the measured temperature by the sensor element 5 can be corrected by the output from the temperature compensating element 7 to always obtain a stable output. .

また、温度補償用素子7への赤外線IRの入射防止のための遮光部9が、この種の赤外線アレイセンサ1が本来的に備えている集光用ミラー3の一部を利用して形成されているので、特別なカバー等を用いる必要がないのはもとより、従来例のように、シリコン基板4にマトリックス状に遮光用凹部及び貫通孔を形成することも不要であり、シリコン基板4自体の構成及び製作加工が簡単であるだけでなく、そのシリコン基板4に対する各素子5,7の作り込みも容易である。   Further, the light shielding portion 9 for preventing the incidence of the infrared IR to the temperature compensating element 7 is formed by utilizing a part of the condensing mirror 3 that is originally provided in this type of infrared array sensor 1. Therefore, it is not necessary to use a special cover or the like, and it is not necessary to form light shielding recesses and through holes in a matrix on the silicon substrate 4 as in the conventional example. Not only the configuration and manufacturing process are simple, but also the elements 5 and 7 are easily formed on the silicon substrate 4.

特に、赤外線測定用センサ素子5と温度補償用素子7とを同一のメンブレン構造に構成とすることにより、温度補償用素子7として特別なものを作製する必要がなく、受光チップ2上に必要数の同一素子をドットマトリックス状に作製すればよいので、センサ1全体の製作コストの著しい低減及び製造歩留りの改善を図ることができる。それでいて、集光ミラー3の貫通孔8に入射する赤外線IRを高反射率の薄膜18で反射させ、それを吸収膜14で十分に吸収させて測定用センサ素子5の受光部5aに効率よく集光させて測定感度を高めることが可能であるから、両素子5,7が同じような環境温度変化を受けたときの影響をほぼ同等にして、誤差の非常に少ない正確かつ安定のよい温度測定を行なうことができる。   In particular, by configuring the infrared measuring sensor element 5 and the temperature compensating element 7 to have the same membrane structure, it is not necessary to produce a special temperature compensating element 7 and the necessary number on the light receiving chip 2. Therefore, the manufacturing cost of the entire sensor 1 can be significantly reduced and the manufacturing yield can be improved. Nevertheless, the infrared IR incident on the through-hole 8 of the condensing mirror 3 is reflected by the thin film 18 having a high reflectivity and is sufficiently absorbed by the absorption film 14 to be efficiently collected in the light receiving portion 5a of the measuring sensor element 5. Since it is possible to increase the measurement sensitivity by illuminating, the effects when both elements 5 and 7 are subjected to the same environmental temperature change are made almost equal, and accurate and stable temperature measurement with very little error. Can be performed.

なお、上記実施の形態では、赤外線測定用センサ素子5及び温度補償用素子7として、サールパイルセンサ12を使用したもので説明したが、ボロメータ型素子を使用したものであってもよい。   In the above embodiment, the sensor element 5 for infrared measurement and the element 7 for temperature compensation have been described using the salle pile sensor 12, but a bolometer type element may be used.

また、上記実施の形態では、赤外線測定用センサ素子5及び温度補償用素子7を、縦横8個×8個のドットマトリックス状に配置したが、その縦横の配置数はそれ以外であってもよいこともちろんである。   In the above embodiment, the infrared measuring sensor element 5 and the temperature compensating element 7 are arranged in a dot matrix of 8 × 8 dots. However, the number of the arranged elements may be other than that. Of course.

本発明に係る赤外線アレイセンサ全体の概略平面図である。1 is a schematic plan view of an entire infrared array sensor according to the present invention. 図1のA−A’線に沿った要部の拡大断面図である。It is an expanded sectional view of the principal part along the A-A 'line of FIG. 赤外線アレイセンサの組付前の状態を示し、(a)は受光チップの概略平面 図、(b)は集光ミラーの概略平面図である。The state before assembly | attachment of an infrared array sensor is shown, (a) is a schematic plan view of a light receiving chip, (b) is a schematic plan view of a condensing mirror. 赤外線測定用センサ素子の一部切欠き斜視図である。It is a partially cutaway perspective view of a sensor element for infrared measurement. 赤外線測定用センサ素子の縦断面図である。It is a longitudinal cross-sectional view of the sensor element for infrared measurement. 受光チップの回路図である。It is a circuit diagram of a light receiving chip.

符号の説明Explanation of symbols

1 赤外線アレイセンサ
3 集光用ミラー
4 シリコン基板(半導体基板)
5 赤外線測定用センサ素子
5a 受光部
6 センサアレイ
7 温度補償用素子
8 赤外線入射用貫通孔
9 遮光部
12 サーモパイルセンサ
14 赤外線吸収膜
18 高反射率薄膜
IR 赤外線
1 Infrared array sensor 3 Condensing mirror 4 Silicon substrate (semiconductor substrate)
DESCRIPTION OF SYMBOLS 5 Sensor element for infrared measurement 5a Light-receiving part 6 Sensor array 7 Temperature compensation element 8 Through-hole for infrared incidence 9 Light-shielding part 12 Thermopile sensor 14 Infrared absorption film 18 High reflectivity thin film IR Infrared

Claims (3)

半導体基板の同一平面上に複数個の赤外線測定用センサ素子を縦横マトリックス状に作製して複数列のセンサアレイが形成されているとともに、前記複数個の赤外線測定用センサ素子の受光部に対応する位置にそれぞれ赤外線入射用貫通孔を形成した集光用ミラーが設けられている赤外線アレイセンサであって、
前記複数列のセンサアレイの各端部に位置するセンサ素子に隣接する半導体基板部分でそれらセンサ素子と同一平面上には複数個の温度補償用素子が列状に作製され、前記集光用ミラーで前記複数個の温度補償用素子に対応する位置にはそれら温度補償用素子への赤外線の入射を防止する遮光部が形成され、この遮光部及び前記赤外線入射用貫通孔を有する集光用ミラーを前記半導体基板に密接状態に積層して構成されていることを特徴とする赤外線アレイセンサ。
A plurality of infrared measuring sensor elements are formed in a vertical and horizontal matrix on the same plane of the semiconductor substrate to form a plurality of rows of sensor arrays and correspond to light receiving portions of the plurality of infrared measuring sensor elements. Infrared array sensor provided with a condensing mirror in which a through-hole for infrared incidence is formed at each position,
A plurality of temperature compensating elements are formed in a row on the same plane as the sensor elements in the semiconductor substrate adjacent to the sensor elements located at each end of the plurality of sensor arrays, and the light collecting mirror In the positions corresponding to the plurality of temperature compensating elements, a light shielding part for preventing the incidence of infrared rays to the temperature compensating elements is formed, and the condensing mirror having the light shielding part and the infrared incident through-holes An infrared array sensor, wherein the semiconductor substrate is stacked in close contact with the semiconductor substrate.
前記複数個の赤外線測定用センサ素子と温度補償用素子は、同一のメンブレン構造である請求項1に記載の赤外線アレイセンサ。   The infrared array sensor according to claim 1, wherein the plurality of infrared measurement sensor elements and the temperature compensation element have the same membrane structure. 前記集光用ミラーの赤外線入射用貫通孔の周面には、高反射率の薄膜が形成されている請求項1または2に記載の赤外線アレイセンサ。

3. The infrared array sensor according to claim 1, wherein a thin film having a high reflectance is formed on a peripheral surface of the infrared incident through hole of the condensing mirror.

JP2004081480A 2004-03-19 2004-03-19 Infrared array sensor Expired - Fee Related JP4456385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081480A JP4456385B2 (en) 2004-03-19 2004-03-19 Infrared array sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081480A JP4456385B2 (en) 2004-03-19 2004-03-19 Infrared array sensor

Publications (2)

Publication Number Publication Date
JP2005268660A true JP2005268660A (en) 2005-09-29
JP4456385B2 JP4456385B2 (en) 2010-04-28

Family

ID=35092859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081480A Expired - Fee Related JP4456385B2 (en) 2004-03-19 2004-03-19 Infrared array sensor

Country Status (1)

Country Link
JP (1) JP4456385B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039799A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Sensor array
WO2011039797A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor
WO2011039798A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor and sensor array equipped with same
CN103415758A (en) * 2011-02-18 2013-11-27 日本电气株式会社 Infrared detection sensor array and infrared detection device
KR20150092563A (en) * 2014-02-05 2015-08-13 한국화학연구원 Apparatus and method for testing weather resistance and arrangement method of the apparatus
JP2016080556A (en) * 2014-10-20 2016-05-16 岡谷電機産業株式会社 Infrared sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011039799A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Sensor array
WO2011039797A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor
WO2011039798A1 (en) * 2009-09-29 2011-04-07 パイオニア株式会社 Mems sensor and sensor array equipped with same
JPWO2011039798A1 (en) * 2009-09-29 2013-02-21 パイオニア株式会社 MEMS sensor and sensor array including the same
JPWO2011039797A1 (en) * 2009-09-29 2013-02-21 パイオニア株式会社 MEMS sensor
CN103415758A (en) * 2011-02-18 2013-11-27 日本电气株式会社 Infrared detection sensor array and infrared detection device
KR20150092563A (en) * 2014-02-05 2015-08-13 한국화학연구원 Apparatus and method for testing weather resistance and arrangement method of the apparatus
KR101694395B1 (en) * 2014-02-05 2017-01-10 한국화학연구원 Apparatus and method for testing weather resistance and arrangement method of the apparatus
JP2016080556A (en) * 2014-10-20 2016-05-16 岡谷電機産業株式会社 Infrared sensor

Also Published As

Publication number Publication date
JP4456385B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US6335478B1 (en) Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same
US7491937B2 (en) Two-wavelength image sensor picking up both visible and infrared images
JP2004317152A5 (en)
US20110147869A1 (en) Integrated infrared sensors with optical elements, and methods
KR100205384B1 (en) Infrared sensor and method of temperature compensation
JP2008145133A (en) Radiation thermometer
JP2010507806A (en) Dual band imaging device having a visible or SWIR detector combined with an uncooled LWIR detector
US7288765B2 (en) Device for detecting infrared radiation with bolometric detectors
JP6095856B2 (en) Electromagnetic wave detector and gas analyzer
JP5251310B2 (en) Two-wavelength thermal infrared array sensor
JP4456385B2 (en) Infrared array sensor
JP5261102B2 (en) Infrared sensor and infrared sensor module
EP1045233A2 (en) Thermal functional device capable of high-speed response and a method of driving the device
CN202869656U (en) Highly stress-balanced infrared detector
KR100539395B1 (en) Uncooled infrared sensor with two-layer structure
JP2001309122A (en) Infrared ray image sensor
JP2006105651A (en) Thermopile element and infrared sensor using it
JP2008082791A (en) Infrared sensor
KR101180647B1 (en) Design of pixel for more higher fill factor wherein microbolometer
Tohyama et al. Uncooled infrared detectors toward smaller pixel pitch with newly proposed pixel structure
JP2011179828A (en) Multi-wavelength infrared array sensor
JP2001041818A (en) Bolometer type infrared ray detection element and infrared ray image sensor using the same
JP2007085917A (en) Infrared array sensor
JP5081116B2 (en) Infrared sensor and infrared sensor module
WO2006038213A2 (en) Millimeter wave pixel and focal plane array imaging sensors thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees