Nothing Special   »   [go: up one dir, main page]

JP2005228945A - Three wavelength semiconductor laser array monolithically integrated on semiconductor substrate - Google Patents

Three wavelength semiconductor laser array monolithically integrated on semiconductor substrate Download PDF

Info

Publication number
JP2005228945A
JP2005228945A JP2004036728A JP2004036728A JP2005228945A JP 2005228945 A JP2005228945 A JP 2005228945A JP 2004036728 A JP2004036728 A JP 2004036728A JP 2004036728 A JP2004036728 A JP 2004036728A JP 2005228945 A JP2005228945 A JP 2005228945A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
compound semiconductor
group
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004036728A
Other languages
Japanese (ja)
Other versions
JP4604189B2 (en
Inventor
Kunio Ito
國雄 伊藤
Takumi Senoo
匠 妹尾
Shunsuke Nayama
俊輔 名山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuyama National College of Tech
Original Assignee
Tsuyama National College of Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuyama National College of Tech filed Critical Tsuyama National College of Tech
Priority to JP2004036728A priority Critical patent/JP4604189B2/en
Publication of JP2005228945A publication Critical patent/JP2005228945A/en
Application granted granted Critical
Publication of JP4604189B2 publication Critical patent/JP4604189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-wavelength semiconductor laser array where three kinds of semiconductor laser elements, i.e. a red laser element, an infrared laser element and a blue laser element are integrated on one substrate, by relaxing mismatch of a blue laser and a substrate material. <P>SOLUTION: In the three wavelength semiconductor laser array, a red laser element, an infrared laser element and a blue laser element are monolithically integrated on a semiconductor substrate. A buffer layer, including at least one kind of compound semiconductor selected from among a group consisting of a I-III-VI compound semiconductor, a II-III-VI compound semiconductor and a II-III-V compound semiconductor, is provided in between the semiconductor substrate and the blue laser element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体基板上にモノリシック集積化された三波長半導体レーザアレイ装置に関係する。   The present invention relates to a three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate.

半導体レーザは他のタイプのレーザと比べて小型、高効率、低電圧、低消費電力、長寿命などの性質をもっており、光エレクトロニクス分野で幅広く使われている。半導体レーザは特に通信用の技術として成長してきた。しかし、最近ではCDやDVD、さらには次世代ディスク等ストレージへの利用の重要性も高まってきている。   Semiconductor lasers have characteristics such as small size, high efficiency, low voltage, low power consumption and long life compared to other types of lasers, and are widely used in the field of optoelectronics. Semiconductor lasers have grown especially as communications technologies. However, recently, the importance of use for storage such as CDs, DVDs, and next-generation disks is also increasing.

現在、半導体レーザは単波長レーザとして、波長が780nmの赤外レーザ(材料にGaAlAs系(750〜850nm)を使用し、基板材料として、GaAsを使用)、波長が650nmの赤色レーザ(材料にGaAlInP系(620〜680nm)を使用し、基板材料としてGaAsを使用)、波長が405nmの青紫レーザ(材料にGaN系(紫青緑)を使用し、基板材料としサファイア(Al23)を使用)がある。また、最近では赤色レーザと赤外レーザを一つの基板上(GaAs)に搭載した二波長半導体レーザも製品化されている。二波長レーザを実現したことで現在発売されているDVDプレーヤやドライブでは、DVDメディアと同時にCDメディアも同時に読み取ることができる。DVD発売初期のプレーヤではCDを同時に読み取るために、ピックアップに波長780と650nmの二つの半導体レーザを用いていた。しかしこれでは、CD用レーザのためにダイクロイックプリズムを設けなければならず。ピックアップの肥大化を招く結果となる。そこで開発されたのが一つの素子で二つの波長が発振する二波長半導体レーザである。これを用いることによりダイクロイックプリズムをなくすことができ、ハーフミラー1つでコリメータレンズ・対物レンズを通してCD・DVD両方のピットを検出できるようになり、ピックアップの小型化を実現することができるようになっている。 Currently, a semiconductor laser is a single wavelength laser, an infrared laser having a wavelength of 780 nm (GaAlAs (750 to 850 nm) is used as a material, GaAs is used as a substrate material), and a red laser (GaAlInP is used as a material) is 650 nm. System (620-680 nm) is used, GaAs is used as the substrate material, blue-violet laser with a wavelength of 405 nm (GaN-based (purple blue green) is used as the material, and sapphire (Al 2 O 3 ) is used as the substrate material. ) Recently, a two-wavelength semiconductor laser in which a red laser and an infrared laser are mounted on one substrate (GaAs) has been commercialized. The DVD player and drive currently on sale by realizing the dual wavelength laser can simultaneously read the DVD medium and the CD medium at the same time. Players in the early days of DVD sales used two semiconductor lasers with wavelengths of 780 and 650 nm to simultaneously read a CD. However, in this case, a dichroic prism must be provided for the CD laser. As a result, the pickup becomes enlarged. Therefore, a two-wavelength semiconductor laser that oscillates two wavelengths with one element was developed. By using this, the dichroic prism can be eliminated, and the pits of both CD and DVD can be detected through a collimator lens and an objective lens with a single half mirror, so that the pickup can be miniaturized. ing.

今後、光学機器は小型化、軽量化、低消費電力とさらにエネルギー効率の良い、かつ製造コストが低いものが必要とされてくる。従来の単波長レーザに比べて、二波長レーザの部品点数が半分になったことから小型化を可能にしたが、電気機器や医療にとどまらずさまざまな分野への応用が要求されている半導体レーザは将来的に、一つの素子で三つのレーザ(赤色、赤外、青紫)を発振させる新三波長レーザが必要になるといえる。そして、二波長レーザ、三波長レーザなどの多波長レーザの実用化がなされることで、今後、光通信や光学機器などの分野だけでなく、様々な分野への応用も大変活躍することが期待できる。   In the future, optical devices will be required to be smaller, lighter, consume less power, be more energy efficient, and have lower manufacturing costs. Compared to conventional single-wavelength lasers, the number of parts of dual-wavelength lasers has been halved, enabling miniaturization, but semiconductor lasers that are not limited to electrical equipment and medical use are required to be applied in various fields. In the future, it can be said that a new three-wavelength laser that oscillates three lasers (red, infrared, and blue-violet) with one element will be required. With the practical application of multi-wavelength lasers such as two-wavelength lasers and three-wavelength lasers, it is expected that they will be used not only in the fields of optical communications and optical equipment but also in various fields. it can.

従来、三波長を有する光ピックアップは様々な構造が発案されているが、その例として特許文献1がある。これに代表されるように従来は二波長モノリシックGaAs半導体レーザの2個の発光点位置と青紫波長のGaN半導体レーザの発光点位置を近づけてハイブリッドで集積化していた。しかしこれでは製造の過程が複雑になり、コストも大きくなる。   Conventionally, various structures have been proposed for an optical pickup having three wavelengths, and Patent Document 1 is an example. As represented by this, conventionally, two light emitting point positions of a two-wavelength monolithic GaAs semiconductor laser and a light emitting point position of a blue-violet wavelength GaN semiconductor laser are brought close to each other and integrated in a hybrid manner. However, this complicates the manufacturing process and increases the cost.

また、特許文献2に開示されているように、従来はGaAs基板とGaN発光層領域の格子定数のミスマッチを解決する方法としてバッファ層としてZnOを使用している。しかし、ZnOのバッファ層はGaN発光層領域とは格子定数はマッチングしているが、GaAs基板との格子定数は不一致である。さらに、特許文献3ではGaAs基板上に表面窒化層を形成して、GaN発光層を形成しているが、これもGaAs基板と表面窒化層とは格子定数のミスマッチが大きく、転位が生じてしまい発光素子の発光効率や信頼性に非常に悪い影響をもたらす。
特開2002−25104号公報 特開2000−22128号公報 特開平8−181386号公報
Further, as disclosed in Patent Document 2, conventionally, ZnO is used as a buffer layer as a method for solving the mismatch of the lattice constant between the GaAs substrate and the GaN light emitting layer region. However, the ZnO buffer layer matches the lattice constant with the GaN light emitting layer region, but does not match the lattice constant with the GaAs substrate. Furthermore, in Patent Document 3, a surface nitride layer is formed on a GaAs substrate to form a GaN light emitting layer, but this also has a large lattice constant mismatch between the GaAs substrate and the surface nitride layer, resulting in dislocations. This has a very bad influence on the luminous efficiency and reliability of the light emitting element.
JP 2002-25104 A Japanese Patent Laid-Open No. 2000-22128 JP-A-8-181386

従来、青色レーザの基板材料はサファイア(Al23)であるが、サファイアは基板材料として、コストが高く、大量生産を行う際、好ましくない基板材料である。三波長レーザを製造するにあたって、シリコンもしくはGaAsを基板として利用できれば、これらはコストが安価なため大量生産に向いているといえる。 Conventionally, the substrate material of blue laser is sapphire (Al 2 O 3 ). However, sapphire is an unfavorable substrate material for mass production because of its high cost. In manufacturing a three-wavelength laser, if silicon or GaAs can be used as a substrate, these can be said to be suitable for mass production because of their low cost.

しかしながら、基板材料に用いるSiもしくはGaAsと青色レーザの活性層材料であるInGaNの格子定数のミスマッチングがある。格子定数とは単結晶を構成する単位原子間の距離のことをいい、格子定数のミスマッチングがある場合、ひずみや断層ができてしまう。その結果、電気抵抗が桁違いに大きくなり、ジュール発熱で極端な場合燃えてしまうこともある。このため、従来、シリコンもしくはGaAs基板上に青色レーザは成長できないという問題点があった。   However, there is a mismatch in lattice constant between Si or GaAs used for the substrate material and InGaN, which is the active layer material of the blue laser. The lattice constant refers to the distance between unit atoms constituting a single crystal. If there is a mismatch in the lattice constant, a strain or a fault is generated. As a result, the electrical resistance increases by an order of magnitude, and it may burn in extreme cases due to Joule heat generation. For this reason, conventionally, there has been a problem that a blue laser cannot be grown on a silicon or GaAs substrate.

本発明はこのような事情に基づいて行われたものであり、その目的はこの青色レーザと基板材料のミスマッチングを緩和し、一つの基板上に3種の半導体レーザ素子、すなわち赤色レーザ素子、赤外レーザ素子および青色レーザ素子を集積化した三波長半導体レーザアレイ装置を提供することである。   The present invention has been made based on such circumstances, and its purpose is to alleviate mismatching between the blue laser and the substrate material, and three types of semiconductor laser elements on one substrate, that is, a red laser element, It is an object to provide a three-wavelength semiconductor laser array device in which an infrared laser element and a blue laser element are integrated.

本発明によれば、半導体基板上にモノリシックに赤色レーザ素子、赤外レーザ素子および青色レーザ素子が集積化された三波長半導体レーザアレイ装置において、前記半導体基板と前記青色レーザ素子との間にI−III−VI族化合物半導体、II−III−VI族化合物半導体、およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも1種の化合物半導体を含むバッファ層を設けたことを特徴とする三波長半導体レーザアレイ装置が提供される。   According to the present invention, in a three-wavelength semiconductor laser array device in which a red laser element, an infrared laser element, and a blue laser element are monolithically integrated on a semiconductor substrate, I is provided between the semiconductor substrate and the blue laser element. A buffer layer including at least one compound semiconductor selected from the group consisting of a group III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor is provided. A three-wavelength semiconductor laser array device is provided.

本発明において、バッファ層は、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも2種の化合物半導体の超格子構造、または該化合物半導体とIII族窒化物半導体の超格子構造を有し得る。あるいは、バッファ層は、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる2種の化合物半導体の交互の層、または該化合物半導体とIII族窒化物半導体の交互の層を含み、該交互の層の一方の化合物半導体は、前記半導体基板と格子定数が近く、他方の化合物半導体は、前記青色レーザ素子の材料と格子定数が近く、かつ前記一方の化合物半導体層の厚さは、前記半導体基板から青色レーザ素子に向かうにつれて薄くなり、前記他方の化合物半導体層の厚さは、前記青色レーザ素子から前記半導体基板に向かうにつれて薄くなる構造を有し得る。   In the present invention, the buffer layer comprises at least two compound semiconductors selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor. It may have a lattice structure or a superlattice structure of the compound semiconductor and the group III nitride semiconductor. Alternatively, the buffer layer is an alternating layer of two compound semiconductors selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor, Or an alternating layer of the compound semiconductor and the group III nitride semiconductor, wherein one compound semiconductor of the alternating layer has a lattice constant close to that of the semiconductor substrate, and the other compound semiconductor is composed of the material of the blue laser element. The lattice constant is close, and the thickness of the one compound semiconductor layer decreases from the semiconductor substrate toward the blue laser element, and the thickness of the other compound semiconductor layer decreases from the blue laser element to the semiconductor substrate. It may have a structure that becomes thinner as it goes.

本発明によれば、一つの基板(SiもしくはGaAs)上に3種の半導体レーザを集積化させた三波長半導体レーザアレイ装置を提供できるので、光ディスク装置の光学機器の小型化、軽量化に有効である。また、1つ光学機器でCD、DVD、HD−DVDが使用可能になるのでHD−DVDの普及が加速され、光学録画が磁気録画にとって変わることに貢献する。そして、多波長レーザの用途拡大や進展に大きく貢献する。   According to the present invention, it is possible to provide a three-wavelength semiconductor laser array device in which three types of semiconductor lasers are integrated on a single substrate (Si or GaAs), which is effective in reducing the size and weight of optical devices in optical disk devices. It is. Also, CD, DVD, and HD-DVD can be used with a single optical device, so that the spread of HD-DVD is accelerated, contributing to the change of optical recording to magnetic recording. This greatly contributes to the expansion and progress of multi-wavelength laser applications.

本発明は、同一半導体基板上に赤色レーザ素子、赤外レーザ素子および青色レーザ素子を集積化したものである。半導体基板と青色レーザ素子の間にバッファ層が形成されている。   In the present invention, a red laser element, an infrared laser element, and a blue laser element are integrated on the same semiconductor substrate. A buffer layer is formed between the semiconductor substrate and the blue laser element.

本発明において、赤色レーザ素子(レーザダイオード)は、GaInP系のものであり得、例えば、GaInPを活性層とし、この活性層を挟んでAlGaInPからなるp型およびn型のクラッド層が設けられた構成を有し得る。赤色レーザ素子の活性層は、量子井戸構造を有し得る。赤外レーザ素子(レーザダイオード)は、GaAs系のものであり得、例えば、AlGaAsを活性層とし、この活性層を挟んでAlGaAsからなるp型およびn型のクラッド層が設けられた構成を有し得る。赤外レーザ素子の活性層は、量子井戸構造を有し得る。また、青色レーザ素子は、ガリウム含有III族窒化物半導体からなるGaN系、特にガリウム含有III族窒化物半導体のダブルへテロ構造を有するGaN系発光素子を含む。かかるダブルヘテロ構造のGaN系発光素子は、例えば、InGaNを活性層とし、この活性層を挟んでガリウム含有窒化物半導体(例えば、GaN、AlGaN等)からなるp型およびn型のクラッド層が設けらた構成を有し得る。青色レーザ素子の活性層も量子井戸構造を有し得る。   In the present invention, the red laser element (laser diode) may be a GaInP-based one. For example, GaInP is used as an active layer, and p-type and n-type clad layers made of AlGaInP are provided with the active layer interposed therebetween. It can have a configuration. The active layer of the red laser element can have a quantum well structure. The infrared laser element (laser diode) may be of a GaAs type, and has, for example, a configuration in which AlGaAs is used as an active layer and p-type and n-type clad layers made of AlGaAs are provided with the active layer interposed therebetween. Can do. The active layer of the infrared laser element can have a quantum well structure. The blue laser element includes a GaN-based light emitting element having a GaN-based group III nitride semiconductor, particularly a GaN-based light-emitting element having a double heterostructure of a gallium-containing group III nitride semiconductor. Such a double heterostructure GaN-based light emitting device has, for example, InGaN as an active layer, and p-type and n-type clad layers made of a gallium-containing nitride semiconductor (for example, GaN, AlGaN, etc.) are provided across the active layer. May have a different configuration. The active layer of the blue laser element can also have a quantum well structure.

青色レーザ素子と半導体基板(シリコンもしくはGaAs)との間に設けられるバッファ層は、I−III−VI族化合物半導体、II−III−VI族化合物半導体、およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも1種の化合物半導体を含む。   The buffer layer provided between the blue laser element and the semiconductor substrate (silicon or GaAs) is made of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor. It includes at least one compound semiconductor selected from the group.

本発明の1つの態様に係るバッファ層は、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも2種の化合物半導体の超格子構造、または該化合物半導体とIII族窒化物半導体の超格子構造を有するものである。超格子構造は、数ナノメーター程度の厚さの層を多数積層した構造である。超格子構造を構成する化合物半導体層のうち、半導体基板上に直接形成される化合物半導体層は、半導体基板を構成する半導体の格子定数に近い化合物半導体により形成し、最上層の化合物半導体層は、その上に形成されるGaN系レーザ素子におけるガリウム含有窒化物半導体の格子定数に近い化合物半導体により形成することが好ましい。かかる超格子の材料として、CuGaS2とGaAlNの組み合わせ、またはCuGaS2とZnIn24の組み合わせを用いることが好ましい。 The buffer layer according to one embodiment of the present invention includes at least two kinds selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor. It has a superlattice structure of a compound semiconductor or a superlattice structure of the compound semiconductor and a group III nitride semiconductor. The superlattice structure is a structure in which a large number of layers having a thickness of about several nanometers are stacked. Among the compound semiconductor layers constituting the superlattice structure, the compound semiconductor layer formed directly on the semiconductor substrate is formed of a compound semiconductor close to the lattice constant of the semiconductor constituting the semiconductor substrate, and the uppermost compound semiconductor layer is It is preferable to form a compound semiconductor close to the lattice constant of the gallium-containing nitride semiconductor in the GaN-based laser element formed thereon. It is preferable to use a combination of CuGaS 2 and GaAlN or a combination of CuGaS 2 and ZnIn 2 S 4 as the material of such a superlattice.

図1は、シリコンまたはGaAs半導体基板11上に形成された1つの好ましい超格子構造のバッファ層12を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing one preferred superlattice buffer layer 12 formed on a silicon or GaAs semiconductor substrate 11.

バッファ層12は、CuGaS2とGaAlNもしくはZnIn24との2種の化合物半導体の交互積層構造を含む。図1において、CuGaS2からなる化合物半導体層を12An(nは、半導体基板11に近いものから数えてn番目の層を示す)で表し、GaAlNもしくはZnIn24からなる化合物半導体層を12Bn(nは、半導体基板11に近いものから数えてn番目の層を示す)で表すと、半導体基板11上に直接形成される化合物半導体層は、層12A1により構成し、バッファ層12の最上層を構成する化合物半導体層は、層12Bnにより構成することが好ましい。この場合、バッファ層12を構成するすべての化合物半導体層は、実質的に同じ厚さ、例えば5nmの厚さを有し得る。各化合物半導体層は、MOCVD法により成長させることができる。バッファ層12は、例えば100層の各化合物半導体層からなり得、その厚さは例えば0.5μmとすることができる。 The buffer layer 12 includes an alternate stacked structure of two compound semiconductors of CuGaS 2 and GaAlN or ZnIn 2 S 4 . In FIG. 1, a compound semiconductor layer made of CuGaS 2 is represented by 12An (n is an nth layer counted from the one close to the semiconductor substrate 11), and a compound semiconductor layer made of GaAlN or ZnIn 2 S 4 is made 12Bn ( n represents the nth layer counted from the one close to the semiconductor substrate 11), the compound semiconductor layer formed directly on the semiconductor substrate 11 is composed of the layer 12A1, and the uppermost layer of the buffer layer 12 is The compound semiconductor layer to be configured is preferably configured by the layer 12Bn. In this case, all the compound semiconductor layers constituting the buffer layer 12 may have substantially the same thickness, for example, 5 nm. Each compound semiconductor layer can be grown by MOCVD. The buffer layer 12 can be composed of, for example, 100 compound semiconductor layers, and the thickness thereof can be, for example, 0.5 μm.

バッファ層12の上には、例えばGaN系レーザ素子におけるガリウム含有窒化物半導体層13を設けることができる。   On the buffer layer 12, for example, a gallium-containing nitride semiconductor layer 13 in a GaN-based laser element can be provided.

図1に示す超格子構造のバッファ層12において、CuGaS2の格子定数は、5.4Åであるのに対し、ZnIn24の格子定数は3.84Å、GaAlNの格子定数は3.189Åである。従って、CuGaS2がシリコン(格子定数は5.43Å)およびGaAs(格子定数は5.65Å)に近い格子定数を持ち、ZnIn24とGaAlNはInxGa1-xN(x<0.1のとき)と近い格子定数を持つので、このバッファ層12の特徴として半導体基板11から発生する転位がGaN系レーザに達する前に、超格子の界面に沿って横方向に転位を逃がすことができる。例えば、一層目で転位が横方向に逃げなくても四層目で逃げる、というようにGaN系レーザ素子に達する前に超格子中界面のどこかで転位を逃がすことができ、そのことで所望の成長層に欠陥を導入しないことが可能となり高品質の結晶を得ることができる。 In the buffer layer 12 having the superlattice structure shown in FIG. 1, the lattice constant of CuGaS 2 is 5.4Å, whereas the lattice constant of ZnIn 2 S 4 is 3.84Å and the lattice constant of GaAlN is 3.189Å. is there. Therefore, CuGaS 2 has a lattice constant close to that of silicon (lattice constant is 5.43Å) and GaAs (lattice constant is 5.65Å), and ZnIn 2 S 4 and GaAlN are In x Ga 1-x N (x <0. 1), the buffer layer 12 is characterized in that dislocations generated from the semiconductor substrate 11 are allowed to escape laterally along the interface of the superlattice before reaching the GaN-based laser. it can. For example, dislocations can escape somewhere in the interface of the superlattice before reaching the GaN-based laser element, such as dislocations in the fourth layer even if they do not escape laterally in the first layer. It becomes possible not to introduce defects into the growth layer, and high-quality crystals can be obtained.

本発明の第2の態様に係るバッファ層は、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる2種の化合物半導体の交互の層を含み、その一方の化合物半導体は、前記半導体基板と格子定数が近く、他方の化合物半導体は、前記青色レーザ素子の材料と格子定数が近く、かつ前記一方の化合物半導体層の厚さは、前記半導体基板から青色レーザ素子に向かうにつれて薄くなり、前記他方の化合物半導体層の厚さは、前記青色レーザ素子から前記半導体基板に向かうにつれて薄くなる構造を有する。このバッファ層を構成する化合物半導体層のうち、半導体基板上に直接形成される化合物半導体層は、半導体基板と格子定数が近い化合物半導体で形成し、最上層の化合物半導体層は、上記青色レーザ素子の材料と格子定数が近い化合物半導体で構成することが好ましい。このバッファ層の材料として、CuGaS2とGaAlNの組み合わせ、またはCuGaS2とZnIn24の組み合わせを用いることが好ましい。 The buffer layer according to the second aspect of the present invention includes two kinds of buffer layers selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor. Including alternating layers of compound semiconductors, one compound semiconductor having a lattice constant close to that of the semiconductor substrate, and the other compound semiconductor having a lattice constant close to the material of the blue laser element and the one compound semiconductor layer The thickness of the second compound semiconductor layer decreases from the semiconductor substrate toward the blue laser element, and the thickness of the other compound semiconductor layer decreases from the blue laser element toward the semiconductor substrate. Of the compound semiconductor layers constituting the buffer layer, the compound semiconductor layer formed directly on the semiconductor substrate is formed of a compound semiconductor having a lattice constant close to that of the semiconductor substrate, and the uppermost compound semiconductor layer is the blue laser element. It is preferable to use a compound semiconductor having a lattice constant close to that of the material. It is preferable to use a combination of CuGaS 2 and GaAlN or a combination of CuGaS 2 and ZnIn 2 S 4 as the material of the buffer layer.

図2は、半導体基板11上に形成された上記第2の態様に係るバッファ層22の好ましい構造を示す概略断面図である。   FIG. 2 is a schematic cross-sectional view showing a preferred structure of the buffer layer 22 according to the second aspect formed on the semiconductor substrate 11.

図2に示すように、バッファ層22は、CuGaS2とGaAlNもしくはZnIn24との2種の化合物半導体の交互積層構造を含む。図2において、CuGaS2からなる半導体層を22An(nは、半導体基板11に近いものから数えてn番目の層を示す)で表し、InGaAlNもしくはZnIn24からなる化合物半導体層を22Bn(nは、半導体基板11に近いものから数えてn番目の層を示す)で表すと、半導体基板11上に直接形成される化合物半導体層は、層22A1により構成され、バッファ層12の最上層を構成する化合物半導体層は、層22Bnにより構成される。そして、層22A1〜22Anは、半導体基板11に最も近い層22A1から最上層に向って厚さが単純に減少している。すなわち、層22A1が最も厚く、層22Anが最も薄く形成されている。これとは逆に、層22B1〜22Bnは、半導体基板11に最も近い層22B1から最上層に向って厚さが単純に増加している。すなわち、層22B1が最も薄く、層22Bnが最も厚く形成されている。このバッファ層12は、約1μmの厚さを有し得る。例えば、化合物半導体層22A1は、10nmの厚さに形成し、化合物半導体層22B1は、Ga0.85Al0.15Nにより1nmの厚さに形成し、化合物半導体層22A2は、9.9〜9.5nmの厚さに形成し、化合物半導体層22B2は、Ga0.85Al0.15Nにより1.1〜1.5nmの厚さに形成することができる。このように順次厚さを変えて化合物半導体を形成し、化合物半導体層22Anを1nmの厚さに、化合物半導体層22BnをGa0.85Al0.15Nにより10nmの厚さに形成することができる。バッファ層22は、100層の化合物半導体層からなり得る。このようにして、格子定数のマッチングを図ることができるので、歪みを緩和させて、最上部の転位を減少させることができる。 As shown in FIG. 2, the buffer layer 22 includes an alternate stacked structure of two types of compound semiconductors of CuGaS 2 and GaAlN or ZnIn 2 S 4 . In FIG. 2, a semiconductor layer made of CuGaS 2 is represented by 22An (n is an nth layer counted from the one close to the semiconductor substrate 11), and a compound semiconductor layer made of InGaAlN or ZnIn 2 S 4 is made 22Bn (n Represents the nth layer counted from the one close to the semiconductor substrate 11), the compound semiconductor layer directly formed on the semiconductor substrate 11 is composed of the layer 22 A 1 and constitutes the uppermost layer of the buffer layer 12. The compound semiconductor layer to be formed includes the layer 22Bn. The thickness of the layers 22A1 to 22An simply decreases from the layer 22A1 closest to the semiconductor substrate 11 toward the uppermost layer. That is, the layer 22A1 is the thickest and the layer 22An is the thinnest. On the contrary, the thicknesses of the layers 22B1 to 22Bn simply increase from the layer 22B1 closest to the semiconductor substrate 11 toward the uppermost layer. That is, the layer 22B1 is the thinnest and the layer 22Bn is the thickest. This buffer layer 12 may have a thickness of about 1 μm. For example, the compound semiconductor layer 22A1 is formed to a thickness of 10 nm, the compound semiconductor layer 22B1 is formed to a thickness of 1 nm by Ga 0.85 Al 0.15 N, and the compound semiconductor layer 22A2 is 9.9 to 9.5 nm. The compound semiconductor layer 22B2 can be formed to a thickness of 1.1 to 1.5 nm with Ga 0.85 Al 0.15 N. In this way, the compound semiconductor can be formed by sequentially changing the thickness, the compound semiconductor layer 22An can be formed to a thickness of 1 nm, and the compound semiconductor layer 22Bn can be formed to a thickness of 10 nm using Ga 0.85 Al 0.15 N. The buffer layer 22 can be composed of 100 compound semiconductor layers. Since lattice constant matching can be achieved in this way, distortion can be relaxed and the uppermost dislocation can be reduced.

次に、本発明の三波長半導体レーザアレイ装置の製造方法の一例を図3〜図25を参照して説明する。   Next, an example of a method for manufacturing the three-wavelength semiconductor laser array device of the present invention will be described with reference to FIGS.

現在、半導体レーザの製造には、半導体レーザ素子の構成半導体薄膜を成長させるためにMOCVD成長法(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)が使われている。これは、LPE成長法(Liquid Phase Epitaxy:液相エピタキシャル成長法)やMBE成長法(Molecular Beam Epitaxy:分子線エピタキシャル成長法)に比べ、広い面積への均一な薄膜成長が比較的容易なためである。MOCVDは、半導体の材料を有機化合物の状態で反応室へ導入し、誘導加熱によって高温にされた基板上に、薄膜を成長させる方法である。本発明の三波長半導体レーザアレイ装置の製造においてもMOCVD成長法を用いる。   At present, in manufacturing a semiconductor laser, an MOCVD growth method (Metal Organic Chemical Vapor Deposition) is used to grow a semiconductor thin film of a semiconductor laser element. This is because uniform thin film growth over a large area is relatively easy as compared with the LPE growth method (Liquid Phase Epitaxy) and MBE growth method (Molecular Beam Epitaxy). MOCVD is a method in which a semiconductor material is introduced into a reaction chamber in the state of an organic compound, and a thin film is grown on a substrate heated to a high temperature by induction heating. The MOCVD growth method is also used in the manufacture of the three-wavelength semiconductor laser array device of the present invention.

最初に、GaN系青色発光半導体レーザダイオード(LD)の成長を行う。まず、図3に示すように、n−GaAs基板31上に、バッファ層32を例えば0.5μmの厚さに、第1のn−InAlGaNクラッド層33を例えば1μmの厚さに、三重量子井戸(TQW)構造のInGaN活性層34を例えば40nmの全厚さに、第1のp−InAlGaNクラッド層35を例えば0.3μmの厚さに、n−InAlGaNブロック層36を例えば0.5μmの厚さに成長させ、ブロック層36の上にSiO2膜37を例えば0.5μmの厚さに形成する。バッファ層32は、図1に関して説明した構造を有する。 First, a GaN blue light emitting semiconductor laser diode (LD) is grown. First, as shown in FIG. 3, a triple quantum well is formed on an n-GaAs substrate 31 with a buffer layer 32 having a thickness of 0.5 μm, for example, and a first n-InAlGaN cladding layer 33 having a thickness of 1 μm, for example. The (TQW) structure InGaN active layer 34 has a total thickness of 40 nm, the first p-InAlGaN cladding layer 35 has a thickness of 0.3 μm, and the n-InAlGaN block layer 36 has a thickness of 0.5 μm, for example. The SiO 2 film 37 is formed on the block layer 36 to a thickness of 0.5 μm, for example. The buffer layer 32 has the structure described with reference to FIG.

次に、SiO2膜37に3μmの幅のストライプ窓37aを形成する(図4)。ドライエッチングにより、ストライプ窓37aに対応するn−InAlGaNブロック層36の部分を第1のp−InAlGaNクラッド層35の表面に至るまでエッチング除去してブロック層36内にストライプ溝36aを形成する。その後SiO2膜37をHFでエッチングして取り除き、続けて第2のp−InAlGaNクラッド層38を例えば0.5μmの厚さに、p−GaNコンタクト層39を例えば0.5μmの厚さに成長させ、次いでSiO2膜40を例えば0.5μmの厚さに形成する(図5)。 Next, a stripe window 37a having a width of 3 μm is formed in the SiO 2 film 37 (FIG. 4). By dry etching, the portion of the n-InAlGaN block layer 36 corresponding to the stripe window 37 a is removed by etching until reaching the surface of the first p-InAlGaN cladding layer 35, thereby forming a stripe groove 36 a in the block layer 36. Thereafter, the SiO 2 film 37 is removed by etching with HF, and then the second p-InAlGaN cladding layer 38 is grown to a thickness of 0.5 μm, for example, and the p-GaN contact layer 39 is grown to a thickness of 0.5 μm, for example. Next, the SiO 2 film 40 is formed to a thickness of 0.5 μm, for example (FIG. 5).

次に、SiO2膜40を青色LD素子に相当する部分(幅例えば130μm)401だけ残し、他のSiO2膜40の部分をフッ酸系エッチング剤で除去する(図6)。その後、残存するSiO2膜401をマスクとして、p−GaNコンタクト層39、第2のp−InAlGaNクラッド層38、ブロック層36、第1のp−InAlGaNクラッド層35、活性層34、第1のn−InAlGaNクラッド層33およびバッファ層32をドライエッチングにより部分的に除去し、n−GaAs基板31の表面を部分的に露出させる。こうして、マスク401の下に残存するバッファ層321上にそれぞれ残存する第1のn−InAlGaNクラッド層331、活性層341、第1のp−InAlGaNクラッド層351、ブロック層361、第2のp−InAlGaNクラッド層381を備え、残するp−GaNコンタクト層391を有する青色LD素子構造が形成される。(図7)。 Next, the SiO 2 film 40 is left only in a portion (width, for example, 130 μm) 401 corresponding to the blue LD element, and the other SiO 2 film 40 is removed with a hydrofluoric acid-based etchant (FIG. 6). Thereafter, using the remaining SiO 2 film 401 as a mask, the p-GaN contact layer 39, the second p-InAlGaN cladding layer 38, the block layer 36, the first p-InAlGaN cladding layer 35, the active layer 34, the first layer The n-InAlGaN cladding layer 33 and the buffer layer 32 are partially removed by dry etching, and the surface of the n-GaAs substrate 31 is partially exposed. In this way, the first n-InAlGaN cladding layer 331, the active layer 341, the first p-InAlGaN cladding layer 351, the block layer 361, and the second p− remaining on the buffer layer 321 remaining under the mask 401, respectively. A blue LD element structure including the InAlGaN cladding layer 381 and the remaining p-GaN contact layer 391 is formed. (FIG. 7).

続けて、赤色LD素子を形成する。すなわち、図7に示す構造の全面に、n−AlGaInPクラッド層41を例えば1.5μmの厚さに、GaInPからなるTQW活性層42を例えば40nmの全厚さに、第1のp−AlGaInPクラッド層43を例えば0.3μmの厚さに、n−AlInPブロック層44を例えば0.5μmの厚さに成長させ、その上にSiO2膜45を例えば0.5μmの厚さに形成する(図8)。次に、SiO2膜45に例えば3μmの幅のストライプ窓45aを形成する(図9)。ついで、ストライプ窓45aに対応するn−AlInPブロック層44を、第1のp−AlGaInPクラッド層43の表面に達するまでリン酸でエッチング除去してn−AlInPブロック層44内にストライプ溝44aを形成する。その後SiO2膜45をフッ酸系エッチング剤でエッチング除去する。次に、第2のp−AlGaInPクラッド層46を例えば0.5μmの厚さに、p−GaAsコンタクト層47を例えば0.5μmの厚さに成長させ、その上にSiO2膜48を例えば0.5μmの厚さに形成する(図10)。 Subsequently, a red LD element is formed. That is, the first p-AlGaInP cladding layer is formed on the entire surface of the structure shown in FIG. 7 with the n-AlGaInP cladding layer 41 having a thickness of 1.5 μm, for example, and the TQW active layer 42 made of GaInP with a total thickness of 40 nm, for example. The layer 43 is grown to a thickness of 0.3 μm, for example, and the n-AlInP block layer 44 is grown to a thickness of 0.5 μm, for example, and an SiO 2 film 45 is formed thereon to a thickness of 0.5 μm, for example (FIG. 8). Next, a stripe window 45a having a width of 3 μm, for example, is formed in the SiO 2 film 45 (FIG. 9). Next, the n-AlInP block layer 44 corresponding to the stripe window 45 a is etched away with phosphoric acid until reaching the surface of the first p-AlGaInP cladding layer 43 to form a stripe groove 44 a in the n-AlInP block layer 44. To do. Thereafter, the SiO 2 film 45 is removed by etching with a hydrofluoric acid-based etchant. Next, the thickness of the second p-AlGaInP cladding layer 46 for example 0.5 [mu] m, grown p-GaAs contact layer 47 to a thickness of, for example, 0.5 [mu] m, the SiO 2 film 48 for example on the 0 A thickness of 5 μm is formed (FIG. 10).

ついで、SiO2膜48を、赤色LD素子に対応する部分(幅例えば130μm)とそれに連続する青色LD素子部分だけ残し、他のSiO2膜48の部分をフッ酸系エッチング剤で除去する(図11)。その後、残存するSiO2膜481をマスクとして、p−GaAsコンタクト層47、第2のp−AlGaInPクラッド層46、n−AlInPブロック層44、第1のp−AlGaInPクラッド層43、活性層42およびn−AlGaInPクラッド層41をリン酸により部分的に除去し、n−GaAs基板31の表面を部分的に露出させる。こうして、マスク481の下に、p−GaAsコンタクト層471、第2のp−AlGaInPクラッド層461、n−AlInPブロック層441、第1のp−AlGaInPクラッド層431、活性層421およびn−AlGaInPクラッド層411が残存する(図12)。 Next, the SiO 2 film 48 is left only in the portion corresponding to the red LD element (width, for example, 130 μm) and the blue LD element portion continuous thereto, and the other SiO 2 film 48 is removed with a hydrofluoric acid-based etchant (FIG. 11). Thereafter, using the remaining SiO 2 film 481 as a mask, the p-GaAs contact layer 47, the second p-AlGaInP cladding layer 46, the n-AlInP blocking layer 44, the first p-AlGaInP cladding layer 43, the active layer 42, and The n-AlGaInP cladding layer 41 is partially removed with phosphoric acid, and the surface of the n-GaAs substrate 31 is partially exposed. Thus, under the mask 481, the p-GaAs contact layer 471, the second p-AlGaInP cladding layer 461, the n-AlInP blocking layer 441, the first p-AlGaInP cladding layer 431, the active layer 421, and the n-AlGaInP cladding. Layer 411 remains (FIG. 12).

次に、赤外LD素子を形成する。すなわち、図12に示す構造の全面に、n−AlGaAsクラッド層49を例えば1.5μmの厚さに、AlGaAsからなるTQW活性層50を例えば40nmの全厚さに、第1のp−AlGaAsクラッド層51を例えば0.3μmの厚さに、n−AlGaAsブロック層52を例えば0.5μmの厚さに成長させ、その上にSiO2膜53を例えば0.5μmの厚さに形成する(図13)。次にSiO2膜53に例えば3μmの幅のストライプ窓53aを形成する(図14)。ついで、ストライプ窓53aに対応するn−AlGaAsブロック層52の部分をp−AlGaAsクラッド層51の表面に達するまで硫酸と過酸化水素水の混合液でエッチング除去した後、SiO2膜53をフッ酸系エッチング剤でエッチング除去する。引き続き、第2のp−AlGaAsクラッド層54を例えば0.5μmの厚さに、p−GaAsコンタクト層55を例えば0.5μmの厚さに成長させ、その上にSiO2膜56を例えば0.5μmの厚さに形成する(図15)。 Next, an infrared LD element is formed. That is, on the entire surface of the structure shown in FIG. 12, the n-AlGaAs cladding layer 49 has a thickness of 1.5 μm, for example, and the TQW active layer 50 made of AlGaAs has a total thickness of 40 nm, for example. The layer 51 is grown to a thickness of 0.3 μm, for example, and the n-AlGaAs block layer 52 is grown to a thickness of 0.5 μm, for example, and the SiO 2 film 53 is formed thereon to a thickness of 0.5 μm, for example (see FIG. 13). Next, a stripe window 53a having a width of 3 μm, for example, is formed in the SiO 2 film 53 (FIG. 14). Next, the n-AlGaAs block layer 52 corresponding to the stripe window 53a is removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide until reaching the surface of the p-AlGaAs cladding layer 51, and then the SiO 2 film 53 is removed by hydrofluoric acid. Etching away with a system etchant. Subsequently, the thickness of the second p-AlGaAs cladding layer 54 for example 0.5 [mu] m, grown p-GaAs contact layer 55 to a thickness of, for example, 0.5 [mu] m, the SiO 2 film 56 for example on the 0. A thickness of 5 μm is formed (FIG. 15).

ついで、赤色LD素子と赤外LD素子との間に例えば20μmの幅の間隙が形成されるように、赤色LD素子に相当する部分(幅例えば130μm)561だけ残し、他のSiO2膜56部分をフッ酸系エッチング剤によるエッチング除去する。その後残存するSiO2膜561をマスクとして、マスク561の下のp−GaAsコンタクト層55、第2のp−AlGaAsクラッド層54、n−AlGaAsブロック層52、第1のp−AlGaAsクラッド層51、活性層50およびn−AlGaAsクラッド層49の部分を残し、それ以外を硫酸と過酸化水素水の混合液でエッチング除去する。このエッチングでは、SiO2膜481の下に位置する半導体層はエッチングされない。こうして、マスク561の下に残存するn−AlGaAsクラッド層491、活性層501、第1のp−AlGaAsクラッド層511、n−AlGaAsブロック層521および第2のp−AlGaAsクラッド層541を備え、残存するp−GaAsコンタクト層551を有する赤色LD素子構造が形成される(図17)。 Next, only a portion corresponding to the red LD element (width, eg, 130 μm) 561 is left so that a gap having a width of, eg, 20 μm is formed between the red LD element and the infrared LD element, and the other SiO 2 film 56 part. Is removed by etching with a hydrofluoric acid-based etchant. Thereafter, using the remaining SiO 2 film 561 as a mask, the p-GaAs contact layer 55, the second p-AlGaAs cladding layer 54, the n-AlGaAs block layer 52, the first p-AlGaAs cladding layer 51 under the mask 561, The portions of the active layer 50 and the n-AlGaAs cladding layer 49 are left, and the other portions are removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide. In this etching, the semiconductor layer located under the SiO 2 film 481 is not etched. Thus, the n-AlGaAs cladding layer 491, the active layer 501, the first p-AlGaAs cladding layer 511, the n-AlGaAs block layer 521, and the second p-AlGaAs cladding layer 541 remaining under the mask 561 are provided. A red LD element structure having a p-GaAs contact layer 551 is formed (FIG. 17).

この後、赤外LDと青色LD間の間隔が例えば20μmとなるように、赤外LD素子に相当する部分(幅例えば130μm)482だけ残し、他のSiO2膜481をフッ酸系エッチング剤でエッチング除去する(図18)。残存するSiO2膜482をマスクとして、p−GaAsコンタクト層471、第2のp−AlGaInPクラッド層461、n−AlInPブロック層441、第1のp−AlGaInPクラッド層431、活性層421およびn−AlGaInPクラッド層411をリン酸を用いてエッチング除去する。このエッチングでは、SiO2膜401の下に位置する半導体層はエッチングされない。こうしマスク482下に残存するn−AlGaInPクラッド層412、活性層422、第1のp−AlGaInPクラッド層432、n−AlInPブロック層442および第2のp−AlGaInPクラッド層462を備え、残存するp−GaAsコンタクト層472を有する赤色LD素子構造が得られる(図19)。 Thereafter, only a portion (width, for example, 130 μm) 482 corresponding to the infrared LD element is left so that the distance between the infrared LD and the blue LD is, for example, 20 μm, and the other SiO 2 film 481 is removed with a hydrofluoric acid-based etching agent. Etching is removed (FIG. 18). Using the remaining SiO 2 film 482 as a mask, the p-GaAs contact layer 471, the second p-AlGaInP cladding layer 461, the n-AlInP block layer 441, the first p-AlGaInP cladding layer 431, the active layer 421, and the n− The AlGaInP cladding layer 411 is removed by etching using phosphoric acid. In this etching, the semiconductor layer located under the SiO 2 film 401 is not etched. The n-AlGaInP cladding layer 412, the active layer 422, the first p-AlGaInP cladding layer 432, the n-AlInP blocking layer 442, and the second p-AlGaInP cladding layer 462 remaining under the mask 482 are left. A red LD element structure having a p-GaAs contact layer 472 is obtained (FIG. 19).

次に、各レーザ素子構造上のSiO2膜401、482および561をエッチング除去した後、図19に示す構造の全面に、SiO2膜57を形成する(図20)。ついで、各レーザ素子の頂部にあるSiO2膜57部分のみをエッチング除去する(図21)。しかる後、全面にニッケルを例えば0.1μmの厚さに、金を例えば1μmの厚さに順次真空蒸着で形成してNi/Au積層構造の電極層58を形成する(図22)。ついで、各レーザ素子構造上の電極層58およびSiO2膜57をエッチング除去する。こうして、各レーザ素子上にNi/Au積層構造の電極581、582、583が形成される(図23)。 Next, after the SiO 2 films 401, 482 and 561 on each laser element structure are removed by etching, an SiO 2 film 57 is formed on the entire surface of the structure shown in FIG. 19 (FIG. 20). Next, only the SiO 2 film 57 portion on the top of each laser element is removed by etching (FIG. 21). Thereafter, nickel is sequentially formed on the entire surface to a thickness of 0.1 μm, for example, and gold is formed to a thickness of 1 μm, for example, by vacuum evaporation to form an electrode layer 58 having a Ni / Au laminated structure (FIG. 22). Next, the electrode layer 58 and the SiO 2 film 57 on each laser element structure are removed by etching. In this way, electrodes 581, 582, and 583 having a Ni / Au laminated structure are formed on each laser element (FIG. 23).

ついで、n−GaAs基板31裏面を基板31の厚さが100μmとなるように研磨した後、Au−Ge−Ni合金の電極59を1μmの厚さに真空蒸着する(図24)。この電極59にCu放熱体60をボンディングし、Cu放熱体60にカソードのリード線(銅線)61を取り付け、各LD素子の電極581〜583上にそれぞれアノードのリード線(銅線)621〜623を取り付ける(図25)。こうして、三波長半導体レーザアレイ装置が完成する。図26は、こうして得られる三波長半導体レーザアレイ装置の実際の大きさと形状の一例を示す。幅500μm、長さ300μmのn−GaAs基板100上に、青色LD素子BLD、赤色LD素子RLDおよび赤外LD素子IRLDがストライプ状にそれぞれ130μmの幅および300μmの長さに形成され、それらの間隔は20μmであり、各高さは4μmである。   Next, after polishing the back surface of the n-GaAs substrate 31 so that the thickness of the substrate 31 becomes 100 μm, an electrode 59 of Au—Ge—Ni alloy is vacuum-deposited to a thickness of 1 μm (FIG. 24). A Cu heat sink 60 is bonded to the electrode 59, a cathode lead wire (copper wire) 61 is attached to the Cu heat sink 60, and an anode lead wire (copper wire) 621 on each of the electrodes 581 to 583 of each LD element. 623 is attached (FIG. 25). Thus, a three-wavelength semiconductor laser array device is completed. FIG. 26 shows an example of the actual size and shape of the three-wavelength semiconductor laser array device thus obtained. On the n-GaAs substrate 100 having a width of 500 μm and a length of 300 μm, a blue LD element BLD, a red LD element RLD, and an infrared LD element IRLD are formed in stripes with a width of 130 μm and a length of 300 μm, respectively, and their spacing Is 20 μm and each height is 4 μm.

本発明の第1の態様に係る超格子構造のバッファ層を示す概略断面図。1 is a schematic sectional view showing a buffer layer having a superlattice structure according to a first embodiment of the present invention. 本発明の第2の態様に係るバッファ層を示す概略断面図。The schematic sectional drawing which shows the buffer layer which concerns on the 2nd aspect of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の製造方法の一例を示す概略断面図。The schematic sectional drawing which shows an example of the manufacturing method of the three wavelength semiconductor laser array apparatus of this invention. 本発明の三波長半導体レーザアレイ装置の寸法の一例を示す概略斜視図。The schematic perspective view which shows an example of the dimension of the three wavelength semiconductor laser array apparatus of this invention.

符号の説明Explanation of symbols

11…半導体基板
12、32、321…バッファ層
33…第1のn−InAlGaNクラッド層
34、341…InGaN活性層
35…第1のp−InAlGaNクラッド層
36…n−InAlGaNブロック層
37、40、45、48、53、56、57…SiO2
38…第2のp−InAlGaNクラッド層
39…p−GaNコンタクト層
41…n−AlGaInPクラッド層
42…GaInPからなるTQW活性層
43…第1のp−AlGaInPクラッド層
44…n−AlInPブロック層
46…第2のp−AlGaInPクラッド層
47…p−GaAsコンタクト層
49…n−AlGaAsクラッド層
50…AlGaAsからなるTQW活性層
51…第1のp−AlGaAsクラッド層
52…n−AlGaAsブロック層
54…第2のp−AlGaAsクラッド層
55…p−GaAsコンタクト層
58…電極層
581〜583…アノードリード線
59…Au−Ge−Ni合金電極
60…Cu放熱体
61…カソードリード線
621〜623…アノードリード線
DESCRIPTION OF SYMBOLS 11 ... Semiconductor substrate 12, 32, 321 ... Buffer layer 33 ... 1st n-InAlGaN clad layer 34, 341 ... InGaN active layer 35 ... 1st p-InAlGaN clad layer 36 ... n-InAlGaN block layer 37, 40, 45, 48, 53, 56, 57 ... SiO 2 film 38 ... Second p-InAlGaN cladding layer 39 ... p-GaN contact layer 41 ... n-AlGaInP cladding layer 42 ... TQW active layer 43 made of GaInP 43 ... First p-AlGaInP cladding layer 44 ... n-AlInP blocking layer 46 ... second p-AlGaInP cladding layer 47 ... p-GaAs contact layer 49 ... n-AlGaAs cladding layer 50 ... TQW active layer 51 made of AlGaAs 51 ... first p -AlGaAs cladding layer 52 ... n-AlGaAs bromine Layer 54 ... second p-AlGaAs cladding layer 55 ... p-GaAs contact layer 58 ... electrode layer 581 to 583 ... anode lead wire 59 ... Au-Ge-Ni alloy electrode 60 ... Cu heat sink 61 ... cathode lead wire 621 ~ 623 ... Anode lead wire

Claims (6)

半導体基板上にモノリシックに赤色レーザ素子、赤外レーザ素子および青色レーザ素子が集積化された三波長半導体レーザアレイ装置において、前記半導体基板と前記青色レーザ素子との間にI−III−VI族化合物半導体、II−III−VI族化合物半導体、およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも1種の化合物半導体を含むバッファ層を設けたことを特徴とする三波長半導体レーザアレイ装置。   In a three-wavelength semiconductor laser array device in which a red laser element, an infrared laser element, and a blue laser element are monolithically integrated on a semiconductor substrate, an I-III-VI group compound is provided between the semiconductor substrate and the blue laser element. A three-wavelength semiconductor laser comprising a buffer layer including at least one compound semiconductor selected from the group consisting of a semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor Array device. 前記半導体基板が、シリコンまたはGaAsを含むことを特徴とする請求項1に記載の三波長半導体レーザアレイ装置。   The three-wavelength semiconductor laser array device according to claim 1, wherein the semiconductor substrate contains silicon or GaAs. 前記バッファ層が、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる少なくとも2種の化合物半導体の超格子構造、または該化合物半導体とIII族窒化物半導体の超格子構造を有することを特徴とする請求項1または2に記載の三波長半導体レーザアレイ装置。   The buffer layer is a superlattice structure of at least two compound semiconductors selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor; 3. The three-wavelength semiconductor laser array device according to claim 1, wherein the three-wavelength semiconductor laser array device has a superlattice structure of the compound semiconductor and the group III nitride semiconductor. 前記バッファ層が、I−III−VI族化合物半導体、II−III−VI族化合物半導体およびII−III−V族化合物半導体からなる群の中から選ばれる2種の化合物半導体の交互の層、または該化合物半導体とIII族窒化物半導体の交互の層を含み、該交互の層の一方の化合物半導体は、前記半導体基板と格子定数が近く、他方の化合物半導体は、前記青色レーザ素子の材料と格子定数が近く、かつ前記一方の化合物半導体層の厚さは、前記半導体基板から青色レーザ素子に向かうにつれて薄くなり、前記他方の化合物半導体層の厚さは、前記青色レーザ素子から前記半導体基板に向かうにつれて薄くなる構造を有することを特徴とする請求項1または2に記載の三波長半導体レーザアレイ装置。   The buffer layer is an alternating layer of two kinds of compound semiconductors selected from the group consisting of a group I-III-VI compound semiconductor, a group II-III-VI compound semiconductor, and a group II-III-V compound semiconductor, or The compound semiconductor and the group III nitride semiconductor include alternating layers, and one compound semiconductor of the alternating layer has a lattice constant close to that of the semiconductor substrate, and the other compound semiconductor includes a material and a lattice of the blue laser element. The constants are close, and the thickness of the one compound semiconductor layer decreases from the semiconductor substrate toward the blue laser element, and the thickness of the other compound semiconductor layer decreases from the blue laser element to the semiconductor substrate. The three-wavelength semiconductor laser array device according to claim 1, wherein the three-wavelength semiconductor laser array device has a structure that becomes thinner as a result. 前記超格子構造が、CuGaS2とGaAlNの組み合わせ、またはCuGaS2とZnIn24の組み合わせにより構成されることを特徴とする請求項3に記載の三波長半導体レーザアレイ装置。 4. The three-wavelength semiconductor laser array device according to claim 3, wherein the superlattice structure is composed of a combination of CuGaS 2 and GaAlN, or a combination of CuGaS 2 and ZnIn 2 S 4 . 前記バッファ層が、CuGaS2とGaAlNの組み合わせ、またはCuGaS2とZnIn24の組み合わせにより構成されることを特徴とする請求項4に記載の三波長半導体レーザアレイ装置。 5. The three-wavelength semiconductor laser array device according to claim 4, wherein the buffer layer is composed of a combination of CuGaS 2 and GaAlN, or a combination of CuGaS 2 and ZnIn 2 S 4 .
JP2004036728A 2004-02-13 2004-02-13 Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate Expired - Lifetime JP4604189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036728A JP4604189B2 (en) 2004-02-13 2004-02-13 Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036728A JP4604189B2 (en) 2004-02-13 2004-02-13 Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2005228945A true JP2005228945A (en) 2005-08-25
JP4604189B2 JP4604189B2 (en) 2010-12-22

Family

ID=35003410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036728A Expired - Lifetime JP4604189B2 (en) 2004-02-13 2004-02-13 Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4604189B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194564A (en) * 1989-01-24 1990-08-01 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor light-emitting element
JPH04369874A (en) * 1991-04-12 1992-12-22 Mitsubishi Cable Ind Ltd Semiconductor material of light emitting element provided with distorted active layer
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08264894A (en) * 1995-03-20 1996-10-11 Toshiba Corp Semiconductor element and manufacture thereof
JPH10178201A (en) * 1996-12-18 1998-06-30 Mitsubishi Cable Ind Ltd Manufacture of semiconductor light-emitting element
JPH11274648A (en) * 1998-03-25 1999-10-08 Matsushita Electron Corp Nitride semiconductor device
JP2001352129A (en) * 2000-02-18 2001-12-21 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacturing method
JP2002118331A (en) * 2000-10-06 2002-04-19 Toshiba Corp Laminated semiconductor light emitting device and its manufacturing method
JP2004063762A (en) * 2002-07-29 2004-02-26 Tsuyama National College Of Technology Method for forming nitride semiconductor layer superior in crystallinity on silicon substrate and nitride semiconductor light emitting element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194564A (en) * 1989-01-24 1990-08-01 Kokusai Denshin Denwa Co Ltd <Kdd> Semiconductor light-emitting element
JPH04369874A (en) * 1991-04-12 1992-12-22 Mitsubishi Cable Ind Ltd Semiconductor material of light emitting element provided with distorted active layer
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08264894A (en) * 1995-03-20 1996-10-11 Toshiba Corp Semiconductor element and manufacture thereof
JPH10178201A (en) * 1996-12-18 1998-06-30 Mitsubishi Cable Ind Ltd Manufacture of semiconductor light-emitting element
JPH11274648A (en) * 1998-03-25 1999-10-08 Matsushita Electron Corp Nitride semiconductor device
JP2001352129A (en) * 2000-02-18 2001-12-21 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacturing method
JP2002118331A (en) * 2000-10-06 2002-04-19 Toshiba Corp Laminated semiconductor light emitting device and its manufacturing method
JP2004063762A (en) * 2002-07-29 2004-02-26 Tsuyama National College Of Technology Method for forming nitride semiconductor layer superior in crystallinity on silicon substrate and nitride semiconductor light emitting element

Also Published As

Publication number Publication date
JP4604189B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US7535945B2 (en) Semiconductor laser apparatus and method of manufacturing the same
JP3950878B2 (en) Multi-wavelength semiconductor laser and manufacturing method thereof
US7773654B2 (en) Semiconductor laser apparatus and fabrication method thereof
US20050218420A1 (en) Semiconductor laser apparatus and fabrication method thereof
KR20010082662A (en) Light emitting device and optical device using the same
JP2007048810A (en) Semiconductor laser
WO2004086579A1 (en) Nitride semiconductor device and its manufacturing method
WO2007097411A1 (en) Double wavelength semiconductor light emitting device and method for manufacturing same
US7817694B2 (en) Semiconductor laser apparatus and manufacturing method thereof
JP2002118331A (en) Laminated semiconductor light emitting device and its manufacturing method
US20110188532A1 (en) Semiconductor Laser Apparatus
US20050180475A1 (en) Semiconductor laser device
JP3928583B2 (en) Method for manufacturing light emitting device
JP4701832B2 (en) Semiconductor laser element
JP4847682B2 (en) Nitride semiconductor device and manufacturing method thereof
JP4604189B2 (en) Three-wavelength semiconductor laser array device monolithically integrated on a semiconductor substrate
JP2008205231A (en) Nitride-based semiconductor light-emitting element and manufacturing method therefor
JP2007013207A (en) Semiconductor light emitting element
JP2007227652A (en) Two-wavelength semiconductor light-emitting device and manufacturing method thereof
JP4595929B2 (en) Method for manufacturing light emitting device
JP2006253234A (en) Laser diode chip, laser diode and process for fabricating laser diode chip
JP2007227651A (en) Two-wavelength semiconductor light-emitting device and manufacturing method thereof
JP2003124560A (en) End surface aperture semiconductor laser device and manufacturing method therefor
JP2011018703A (en) Multi-wavelength semiconductor laser and method of manufacturing the same
JP2006060105A (en) Semiconductor light emitting device and optic device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4604189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term