JP2005226102A - Hard coating, and tool coated with the hard coating - Google Patents
Hard coating, and tool coated with the hard coating Download PDFInfo
- Publication number
- JP2005226102A JP2005226102A JP2004034515A JP2004034515A JP2005226102A JP 2005226102 A JP2005226102 A JP 2005226102A JP 2004034515 A JP2004034515 A JP 2004034515A JP 2004034515 A JP2004034515 A JP 2004034515A JP 2005226102 A JP2005226102 A JP 2005226102A
- Authority
- JP
- Japan
- Prior art keywords
- hard film
- hard coating
- hard
- cutting
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 131
- 239000011248 coating agent Substances 0.000 title claims abstract description 128
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 238000003754 machining Methods 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 22
- 238000002441 X-ray diffraction Methods 0.000 claims description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 229910010038 TiAl Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 12
- 238000007254 oxidation reaction Methods 0.000 abstract description 12
- 239000000126 substance Substances 0.000 abstract description 3
- 238000005299 abrasion Methods 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 95
- 238000000034 method Methods 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 26
- 230000008020 evaporation Effects 0.000 description 18
- 238000001704 evaporation Methods 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 230000000694 effects Effects 0.000 description 16
- 238000003466 welding Methods 0.000 description 16
- 238000001755 magnetron sputter deposition Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000005240 physical vapour deposition Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000005461 lubrication Methods 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002173 cutting fluid Substances 0.000 description 2
- 239000010730 cutting oil Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 102220005308 rs33960931 Human genes 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた硬質皮膜に関する。本発明はまた該硬質皮膜で形成した硬質皮膜被覆工具に関する。 The present invention relates to a hard coating excellent in wear resistance, adhesion, and high temperature oxidation resistance coated on cemented carbide, high speed steel, die steel and the like. The present invention also relates to a hard film coated tool formed of the hard film.
金属加工の高能率化を目的とした切削速度の高速化、並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜を被覆した工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。特許文献1、2には硬質皮膜に濃度分布を形成させる技術や、連続的に組成の変化する組成変化の繰り返し層を持った膜を形成することによって、耐摩耗性を向上させる技術が開示されている。しかし、何れも物理蒸着法におけるアーク放電型イオンプレーティング方式のみを利用した試みである。特許文献3には、機械加工用工具に潤滑性を得る目的で二硫化モリブデンを被覆する技術が開示されている。特許文献4には、二硫化モリブデンとTiNとを組み合わせた被膜の例が開示されている。しかし、被膜の密着性、硬度が十分ではなく、切削工具の耐摩耗性に課題を残している。 With a tool coated with a conventional hard coating, the cutting speed is increased for the purpose of improving the efficiency of metal processing, and the high feed cutting process in which the feed amount per blade exceeds 0.3 mm under cutting conditions. However, satisfactory performance has not been obtained in terms of adhesion and mechanical properties of the hard film, such as oxidation resistance and wear resistance. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. Patent Documents 1 and 2 disclose a technique for forming a concentration distribution in a hard film and a technique for improving wear resistance by forming a film having a repeated layer of composition change in which the composition continuously changes. ing. However, both are attempts using only the arc discharge ion plating method in the physical vapor deposition method. Patent Document 3 discloses a technique of coating molybdenum disulfide for the purpose of obtaining lubricity on a machining tool. Patent Document 4 discloses an example of a film in which molybdenum disulfide and TiN are combined. However, the adhesion and hardness of the coating are not sufficient, and there remains a problem in the wear resistance of the cutting tool.
本発明の目的は、基体との密着性を改善し、耐酸化性、耐摩耗性に優れた硬質皮膜を提供することである。本発明の他の目的は、基体との密着性を改善し、耐酸化性、耐摩耗性に優れ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜で被覆された工具を提供することである。 An object of the present invention is to provide a hard film having improved adhesion to a substrate and excellent in oxidation resistance and wear resistance. Another object of the present invention is to improve adhesion to the substrate, have excellent oxidation resistance and wear resistance, and further suppress welding at high temperatures and diffusion of work material elements into the hard coating. It is to provide a tool coated with a hard coating corresponding to dry machining, high speed, and high feed of cutting.
本発明の硬質皮膜は、基体表面に被覆した皮膜素地を電子顕微鏡により観察した際に、明暗を示す複数の相が存在し、これらから無作為に選択した相であって、Si及び/又はMo含有量の相対的に大きい相をA相、Si及び/又はMo含有量の相対的に小さい相をB相とし、組成分析におけるSi及び/又はMo含有量分析の結果を原子比率による平均値で求め、A相、B相の差が、0.2以上、5以下であることを特徴とする硬質皮膜である。上記構成を採用することにより、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性に優れた硬質皮膜を提供することができる。 The hard coating of the present invention has a plurality of phases showing brightness and darkness when the coating substrate coated on the surface of the substrate is observed with an electron microscope, and is a phase randomly selected from these phases, and Si and / or Mo The phase with a relatively large content is the A phase, the phase with a relatively small Si and / or Mo content is the B phase, and the result of the Si and / or Mo content analysis in the composition analysis is an average value by atomic ratio. The hard film is characterized in that the difference between the A phase and the B phase is 0.2 or more and 5 or less. By adopting the above configuration, it is possible to improve the adhesion of the hard film and provide a hard film having excellent oxidation resistance and wear resistance.
本発明の硬質皮膜において、該硬質皮膜の組成はAlwTixMoySiz、但し、w、x、y、zは原子比率で20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦10、w+x+y+z=100、w≦x+y+zで表される金属成分と、OaSbN100−a−b、但し、0.3≦a≦5、0.1≦b≦5で表される非金属成分とからなる組成を有し、摩擦係数が0.4以下であり、該硬質皮膜の表面近傍には、ESCA分析において100eVから105eVの範囲にSiと酸素との結合エネルギーを有し、該硬質皮膜の(200)面と、基体の(100)面とがヘテロエピタキシャル関係を有する硬質皮膜である。また、該硬質皮膜はX線回折における面心立方構造の(111)面に検出されるピーク強度値をIa、(200)面に検出されるピーク強度値をIbとしたときに、Ib/Ia≧2.0であり、(200)面の格子定数λ(nm)が0.4155≦λ≦0.4220の範囲にある。更に、基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けている。硬質皮膜は物理蒸着方式で被覆され、金属成分のAl、Ti、Mo、Siはプラズマ密度、放電出力の異なる複数の蒸発源により被覆されることが好ましい。硬質皮膜を被覆後に硬質皮膜表面の凸部を機械的処理により、平滑化されることが好ましい。本発明の硬質皮膜を切削工具等、高硬度が要求される耐摩耗部材や耐熱部材の表面に被覆すると、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を著しく向上する。特に、切削加工の高温状態での耐溶着性並びに硬質膜中への被削材元素の拡散を抑制することができる。更に、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することができる。ここでの高送り加工とは、切削条件における1刃当たりの送り量が0.3mm/刃を越えるような切削と定義する。 In the hard coating of the present invention, the composition of the hard coating is Al w Ti x Mo y S iz, where w, x, y, and z are atomic ratios of 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y. ≦ 20, 0.01 ≦ z ≦ 10, w + x + y + z = 100, metal component represented by w ≦ x + y + z, and O a S b N 100-ab , provided that 0.3 ≦ a ≦ 5, 0.1 ≦ b ≦ 5 and having a composition composed of a non-metallic component and having a coefficient of friction of 0.4 or less. In the vicinity of the surface of the hard coating, Si and oxygen are within a range of 100 eV to 105 eV in ESCA analysis. Is a hard film in which the (200) plane of the hard film and the (100) plane of the substrate have a heteroepitaxial relationship. Further, the hard coating has Ib / Ia when the peak intensity value detected on the (111) plane of the face-centered cubic structure in X-ray diffraction is Ia and the peak intensity value detected on the (200) plane is Ib. ≧ 2.0, and the lattice constant λ (nm) of the (200) plane is in the range of 0.4155 ≦ λ ≦ 0.4220. Further, at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the top surface of the substrate. The hard coating is preferably coated by physical vapor deposition, and the metal components Al, Ti, Mo, and Si are preferably coated with a plurality of evaporation sources having different plasma densities and discharge outputs. It is preferable that the convex portions on the surface of the hard film are smoothed by mechanical treatment after the hard film is coated. When the hard film of the present invention is coated on the surface of a wear-resistant member or heat-resistant member that requires high hardness such as a cutting tool, the adhesion of the hard film is improved, and the oxidation resistance and wear resistance are remarkably improved. In particular, it is possible to suppress welding resistance at a high temperature of cutting and diffusion of the work material element into the hard film. Furthermore, it is possible to provide a hard film coated tool that can cope with dry cutting, high speed, and high feed of cutting. High feed processing here is defined as cutting in which the feed amount per blade under the cutting conditions exceeds 0.3 mm / tooth.
本発明の硬質皮膜は、硬質皮膜と基体との密着性を改善し、優れた耐酸化性、耐摩耗、潤滑性、耐欠損性を有する。本発明の硬質皮膜を切削工具等に適用することにより、乾式高能率切削加工をはじめ、金型加工時の断続切削状況下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。 The hard film of the present invention improves the adhesion between the hard film and the substrate, and has excellent oxidation resistance, wear resistance, lubricity, and fracture resistance. By applying the hard coating of the present invention to cutting tools etc., stability and long tool life can be obtained even in intermittent cutting conditions during die machining, including dry high-efficiency cutting, and productivity in cutting It is extremely effective in improving
本発明の硬質皮膜は、基体表面に被覆した皮膜素地を電子顕微鏡により観察した際に、明暗を示す複数の相が存在し、これらから無作為に選択した相であって、Si及び/又はMo含有量の相対的に大きい相をA相、Si及び/又はMo含有量の相対的に小さい相をB相とし、組成分析、例えばEPMA(Electron Probe Micro analyser、島津製作所製EPM−1610型)分析等におけるSi及び/又はMo含有量分析の結果を原子比率による平均値で求め、A相、B相の差が、0.2以上、5以下であることを特徴とする硬質皮膜である。A相、B相の平均値の差を、上記の規定範囲内とすることにより、硬質皮膜の耐衝撃性を向上させることが可能となった。本発明の硬質皮膜は、Si及び/又はMo含有濃度を成膜時に意図的に制御し濃度差を発生させることにより、優れた潤滑特性を維持しながら耐衝撃性を向上させ、硬質皮膜そのものに高い靭性を与えることが可能となった。更に低硬度、高硬度の皮膜を連続的に交互に形成することから、耐衝撃特性を向上させるだけでなく、密着性に影響を及ぼす残留圧縮応力の抑制にも効果があることを確認した。 The hard coating of the present invention has a plurality of phases showing brightness and darkness when the coating substrate coated on the surface of the substrate is observed with an electron microscope, and is a phase randomly selected from these phases, and Si and / or Mo A phase with a relatively high content is phase A, and a phase with a relatively low Si and / or Mo content is B phase, and composition analysis, for example, EPMA (Electron Probe Micro analyzer, EPM-1610, manufactured by Shimadzu Corporation) analysis The hard film is characterized in that the result of the Si and / or Mo content analysis in the above is obtained by an average value based on the atomic ratio, and the difference between the A phase and the B phase is 0.2 or more and 5 or less. By making the difference between the average values of the A phase and the B phase within the above specified range, the impact resistance of the hard coating can be improved. The hard coating of the present invention intentionally controls the concentration of Si and / or Mo during film formation to generate a concentration difference, thereby improving impact resistance while maintaining excellent lubrication characteristics, and forming the hard coating itself. It became possible to give high toughness. Furthermore, since the low hardness and high hardness films were alternately formed alternately, it was confirmed that not only the impact resistance was improved but also the residual compressive stress that had an effect on the adhesion was suppressed.
図1に示す様に、本発明の硬質皮膜の成膜は、硬質皮膜にMo、Siの濃度差を意図的に発生させるために、高密度プラズマを用いたアーク放電型イオンプレーティング(以下、AIPと記す。)方式と、低密度プラズマを利用したマグネトロンスパッタ方式を併設した装置を用いている。本装置を用いることにより、Si及び/又はMo含有濃度を意図的に制御し濃度差を発生させることが可能となった。本発明で採用した様に、発生するプラズマ密度の異なる方式の蒸発源を同一真空装置内に設置し、被覆時に夫々の蒸発源で放電を発生させて被覆するのである。本発明で採用したAIPとマグネトロンスパッタとの併用方式は、硬質皮膜の耐衝撃特性を向上させるため、更に硬質皮膜において組成濃度差を発生させるために意図的に選択したものである。本発明の目的が硬質皮膜の結晶構造をfcc構造に保ち、皮膜に優れた靭性を付与することであることから、上記方式を用いて硬質皮膜に組成濃度差を発生させることが好ましい。特にそれぞれの方式で必要なターゲットの組成は限定されない。マグネトロンスパッタには、エレクトロンビーム方式もしくは閉磁場方式のマグネトロンスパッタ等があるが、これ以外の方式も含め、限定されない。一方、例えば上記以外の方法には、高密度プラズマのAIP方式を用いる場合として、真空装置内に複数の蒸発源を設置し、夫々の蒸発源に組成の異なる合金ターゲットを設置することや、複数の蒸発源において夫々異なった放電出力を設定することも考えられる。しかし、AIP方式による被覆では、被覆時に発生するプラズマ密度が非常に高いため、良質な皮膜が形成されるものの、プラズマ中で発生したイオンが基体に入射する際のエネルギーも大きく、残留圧縮応力の抑制が困難である。また、複数相の硬質皮膜の濃度差、硬度差を出すことが難しく、硬質膜の耐衝撃特性を向上させ、耐欠損性、靭性を付与させることが困難である。本発明の硬質皮膜は、AIP方式を単独で使用した場合と比較して、同一組成の被膜であっても、硬質皮膜の高硬度化をはかることができた。 As shown in FIG. 1, the hard coating of the present invention is formed by arc discharge ion plating (hereinafter referred to as “high density plasma”) using a high-density plasma in order to intentionally generate a Mo and Si concentration difference in the hard coating. AIP)) and a magnetron sputtering method using low density plasma are used. By using this apparatus, it became possible to intentionally control the Si and / or Mo content concentration to generate a concentration difference. As employed in the present invention, evaporation sources of different types of generated plasma density are installed in the same vacuum apparatus, and coating is performed by generating discharges at the respective evaporation sources during coating. The combined system of AIP and magnetron sputtering employed in the present invention is intentionally selected in order to improve the impact resistance characteristics of the hard coating and to further generate a composition concentration difference in the hard coating. Since the object of the present invention is to maintain the crystal structure of the hard coating in the fcc structure and to impart excellent toughness to the coating, it is preferable to generate a composition concentration difference in the hard coating using the above method. In particular, the composition of the target required for each method is not limited. Magnetron sputtering includes electron beam or closed magnetic field magnetron sputtering, but is not limited to other methods. On the other hand, for the method other than the above, for example, when using the AIP method of high-density plasma, a plurality of evaporation sources are installed in the vacuum apparatus, and alloy targets having different compositions are installed in the respective evaporation sources. It is also conceivable to set different discharge outputs at the respective evaporation sources. However, in the coating by the AIP method, the plasma density generated at the time of coating is very high, so that a good quality film is formed, but the energy generated when ions generated in the plasma are incident on the substrate is large, and the residual compressive stress It is difficult to suppress. In addition, it is difficult to obtain a concentration difference and a hardness difference between the hard coatings of a plurality of phases, and it is difficult to improve the impact resistance characteristics of the hard film and to impart fracture resistance and toughness. Even if the hard film of the present invention is a film having the same composition as compared with the case where the AIP method is used alone, the hardness of the hard film can be increased.
本発明の硬質皮膜は物理蒸着方式で被覆され、金属成分のMo、Siと、他の金属成分である例えばAl、Tiは放電出力の異なる複数の蒸発源により被覆されることが好ましい。本発明の硬質皮膜被覆方法は、被覆基体側にバイアス電圧を印加する物理蒸着法であることが望ましい。被覆基体への熱的影響、皮膜の密着性等を考慮した場合、更に被覆基体を切削工具とした場合の疲労強度を考慮した場合、比較的低温で被覆でき、被覆した皮膜に発生する圧縮応力が制御可能なAIPとスパッタ等の、プラズマ密度の異なる複数の蒸発源を設置した製膜装置による処理が最も安定した切削性能を発揮する。必要によってはプラズマ支援型の化学蒸着装置と物理蒸着方式を併用した装置を用いてもよい。図2は本発明例1の皮膜断面観察結果を示した。図2の本発明例1は、高密度プラズマによるAIPにより被覆した相と、低密度プラズマによるマグネトロンスパッタにより被覆した相とが多相構造をなし、各相が連続的に分断されることなく成長していることを確認した。硬質皮膜表面から内部に向かってMo、Si各元素の濃度分布を調べた結果、濃度差が明確に得られていることが確認された。 The hard coating of the present invention is coated by physical vapor deposition, and it is preferable that the metal components Mo and Si and other metal components such as Al and Ti are coated by a plurality of evaporation sources having different discharge outputs. The hard coating method of the present invention is preferably a physical vapor deposition method in which a bias voltage is applied to the coated substrate side. When considering the thermal effects on the coated substrate, coating adhesion, etc., and considering the fatigue strength when the coated substrate is used as a cutting tool, the compressive stress generated in the coated coating can be coated at a relatively low temperature. The processing by the film forming apparatus provided with a plurality of evaporation sources having different plasma densities, such as AIP and sputter controllable, exhibits the most stable cutting performance. If necessary, an apparatus using a plasma-assisted chemical vapor deposition apparatus and a physical vapor deposition method together may be used. FIG. 2 shows the result of observing the film cross section of Example 1 of the present invention. The invention example 1 in FIG. 2 has a multiphase structure in which a phase coated by high-density plasma AIP and a phase coated by low-density plasma magnetron sputtering are formed, and each phase grows without being continuously divided. I confirmed that As a result of examining the concentration distribution of each element of Mo and Si from the hard coating surface to the inside, it was confirmed that a concentration difference was clearly obtained.
切削工具を被覆基体として本発明の硬質皮膜を用いた場合、この硬質皮膜被覆工具は、被削材の溶着現象を防ぐことにより、密着性と耐摩耗性の改善を可能にした。即ち、切削加工における溶着発生現象を考察し、これより硬質皮膜を構成する各種元素の耐溶着効果の検討を行い、高温下における耐溶着性に有効な添加元素を見出した。本発明の硬質皮膜の組成はAlwTixMoySiz、但し、w、x、y、zは原子比率で20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦10、w+x+y+z=100、w≦x+y+zで表される。ここでwの数値規定範囲は20≦w≦50である。w≦50とする理由は、金属組成バランスにおいてwが大きくなると、表層にAl2O3を形成し静的な耐熱性は優れるが、実際の切削加工においては、硬質皮膜のAlが多い程、被削材中のFe成分などが皮膜に内向拡散を誘発するためである。そこで、w値は50以下、更にw≦x+y+zとすることである。一方、w値が20未満の場合は、Alの添加効果が得られず、皮膜の耐摩耗性、耐酸化性が劣るため、不都合である。(TiAl)N系の硬質皮膜へMo、Siを添加することは被削材の溶着現象を防ぐために有効である。皮膜にSiを適量添加することにより、溶着現象の原因となるAlの移動を抑制し、化学的に安定なAl2O3層の耐剥離性を改善することができる。また、Moを適量添加することにより、Ti酸化物を緻密微細化させることができる。これらにより切削時の高温環境下においても耐溶着現象に優れ、耐熱性を向上させることが可能となる。本発明の硬質皮膜にSi添加するの有効性は、例えば切削工具に適用した際に、切削時の発熱により皮膜表層付近に、Alの酸化物よりもSiの緻密な酸化物が早く形成されることで、被削材に含まれるFeが硬質膜中へ内向拡散するのを抑制し、その結果、溶着発生を抑制できることにある。Siの添加量には最適値があり、zは0.01≦z≦10である。z値が10を超えて大きいと、皮膜硬度と耐熱性は向上する傾向にあるが、硬質皮膜の破断面組織形態が柱状組織から微細粒状組織に変化する。微細粒状組織になると、硬質皮膜の結晶粒界が多くなり、切削熱が上昇した時、大気中の酸素や被削材のFeが内向拡散する経路を増やしてしまい、不都合である。これは、切れ刃に溶着が発生し、潤滑性が損なわれるためである。従って硬質皮膜の破断面組織形態の最適化も重要な必要条件の1つであり、特に高送り加工では、硬質皮膜材料によらず柱状組織を維持する技術は重要である。更に、z値が10を超えて大きいと、皮膜内部の残留応力が増大する。この場合、基体と硬質皮膜界面からの剥離が発生しやすくなり、特に耐衝撃性の強い切削加工において容易に剥離が発生する。この剥離部を中心に溶着が発生するため不都合である。一方、z値を0.01以上とした理由は、Si分析上の容易な検出点であるからである。量産時の安定性を配慮し、また量産稼動を滞りなく行うためには分析を短時間で行う必要がある。 When the hard coating of the present invention is used with a cutting tool as a coated substrate, this hard coating coated tool can improve adhesion and wear resistance by preventing the welding phenomenon of the work material. That is, the phenomenon of occurrence of welding in the cutting process was considered, and the effect of welding resistance of various elements constituting the hard film was examined from this, and an additive element effective for welding resistance at high temperatures was found. The composition of the hard coating of the present invention is Al w Ti x Mo y S iz, where w, x, y, and z are atomic ratios of 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20, 0. 01 ≦ z ≦ 10, w + x + y + z = 100, and w ≦ x + y + z. Here, the numerical value defining range of w is 20 ≦ w ≦ 50. The reason why w ≦ 50 is that when w increases in the metal composition balance, Al 2 O 3 is formed on the surface layer and the static heat resistance is excellent. However, in actual cutting, the more the hard coating Al, This is because an Fe component or the like in the work material induces inward diffusion in the film. Therefore, the w value is 50 or less, and w ≦ x + y + z. On the other hand, when the w value is less than 20, the effect of addition of Al cannot be obtained, and the wear resistance and oxidation resistance of the film are inferior, which is inconvenient. The addition of Mo and Si to the (TiAl) N-based hard coating is effective for preventing the welding phenomenon of the work material. By adding an appropriate amount of Si to the film, it is possible to suppress the movement of Al that causes the welding phenomenon and to improve the peel resistance of the chemically stable Al 2 O 3 layer. Further, by adding an appropriate amount of Mo, the Ti oxide can be made dense and fine. As a result, the welding phenomenon is excellent even in a high-temperature environment during cutting, and the heat resistance can be improved. The effectiveness of adding Si to the hard coating of the present invention is that, for example, when applied to a cutting tool, a dense oxide of Si is formed earlier than the oxide of Al near the coating surface due to heat generated during cutting. Thus, it is possible to suppress the inward diffusion of Fe contained in the work material into the hard film and, as a result, to suppress the occurrence of welding. There is an optimum value for the amount of Si added, and z is 0.01 ≦ z ≦ 10. When the z value exceeds 10 and the film hardness and heat resistance tend to be improved, the fracture surface structure of the hard film changes from a columnar structure to a fine granular structure. A fine grain structure is disadvantageous because the crystal grain boundaries of the hard coating increase, and when the cutting heat rises, the routes in which oxygen in the atmosphere and Fe of the work material diffuse inwardly increase. This is because welding occurs on the cutting edge and the lubricity is impaired. Therefore, optimization of the fractured surface structure of the hard coating is one of the important requirements. Particularly in high feed processing, a technique for maintaining the columnar structure regardless of the hard coating material is important. Furthermore, if the z value exceeds 10 and the residual stress inside the film increases. In this case, peeling from the interface between the substrate and the hard coating is likely to occur, and peeling easily occurs particularly in cutting with strong impact resistance. This is inconvenient because welding occurs around the peeled portion. On the other hand, the reason why the z value is 0.01 or more is that it is an easy detection point in Si analysis. In consideration of stability during mass production, it is necessary to perform analysis in a short time in order to perform mass production without delay.
本発明の(TiAl)N系の硬質皮膜に添加するMoの有効性は、耐熱性向上に必要なSiをベースに、硬質皮膜が酸化した時に形成される表層直下のTi酸化物を緻密な結晶組織にすることである。この緻密な結晶組織を有する酸化物層は、表層付近に形成するSiやAlの酸化物を通過して内向拡散する酸素の侵入を抑制する効果がある。これにより、Ti酸化物の結晶組織の緻密化は表層のAl2O3層の剥離を抑制することができる。Moの添加量には最適値があり、yは2≦y≦20である。Moの添加は、耐熱安定性による溶着抑制効果以外にも、硬質皮膜の高硬度化に有効であるが、y値が20を超えて大きいと、硬質皮膜の硬度が低下する。また、物理蒸着法で被覆した際に、皮膜の破断面組織形態が耐衝撃特性の優れる柱状組織から微細粒状組織となり、切削初期にチッピングや漉き取り摩耗が発生することから添加効果を示さないためである。更に、硬質皮膜被覆時に蒸着源の放電が不安定となり、均一で安定した皮膜形成が困難となる。これは、Moが高融点金属であることによる。一方、z値が2未満の場合、硬質皮膜の高硬度化の効果が無く、工具性能の改善が期待できない。Moの添加は、実質的にはTiもしくはAlに置き換わるものである。 The effectiveness of Mo added to the (TiAl) N-based hard coating of the present invention is based on Si, which is necessary for improving heat resistance, and a dense crystal of Ti oxide formed immediately below the surface layer when the hard coating is oxidized. It is to make an organization. This oxide layer having a dense crystal structure has an effect of suppressing the intrusion of oxygen that diffuses inwardly through Si and Al oxides formed in the vicinity of the surface layer. Thereby, densification of the crystal structure of the Ti oxide can suppress peeling of the surface Al 2 O 3 layer. There is an optimum value for the amount of Mo added, and y is 2 ≦ y ≦ 20. The addition of Mo is effective for increasing the hardness of the hard film in addition to the effect of suppressing the welding due to the heat resistance stability. However, if the y value exceeds 20, the hardness of the hard film decreases. In addition, when coated by physical vapor deposition, the fracture surface structure of the film changes from a columnar structure with excellent impact resistance properties to a fine granular structure, and chipping and scraping wear occurs at the beginning of cutting, so there is no additive effect. It is. Further, the discharge of the vapor deposition source becomes unstable when the hard film is coated, and it becomes difficult to form a uniform and stable film. This is because Mo is a refractory metal. On the other hand, when the z value is less than 2, there is no effect of increasing the hardness of the hard coating, and improvement in tool performance cannot be expected. The addition of Mo substantially replaces Ti or Al.
本発明の(TiAl)N系の硬質皮膜にS、O元素を添加する有効性は、潤滑性の改善にある。S、O添加量には最適値があり、a値は0.3≦a≦5、b値は0.1≦a≦5である。図3は、硬質皮膜にS、Oを添加した際の摩擦係数を測定した結果である。本発明例8は原子比率でb値が1のS添加、本発明例5はb値が1のS添加に加え、a値が4.8のO添加したものである。比較例31のS、O添加の無い場合と比較して、本発明例5、8は摩擦係数が低下する傾向を示した。高能率加工時において、a値を0.3以上とすることにより被加工物の硬質膜への溶着が抑制され、潤滑性が向上した。物理蒸着方法においては、被覆時に真空装置内に残る残留酸素の影響から、硬質膜中の酸素量を分析すると、a値は0.1程度の含有が検出される。この現象を踏まえた上で0.3以上のO添加で、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。しかし、O添加は添加量によっては悪影響をもたらすこともある。a値が5を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下する。また、硬質皮膜断面の結晶組織形態が微細化し、漉き取り摩耗が発生しやすくなるといった不都合が発生する。そこで、本発明においてa値は0.3≦a≦5と規定した。一方、S添加はb値を0.1以上とすることにより、潤滑性が向上し、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。(TiAlMo)N系の硬質皮膜にS添加を試みた所、摩擦係数が従来例30の0.8であったものから本発明例1から15に示す様に、0.3から0.4に低減できることを確認した。これは、O添加による相乗効果も含まれる。b値が5を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下するといった不都合が発生する。そこで、本発明においてb値は0.1≦b≦5と規定した。Sの添加方法には、物理蒸着装置を使用した場合、例えばMoS2ターゲットからの添加方法の他に、真空配管並びに環境処理設備を整えたガスでの導入も考えられる。しかし、現在の物理蒸着技術では反応ガスからの添加が困難であるため、マグネトロンスパッタリング方式を用い、MoS2ターゲットより添加させることが簡便な手法である。本発明は硬質皮膜に優れた靭性をも付与させる技術であり、アーク放電方式で強固な密着性を保持しながら、グネトロンスパッタリング方式と同時放電を起こさせるものである。マグネトロンスパッタリング方式にMoS2ターゲットを用いた場合であっても、本発明は高いエネルギーを有するアーク電方式と同時放電を起こさせるものであるから、S成分はTiAlMoSi系化合物相内に固溶して存在する。従って、被膜にMoS2相として存在する比率は小さく、面積率で3%以下である。本発明の硬質皮膜は、Ti、Al、Si及び/又はMoを含有する硬質被膜に、潤滑性能を有するS含有化合物を有することにより、潤滑性能を長時間維持することが可能となった。皮膜の摩擦係数は0.4を超えて大きいと、潤滑特性の改善効果が見られない事から、0.4以下とした。 The effectiveness of adding S and O elements to the (TiAl) N-based hard coating of the present invention is to improve lubricity. There are optimum values for the amounts of S and O added, the a value is 0.3 ≦ a ≦ 5, and the b value is 0.1 ≦ a ≦ 5. FIG. 3 shows the results of measuring the friction coefficient when S and O are added to the hard coating. Invention Example 8 is the addition of S with an atomic ratio of b value of 1, and Invention Example 5 is the addition of S with b value of 1 and addition of O with a value of 4.8. Compared with the case of no addition of S and O in Comparative Example 31, Invention Examples 5 and 8 showed a tendency for the friction coefficient to decrease. In high-efficiency machining, by setting the a value to 0.3 or more, welding of the workpiece to the hard film was suppressed, and lubricity was improved. In the physical vapor deposition method, when the amount of oxygen in the hard film is analyzed from the influence of residual oxygen remaining in the vacuum apparatus at the time of coating, it is detected that the a value is about 0.1. Based on this phenomenon, it was confirmed that the addition of 0.3 or more O reduced the friction coefficient even under high temperature conditions corresponding to cutting. However, the addition of O may have an adverse effect depending on the amount added. When the a value exceeds 5 and the lubrication characteristics are excellent, the hardness of the hard coating decreases. Moreover, the crystal structure form of the hard coating cross-section becomes finer, and there arises a problem that scuffing wear is likely to occur. Therefore, in the present invention, the a value is defined as 0.3 ≦ a ≦ 5. On the other hand, it was confirmed that when S was added, the lubricity was improved by setting the b value to be 0.1 or more, and the friction coefficient was lowered even under high temperature conditions corresponding to cutting. Attempts to add S to a (TiAlMo) N-based hard film, the friction coefficient was 0.8 from the conventional example 30 to 0.3 to 0.4 as shown in the present invention examples 1 to 15. It was confirmed that it could be reduced. This includes a synergistic effect due to the addition of O. When the b value exceeds 5 and the lubrication characteristics are excellent, there is a disadvantage that the hardness of the hard coating is lowered. Therefore, in the present invention, the b value is defined as 0.1 ≦ b ≦ 5. In the case of using a physical vapor deposition apparatus, for example, in addition to the addition method from a MoS 2 target, the introduction of S with a gas having a vacuum pipe and an environmental treatment facility arranged therein is also conceivable. However, since it is difficult to add from a reactive gas with the current physical vapor deposition technique, it is a simple technique to add from a MoS 2 target using a magnetron sputtering method. The present invention is a technique for imparting excellent toughness to a hard film, and causes simultaneous discharge with a magnetron sputtering system while maintaining strong adhesion by an arc discharge system. Even when a MoS 2 target is used for the magnetron sputtering method, since the present invention causes simultaneous discharge with the arc electric method having high energy, the S component is dissolved in the TiAlMoSi compound phase. Exists. Therefore, the ratio of the MoS 2 phase existing in the coating is small, and the area ratio is 3% or less. The hard coating of the present invention can maintain the lubricating performance for a long time by having the hard coating containing Ti, Al, Si and / or Mo having the S-containing compound having the lubricating performance. If the friction coefficient of the film is larger than 0.4, the effect of improving the lubrication characteristics is not seen.
本発明の硬質皮膜の総膜厚は、0.5〜10μmの平均層厚を有し、硬質皮膜と基体との界面近傍であって、界面から平均層厚の1〜30%に相当する領域に亘る硬質皮膜内に含有される酸素含有量Mとし、硬質皮膜の表面近傍であって、表面側から平均層厚の1〜30%に相当する深さに亘る領域に含有される酸素含有量Nとし、両者の差をN−Mとした時、N−M≧0.3となることが好ましい。O添加により残留圧縮応力が増大するため、皮膜の密着性に影響を及ぼすことから、製膜時におけるOの添加方法には、相当の配慮するとよい。皮膜の密着性を維持するための工夫として、成膜開始から終了まで徐々にO添加量を上げていくことが適切である。その結果、N−M≧0.3となり、潤滑性、耐衝撃性の優れる硬質皮膜を得ることが可能になる。本発明の硬質膜はO添加により、皮膜表面付近では硬質膜中に含まれるO添加量が多くなり、硬質膜の金属元素の酸化物が形成され易い。従って潤滑特性を改善することができる。一方、例えば物理的蒸着法により、成膜初期よりO元素を多量に添加することは、基体表面や処理装置の内壁が絶縁化するため好ましくない。金属元素の合計量A(Al+Ti+Mo+Si)に対する非金属元素の合計量B(O+N+S)の比B/A>1.0であり、1.02以上であるのが好ましい。この比の上限は1.7であるのが好ましい。 The total film thickness of the hard coating of the present invention has an average layer thickness of 0.5 to 10 μm, is in the vicinity of the interface between the hard coating and the substrate, and corresponds to 1 to 30% of the average layer thickness from the interface The oxygen content M contained in the hard film over the entire area, and in the vicinity of the surface of the hard film, the oxygen content contained in a region extending from the surface side to a depth corresponding to 1 to 30% of the average layer thickness It is preferable that N−M ≧ 0.3, where N is N and the difference between the two is N−M. Since the residual compressive stress increases due to the addition of O, which affects the adhesion of the film, it is advisable to give considerable consideration to the method of adding O during film formation. As a device for maintaining the adhesion of the film, it is appropriate to gradually increase the O addition amount from the start to the end of film formation. As a result, NM ≧ 0.3, and it becomes possible to obtain a hard film having excellent lubricity and impact resistance. In the hard film of the present invention, the addition of O increases the amount of O added in the hard film near the surface of the film, so that the metal element oxide of the hard film is easily formed. Accordingly, the lubrication characteristics can be improved. On the other hand, it is not preferable to add a large amount of O element from the initial stage of film formation, for example, by physical vapor deposition, because the substrate surface and the inner wall of the processing apparatus are insulated. The ratio B / A> 1.0 of the total amount B (O + N + S) of the nonmetallic elements to the total amount A (Al + Ti + Mo + Si) of the metal elements is preferably 1.02 or more. The upper limit of this ratio is preferably 1.7.
本発明の硬質皮膜は、硬質皮膜の表面近傍のESCA分析において、100eVから105eVの範囲にSiと酸素との結合エネルギーを有する。図4に本発明例1の硬質皮膜の表面近傍について化学結合状態をESCA分析により解析した結果を示す。図4より、本発明の硬質皮膜は100eVから105eVの範囲にSiと酸素との結合エネルギーを有することを確認した。これはAl−OとSi−Oとの生成自由エネルギーの差により、Si−Oが優先的に形成されたものである。この緻密な酸化物の形成が、潤滑特性を高め、高能率切削加工時において発生する被加工物の溶着現象を低下させる。 The hard film of the present invention has a binding energy of Si and oxygen in the range of 100 eV to 105 eV in ESCA analysis near the surface of the hard film. FIG. 4 shows the result of analyzing the chemical bonding state by ESCA analysis in the vicinity of the surface of the hard coating of Example 1 of the present invention. From FIG. 4, it was confirmed that the hard coating of the present invention has a binding energy of Si and oxygen in the range of 100 eV to 105 eV. This is because Si—O is formed preferentially due to the difference in free energy of formation between Al—O and Si—O. The formation of this dense oxide enhances the lubrication characteristics and reduces the workpiece welding phenomenon that occurs during high-efficiency cutting.
本発明の硬質皮膜は、高送り切削加工の条件で性能を発揮させるため、基体との密着性が強固でなければならない。そのためには基体と硬質皮膜との界面でへテロエピタキシャルの関係をもつように、基体直上にある硬質皮膜の配向面を制御しなければならない。へテロエピタキシャルの関係をもつことにより、硬質皮膜と基体界面の分子間力を強めることができる。図5に示すように、電子線回折を行ったときに基体に含まれるWCの(100)面と、(TiAlMoSi)(OSN)硬質皮膜の(200)面を整合させることにより、分子間力を高め、密着性を向上させることができる。本発明の硬質皮膜は、残留圧縮応力が大きいため、基体と硬質皮膜との界面でへテロエピタキシャルの関係を形成しなければならない。これにより、密着性の問題を解決し、高機能化した硬質皮膜の特徴が発揮される。 The hard coating of the present invention must have strong adhesion to the substrate in order to exhibit performance under the conditions of high feed cutting. For this purpose, the orientation plane of the hard film directly above the base must be controlled so that there is a heteroepitaxial relationship at the interface between the base and the hard film. By having a heteroepitaxial relationship, the intermolecular force between the hard coating and the substrate interface can be increased. As shown in FIG. 5, when the (100) plane of WC contained in the substrate and the (200) plane of the (TiAlMoSi) (OSN) hard film are aligned when electron beam diffraction is performed, the intermolecular force is reduced. And can improve adhesion. Since the hard coating of the present invention has a large residual compressive stress, a heteroepitaxial relationship must be formed at the interface between the substrate and the hard coating. Thereby, the feature of the hard film which solved the problem of adhesiveness and improved functionality is exhibited.
本発明の硬質皮膜は結晶配向性の制御を行い、基体と硬質皮膜との界面の歪発生を最小限に抑制している。基体が超硬合金のような多結晶の場合、焼結後のWC優先方位である(100)面上に、面心立法構造を有する硬質皮膜を被覆させるためには、(200)面を配向させるように制御しなければならない。硬質皮膜のX線回折における(111)面の検出強度をIa、(200)面の検出強度をIbとした時に、Ib/Iaが2未満となると、基体と硬質皮膜との界面に大きな歪を持ったまま結晶が成長するため、接合強度が不十分となる。更に、硬質皮膜の内部応力が増大し容易に剥離する。そこで本発明の硬質皮膜が激しい切削加工条件にも耐え得る密着性を確保するためには、Ib/Ia≧2.0でなければならない。本発明の硬質皮膜が更に強固な密着性を有するためには、硬質皮膜の格子定数λの制御を行うことである。λは残留応力値に影響を及ぼす。残留応力値が大きくなると、密着性を維持することが困難になる。そこで、密着性を維持するための最適な(200)面のλを求め、0.4155≦λ≦0.4220を得た。λが0.4220nmを超えて大きい場合、硬質皮膜中に残留する圧縮応力は8GPaを越える為、大きな応力が基体と硬質皮膜との界面に負荷される。たとえ両者の間にヘテロエピタキシャル関係が成立していても皮膜剥離が発生する。切削工具を被覆基体として本発明の硬質皮膜を用いた場合、切削工具として優位性が損なわれる。従って、λは0.4220nmを超えてはならない。一方、λの下限値は0.4155nmである。λは0.4155nm未満では、硬質皮膜の潤滑特性の低下が目立つようになり、好ましくない。硬質皮膜の優れた特徴を十分に引き出すことのできる範囲は、0.4155≦λ≦0.4220である。λを規定範囲内に制御し、残留応力を制御するためには、本発明の構成元素上、Al含有量の制御によって調整が可能であり、生産的にも安定性のあることが確認された。λはAlを多くした場合、或いはSiを多く添加した場合、元素の原子半径の影響を受けて低下する。一方、Al添加を抑えることや被覆時にプラズマ密度が大きくなるような成膜条件を設定した時に増大し、同時に残留圧縮応力も増大する傾向にある。 The hard coating of the present invention controls the crystal orientation and suppresses the occurrence of strain at the interface between the substrate and the hard coating to a minimum. When the substrate is polycrystalline such as cemented carbide, the (200) plane is oriented to cover the hard film having a face-centered cubic structure on the (100) plane, which is the preferred WC orientation after sintering. You have to control it. When the detected intensity of the (111) plane in the X-ray diffraction of the hard film is Ia and the detected intensity of the (200) plane is Ib, if Ib / Ia is less than 2, a large strain is applied to the interface between the substrate and the hard film. Since the crystal grows as it is, the bonding strength becomes insufficient. In addition, the internal stress of the hard coating increases and peels easily. Therefore, in order to ensure adhesion that the hard coating of the present invention can withstand severe cutting conditions, Ib / Ia ≧ 2.0. In order for the hard coating of the present invention to have stronger adhesion, it is necessary to control the lattice constant λ of the hard coating. λ affects the residual stress value. When the residual stress value increases, it becomes difficult to maintain the adhesion. Therefore, the optimal (200) plane λ for maintaining the adhesion was obtained, and 0.4155 ≦ λ ≦ 0.4220 was obtained. When λ is larger than 0.4220 nm, the compressive stress remaining in the hard film exceeds 8 GPa, so that a large stress is applied to the interface between the substrate and the hard film. Even if a heteroepitaxial relationship is established between them, film peeling occurs. When the hard film of the present invention is used with a cutting tool as a coated substrate, the superiority as a cutting tool is impaired. Therefore, λ should not exceed 0.4220 nm. On the other hand, the lower limit of λ is 0.4155 nm. If λ is less than 0.4155 nm, the lubrication characteristics of the hard film will be noticeably deteriorated, which is not preferable. The range in which the excellent characteristics of the hard coating can be sufficiently extracted is 0.4155 ≦ λ ≦ 0.4220. In order to control λ within the specified range and control the residual stress, it was confirmed that it can be adjusted by controlling the Al content on the constituent elements of the present invention and is stable in terms of productivity. . λ decreases under the influence of the atomic radius of the element when Al is increased or Si is added. On the other hand, when Al is added or when film forming conditions are set such that the plasma density is increased during coating, the residual compressive stress tends to increase.
本発明の硬質皮膜は基体直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けることが好ましい。この中間層は、硬質皮膜と基体との間に存在し、密着性を向上させる効果がある。切削工具を被覆基体として本発明の硬質皮膜を用いた場合、乾式高能率切削加工に使用することを想定している。しかし使用状況が湿式切削の場合、基体と硬質皮膜界面の密着性を更に強固にする必要がある。この理由は、湿式加工状況においては、切削熱により高温になった工具が切削液により急冷されるためである。一般的には切削温度を低減し工具寿命を向上させる手段として浸透しているが、高能率加工においては切削熱が非常に高いため、切削液等で急冷されると膨張、収縮の差が大きくなり、硬質皮膜が接合されている界面に非常に大きな負荷をもたらすことになる。この中間層の存在によって、繰り返し疲労による皮膜破壊の発生を回避することができる。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜の摩擦特性が安定し好ましい。例えば切削工具を被覆基体として本発明の硬質皮膜を用いた場合、切削寿命のばらつきを低減することができ、好ましい切削工具を得ることができる。本発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた硬質皮膜に関し、特に切削工具、金型、軸受け、ダイス、ロール、ピストンリング、摺動部材等、高硬度が要求される耐摩耗部材や内燃機関部品等の耐熱部材の表面に被覆するのが好ましい。本発明を以下の実施例に基づいて説明するが、本発明はそれらに限定されるものではない。 In the hard coating of the present invention, it is preferable to provide at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal on the upper surface of the substrate. This intermediate layer exists between the hard coating and the substrate and has the effect of improving the adhesion. When the hard coating of the present invention is used with a cutting tool as a coated substrate, it is assumed that it is used for dry high-efficiency cutting. However, when the usage is wet cutting, it is necessary to further strengthen the adhesion between the substrate and the hard coating interface. This is because, in a wet machining situation, a tool that has become hot due to cutting heat is rapidly cooled by the cutting fluid. In general, it has penetrated as a means to reduce the cutting temperature and improve the tool life, but in high-efficiency machining, the cutting heat is very high, so when quenched with cutting fluid, the difference between expansion and contraction is large. Thus, a very large load is brought to the interface where the hard coating is bonded. Due to the presence of this intermediate layer, it is possible to avoid the occurrence of film destruction due to repeated fatigue. By smoothing the convex portions on the surface of the hard film by mechanical treatment after the hard film is coated, the friction characteristics of the hard film are stabilized, which is preferable. For example, when the hard coating of the present invention is used with a cutting tool as a coated substrate, variation in cutting life can be reduced, and a preferable cutting tool can be obtained. The present invention relates to a hard coating excellent in wear resistance, adhesion and high temperature oxidation resistance coated on cemented carbide, high speed steel, die steel, etc., and in particular, cutting tools, molds, bearings, dies, rolls, pistons. It is preferable to coat the surface of a heat-resistant member such as a ring or a sliding member, such as a wear-resistant member or internal combustion engine component that requires high hardness. The present invention will be described based on the following examples, but the present invention is not limited thereto.
小型真空装置内にAIPによる蒸発源と、マグネトロンスパッタによる蒸発源とを併設した装置を用いて、基体となる超硬合金製インサートに被覆を行った。蒸発源は各種合金製ターゲットを用い、反応ガスはN2ガス、CH4ガス、Ar/O2混合ガスから目的の皮膜が得られるものを選択した。被覆条件は、基体温度400℃、バイアス電圧は、−40Vから−150Vの範囲の電圧を印加した。得られた硬質皮膜被覆インサートを用い、次に示す切削条件1及び切削条件2にて切削試験を行った。評価方法は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1から表3に本発明例及び比較例、従来例に関する硬質皮膜の詳細及び切削試験の結果を示す。 A cemented carbide insert serving as a substrate was coated using a device in which an evaporation source by AIP and an evaporation source by magnetron sputtering were provided in a small vacuum apparatus. Various evaporation targets were used as the evaporation source, and the reaction gas was selected from N 2 gas, CH 4 gas, and Ar / O 2 mixed gas to obtain a desired film. As the coating conditions, a substrate temperature of 400 ° C. and a bias voltage of −40V to −150V were applied. Using the obtained hard coating-coated insert, a cutting test was performed under the following cutting conditions 1 and 2. In the evaluation method, processing was performed until the tool became uncut due to chipping or wear of the blade edge, and the cutting length at that time was defined as the tool life. Tables 1 to 3 show the details of the hard coating and the results of the cutting test for the inventive examples, comparative examples, and conventional examples.
(切削条件1)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)、Φ6ドリル穴多孔面在り
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
(切削条件2)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
表1に切削加工におけるインサートの耐欠損性について、切削条件1による切削評価結果を示した。切削条件1で用いた被削材は、表面に予めドリルにて等間隔に穴をあけたものを使用した。この被削材表面を高能率加工条件にて切削を行う事により断続加工を想定し、インサートが衝撃を受けて欠損に至るまでの切削可能長を評価した。
(Cutting condition 1)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30), Φ6 drill hole porous surface cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None (Cutting condition 2)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30)
Cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: none Table 1 shows the cutting evaluation results under cutting condition 1 for the chipping resistance of the insert in the cutting process. The work material used in the cutting condition 1 was a material whose holes were previously drilled at equal intervals by a drill. By cutting the surface of the work material under high-efficiency machining conditions, intermittent cutting was assumed, and the possible cutting length until the insert was impacted and damaged was evaluated.
本発明例1〜15は何れもプラズマ密度の異なる蒸発源を併用した。一方、比較例16〜27、従来例28〜30はプラズマ密度の同じ単一蒸発源を用いた場合である。本発明例1〜15の方が優れた切削性能を示した。これは、プラズマ密度の異なるAIPとマグネトロンスパッタの手法を被覆時に併用し、高硬度膜と低硬度の皮膜とを連続して交互に被覆することによって、硬質皮膜の耐摩耗性、潤滑性を保持したまま、皮膜強度を向上させることができた。硬質皮膜に組成の異なる相を形成し、Si含有量に差をつけるための方法には、ターゲット組成や被覆条件を断続的、連続的に変化させる方法が考えられるが、本発明で採用した様なプラズマ密度の異なる蒸発源を用いた方が、より優れた耐欠損特性を得ることができた。比較例16、23、25は単一の蒸発源を用いて、組成差が発生しないように被覆した場合である。比較例16はマグネトロンスパッタによる被覆であるが、AIPに比べ、プラズマ密度を高めることができないため、皮膜の高硬度化ができなかった。そのため、耐摩耗性が十分ではなく、初期欠損に至ってしまった。比較例23、25は硬質皮膜が高硬度化する傾向にあったが、靭性が乏しくなり、断続切削性能を向上させることができなかった。一方、比較例17、18、20〜22はAIPを使用し、硬質膜に組成差が発生するように被覆した場合である。組成差は発生しているが、目標とする切削性能は得られなかった。特に比較例18、21、22はSの添加量が、本発明の適正範囲を越えていた。AIPのみの被覆の場合、ターゲット組成によらず放電時に発生するプラズマ密度が大きいため、硬質皮膜は高硬度化しやすい傾向にある。従って靭性が不足する。比較例に示したように皮膜に組成差を発生させても残留応力の増大を招いてしまうため、耐欠損性、密着性に悪影響となる。比較例の中には皮膜硬度がHvで3500を越えるような物も得られたが、皮膜の靭性が低い為に断続切削状況下で欠損が発生し、工具は短寿命であった。比較例26、27はAIPとマグネトロンスパッタとを併用することにより、硬質皮膜内に組成差を発生させた。しかし、組成差が目標の範囲を越えてしまったため、硬質皮膜の破断面組織形態が連続した柱状形態を示さず、組成の異なる相が断続的に連なり成長していた。そのため相間の接合力が弱く膜破壊が発生し、目標の切削性能が得られなかった。しかし、比較例26、27はプラズマ密度の異なる手法を併用することにより、耐欠損性が向上することを確認できた。以上の様に、AIPとマグネトロンスパッタを被覆時に併用した様に、プラズマ密度の異なる方式を併用した時に、硬質皮膜のSi組成差を制御することができ、硬質皮膜を被覆したインサートは、優れた耐欠損特性を発揮させることができた。 In each of Invention Examples 1 to 15, evaporation sources having different plasma densities were used in combination. On the other hand, Comparative Examples 16 to 27 and Conventional Examples 28 to 30 are cases where a single evaporation source having the same plasma density is used. Inventive Examples 1 to 15 showed superior cutting performance. This is because the AIP and magnetron sputtering methods with different plasma densities are used at the time of coating, and the high-hardness film and the low-hardness film are alternately and continuously coated to maintain the wear resistance and lubricity of the hard film. As a result, the film strength could be improved. As a method for forming different phases in the hard film and differentiating the Si content, a method of intermittently and continuously changing the target composition and coating conditions can be considered. The use of evaporation sources with different plasma densities provided better fracture resistance. Comparative Examples 16, 23, and 25 are cases where coating was performed using a single evaporation source so as not to cause a compositional difference. Comparative Example 16 was a coating by magnetron sputtering, but the plasma density could not be increased compared to AIP, so that the coating could not be increased in hardness. Therefore, the wear resistance is not sufficient, leading to initial defects. In Comparative Examples 23 and 25, the hard coating tended to increase in hardness, but the toughness became poor and the intermittent cutting performance could not be improved. On the other hand, Comparative Examples 17, 18, 20 to 22 are cases in which AIP is used and the hard film is coated so that a compositional difference occurs. Although there was a difference in composition, the target cutting performance was not obtained. Particularly, in Comparative Examples 18, 21, and 22, the amount of S added exceeded the appropriate range of the present invention. In the case of coating only with AIP, the hard film tends to have a high hardness because the plasma density generated during discharge is large regardless of the target composition. Accordingly, the toughness is insufficient. As shown in the comparative example, even if a compositional difference is generated in the film, the residual stress is increased, which adversely affects fracture resistance and adhesion. Some of the comparative examples had a coating hardness exceeding 3500 in Hv, but due to the low toughness of the coating, defects occurred under intermittent cutting conditions, and the tool had a short life. In Comparative Examples 26 and 27, a composition difference was generated in the hard coating by using AIP and magnetron sputtering in combination. However, since the compositional difference exceeded the target range, the fractured surface structure of the hard coating did not show a continuous columnar form, and phases with different compositions were intermittently growing. For this reason, the bonding force between the phases was weak, and film breakage occurred, and the target cutting performance could not be obtained. However, it was confirmed that Comparative Examples 26 and 27 were improved in chipping resistance by using methods having different plasma densities. As described above, when AIP and magnetron sputtering are used together during coating, when different plasma density methods are used together, the Si composition difference of the hard coating can be controlled, and the insert coated with the hard coating is excellent. It was possible to exhibit the fracture resistance.
表2は本発明の硬質皮膜を超硬合金製のインサートに被覆し、これを工具に装着して切削条件2の高能率加工を行った時の試験結果を示す。表2に本発明例1〜15、比較例31〜40、従来例28〜30、41を記載して評価結果を比較した。評価は突発的な欠損や異常摩耗、剥離を伴う損傷形態が観察されない場合は、逃げ面最大摩耗量が0.3mmに達した時点を工具寿命とした。表2に示した通り、本発明例1〜15は、鋼に対する摩擦係が0.4以下を示し、また硬質皮膜の硬度を改善し耐摩耗特性を向上させ、優れた切削特性を有すること示した。本発明例は密着性、潤滑性、耐摩耗特性の課題を改善し、性能を大幅に改善することで満足のいく結果を得ることができた。本発明例3、7、12は、今回の切削評価において長い切削寿命を示し、従来例28、29、30に対し、切削寿命の改善を得ることがでた。本発明例3、12は摩擦係数も低く潤滑性に優れた特性を示すと伴に、切削初期の被加工物の刃先への溶着現象が低減し、比較例31〜40の切削評価結果に見られる切削距離では、ほとんど摩耗の発生していないことが観察された。これより本発明の効果を確認できた。本発明例12は、従来例の中で最も寿命の長かった従来例29、30に対し、2.4倍の長寿命を得ることができた。本発明例に記載の金属成分組成と切削寿命の相関関係は、O添加や表層酸化物の有無、ヘテロエピタキシャルの有無にも影響を受けている。更にMoとSiの添加量のバランスも大切である。今回の試験で、平均的に切削特性が優れ、工具寿命が上位にあるものは、Mo>Siの傾向を示した。本発明例のSi添加量が規定量の範囲内でMo添加量よりも多くなっても、従来例や比較例と比べた場合、十分な切削性能を発揮することが認められた。しかし、切削性能を考慮すると、Mo>Siの硬質皮膜が望ましい。本発明の硬質皮膜はO添加により潤滑特性が大幅に向上した。例えば、比較例31はO無添加の事例であり、切削性能は従来例とほとんど変わらない結果となった。比較例33、34の様に、金属成分が本発明の範囲内でも、O添加量のa値が5を越えると、潤滑特性は認められが、動的な切削に対し早期摩耗が発生する。これは、Oを多量添加することで硬質皮膜の破断面組織形態が柱状から微細組織状に変化し、高硬度が得られずに低硬度化してしまったためと考えられる。比較例33は、密着性が考慮されているため初期欠損は発生せずに摩耗寿命に到達したが、比較例34の場合は密着性も考慮されていないため、インサートすくい面の硬質皮膜の剥離が顕著に現われた。本発明の硬質皮膜組成の範囲内で被覆しても、密着性が考慮されていない場合は、今回の切削条件下において剥離を発生し、安定した加工を行うことがでなかった。比較例36は、Al成分が規定範囲外であり、密着性も考慮していない場合である。比較例40は、Mo成分が規定範囲外である場合である。硬質皮膜の金属成分が規定範囲外となると破断面組織形態が微細化し、この状態で切削加工を行うと、インサートすくい面での摩耗が急速に発生し、その結果短寿命となるのである。 Table 2 shows the test results when the hard coating of the present invention is coated on a cemented carbide insert and mounted on a tool to perform high-efficiency machining under cutting condition 2. Inventive Examples 1-15, Comparative Examples 31-40, and Conventional Examples 28-30, 41 were described in Table 2 and the evaluation results were compared. In the evaluation, when no damage such as sudden defect, abnormal wear, or peeling was observed, the tool life was defined as the point at which the maximum flank wear amount reached 0.3 mm. As shown in Table 2, Examples 1 to 15 of the present invention show that the friction coefficient with respect to steel is 0.4 or less, the hardness of the hard coating is improved, the wear resistance is improved, and the cutting properties are excellent. It was. In the present invention, the problems of adhesion, lubricity and wear resistance were improved, and satisfactory results could be obtained by greatly improving the performance. Inventive Examples 3, 7, and 12 showed a long cutting life in this cutting evaluation, and improved cutting life over the conventional Examples 28, 29, and 30. Inventive Examples 3 and 12 exhibit low friction coefficient and excellent lubricity, and also reduce the phenomenon of welding of the workpiece to the cutting edge at the initial stage of cutting, as seen in the cutting evaluation results of Comparative Examples 31 to 40. It was observed that almost no wear occurred at the cutting distances that were obtained. This confirmed the effect of the present invention. Invention Example 12 was able to obtain 2.4 times longer life than Conventional Examples 29 and 30 that had the longest life among the conventional examples. The correlation between the metal component composition and the cutting life described in the examples of the present invention is also affected by the addition of O, the presence or absence of surface oxides, and the presence or absence of heteroepitaxiality. Furthermore, the balance of the addition amounts of Mo and Si is also important. In this test, those with excellent cutting characteristics on average and those with the highest tool life showed a tendency of Mo> Si. Even when the Si addition amount of the present invention example was larger than the Mo addition amount within the specified amount range, it was confirmed that sufficient cutting performance was exhibited when compared with the conventional example and the comparative example. However, considering cutting performance, a hard coating of Mo> Si is desirable. The lubricating properties of the hard coating of the present invention were greatly improved by the addition of O. For example, Comparative Example 31 is a case where O is not added, and the cutting performance is almost the same as the conventional example. As in Comparative Examples 33 and 34, even if the metal component is within the range of the present invention, if the a value of the O addition amount exceeds 5, lubrication characteristics are recognized, but early wear occurs due to dynamic cutting. This is presumably because the fracture surface texture form of the hard coating changed from a columnar shape to a fine textured state by adding a large amount of O, and the hardness was lowered without obtaining a high hardness. In Comparative Example 33, since the adhesiveness was taken into account, the initial life was not generated and the wear life was reached. However, in Comparative Example 34, the adhesiveness was not taken into account, so that the hard coating on the insert rake face was peeled off. Appeared prominently. Even if the coating is performed within the range of the hard coating composition of the present invention, if adhesion is not considered, peeling occurs under the current cutting conditions, and stable processing cannot be performed. Comparative Example 36 is a case where the Al component is outside the specified range and adhesion is not taken into consideration. Comparative Example 40 is a case where the Mo component is outside the specified range. When the metal component of the hard coating is out of the specified range, the fracture surface structure becomes finer. When cutting is performed in this state, wear on the insert rake face is rapidly generated, resulting in a short life.
O添加方法によっても切削性能に影響を及ぼすことが明らかとなった。比較例32、35、38は成膜開始時から所定量のO添加を開始して被覆終了時までその量を変化させずに均等に添加して被覆した場合である。これに対し、本発明例並びに比較例33、34、36、37、39、40は被覆開始から終了までO添加量が基体と硬質皮膜界面から表面に向かって勾配を示すように傾斜して添加したものである。切削試験結果は、O添加が勾配を示すよう傾斜して添加する被覆が望ましいと言う結果が得られた。比較例37、39、40はMo、Si添加量が規定範囲外にあることによって、残留圧縮応力が増大し、切削初期の皮膜剥離が発生することが明らかとなった。以上の試験結果より、本発明の硬質皮膜の改善効果は、第1に金属成分の組成範囲設定による効果、第2にO及びSの添加効果、第3に硬質膜表面に緻密なSiの酸化物を形成させる効果により得られ、潤滑特性が大幅に向上し、寿命向上が実現できることが確認できた。
表3に硬質皮膜のX線回折による解析結果として面心立方格子(111)面と(200)面の検出ピーク強度比Ib/Ia、(200)面の格子定数λと、切削条件2による切削評価結果を示す。表3より比較例16〜25、42〜46は、S、O添加もなされていたが、X線回折における結晶配向が規定範囲外であったため、容易にクレータ摩耗や剥離が発生した。また、λの調整も必要であることが確認された。比較例17、21〜24、42〜46のように(200)面のλが0.4230nmを超えるような硬質皮膜の場合、硬質皮膜の金属成分組成並びにS、O添加量とは無関係に、早期に切削寿命に到達した。λの値は硬質皮膜の内部応力の大小に影響を与える。λが大きい場合には、たとえ基体と硬質皮膜との界面でヘテロエピタキシャルを成立させても、残留圧縮応力が増大し界面での応力増大により硬質皮膜が容易に破壊、或いは剥離が発生し、その結果工具寿命が安定せず短寿命になる。従って、本発明の様に切削性能を改善させ安定した切削性能を示すためには、金属成分の規定やS、O添加量、O添加手法以外に、結晶配向も適切に制御することにより、密着性良く成膜することも重要である。
It became clear that the cutting performance was also affected by the O addition method. In Comparative Examples 32, 35, and 38, a predetermined amount of O is added from the start of film formation and is added uniformly without changing the amount until the end of coating. On the other hand, the inventive examples and comparative examples 33, 34, 36, 37, 39, and 40 were added in an inclined manner so that the O addition amount showed a gradient from the substrate and hard coating interface toward the surface from the start to the end of coating. It is a thing. As a result of the cutting test, it was found that a coating in which the addition of O is inclined so as to show a gradient is desirable. In Comparative Examples 37, 39, and 40, it was found that when the addition amounts of Mo and Si are outside the specified ranges, the residual compressive stress is increased, and film peeling at the initial stage of cutting occurs. From the above test results, the improvement effect of the hard film of the present invention is the first effect by setting the composition range of the metal component, the second addition effect of O and S, and the third oxidation of dense Si on the hard film surface. It was obtained by the effect of forming the product, and it was confirmed that the lubrication characteristics were greatly improved and the life could be improved.
Table 3 shows the results of analysis of hard coatings by X-ray diffraction, the detected peak intensity ratio Ib / Ia of the (111) plane and the (200) plane, the lattice constant λ of the (200) plane, and cutting under cutting condition 2 An evaluation result is shown. From Table 3, Comparative Examples 16 to 25 and 42 to 46 were also added with S and O, but because the crystal orientation in X-ray diffraction was out of the specified range, crater wear and peeling occurred easily. Further, it was confirmed that the adjustment of λ is also necessary. In the case of a hard coating such that (200) plane λ exceeds 0.4230 nm as in Comparative Examples 17, 21-24, 42-46, regardless of the metal component composition of the hard coating and the amount of addition of S and O, The cutting life was reached early. The value of λ affects the internal stress level of the hard coating. When λ is large, even if heteroepitaxial is established at the interface between the substrate and the hard film, the residual compressive stress increases, and the hard film easily breaks or peels off due to the increase in stress at the interface. As a result, the tool life is not stable and the life is shortened. Therefore, in order to improve the cutting performance and show stable cutting performance as in the present invention, in addition to the provision of the metal component, S, O addition amount, O addition technique, by controlling the crystal orientation appropriately, the adhesion It is also important to form a film with good properties.
更に基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属などの中間層を設けることによって、更に密着力を補強して耐剥離を改善し、耐欠損特性を向上させる効果が認められた。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜の摩擦特性が安定し、切削工具の切削寿命のばらつきを低減することが認められた。 Furthermore, by providing an intermediate layer of Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, W metal, etc. directly on the upper surface of the substrate, the adhesion is further reinforced to improve delamination resistance and resistance. The effect of improving defect characteristics was recognized. It was recognized that, after coating the hard coating, the convex portions on the surface of the hard coating were smoothed by mechanical treatment, so that the friction characteristics of the hard coating were stabilized and the variation in cutting life of the cutting tool was reduced.
1:真空装置
2:AIP蒸発源
3:マグネトロンスパッタ蒸発源
4:基体保持治具
5:回転方向
1: Vacuum device 2: AIP evaporation source 3: Magnetron sputtering evaporation source 4: Substrate holding jig 5: Direction of rotation
Claims (6)
A hard film-coated tool, which is coated with the hard film according to claim 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034515A JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
KR1020050011669A KR101170943B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its forming method, and hard-coated tool |
US11/055,718 US7368182B2 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
EP05002960.2A EP1564312B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
CNB2005100697223A CN100510160C (en) | 2004-02-12 | 2005-02-16 | Hard coating and formation method, and hard-coated tool thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034515A JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005226102A true JP2005226102A (en) | 2005-08-25 |
JP4453902B2 JP4453902B2 (en) | 2010-04-21 |
Family
ID=35001050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004034515A Expired - Fee Related JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4453902B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056354A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Tool Engineering Ltd | Hard film and its manufacturing method |
JPWO2009025112A1 (en) * | 2007-08-22 | 2010-11-18 | 住友電気工業株式会社 | Surface coated cutting tool |
JP2017042906A (en) * | 2015-08-29 | 2017-03-02 | 三菱マテリアル株式会社 | Surface coating cutting tool demonstrating excellent chipping resistance, abrasion resistance in strong intermittent cutting work |
KR101753104B1 (en) | 2015-09-18 | 2017-07-05 | 한국야금 주식회사 | Hard film for cutting tools |
-
2004
- 2004-02-12 JP JP2004034515A patent/JP4453902B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056354A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Tool Engineering Ltd | Hard film and its manufacturing method |
JPWO2009025112A1 (en) * | 2007-08-22 | 2010-11-18 | 住友電気工業株式会社 | Surface coated cutting tool |
JP5662680B2 (en) * | 2007-08-22 | 2015-02-04 | 住友電気工業株式会社 | Surface coated cutting tool |
JP2017042906A (en) * | 2015-08-29 | 2017-03-02 | 三菱マテリアル株式会社 | Surface coating cutting tool demonstrating excellent chipping resistance, abrasion resistance in strong intermittent cutting work |
KR101753104B1 (en) | 2015-09-18 | 2017-07-05 | 한국야금 주식회사 | Hard film for cutting tools |
Also Published As
Publication number | Publication date |
---|---|
JP4453902B2 (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101170943B1 (en) | Hard coating and its forming method, and hard-coated tool | |
JP4958134B2 (en) | Hard coating tool | |
KR101170396B1 (en) | Hard coating and its production method | |
JP4304170B2 (en) | Hard coating | |
JP4850189B2 (en) | Coated tool | |
JP4453902B2 (en) | Hard coating and hard coating tool | |
JP4615259B2 (en) | Manufacturing method of hard coating | |
JP4936703B2 (en) | Surface coated cutting tool | |
JP2006118051A (en) | Method for producing hard film | |
JP2004136430A (en) | Coated tool | |
JP4958135B2 (en) | Hard coating tool | |
JP2007217771A (en) | Hard film coated member and its manufacturing method | |
JP2007046103A (en) | Hard film | |
JP4304179B2 (en) | Hard coating and method for producing the same | |
JP4908767B2 (en) | Surface covering member and cutting tool | |
JP2007056324A (en) | Hard film | |
JP4676741B2 (en) | Hard coating and hard coating method | |
JP2005271132A (en) | Surface coated cutting tool | |
JP4304175B2 (en) | Hard coating and method for producing the same | |
JP4780642B2 (en) | Hard coating and method for producing the same | |
JP2006307242A (en) | Hard film | |
JP2007056354A (en) | Hard film and its manufacturing method | |
JP3614417B2 (en) | Hard coating tool | |
JP2007056323A (en) | Hard film | |
JP2007056305A (en) | Hard film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4453902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140212 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |