JP4453902B2 - Hard coating and hard coating tool - Google Patents
Hard coating and hard coating tool Download PDFInfo
- Publication number
- JP4453902B2 JP4453902B2 JP2004034515A JP2004034515A JP4453902B2 JP 4453902 B2 JP4453902 B2 JP 4453902B2 JP 2004034515 A JP2004034515 A JP 2004034515A JP 2004034515 A JP2004034515 A JP 2004034515A JP 4453902 B2 JP4453902 B2 JP 4453902B2
- Authority
- JP
- Japan
- Prior art keywords
- hard coating
- hard
- amount
- phase
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000576 coating method Methods 0.000 title claims description 115
- 239000011248 coating agent Substances 0.000 title claims description 114
- 239000000758 substrate Substances 0.000 claims description 40
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 17
- 239000011593 sulfur Substances 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 229910010038 TiAl Inorganic materials 0.000 claims description 4
- 238000002441 X-ray diffraction Methods 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 3
- -1 nitride sulfide Chemical class 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 description 77
- 238000000034 method Methods 0.000 description 28
- 230000008020 evaporation Effects 0.000 description 18
- 238000001704 evaporation Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 239000010410 layer Substances 0.000 description 12
- 238000003466 welding Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 238000005461 lubrication Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- 229910018557 Si O Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002173 cutting fluid Substances 0.000 description 2
- 239000010730 cutting oil Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 2
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 2
- 102220005308 rs33960931 Human genes 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた硬質皮膜に関する。本発明はまた該硬質皮膜で形成した硬質皮膜被覆工具に関する。 The present invention relates to a hard coating excellent in wear resistance, adhesion, and high temperature oxidation resistance coated on cemented carbide, high speed steel, die steel and the like. The present invention also relates to a hard film coated tool formed of the hard film.
金属加工の高能率化を目的とした切削速度の高速化、並びに切削条件における1刃当たりの送り量が0.3mmを越えるような高送り切削加工に対し、従来の硬質皮膜を被覆した工具では、密着性、硬質皮膜の機械的特性である耐酸化性、耐摩耗性に満足のいく性能が得られていない。この様な背景から、硬質皮膜の耐酸化性、耐摩耗性をより向上させる事を目的とした技術の開示が行われている。特許文献1、2には硬質皮膜に濃度分布を形成させる技術や、連続的に組成の変化する組成変化の繰り返し層を持った膜を形成することによって、耐摩耗性を向上させる技術が開示されている。しかし、何れも物理蒸着法におけるアーク放電型イオンプレーティング方式のみを利用した試みである。特許文献3には、機械加工用工具に潤滑性を得る目的で二硫化モリブデンを被覆する技術が開示されている。特許文献4には、二硫化モリブデンとTiNとを組み合わせた被膜の例が開示されている。しかし、被膜の密着性、硬度が十分ではなく、切削工具の耐摩耗性に課題を残している。 With a tool coated with a conventional hard coating, the cutting speed is increased for the purpose of improving the efficiency of metal processing, and the high feed cutting process in which the feed amount per blade exceeds 0.3 mm under cutting conditions. However, satisfactory performance has not been obtained in terms of adhesion and mechanical properties of the hard film, such as oxidation resistance and wear resistance. From such a background, a technique for the purpose of further improving the oxidation resistance and wear resistance of a hard coating has been disclosed. Patent Documents 1 and 2 disclose a technique for forming a concentration distribution in a hard film and a technique for improving wear resistance by forming a film having a repeated layer of composition change in which the composition continuously changes. ing. However, both are attempts using only the arc discharge ion plating method in the physical vapor deposition method. Patent Document 3 discloses a technique of coating molybdenum disulfide for the purpose of obtaining lubricity on a machining tool. Patent Document 4 discloses an example of a film in which molybdenum disulfide and TiN are combined. However, the adhesion and hardness of the coating are not sufficient, and there remains a problem in the wear resistance of the cutting tool.
本発明の目的は、基体との密着性を改善し、耐酸化性、耐摩耗性に優れた硬質皮膜を提供することである。本発明の他の目的は、基体との密着性を改善し、耐酸化性、耐摩耗性に優れ、更に高温状態での耐溶着性並びに硬質皮膜中への被削材元素の拡散を抑制し、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜で被覆された工具を提供することである。 An object of the present invention is to provide a hard film having improved adhesion to a substrate and excellent in oxidation resistance and wear resistance. Another object of the present invention is to improve adhesion to the substrate, have excellent oxidation resistance and wear resistance, and further suppress welding at high temperatures and diffusion of work material elements into the hard coating. It is to provide a tool coated with a hard coating corresponding to dry machining, high speed, and high feed of cutting.
本発明の硬質皮膜は、基体表面に、少なくともAl、Ti、Mo及びSiの窒硫化物又は窒酸硫化物を被覆した硬質皮膜において、該Al、Ti、Mo及びSiは、(AlwTixMoySiz)、但し、w、x、y、zは、該Al、Ti、Mo及びSiの合計量に対する原子%で、20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦10、w+x+y+z=100、w≦x+y+z、該窒硫化物又は窒酸硫化物は、(OαSβN100−α−β)、但し、酸素、硫黄及び窒素の合計量に対する原子%で、0≦α≦5、0.1≦β≦5、で表され、該硬質皮膜の素地を電子顕微鏡により観察した際に、高密度プラズマにより被覆された相と、低密度プラズマにより被覆された相の複数の相が存在し、該高密度プラズマにより被覆された相、該低密度プラズマにより被覆された相のSi量zを平均値で求め、該Si量zの平均値が相対的に大きい相をA相、相対的に小さい相をB相とし、該A相、B相の該Si量zの差が、0.2原子%以上、5原子%以下であることを特徴とする硬質皮膜である。上記構成を採用することにより、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性に優れた硬質皮膜を提供することができる。 The hard film of the present invention is a hard film in which the surface of a substrate is coated with at least a nitride or oxysulfide of Al, Ti, Mo, and Si. The Al, Ti, Mo, and Si are (Al w Ti x Mo y Si z ), where w, x, y, and z are atomic% relative to the total amount of Al, Ti, Mo, and Si, and 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20 , 0.01 ≦ z ≦ 10, w + x + y + z = 100, w ≦ x + y + z, nitride sulfide or nitric sulfide, (O α S β N 100 -α-β), however, oxygen, total sulfur and nitrogen Atomic% with respect to the quantity , represented by 0 ≦ α ≦ 5, 0.1 ≦ β ≦ 5, and when the substrate of the hard film is observed with an electron microscope, a phase coated with high-density plasma and a low density There are a plurality of phases coated with plasma, and the high-density plasma The Si amount z of the phase coated with the low density plasma and the phase coated with the low-density plasma is obtained as an average value, a phase having a relatively large average value of the Si amount z is A phase, and a relatively small phase is B phase. And the difference in Si amount z between the A phase and the B phase is 0.2 atomic% or more and 5 atomic% or less. By adopting the above configuration, it is possible to improve the adhesion of the hard film and provide a hard film having excellent oxidation resistance and wear resistance.
本発明の硬質皮膜において、該硬質皮膜の摩擦係数が0.4以下であり、該硬質皮膜のESCA分析において100eVから105eVの範囲にSiと酸素との結合エネルギーを有し、該硬質皮膜のX線回折における面心立方構造の(200)面と、該基体の超硬合金の(100)面とがヘテロエピタキシャル関係を有する。また、該面心立方構造の(111)面のピーク強度値をIa、該(200)面のピーク強度値をIbとした時に、ピーク強度比Ib/Ia≧2.0であり、該(200)面の格子定数λ(nm)が0.4155≦λ≦0.4220の範囲にある。更に、該基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けている。硬質皮膜を被覆後に硬質皮膜表面の凸部を機械的処理により、平滑化されることが好ましい。本発明の硬質皮膜を切削工具等、高硬度が要求される耐摩耗部材や耐熱部材の表面に被覆すると、硬質皮膜の密着性を改善し、耐酸化性、耐摩耗性を著しく向上する。特に、切削加工の高温状態での耐溶着性並びに硬質膜中への被削材元素の拡散を抑制することができる。更に、切削加工の乾式化、高速化、高送り化に対応する硬質皮膜被覆工具を提供することができる。 In the hard film of the present invention, the friction coefficient of the hard coating is not less than 0.4, has a binding energy of Si and oxygen in the range of 105eV from 100eV at ESCA analysis of the hard coating, the hard coating X The (200) plane of the face-centered cubic structure in line diffraction and the (100) plane of the cemented carbide of the substrate have a heteroepitaxial relationship. Further, when the peak intensity value of the (111) plane of the face-centered cubic structure is Ia and the peak intensity value of the (200) plane is Ib, the peak intensity ratio Ib / Ia ≧ 2.0, ) Plane lattice constant λ (nm) is in the range of 0.4155 ≦ λ ≦ 0.4220. Further, at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal is provided on the upper surface of the substrate. It is preferable that the convex portions on the surface of the hard film are smoothed by mechanical treatment after the hard film is coated. When the hard film of the present invention is coated on the surface of a wear-resistant member or heat-resistant member that requires high hardness such as a cutting tool, the adhesion of the hard film is improved, and the oxidation resistance and wear resistance are remarkably improved. In particular, it is possible to suppress welding resistance at a high temperature of cutting and diffusion of the work material element into the hard film. Furthermore, it is possible to provide a hard film coated tool that can cope with dry cutting, high speed, and high feed of cutting.
本発明の硬質皮膜は、硬質皮膜と基体との密着性を改善し、優れた耐酸化性、耐摩耗、潤滑性、耐欠損性を有する。本発明の硬質皮膜を切削工具等に適用することにより、乾式高能率切削加工をはじめ、金型加工時の断続切削状況下においても安定性と、長い工具寿命が得られ、切削加工における生産性の向上に極めて有効である。 The hard film of the present invention improves the adhesion between the hard film and the substrate, and has excellent oxidation resistance, wear resistance, lubricity, and fracture resistance. By applying the hard coating of the present invention to cutting tools etc., stability and long tool life can be obtained even in intermittent cutting conditions during die machining, including dry high-efficiency cutting, and productivity in cutting It is extremely effective in improving
本発明の硬質皮膜は、硬質皮膜の素地を電子顕微鏡により観察した際に、高密度プラズマにより被覆された相と、低密度プラズマにより被覆された相の複数の相が存在し、該高密度プラズマにより被覆された相、該低密度プラズマにより被覆された相のSi量zを平均値で求め、組成分析、例えばEPMA(Electron Probe Micro analyser、島津製作所製EPM−1610型)分析等におけるSi分析で求め、該Si量zの平均値が相対的に大きい相をA相、相対的に小さい相をB相とし、該A相、B相の該Si量zの差が、0.2原子%以上、5原子%以下であることを特徴とする硬質皮膜である。A相、B相の該Si量zの平均値の差を、上記の規定範囲内とすることにより、硬質皮膜の耐衝撃性を向上させることが可能となった。本発明の硬質皮膜は、Si量zを成膜時に意図的に制御しSi量zの差を発生させることにより、優れた潤滑特性を維持しながら耐衝撃性を向上させ、硬質皮膜そのものに高い靭性を与えることが可能となった。更に低硬度、高硬度の皮膜を連続的に交互に形成することから、耐衝撃特性を向上させるだけでなく、密着性に影響を及ぼす残留圧縮応力の抑制にも効果があることを確認した。 When the base of the hard coating is observed with an electron microscope, the hard coating of the present invention has a plurality of phases of a phase coated with high-density plasma and a phase coated with low-density plasma. The Si amount z of the phase coated with the low density plasma and the phase coated with the low density plasma is obtained as an average value. The phase in which the average value of the Si amount z is relatively large is the A phase, the relatively small phase is the B phase, and the difference in the Si amount z between the A phase and the B phase is 0.2 atomic% or more. It is a hard film characterized by being 5 atomic% or less. By making the difference between the average values of the Si amounts z of the A phase and the B phase within the above specified range, the impact resistance of the hard coating can be improved. Hard film of the present invention, by generating a difference intentionally controlling the amount of Si z Si content z during deposition, to improve the impact resistance while maintaining excellent lubricating properties, high hard coating itself It became possible to give toughness. Furthermore, since the low hardness and high hardness films were alternately formed alternately, it was confirmed that not only the impact resistance was improved but also the residual compressive stress that had an effect on the adhesion was suppressed.
図1に示す様に、本発明の硬質皮膜の成膜は、硬質皮膜に高密度プラズマにより被覆された相、該低密度プラズマにより被覆された相を設け、Si量zの差を意図的に発生させるために、高密度プラズマを用いたアーク放電型イオンプレーティング(以下、AIPと記す。)方式と、低密度プラズマを利用したマグネトロンスパッタ(以下、MSと記す。)方式を併設した装置を用いている。本装置を用いることにより、Si量zの差を意図的に制御し、Si量zの差を発生させることが可能となった。本発明で採用した様に、発生するプラズマ密度の異なる方式の蒸発源を同一真空装置内に設置し、被覆時に夫々の蒸発源で放電を発生させて被覆するのである。本発明で採用したAIPとMSとの併用方式は、硬質皮膜の耐衝撃特性を向上させるため、更に硬質皮膜においてSi量zの差を発生させるために意図的に選択したものである。本発明の硬質皮膜は、結晶構造を面心立方構造に保ち、皮膜に優れた靭性を付与するため、上記方式を用いて硬質皮膜にSi量zの差を発生させることが好ましい。特にそれぞれの方式で必要なターゲットの組成は限定されない。MSには、エレクトロンビーム方式もしくは閉磁場方式のMS等があるが、これ以外の方式も含め、限定されない。例えば、上記以外の方法には、高密度プラズマのAIP方式を用いる場合として、真空装置内に複数の蒸発源を設置し、夫々の蒸発源に組成の異なる合金ターゲットを設置することや、複数の蒸発源において夫々異なった放電出力を設定することも考えられる。しかし、AIP方式による被覆では、被覆時に発生するプラズマ密度が非常に高いため、良質な皮膜が形成されるものの、プラズマ中で発生したイオンが基体に入射する際のエネルギーも大きく、残留圧縮応力の抑制が困難である。すなわち、高密度プラズマにより被覆された相のみでは、相ごとの硬質皮膜のSi量zの差、硬度差を出すことが難しく、硬質膜の耐衝撃特性を向上させ、耐欠損性、靭性を付与させることが困難である。 As shown in FIG. 1, the hard film of the present invention is formed by providing a phase coated with a high density plasma and a phase coated with the low density plasma on the hard film, and intentionally determining the difference in Si amount z. In order to generate this, an apparatus equipped with an arc discharge ion plating (hereinafter referred to as AIP) method using high-density plasma and a magnetron sputtering (hereinafter referred to as MS) method using low-density plasma is provided. Used. By using the present apparatus, intentionally controlling the difference in Si content z, it becomes possible to generate a difference in Si content z. As employed in the present invention, evaporation sources of different types of generated plasma density are installed in the same vacuum apparatus, and coating is performed by generating discharges at the respective evaporation sources during coating. The combined system of AIP and MS employed in the present invention is intentionally selected in order to improve the impact resistance characteristics of the hard coating and to further generate a difference in Si amount z in the hard coating. In order that the hard film of the present invention maintains the crystal structure in a face-centered cubic structure and imparts excellent toughness to the film, it is preferable to generate a difference in Si amount z in the hard film using the above method. In particular, the composition of the target required for each method is not limited. MS includes electron beam type or closed magnetic field type MS, but is not limited to other types. For example, in a method other than the above, when a high-density plasma AIP method is used, a plurality of evaporation sources are installed in a vacuum apparatus, and an alloy target having a different composition is installed in each evaporation source. It is also conceivable to set different discharge outputs at the evaporation sources. However, in the coating by the AIP method, the plasma density generated at the time of coating is very high, so that a good quality film is formed. It is difficult to suppress. In other words, it is difficult to produce a difference in the Si amount z and hardness of the hard coating for each phase only with the phase coated with high-density plasma, improving the impact resistance properties of the hard coating, and providing fracture resistance and toughness. It is difficult to do.
本発明の硬質皮膜は、高密度プラズマ、低密度プラズマによる物理蒸着方式で被覆され、金属成分のMo、Si、Al、Tiは放電出力の異なる複数の蒸発源により被覆されることが好ましい。本発明の硬質皮膜被覆方法は、被覆基体側にバイアス電圧を印加する物理蒸着法であることが望ましい。被覆基体への熱的影響、皮膜の密着性等を考慮した場合、更に被覆基体を切削工具とした場合の疲労強度を考慮した場合、比較的低温で被覆でき、被覆した皮膜に発生する圧縮応力が制御可能なAIPとスパッタ等の、プラズマ密度の異なる複数の蒸発源を設置した製膜装置による処理が最も安定した切削性能を発揮する。必要によってはプラズマ支援型の化学蒸着装置と物理蒸着方式を併用した装置を用いてもよい。
図2は本発明例1の皮膜断面観察結果を示した。図2の本発明例1は、高密度プラズマによるAIPにより被覆した相と、低密度プラズマによるMSにより被覆した相とが多相構造をなし、各相が連続的に分断されることなく成長していることを確認した。
The hard coating of the present invention is preferably coated by physical vapor deposition using high-density plasma or low-density plasma, and the metal components Mo, Si, Al, and Ti are preferably coated by a plurality of evaporation sources having different discharge outputs. The hard coating method of the present invention is preferably a physical vapor deposition method in which a bias voltage is applied to the coated substrate side. When considering the thermal effects on the coated substrate, coating adhesion, etc., and considering the fatigue strength when the coated substrate is used as a cutting tool, the compressive stress generated in the coated coating can be coated at a relatively low temperature. The processing by the film forming apparatus provided with a plurality of evaporation sources having different plasma densities, such as AIP and sputter controllable, exhibits the most stable cutting performance. If necessary, an apparatus using a plasma-assisted chemical vapor deposition apparatus and a physical vapor deposition method together may be used.
FIG. 2 shows the result of observing the film cross section of Example 1 of the present invention. In Example 1 of the present invention shown in FIG. 2, the phase coated with high-density plasma AIP and the phase coated with low-density plasma MS have a multiphase structure, and each phase grows without being continuously divided. Confirmed that.
切削工具を被覆基体として本発明の硬質皮膜を用いた場合、この硬質皮膜被覆工具は、被削材の溶着現象を防ぐことにより、密着性と耐摩耗性の改善を可能にした。即ち、切削加工における溶着発生現象を考察し、これより硬質皮膜を構成する各種元素の耐溶着効果の検討を行い、高温下における耐溶着性に有効な元素を見出した。
本発明の硬質皮膜のAl、Ti、Mo及びSiは、(AlwTixMoySiz)、但し、w、x、y、zは、該Al、Ti、Mo及びSiの合計量に対する原子%で、20≦w≦50、25≦x≦75、2≦y≦20、0.01≦z≦10、w+x+y+z=100、w≦x+y+z、で表される。
Al量wの数値規定範囲は20≦w≦50である。w≦50とする理由は、金属組成バランスにおいてwが大きくなると、表層にAl2O3を形成し静的な耐熱性は優れるが、実際の切削加工においては、硬質皮膜のAl量wが多い程、被削材中のFe成分などが皮膜に内向拡散を誘発するためである。そこで、Al量wは50原子%以下、更にw≦x+y+zとすることである。Al量wが20原子%未満の場合は、Alの効果が得られず、皮膜の耐摩耗性、耐酸化性が劣るため、不都合である。
Si量zは、0.01≦z≦10である。Si量zが10原子%を超えて大きいと、皮膜硬度と耐熱性は向上する傾向にあるが、硬質皮膜の破断面組織形態が柱状組織から微細粒状組織に変化する。微細粒状組織になると、硬質皮膜の結晶粒界が多くなり、切削熱が上昇した時、大気中の酸素や被削材のFeが内向拡散する経路を増やしてしまい、不都合であり、切れ刃に溶着が発生し、潤滑性が損なわれる。次に、皮膜内部の残留応力が増大し、基体と硬質皮膜界面からの剥離が発生しやすくなり、特に耐衝撃性の強い切削加工において容易に剥離が発生する。この剥離部を中心に溶着が発生するため不都合である。Si量zを0.01原子%以上とした理由は、Si分析上の容易な検出点であるからである。量産時の安定性を配慮し、また量産稼動を滞りなく行うためには分析を短時間で行う必要がある。
When the hard coating of the present invention is used with a cutting tool as a coated substrate, this hard coating coated tool can improve adhesion and wear resistance by preventing the welding phenomenon of the work material. That is, the phenomenon of occurrence of welding in the cutting process was considered, and the effect of welding resistance of various elements constituting the hard film was examined from this, and an element effective for welding resistance at high temperatures was found.
Al, Ti, Mo and Si of the hard coating of the present invention are (Al w Ti x Mo y Si z ), where w, x, y and z are atoms with respect to the total amount of the Al, Ti, Mo and Si. %, 20 ≦ w ≦ 50, 25 ≦ x ≦ 75, 2 ≦ y ≦ 20, 0.01 ≦ z ≦ 10, w + x + y + z = 100, w ≦ x + y + z.
The numerical value range of the Al amount w is 20 ≦ w ≦ 50. The reason for w ≦ 50 is that when w increases in the metal composition balance, Al 2 O 3 is formed on the surface layer and the static heat resistance is excellent, but in actual cutting, the Al amount w of the hard coating is large. This is because the Fe component in the work material induces inward diffusion in the film. Therefore, the Al amount w is 50 atomic% or less, and w ≦ x + y + z. If the Al amount w is less than 20 atomic%, the effect of Al cannot be obtained, and the wear resistance and oxidation resistance of the film are inferior, which is inconvenient.
The amount of Si z is 0.01 ≦ z ≦ 10. When the Si amount z exceeds 10 atomic%, the film hardness and heat resistance tend to be improved, but the fracture surface structure of the hard film changes from a columnar structure to a fine granular structure. When it becomes a fine grain structure, the crystal grain boundary of the hard coating increases, and when the cutting heat rises, it increases the path through which oxygen in the atmosphere and Fe of the work material diffuse inward, which is inconvenient and has a cutting edge. Welding occurs and lubricity is impaired. Next, the residual stress inside the film increases, and peeling from the interface between the substrate and the hard film is likely to occur, and peeling easily occurs particularly in cutting processing with high impact resistance. This is inconvenient because welding occurs around the peeled portion. The reason why the Si amount z is 0.01 atomic% or more is that it is an easy detection point in Si analysis. In consideration of stability during mass production, it is necessary to perform analysis in a short time in order to perform mass production without delay.
Mo量yは、2≦y≦20である。Mo量yは、耐熱性向上に必要なSi量zをベースに、硬質皮膜が酸化した時に形成される表層直下のTi酸化物を緻密な結晶組織にすることである。この緻密な結晶組織を有する酸化物層は、表層付近に形成するSiやAlの酸化物を通過して内向拡散する酸素の侵入を抑制する効果がある。これにより、Ti酸化物の結晶組織の緻密化は表層のAl2O3層の剥離を抑制することができる。Mo量yは、耐熱安定性による溶着抑制効果以外にも、硬質皮膜の高硬度化に有効であるが、Mo量yが20原子%を超えて大きいと、硬質皮膜の硬度が低下する。また、物理蒸着法で被覆した際に、皮膜の破断面組織形態が耐衝撃特性の優れる柱状組織から微細粒状組織となり、切削初期にチッピングやすき取り摩耗が発生するからである。更に、硬質皮膜被覆時に蒸着源の放電が不安定となり、均一で安定した皮膜形成が困難となる。これは、Moが高融点金属であることによる。Mo量yが2原子%未満の場合、硬質皮膜の高硬度化の効果が無く、工具性能の改善が期待できない。 Mo amount y is 2 ≦ y ≦ 20. The Mo amount y is to make the Ti oxide immediately below the surface layer formed when the hard coating is oxidized into a dense crystal structure based on the Si amount z necessary for improving heat resistance. This oxide layer having a dense crystal structure has an effect of suppressing the intrusion of oxygen that diffuses inwardly through Si and Al oxides formed in the vicinity of the surface layer. Thereby, densification of the crystal structure of the Ti oxide can suppress peeling of the surface Al 2 O 3 layer. The Mo amount y is effective for increasing the hardness of the hard coating, in addition to the effect of suppressing welding due to heat resistance stability. However, if the Mo amount y exceeds 20 atomic%, the hardness of the hard coating decreases. In addition, when coated by physical vapor deposition, the fracture surface structure of the film changes from a columnar structure having excellent impact resistance characteristics to a fine granular structure, and chipping and scraping wear occur at the beginning of cutting. Further, the discharge of the vapor deposition source becomes unstable when the hard film is coated, and it becomes difficult to form a uniform and stable film. This is because Mo is a refractory metal. When the Mo amount y is less than 2 atomic%, there is no effect of increasing the hardness of the hard coating, and improvement in tool performance cannot be expected.
本発明の硬質皮膜の窒硫化物又は窒酸硫化物(OαSβN100−α−β)、但し、酸素、硫黄及び窒素の合計量に対する原子%で、0≦α≦5、0.1≦β≦5、とする有効性は、潤滑性の改善にある。
図3は、硬質皮膜に酸素又は硫黄を含有した際の摩擦係数を測定した結果である。本発明例8は、硫黄量β=1原子%、本発明例5は硫黄量β=1原子%、酸素量α=4.8原子%である。比較例31の酸素、硫黄の無い場合と比較して、本発明例5、8は摩擦係数が低下する傾向を示した。高能率加工時において、酸素量αを0.3原子%以上とすることにより被加工物の硬質膜への溶着が抑制され、潤滑性が向上した。物理蒸着方法においては、被覆時に真空装置内に残る残留酸素の影響から、硬質膜中の酸素量を分析すると、酸素量αは0.1原子%程度の含有が検出される。この現象を踏まえた上で酸素量α=0.3原子%以上で、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。しかし、酸素量αは悪影響をもたらすこともある。酸素量αが5原子%を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下する。また、硬質皮膜断面の結晶組織形態が微細化し、漉き取り摩耗が発生しやすくなるといった不都合が発生する。そこで、本発明において、酸素量αは、0≦α≦5、0と規定した。
硫黄量βを0.1%以上とすることにより、潤滑性が向上し、切削時に相当する高温状態下でも摩擦係数が低下することを確認した。(TiAlMo)N系の硬質皮膜に硫黄を試みた所、摩擦係数が従来例30の0.8であったものから本発明例1から15に示す様に、0.3から0.4に低減できることを確認した。これは、酸素量による相乗効果も含まれる。硫黄量βが5%を超えて大きくなると、潤滑特性は優れるものの、硬質皮膜の硬度が低下するといった不都合が発生する。そこで、本発明において硫黄量βは0.1≦βb≦5と規定した。硫黄の添加方法には、物理蒸着装置を使用した場合、例えばMoS2ターゲットからの添加方法の他に、真空配管並びに環境処理設備を整えたガスでの導入も考えられる。しかし、現在の物理蒸着技術では反応ガスからの添加が困難であるため、MS方式を用い、MoS2ターゲットより添加させることが簡便な手法である。本発明は硬質皮膜に優れた靭性をも付与させる技術であり、アーク放電方式で強固な密着性を保持しながら、MS方式と同時放電を起こさせるものである。MS方式にMoS2ターゲットを用いた場合であっても、本発明は高いエネルギーを有するアーク電方式と同時放電を起こさせるものであるから、S成分は(TiAlMoSi)系化合物相内に固溶して存在する。従って、硬質皮膜にMoS2相として存在する比率は小さく、面積率で3%以下である。
本発明の硬質皮膜は、Ti、Al、Si及びMoを含有する硬質皮膜に、潤滑性能を有するS含有化合物を有することにより、潤滑性能を長時間維持することが可能となった。硬質皮膜の摩擦係数は0.4を超えて大きいと、潤滑特性の改善効果が見られない事から、0.4以下とした。
窒硫product or nitric sulfide of the hard coating of the present invention (O α S β N 100- α-β), however, oxygen in atomic% to the total amount of sulfur and nitrogen, 0 ≦ α ≦ 5,0. The effectiveness of 1 ≦ β ≦ 5 is to improve lubricity.
FIG. 3 shows the results of measuring the friction coefficient when oxygen or sulfur is contained in the hard coating. Invention Example 8 has a sulfur content β = 1 atomic%, and Invention Example 5 has a sulfur content β = 1 atomic% and an oxygen content α = 4.8 atomic%. Compared to the case of Comparative Example 31 where oxygen and sulfur were absent, Invention Examples 5 and 8 showed a tendency for the friction coefficient to decrease. During high-efficiency processing, the amount of oxygen α is set to 0.3 atomic% or more, so that welding of the workpiece to the hard film is suppressed and lubricity is improved. In the physical vapor deposition method, when the amount of oxygen in the hard film is analyzed from the influence of residual oxygen remaining in the vacuum apparatus at the time of coating, it is detected that the amount of oxygen α is about 0.1 atomic%. Based on this phenomenon, it was confirmed that the coefficient of friction was lowered even under high temperature conditions corresponding to cutting when the oxygen content was α = 0.3 atomic% or more. However, the oxygen amount α may have an adverse effect. When the oxygen amount α exceeds 5 atomic%, the lubrication characteristics are excellent, but the hardness of the hard coating decreases. Moreover, the crystal structure form of the hard coating cross-section becomes finer, and there arises a problem that scuffing wear is likely to occur. Therefore, in the present invention, the oxygen amount α is defined as 0 ≦ α ≦ 5, 0.
It was confirmed that by setting the sulfur amount β to 0.1% or more, the lubricity was improved and the friction coefficient was lowered even under high temperature conditions corresponding to cutting. When (TiAlMo) N-based hard coating was attempted to be sulfur, the friction coefficient was reduced from 0.3 to 0.4 as shown in Examples 1 to 15 of the present invention from 0.8 in Conventional Example 30. I confirmed that I can do it. This includes a synergistic effect due to the amount of oxygen. When the amount of sulfur β exceeds 5%, the lubrication characteristics are excellent, but the inconvenience that the hardness of the hard coating is lowered occurs. Therefore, in the present invention, the sulfur amount β is defined as 0.1 ≦ βb ≦ 5. As a method for adding sulfur, when a physical vapor deposition apparatus is used, for example, in addition to a method for adding from a MoS 2 target, introduction with a gas in which vacuum piping and environmental treatment equipment are arranged is also conceivable. However, since it is difficult to add from a reactive gas with the current physical vapor deposition technique, it is a simple method to add from a MoS 2 target using the MS method. The present invention is a technique for imparting excellent toughness to a hard coating, and causes simultaneous discharge with the MS system while maintaining strong adhesion with the arc discharge system. Even when the MoS 2 target is used in the MS system, the present invention causes simultaneous discharge with the arc electric system having high energy, so the S component is dissolved in the (TiAlMoSi) compound phase. Exist. Accordingly, the ratio of the MoS 2 phase present in the hard coating is small, and the area ratio is 3% or less.
The hard film of the present invention can maintain the lubricating performance for a long time by having the hard film containing Ti, Al, Si and Mo having an S-containing compound having a lubricating performance. If the coefficient of friction of the hard coating is larger than 0.4, the effect of improving the lubrication characteristics is not seen, so it was set to 0.4 or less.
本発明の硬質皮膜の総膜厚は、平均層厚で、0.5〜10μm有し、硬質皮膜の基体との界面から平均層厚の1〜30%に相当する領域に亘る硬質皮膜内に含有される酸素量Mとし、硬質皮膜の表面から平均層厚の1〜30%に相当する深さに亘る領域に含有される酸素量Nとし、両者の差を(N−M)とした時、(N−M)≧0.3となることが好ましい。酸素量αにより残留圧縮応力が増大するため、硬質皮膜の密着性に影響を及ぼすことから、製膜時における酸素の添加方法には、相当の配慮をするとよい。硬質皮膜の密着性を維持するための工夫として、成膜開始から終了まで徐々に酸素量を上げていくことが適切である。その結果、(N−M)≧0.3となり、潤滑性、耐衝撃性の優れる硬質皮膜を得ることが可能になる。
本発明の硬質皮膜は、硬質皮膜の表面から平均層厚の1〜30%に相当する深さに亘る領域に含まれる酸素量αを多くすることにより、硬質皮膜の金属元素の酸化物が形成され易い。従って、潤滑特性を改善することができる。例えば物理的蒸着法により、成膜初期より酸素を多量に添加することは、基体表面や処理装置の内壁が絶縁化するため好ましくない。金属元素の合計量(Al+Ti+Mo+Si)に対する非金属元素の合計量(O+N+S)の比は、非金属成分/金属成分>1.0であり、1.02以上であるのが好ましい。この比の上限は1.7であるのが好ましい。
The total film thickness of the hard film of the present invention is 0.5 to 10 μm in average layer thickness, and the hard film covers the region corresponding to 1 to 30% of the average layer thickness from the interface with the substrate of the hard film. When the amount of oxygen contained is M, the amount of oxygen contained in a region extending from the surface of the hard coating to a depth corresponding to 1 to 30% of the average layer thickness, and the difference between the two is (NM) , (N−M) ≧ 0.3. Since the residual compressive stress increases due to the oxygen amount α, it affects the adhesion of the hard coating, and therefore, it is advisable to give considerable consideration to the method of adding oxygen during film formation. As a device for maintaining the adhesion of the hard film, it is appropriate to gradually increase the oxygen amount from the start to the end of film formation. As a result, (N−M) ≧ 0.3, and it becomes possible to obtain a hard coating having excellent lubricity and impact resistance.
In the hard coating of the present invention, an oxide of a metal element of the hard coating is formed by increasing the amount of oxygen α contained in a region extending from the surface of the hard coating to a depth corresponding to 1 to 30% of the average layer thickness. It is easy to be done. Therefore, the lubrication characteristics can be improved. For example, adding a large amount of oxygen from the initial stage of film formation by physical vapor deposition is not preferable because the surface of the substrate and the inner wall of the processing apparatus are insulated. The ratio of the total amount of nonmetallic elements (O + N + S) to the total amount of metal elements (Al + Ti + Mo + Si) is nonmetallic component / metallic component> 1.0, and is preferably 1.02 or more. The upper limit of this ratio is preferably 1.7.
本発明の硬質皮膜は、ESCA分析において、100eVから105eVの範囲にSiと酸素との結合エネルギーを有する。図4に本発明例1の硬質皮膜の化学結合状態をESCA分析により解析した結果を示す。図4より、本発明の硬質皮膜は100eVから105eVの範囲にSiと酸素との結合エネルギーを有することを確認した。これはAl−OとSi−Oとの生成自由エネルギーの差により、Si−Oが優先的に形成されたものである。この緻密な酸化物の形成が、潤滑特性を高め、高能率切削加工時において発生する被加工物の溶着現象を低下させる。 The hard film of the present invention has a binding energy of Si and oxygen in the range of 100 eV to 105 eV in ESCA analysis. FIG. 4 shows the result of analyzing the chemical bonding state of the hard coating of Example 1 of the present invention by ESCA analysis. From FIG. 4, it was confirmed that the hard coating of the present invention has a binding energy of Si and oxygen in the range of 100 eV to 105 eV. This is because Si—O is formed preferentially due to the difference in free energy of formation between Al—O and Si—O. The formation of this dense oxide enhances the lubrication characteristics and reduces the workpiece welding phenomenon that occurs during high-efficiency cutting.
本発明の硬質皮膜は、高送り切削加工の条件で性能を発揮させるため、基体との密着性が強固でなければならない。そのためには該基体の超硬合金と硬質皮膜との界面でへテロエピタキシャルの関係をもつように、基体直上にある硬質皮膜の配向面を制御しなければならない。へテロエピタキシャルの関係をもつことにより、硬質皮膜と該基体の超硬合金の界面の分子間力を強めることができる。図5に示すように、X線回折を行ったときに該基体の超硬合金に含まれるWCの(100)面と、本発明の硬質皮膜の(200)面を整合させることにより、分子間力を高め、密着性を向上させることができる。本発明の硬質皮膜は、残留圧縮応力が大きいため、該基体の超硬合金と硬質皮膜との界面でへテロエピタキシャルの関係を形成しなければならない。これにより、密着性の問題を解決し、高機能化した硬質皮膜の特徴が発揮される。 The hard coating of the present invention must have strong adhesion to the substrate in order to exhibit performance under the conditions of high feed cutting. For this purpose, the orientation plane of the hard coating directly above the substrate must be controlled so that there is a heteroepitaxial relationship at the interface between the cemented carbide of the substrate and the hard coating. By having a heteroepitaxial relationship, the intermolecular force at the interface between the hard coating and the cemented carbide of the substrate can be increased. As shown in FIG. 5, by aligning the (100) plane of WC contained in the cemented carbide of the substrate with the (200) plane of the hard coating of the present invention when X- ray diffraction is performed, Strength can be increased and adhesion can be improved. Since the hard coating of the present invention has a large residual compressive stress, a heteroepitaxial relationship must be formed at the interface between the cemented carbide of the substrate and the hard coating. Thereby, the feature of the hard film which solved the problem of adhesiveness and improved functionality is exhibited.
本発明の硬質皮膜は結晶配向性の制御を行い、基体と硬質皮膜との界面の歪発生を最小限に抑制している。基体が超硬合金のような多結晶の場合、焼結後のWC優先方位である(100)面上に、面心立法構造を有する硬質皮膜を被覆させるためには、(200)面を配向させるように制御しなければならない。硬質皮膜のX線回折における(111)面のピーク強度値をIa、(200)面のピーク強度値をIbとした時に、Ib/Iaが2未満となると、基体と硬質皮膜との界面に大きな歪を持ったまま結晶が成長するため、接合強度が不十分となる。更に、硬質皮膜の内部応力が増大し容易に剥離する。そこで本発明の硬質皮膜が激しい切削加工条件にも耐え得る密着性を確保するためには、Ib/Ia≧2.0でなければならない。
本発明の硬質皮膜が更に強固な密着性を有するためには、硬質皮膜の格子定数λの制御を行うことである。λは残留応力値に影響を及ぼす。残留応力値が大きくなると、密着性を維持することが困難になる。そこで、密着性を維持するための最適な該(200)面のλを求め、0.4155≦λ≦0.4220を得た。λが0.4220nmを超えて大きい場合、硬質皮膜中に残留する圧縮応力は8GPaを越える為、大きな応力が基体と硬質皮膜との界面に負荷される。たとえ両者の間にヘテロエピタキシャル関係が成立していても硬質皮膜剥離が発生する。切削工具を被覆基体として本発明の硬質皮膜を用いた場合、切削工具として優位性が損なわれる。従って、λは0.4220nmを超えてはならない。一方、λの下限値は0.4155nmである。λは0.4155nm未満では、硬質皮膜の潤滑特性の低下が目立つようになり、好ましくない。硬質皮膜の優れた特徴を十分に引き出すことのできる範囲は、0.4155≦λ≦0.4220である。λを規定範囲内に制御し、残留応力を制御するためには、本発明の構成元素上、Al量wの制御によって調整が可能であり、生産的にも安定性のあることが確認された。λはAl量wを多くした場合、或いはSi量zが多い場合、元素の原子半径の影響を受けて低下する。Al量wを抑えることや被覆時にプラズマ密度が大きくなるような成膜条件を設定した時に増大し、同時に残留圧縮応力も増大する傾向にある。
The hard coating of the present invention controls the crystal orientation and suppresses the occurrence of strain at the interface between the substrate and the hard coating to a minimum. When the substrate is polycrystalline such as cemented carbide, the (200) plane is oriented to cover the hard film having a face-centered cubic structure on the (100) plane, which is the preferred WC orientation after sintering. You have to control it. When the peak intensity value of the (111) plane in the X-ray diffraction of the hard film is Ia and the peak intensity value of the (200) plane is Ib, if Ib / Ia is less than 2, the interface between the substrate and the hard film is large. Since the crystal grows with strain, the bonding strength becomes insufficient. In addition, the internal stress of the hard coating increases and peels easily. Therefore, in order to ensure adhesion that the hard coating of the present invention can withstand severe cutting conditions, Ib / Ia ≧ 2.0.
In order for the hard coating of the present invention to have stronger adhesion, it is necessary to control the lattice constant λ of the hard coating. λ affects the residual stress value. When the residual stress value increases, it becomes difficult to maintain the adhesion. Therefore, the optimum λ of the (200) plane for maintaining the adhesion was obtained, and 0.4155 ≦ λ ≦ 0.4220 was obtained. When λ is larger than 0.4220 nm, the compressive stress remaining in the hard film exceeds 8 GPa, so that a large stress is applied to the interface between the substrate and the hard film. Even if a heteroepitaxial relationship is established between the two, hard film peeling occurs. When the hard film of the present invention is used with a cutting tool as a coated substrate, the superiority as a cutting tool is impaired. Therefore, λ should not exceed 0.4220 nm. On the other hand, the lower limit of λ is 0.4155 nm. If λ is less than 0.4155 nm, the lubrication characteristics of the hard film will be noticeably deteriorated, which is not preferable. The range in which the excellent characteristics of the hard coating can be sufficiently extracted is 0.4155 ≦ λ ≦ 0.4220. In order to control λ within the specified range and control the residual stress, it is possible to adjust by controlling the Al amount w on the constituent elements of the present invention, and it was confirmed that the production is stable. . λ decreases under the influence of the atomic radius of the element when the Al amount w is increased or when the Si amount z is large. It tends to increase when the Al amount w is suppressed or when film forming conditions are set such that the plasma density increases during coating, and at the same time, the residual compressive stress tends to increase.
本発明の硬質皮膜は基体直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属から選ばれる少なくとも1種以上の中間層を設けることが好ましい。この中間層は、硬質皮膜と基体との間に存在し、密着性を向上させる効果がある。切削工具を被覆基体として本発明の硬質皮膜を用いた場合、乾式高能率切削加工に使用することを想定している。しかし使用状況が湿式切削の場合、基体と硬質皮膜界面の密着性を更に強固にする必要がある。この理由は、湿式加工状況においては、切削熱により高温になった工具が切削液により急冷されるためである。一般的には切削温度を低減し工具寿命を向上させる手段として浸透しているが、高能率加工においては切削熱が非常に高いため、切削液等で急冷されると膨張、収縮の差が大きくなり、硬質皮膜が接合されている界面に非常に大きな負荷をもたらすことになる。この中間層の存在によって、繰り返し疲労による硬質皮膜破壊の発生を回避することができる。
硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜の摩擦特性が安定し好ましい。例えば切削工具を被覆基体として本発明の硬質皮膜を用いた場合、切削寿命のばらつきを低減することができ、好ましい切削工具を得ることができる。
本発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた硬質皮膜に関し、特に切削工具、金型、軸受け、ダイス、ロール、ピストンリング、摺動部材等、高硬度が要求される耐摩耗部材や内燃機関部品等の耐熱部材の表面に被覆するのが好ましい。本発明を以下の実施例に基づいて説明する。
In the hard coating of the present invention, it is preferable to provide at least one intermediate layer selected from Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, and W metal on the upper surface of the substrate. This intermediate layer exists between the hard coating and the substrate and has the effect of improving the adhesion. When the hard coating of the present invention is used with a cutting tool as a coated substrate, it is assumed that it is used for dry high-efficiency cutting. However, when the usage is wet cutting, it is necessary to further strengthen the adhesion between the substrate and the hard coating interface. This is because, in a wet machining situation, a tool that has become hot due to cutting heat is rapidly cooled by the cutting fluid. In general, it has penetrated as a means to reduce the cutting temperature and improve the tool life, but in high-efficiency machining, the cutting heat is very high, so when quenched with cutting fluid, the difference between expansion and contraction is large. Thus, a very large load is brought to the interface where the hard coating is bonded. Due to the presence of this intermediate layer, it is possible to avoid the occurrence of hard film breakage due to repeated fatigue.
By smoothing the convex portions on the surface of the hard film by mechanical treatment after the hard film is coated, the friction characteristics of the hard film are stabilized, which is preferable. For example, when the hard coating of the present invention is used with a cutting tool as a coated substrate, variation in cutting life can be reduced, and a preferable cutting tool can be obtained.
The present invention relates to a hard coating excellent in wear resistance, adhesion and high temperature oxidation resistance coated on cemented carbide, high speed steel, die steel, etc., and in particular, cutting tools, molds, bearings, dies, rolls, pistons. It is preferable to coat the surface of a heat-resistant member such as a ring or a sliding member, such as a wear-resistant member or internal combustion engine component that requires high hardness. The present invention will be described based on the following examples.
小型真空装置内にAIPによる蒸発源と、MSによる蒸発源とを併設した装置を用いて、基体となる超硬合金製インサートに被覆を行った。蒸発源は各種合金製ターゲットを用い、反応ガスはN2ガス、CH4ガス、Ar/O2混合ガスから目的の硬質皮膜が得られるものを選択した。被覆条件は、基体温度400℃、バイアス電圧は、−40Vから−150Vの範囲の電圧を印加した。表1に、硬質皮膜の金属成分、非金属成分、蒸発源及び蒸発源制御パラメータを示す。 A cemented carbide insert serving as a substrate was coated using a device in which an evaporation source by AIP and an evaporation source by MS were provided in a small vacuum apparatus. As the evaporation source, various alloy targets were used, and as the reaction gas, an N 2 gas, a CH 4 gas, and an Ar / O 2 mixed gas were selected from which a desired hard film was obtained. As the coating conditions, a substrate temperature of 400 ° C. and a bias voltage of −40V to −150V were applied. Table 1 shows the metal component, non-metal component, evaporation source, and evaporation source control parameter of the hard coating.
得られた硬質皮膜被覆インサートを用い、切削条件1で切削試験を行った。評価は、刃先の欠損又は摩耗等により工具が切削不能となるまで加工を行い、その時の切削長を工具寿命とした。表1に切削試験の結果を併記する。
(切削条件1)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)、Φ6ドリル穴多孔面在り
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
Using the obtained hard coating-coated insert, a cutting test was performed under cutting conditions 1. Evaluation was performed until the tool became uncuttable due to chipping or wear of the cutting edge, and the cutting length at that time was defined as the tool life. Table 1 also shows the results of the cutting test.
(Cutting condition 1)
Tool: Face mill Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30), Φ6 drill hole porous surface cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None
表1より、本発明例1〜15は何れもプラズマ密度の異なる蒸発源を併用した。一方、比較例16〜27、従来例28〜30はプラズマ密度の同じ単一蒸発源を用いた場合である。本発明例1〜15の方が優れた切削性能を示した。これは、プラズマ密度の異なるAIPとMSを被覆時に併用し、高密度プラズマにより被覆された相が高硬度、低密度プラズマにより被覆された相が低硬度、と連続して交互に被覆することによって、硬質皮膜の耐摩耗性、潤滑性を保持したまま、硬質皮膜強度を向上させることができた。硬質皮膜に高密度プラズマにより被覆された相、低密度プラズマにより被覆された相の様に組成の異なる相を形成し、Si量zに差を設けるには、ターゲット組成や被覆条件を断続的、連続的に変化させる方法が考えられるが、本発明で採用した様なプラズマ密度の異なる蒸発源を用いた方が、より優れた耐欠損特性を得ることができた。
比較例16、23、25は単一の蒸発源を用いて、Si量zに差が発生しないように被覆した場合である。比較例16はMSによる被覆であるが、AIPに比べ、プラズマ密度を高めることができないため、硬質皮膜の高硬度化ができなかった。そのため、耐摩耗性が十分ではなく、初期欠損に至ってしまった。比較例23、25は硬質皮膜が高硬度化する傾向にあったが、靭性が乏しくなり、断続切削性能を向上させることができなかった。比較例17、18、20〜22はAIPを使用し、硬質皮膜のSi量zに差が発生するように被覆した場合である。Si量zの差は発生しているが、目標とする切削性能は得られなかった。特に比較例18、21、22は硫黄量が、本発明の適正範囲を越えていた。AIPのみの被覆の場合、ターゲット組成によらず放電時に発生するプラズマ密度が大きいため、硬質皮膜は高硬度化しやすい傾向にある。従って靭性が不足する。比較例に示したように硬質皮膜にSi量zの差を発生させても残留応力の増大を招いてしまうため、耐欠損性、密着性に悪影響となる。比較例の中には硬質皮膜硬度がHvで3500を越えるような物も得られたが、硬質皮膜の靭性が低い為に断続切削状況下で欠損が発生し、工具は短寿命であった。比較例26、27はAIPとMSとを併用することにより、硬質皮膜内にSi量zの差を発生させた。しかし、Si量zの差が目標の範囲を越えてしまったため、硬質皮膜の破断面組織形態が連続した柱状形態を示さず、組成の異なる相が断続的に連なり成長していた。そのため相間の接合力が弱く膜破壊が発生し、目標の切削性能が得られなかった。しかし、比較例26、27は、耐欠損性が向上することを確認できた。以上の様に、AIPとMSを被覆時に併用した様に、プラズマ密度の異なる方式を併用した時に、硬質皮膜のSi量zの差を制御することができ、硬質皮膜を被覆したインサートは、優れた耐欠損特性を発揮させることができた。
From Table 1, Examples 1 to 15 of the present invention used evaporation sources having different plasma densities. On the other hand, Comparative Examples 16 to 27 and Conventional Examples 28 to 30 are cases where a single evaporation source having the same plasma density is used. Inventive Examples 1 to 15 showed superior cutting performance. This is because AIP and MS with different plasma densities are used together during coating, and the phase coated with high-density plasma is coated with high hardness and the phase coated with low-density plasma is alternately coated with low hardness. The strength of the hard coating could be improved while maintaining the wear resistance and lubricity of the hard coating. In order to form a phase with different composition such as a phase coated with a high density plasma on a hard film and a phase coated with a low density plasma, and to provide a difference in Si amount z , the target composition and coating conditions are intermittent. Although a continuous change method is conceivable, the use of evaporation sources having different plasma densities, such as those employed in the present invention, has yielded superior defect resistance characteristics.
Comparative Examples 16, 23, and 25 are cases in which a single evaporation source is used to cover the Si amount z so that no difference occurs. Although the comparative example 16 is coating by MS, since the plasma density cannot be increased as compared with AIP, the hardness of the hard coating could not be increased. Therefore, the wear resistance is not sufficient, leading to initial defects. In Comparative Examples 23 and 25, the hard coating tended to increase in hardness, but the toughness became poor and the intermittent cutting performance could not be improved. Comparative Examples 17, 18, 20 to 22 are cases in which AIP is used and coating is performed so that a difference occurs in the Si amount z of the hard coating. Although a difference in the Si amount z occurred, the target cutting performance was not obtained. In particular, Comparative Examples 18, 21, and 22 had a sulfur content exceeding the appropriate range of the present invention. In the case of coating only with AIP, the hard film tends to have a high hardness because the plasma density generated during discharge is large regardless of the target composition. Accordingly, the toughness is insufficient. As shown in the comparative example, even if a difference in the Si amount z occurs in the hard coating, the residual stress is increased, which adversely affects the fracture resistance and adhesion. Some of the comparative examples had a hard film hardness exceeding 3500 in Hv, but due to the low toughness of the hard film, defects occurred under intermittent cutting conditions, and the tool had a short life. In Comparative Examples 26 and 27, AIP and MS were used in combination to generate a difference in Si amount z in the hard coating. However, since the difference in the Si amount z exceeded the target range, the fracture surface texture form of the hard film did not show a continuous columnar form, and phases with different compositions were intermittently growing continuously. For this reason, the bonding force between the phases was weak, and film breakage occurred, and the target cutting performance could not be obtained. However, it was confirmed that Comparative Examples 26 and 27 improved the fracture resistance. As mentioned above, when AIP and MS are used together during coating, when using different methods of plasma density, the difference in Si amount z of the hard coating can be controlled, and the insert coated with the hard coating is excellent. It was possible to demonstrate the fracture resistance.
次に、切削条件2で切削試験を行った。切削条件2の評価は突発的な欠損や異常摩耗、剥離を伴う損傷形態が観察されない場合は、逃げ面最大摩耗量が0.3mmに達した時点を工具寿命とした。表2、表3に切削試験の結果を示す。
(切削条件2)
工具:正面フライス
インサート形状:SDE53タイプ特殊形状
切削方法:センターカット方式
被 削材形状:巾100mm×長さ250mm
被削材:S50C(HRC30)
切り込み量:2.0mm
切削速度:120m/min
1刃送り量:1.0mm/刃
切削油:なし
Next, a cutting test was performed under cutting conditions 2. In the evaluation of the cutting condition 2, the tool life was determined when the maximum wear amount of the flank reached 0.3 mm when no sudden defect, abnormal wear, or damage form accompanied by peeling was observed. Tables 2 and 3 show the results of the cutting test.
(Cutting condition 2)
Tool: Front milling Insert shape: SDE53 type special shape Cutting method: Center cut method Workpiece shape: width 100mm x length 250mm
Work material: S50C (HRC30)
Cutting depth: 2.0mm
Cutting speed: 120 m / min
1-blade feed amount: 1.0 mm / blade Cutting oil: None
表2、表3より、本発明例1〜15は、鋼に対する摩擦係数が0.4以下を示し、また硬質皮膜の硬度を改善し耐摩耗特性を向上させ、優れた切削特性を有すること示した。本発明例は密着性、潤滑性、耐摩耗特性の課題を改善し、性能を大幅に改善することで満足のいく結果を得ることができた。本発明例3、7、12は、今回の切削評価において長い切削寿命を示し、従来例28、29、30に対し、切削寿命の改善を得ることがでた。本発明例3、12は摩擦係数も低く潤滑性に優れた特性を示すと伴に、切削初期の被加工物の刃先への溶着現象が低減した。本発明例12は、従来例の中で最も寿命の長かった従来例29、30に対し、2.4倍の長寿命を得ることができた。本発明例に記載の金属成分組成と切削寿命の相関関係は、酸素量や表層酸化物の有無、ヘテロエピタキシャルの有無にも影響を受けている。更にMo量yとSi量zのバランスも大切である。今回の試験で、平均的に切削特性が優れ、工具寿命が上位にあるものは、Mo量y>Si量zの傾向を示した。本発明例のSi量zが規定量の範囲内でMo量yよりも多くなっても、従来例や比較例と比べた場合、十分な切削性能を発揮することが認められた。しかし、切削性能を考慮すると、Mo量y>Si量zの硬質皮膜が望ましい。本発明の硬質皮膜は酸素量により潤滑特性が大幅に向上した。例えば、比較例31は酸素、硫黄とも無添加の事例であり、切削性能は従来例とほとんど変わらない結果となった。
比較例16〜25は、酸素、硫黄を含有させた例ではあるが、X線回折における結晶配向が規定範囲外であったため、容易にクレータ摩耗や剥離が発生した。また、λの調整も必要であることが確認された。比較例17、21〜24のように(200)面のλが0.4230nmを超えるような硬質皮膜の場合、硬質皮膜の金属成分組成並びに硫黄、酸素量とは無関係に、早期に切削寿命に到達した。λの値は硬質皮膜の内部応力の大小に影響を与える。λが大きい場合には、たとえ基体と硬質皮膜との界面でヘテロエピタキシャルを成立させても、残留圧縮応力が増大し界面での応力増大により硬質皮膜が容易に破壊、或いは剥離が発生し、その結果工具寿命が安定せず短寿命になる。従って、本発明の様に切削性能を改善させ安定した切削性能を示すためには、金属成分の規定や酸素量、硫黄量以外に、結晶配向も適切に制御することにより、密着性良く成膜することも重要である。
From Tables 2 and 3, Invention Examples 1 to 15 show that the coefficient of friction against steel is 0.4 or less, improve the hardness of the hard coating, improve the wear resistance, and have excellent cutting characteristics. It was. In the present invention, the problems of adhesion, lubricity and wear resistance were improved, and satisfactory results could be obtained by greatly improving the performance. Inventive Examples 3, 7, and 12 showed a long cutting life in this cutting evaluation, and improved cutting life over the conventional Examples 28, 29, and 30. Inventive Examples 3 and 12 exhibited low friction coefficient and excellent lubricity, and also reduced the phenomenon of welding of the workpiece to the cutting edge in the initial stage of cutting. Invention Example 12 was able to obtain 2.4 times longer life than Conventional Examples 29 and 30 that had the longest life among the conventional examples. The correlation between the metal component composition and the cutting life described in the examples of the present invention is also affected by the amount of oxygen, the presence or absence of surface oxides, and the presence or absence of heteroepitaxiality. Furthermore, the balance between the Mo amount y and the Si amount z is also important. In this test, those having excellent cutting characteristics on average and having the highest tool life showed a tendency of Mo amount y> Si amount z. Even if the Si amount z of the present invention example was larger than the Mo amount y within the specified amount range, it was confirmed that sufficient cutting performance was exhibited when compared with the conventional example and the comparative example. However, in consideration of cutting performance, a hard coating of Mo amount y> Si amount z is desirable. The hard coating of the present invention greatly improved the lubrication characteristics depending on the amount of oxygen. For example, Comparative Example 31 was a case where neither oxygen nor sulfur was added, and the cutting performance was almost the same as that of the conventional example.
Although Comparative Examples 16 to 25 were examples in which oxygen and sulfur were contained, crater wear and peeling occurred easily because the crystal orientation in X-ray diffraction was outside the specified range. Further, it was confirmed that the adjustment of λ is also necessary. In the case of a hard coating such that the (200) plane λ exceeds 0.4230 nm as in Comparative Examples 17, 21 to 24, the cutting life is shortened regardless of the metal component composition of the hard coating and the amounts of sulfur and oxygen. Reached. The value of λ affects the internal stress level of the hard coating. When λ is large, even if heteroepitaxial is established at the interface between the substrate and the hard film, the residual compressive stress increases, and the hard film easily breaks or peels off due to the increase in stress at the interface. As a result, the tool life is not stable and the life is shortened. Therefore, in order to improve the cutting performance and show a stable cutting performance as in the present invention, the film is formed with good adhesion by appropriately controlling the crystal orientation in addition to the definition of the metal component, the amount of oxygen and the amount of sulfur. It is also important to do.
更に基体の直上面にTiの窒化物、炭窒化物、硼窒化物、TiAl合金、Cr金属、W金属などの中間層を設けることによって、更に密着力を補強して耐剥離を改善し、耐欠損特性を向上させる効果が認められた。硬質皮膜を被覆後に該硬質皮膜表面の凸部を機械的処理により、平滑化することにより、硬質皮膜の摩擦特性が安定し、切削工具の切削寿命のばらつきを低減することが認められた。 Furthermore, by providing an intermediate layer of Ti nitride, carbonitride, boronitride, TiAl alloy, Cr metal, W metal, etc. directly on the upper surface of the substrate, the adhesion is further reinforced to improve delamination resistance and resistance. The effect of improving defect characteristics was recognized. It was recognized that, after coating the hard coating, the convex portions on the surface of the hard coating were smoothed by mechanical treatment, thereby stabilizing the friction characteristics of the hard coating and reducing the variation in cutting life of the cutting tool.
1:真空装置
2:AIP蒸発源
3:MS蒸発源
4:基体保持治具
5:回転方向
1: Vacuum device 2: AIP evaporation source 3: MS evaporation source 4: Substrate holding jig 5: Direction of rotation
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034515A JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
US11/055,718 US7368182B2 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
KR1020050011669A KR101170943B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its forming method, and hard-coated tool |
EP05002960.2A EP1564312B1 (en) | 2004-02-12 | 2005-02-11 | Hard coating and its formation method, and hard-coated tool |
CNB2005100697223A CN100510160C (en) | 2004-02-12 | 2005-02-16 | Hard coating and formation method, and hard-coated tool thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004034515A JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005226102A JP2005226102A (en) | 2005-08-25 |
JP4453902B2 true JP4453902B2 (en) | 2010-04-21 |
Family
ID=35001050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004034515A Expired - Fee Related JP4453902B2 (en) | 2004-02-12 | 2004-02-12 | Hard coating and hard coating tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4453902B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056354A (en) * | 2005-08-26 | 2007-03-08 | Hitachi Tool Engineering Ltd | Hard film and its manufacturing method |
JP5662680B2 (en) * | 2007-08-22 | 2015-02-04 | 住友電気工業株式会社 | Surface coated cutting tool |
JP6677932B2 (en) * | 2015-08-29 | 2020-04-08 | 三菱マテリアル株式会社 | Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting |
KR101753104B1 (en) | 2015-09-18 | 2017-07-05 | 한국야금 주식회사 | Hard film for cutting tools |
-
2004
- 2004-02-12 JP JP2004034515A patent/JP4453902B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005226102A (en) | 2005-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101170943B1 (en) | Hard coating and its forming method, and hard-coated tool | |
JP4958134B2 (en) | Hard coating tool | |
KR101170396B1 (en) | Hard coating and its production method | |
JP4304170B2 (en) | Hard coating | |
JP4453902B2 (en) | Hard coating and hard coating tool | |
JP2017159409A (en) | Surface-coated cutting tool exerting excellent wear resistance | |
JP7415223B2 (en) | A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting. | |
KR20200004398A (en) | Surface coated cutting tools | |
JP2004136430A (en) | Coated tool | |
JP4936703B2 (en) | Surface coated cutting tool | |
JP2007217771A (en) | Hard film coated member and its manufacturing method | |
JP2006118051A (en) | Method for producing hard film | |
JP4456905B2 (en) | Surface coated cutting tool | |
JP3779948B2 (en) | Hard coating tool | |
JP4958135B2 (en) | Hard coating tool | |
JP2007046103A (en) | Hard film | |
JP3679076B2 (en) | Hard coating tool | |
JP3679078B2 (en) | Hard coating tool | |
JP4817799B2 (en) | Surface covering | |
JP3614417B2 (en) | Hard coating tool | |
JP4676741B2 (en) | Hard coating and hard coating method | |
JP6861137B2 (en) | Hard coating for cutting tools | |
JP3779949B2 (en) | Hard coating tool | |
JP3679077B2 (en) | Hard coating tool | |
JP2007056324A (en) | Hard film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130212 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4453902 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140212 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |