Nothing Special   »   [go: up one dir, main page]

JP2005283435A - 赤外線センサ - Google Patents

赤外線センサ Download PDF

Info

Publication number
JP2005283435A
JP2005283435A JP2004099923A JP2004099923A JP2005283435A JP 2005283435 A JP2005283435 A JP 2005283435A JP 2004099923 A JP2004099923 A JP 2004099923A JP 2004099923 A JP2004099923 A JP 2004099923A JP 2005283435 A JP2005283435 A JP 2005283435A
Authority
JP
Japan
Prior art keywords
infrared
infrared sensor
optical element
substrate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099923A
Other languages
English (en)
Inventor
Mitsuko Suzuki
晃子 鈴木
Akinobu Sato
明伸 佐藤
Bourelle Emmanuel
エマニュエル ブーレル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2004099923A priority Critical patent/JP2005283435A/ja
Priority to US11/073,370 priority patent/US20050218328A1/en
Publication of JP2005283435A publication Critical patent/JP2005283435A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0215Compact construction
    • G01J5/022Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0881Compact construction
    • G01J5/0884Monolithic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Radiation Pyrometers (AREA)

Abstract

【課題】 小型、高感度で時間応答性が高く、作製が簡易な赤外線センサを提供する。
【解決手段】 赤外線を受光して電気信号に変換する赤外線検出素子43と、その赤外線検出素子43に赤外線を導く光学素子44とを具備し、光学素子44は回折格子を備えたプレーナ型光導波路とされて、基板41上に赤外線検出素子43と並置されて形成される。光学素子44により基板面と垂直方向から入射する赤外線49が光路変換され、基板面と平行方向に導波されて赤外線検出素子43に入射される。
【選択図】 図1

Description

この発明は、赤外線検出素子と赤外線検出素子に赤外線を導く光学素子とを備えた赤外線センサにおいて、光学素子に赤外線の導波方向の制御機能と波長以下のスポットサイズへの集光機能を同時に持たせ、赤外線検出素子への単位面積あたりの赤外線入射光量を高めることにより、高感度で時間応答性が高く、小型(薄型)化を実現した赤外線センサに関するものである。
熱源から放射される赤外線を受光して電気信号に変換する赤外線センサには、大別して熱型センサと量子型センサとがある。熱型センサは赤外線を赤外線吸収層などを介して熱に変換することによりセンサ材料内に温度変化を誘起させ、その温度変化に起因して発生する起電力や電荷分布や抵抗値などの電気信号の変化を検知するものである。一方、量子型センサは赤外線で半導体を励起することによって発生する電流変化や起電力や電子放出を利用するものである。一般に量子型は冷却を必要とするため、小型化がしにくく、価格が高くなるという難点がある。一方、熱型は感度や時間応答性といった性能面では量子型に劣るものの、冷却を必要とせず、小型化・低価格化が可能で、体温計などの定常的な温度測定や時間変化の遅い用途(例えば人物センサなど)に広く利用されている。
熱型センサでは感度や時間応答性を向上させるために様々な工夫が行われている。これらの工夫は大別すると、光学系の改善、熱制御の改善、電気回路の改善に分けられる。光学系の改善とは、赤外線の単位面積あたりの受光量を高めるよう、レンズ等の光学素子や赤外線吸収部(赤外線を吸収して熱に変換する部分)の構成や構造を工夫することである。熱制御の改善とは、できるだけ熱抵抗の大きな熱分離構造を形成し、その熱分離構造部に赤外線吸収部を設けることにより、入射赤外線の吸収による熱分離構造の温度上昇を大きくするよう工夫することである。また、電気回路の改善とは、温度上昇を電気信号に変換する際、ノイズの低減などの工夫により信号検出効率を高める方法である。以下、熱型センサの中のサーモパイル型を例にとり、光学系の改善に関する従来技術を説明する。
赤外線吸収部に入射する単位面積あたりの赤外線量を大きくする最も単純な方法は、レンズを用いることである。特許文献1に、マイクロレンズアレイを用いて赤外線を赤外線吸収部に集光する方法が開示されている。また、レンズ以外の光学系を用いる例として、赤外線吸収部に直接到達しない赤外線の成分を反射鏡を用いて再び赤外線吸収部に集める例が特許文献2に開示されている。
図8は特許文献1に記載されている赤外線センサの構成を示したものであり、マイクロレンズ11aが縦横に一定ピッチで配列形成されたマイクロレンズアレイ11がシリコン基板よりなる支持基板12に一体形成され、この支持基板12がシリコン基板13上に固定されている。シリコン基板13の表面には各マイクロレンズ11aに対応して赤外線を受光する多数の受光部14が配置され、各受光部14はシリコン基板13の表面に形成された凹部15の中央に左右から支持脚16a,16bを介して浮いた状態でそれぞれ支持されている。受光部14は詳細図示を省略しているが、赤外線を吸収する赤外線吸収層と、その赤外線吸収層に接するように設けられた熱電変換素子を有するものとなっている。なお、図8中、17は支持基板12に形成されている凹部を示し、18は信号転送回路を示す。また、19はこの赤外線センサに入射し、マイクロレンズ11aによって集光される赤外線を示す。
一方、図9Aは特許文献2に記載されている赤外線センサの構成を示したものであり、半導体基板21と半導体基板22の間にキャビティ23が形成され、キャビティ23内に赤外線センサ素子24が位置し、半導体基板22のキャビティ23を形成する面に反射鏡25が形成されている。赤外線センサ素子24は半導体基板21に形成支持されている。なお、図9Aではこの半導体基板21の構成を簡略化して示しているが、詳細には図9Bに示したような構成とされている。図9B中、26はシリコンp形基板、27はn形エピタキシャル層よりなる赤外線フィルタ、28はSiO酸化膜、29,30はSi膜層、31は吸光剤を示す。また、図9A中、32はこの赤外線センサに入射する光を示し、赤外線フィルタ27によって赤外線のみフィルタリングされ、直接赤外線センサ素子24に到達するほか、反射鏡25によって反射集光されて赤外線センサ素子24に導かれるものとなっている。
特開平10−209414号公報 特許第3254787号公報
上述した従来の熱型赤外線センサにおける光学系は、いずれも単位面積あたりの赤外線吸収量を増加させ、感度と応答速度を向上させることをめざしたものであるが、単位面積あたりの赤外線吸収量をさらに増加させたいという要求や、センササイズの小型化や製造工程の簡素化による低コスト化の要求と両立させるためには、いくつかの問題がある。
特許文献1に開示されている方法では、レンズと赤外線吸収部との間に空間を設けることにより、縮小された集光スポットと同程度まで赤外線吸収部を小さくして熱容量を下げ、感度を高めている。しかしながら、集光スポットサイズを小さくするためには、レンズと赤外線吸収部との距離を離す必要が生じ、センサ自体が大型化してしまうという問題があった。また、赤外線吸収部との距離を十分離したとしても、集光スポットサイズを赤外線波長以下に小さくすることはできないという問題があった。さらに、レンズを形成した基板と赤外線検出素子部を形成した基板とは別であるため、精密な位置合わせを行って一体化する工程が必要となり、工程が複雑化し、製造コストが高くなるという問題点があった。
一方、特許文献2に開示されている赤外線反射鏡を用いる方法では、赤外線のスポットサイズを小さくすることができないため、スポットサイズに応じて赤外線吸収部の体積を小さく、すなわち熱容量を小さくすることにより感度を向上させることができないという問題があった。また、反射鏡と赤外線検出素子部とを異なる基板で形成した後、組み合わせるため、素子サイズの大型化と工程の複雑化による製造コストの上昇という問題があった。さらに、赤外線検出素子部の厚みが大きくなってしまうために、柔軟なプラスチック等よりなるフレキシブル基板を用いた場合には、曲げなどの機械的耐久性が著しく悪くなるという重大な問題があった。
以上のように、赤外線センサの光学系では、赤外線吸収部の熱容量を小さくできるよう、赤外線を十分小さいスポットに集光できること、光学系自体を小型化できることが要求され、さらには赤外線検出素子と光学系を一体化する際の位置合わせ精度の向上や工程の簡略化、機械的耐久性の向上等が赤外線センサに要求されている。これらの要求は、赤外線検出素子としてサーモパイル型を用いた上記従来例から明らかになったものであるが、赤外線検出素子の種類が異なっても、赤外線センサとしては同様の要求があるものと考えてよい。
この発明は上記要求に鑑み、小型でかつ位置合わせ等の組み立て工程が不要であって、赤外線の集光スポットサイズを波長以下にまで小さくすることにより著しく小さい赤外線吸収部を備えた高感度で時間応答性が高く、さらには高機械的耐久性を有する赤外線センサを提供することを目的とする。
請求項1の発明によれば、赤外線を受光して電気信号に変換する赤外線検出素子と、その赤外線検出素子に赤外線を導く光学素子とを具備する赤外線センサは、上記光学素子が屈折率の異なる材料の配列を有する素子とされて基板上に赤外線検出素子と並置されて形成され、上記光学素子により基板面と垂直方向から入射する赤外線が光路変換され、基板面と平行方向に導波されて赤外線検出素子に入射される構造とされる。
請求項2の発明では請求項1の発明において、光学素子が回折格子を備えたプレーナ型光導波路とされる。
請求項3の発明では請求項1の発明において、光学素子が複数の線状欠陥導波路とそれら各導波路に沿って配列された点欠陥とを具備する2次元フォトニック結晶素子とされる。
請求項4の発明では請求項2又は3の発明において、赤外線検出素子が温接点及び冷接点が共に上記基板面上に位置されたサーモパイルと、その温接点側に配置された赤外線吸収層とよりなるものとされる。
請求項5の発明では請求項4の発明において、上記光学素子と赤外線吸収層との間に間隙が設けられる。
請求項6の発明では請求項5の発明において、上記間隙に対応して上記基板に溝が形成される。
請求項7の発明では請求項1乃至6のいずれかの発明において、上記光学素子の赤外線検出素子と対向する端面と反対側の端面に赤外線を反射する反射体が形成される。
作用
赤外線検出素子における赤外線の受光は、入射スポットサイズを変換せずにそのまま受光する方法と、レンズを用いてスポットサイズを小さくし、単位面積あたりの赤外線受光量を増大させる方法が一般的であった。前者は主にコストの問題から集光用レンズを用いない赤外線センサの場合であって、感度や応答性を高めるにはレンズによる集光が不可欠と考えられてきた。しかしながら、レンズを用いる方法では回折限界があり、波長以下の大きさに集光することは原理的にできない。また、レンズ以外の光学素子を用いることにより、さらに集光スポットサイズを小さくする試みはこれまで行われてこなかった。
この発明では、レンズとは異なる原理により入射赤外線のスポットサイズを波長以下にまで変換できる光学素子を赤外線センサに用いることにより、センサの赤外線検出感度と応答性が著しく上昇することを見いだした。この光学素子の原理は、光学素子に入射した赤外線の光路をほぼ90度曲げ、光学素子の厚み内に赤外線を閉じこめるものである。赤外線の光学素子への入射面積が従来と同じであっても、スポットサイズは光学素子の厚さ程度(例えば2μm)まで小さくなるため、入射赤外線のスポットサイズ変換率はレンズと比べて1桁以上大きくなる。
さらに、レンズでの集光の場合、レンズは赤外線検出素子が形成された基板面と垂直な方向(赤外線の入射光軸上)に、空間的に離れて配置させるかあるいは赤外線検出素子上に積層して配置する必要があった。一方、この発明における光学素子は赤外線の光路変換も行うため、赤外線検出素子と同一基板面内に並んで配置させることができる。このため、従来の赤外線センサでは不可能であった、赤外線波長程度以下の厚さの超薄型の赤外線センサを提供することができる。また、赤外線検出素子の温接点の熱絶縁効率を高めるためには光学素子と赤外線検出素子の間に間隙を設けることが望ましいが、この発明の光学素子は赤外線検出素子が形成される基板の同一面内において、赤外線検出素子との間に隙間ができるように光学素子を並べて形成するだけでよく、レンズの場合のように基板面に積層する配置で間隙を形成する方法に比べて、作製方法が極めて容易になるものである。
この発明によれば、赤外線検出素子と屈折率の異なる材料の配列を有する光学素子とが同一基板面内に並置されて形成され、この光学素子により入射した赤外線を基板と平行に波長以下のサイズで導波させることができるものとなっており、よって赤外線吸収部への単位面積あたりの赤外線光量を高めることができ、高感度化と高速応答性を実現することができる。また、赤外線検出素子の膜厚を薄くすることができ、高機械的耐久性を実現することができる。さらに、この光学素子は赤外線検出素子と同一基板上に形成されるため、光学系と赤外線検出素子との組み立て工程は不要となり、低コストで超小型(超薄型)の赤外線センサを提供することができる。
この発明の実施形態を図面を参照して実施例により説明する。
図1はこの発明の一実施例を示したものであり、この例ではシリコンよりなる基板41上に電気および熱絶縁膜としてのSiO酸化膜42が形成され、このSiO酸化膜42上に、赤外線を受光して電気信号に変換する赤外線検出素子43と、その赤外線検出素子43に赤外線を導く光学素子44とが並置されて形成される。
屈折率の異なる材料の配列を有する光学素子44はこの例では回折格子を上面に備えたプレーナ型光導波路とされ、その構成材料はシリコンとされる。回折格子を構成するライン溝44aはこの例ではピッチ8μm、幅4μm、深さ0.5μmとされており、光学素子44の厚さは2μmとされている。
上記のような光学素子44はSiO酸化膜42上にシリコンを2μm成膜し、その上にレジストを塗布してラインアンドスペースのパターニングを行い、レジストをマスクとしてドライエッチングによりシリコンにライン溝44aを形成した後、レジストを除去することによって形成される。
光学素子44のライン溝44aと平行な一方の端面には赤外線を反射する反射体として反射膜45が形成される。反射膜45はこの例では金(Au)を蒸着することによって形成されている。なお、このような金属膜に替えて例えばSiOとTaなどの誘電体多層膜を用いることもできる。
赤外線検出素子43はサーモパイル46と赤外線を吸収して熱に変換する赤外線吸収層47とよりなるサーモパイル型赤外線検出素子とされ、光学素子44の反射膜45が形成されている端面と反対側の端面に対向するようにSiO酸化膜42上に形成される。サーモパイル46の各熱電素子46a、温接点側の電極46b及び冷接点側の電極46cは図1に示したような配置・形状とされ、すなわち温接点と冷接点は共に基板面上に位置され、各熱電素子46aは基板面と平行方向に延伸されて、その延伸方向両端に電極46b,46cが配置されているものとされる。熱電素子46aをこのような構成とすることにより、両電極46b,46c間の温度差を大きくすることができ、大きな出力を得ることができる。なお、SiO酸化膜42上に成膜形成されているサーモパイル46の厚さはこの例では光学素子44の厚さと同じ2μmとされ、また熱電素子46aの短冊状をなすp形,n形半導体の大きさは幅10μm程度、長さ50μm程度とされている。
赤外線吸収層47はサーモパイル46の光学素子44と対向する各温接点側の電極46bに接触するようにそれぞれ形成され、この例では各赤外線吸収層47は幅1μm×厚さ2μm×長さ20μmの大きさとされている。赤外線吸収層47は黒化金よりなり、蒸着によって形成される。なお、赤外線吸収層47の熱絶縁性を高めるために、赤外線吸収層47と光学素子44との間には所要の間隙48が設けられている。間隙48の大きさは例えば10μm程度とされる。
シリコンよりなり、回折格子を備えたプレーナ型光導波路とされた光学素子44は下地のSiO酸化膜42との屈折率差による光閉じ込め効果を有し、この光学素子44に基板面と垂直方向から入射した特定波長領域の赤外線は光路変換され、つまり光路をほぼ90°曲げられて基板面と平行方向に光学素子44内を導波する。図1A中、49は光学素子44に入射される赤外線のスポットを示す。光学素子44に入射した赤外線の中で、赤外線検出素子43が配置されていない側へ導波した赤外線は光学素子44の端面に形成されている反射膜45によって反射され、赤外線検出素子43が配置されている方向へ導波して赤外線検出素子43の赤外線吸収層47に入射される。従って、この例では入射した特定波長領域の赤外線を光学素子44と同一基板面内に形成した赤外層吸収層47に集光することができる。
従来の赤外線のスポットサイズおよび赤外線吸収部の一辺の長さは100μm程度であり、これに対し、この例では赤外線のスポットサイズおよび赤外線吸収部の一辺の長さ(赤外線吸収層47の厚さ)は光学素子44の光導波路の厚さに相当するシリコン膜厚の2μmに縮小されているので、従来と比べて1/50になっている。すなわち、この例では同一の赤外線光量を熱容量の非常に小さい赤外線吸収層47に集光可能であるため、赤外線吸収層47の温度上昇率を高めて、高感度化と高速応答性を実現することが可能となる。なお、赤外線検出素子43の厚さは必ずしも光学素子44の厚さと等しくしなくてもよく、例えばこの例では2μmより小さくしてもよい。
図2は図1の赤外線センサのSiO酸化膜42が形成された基板41に替えて柔軟なプラスチックフィルム51を用い、このプラスチックフィルム51上に図1と同様に赤外線検出素子43及び光学素子44を形成した実施例を示したものであり、この例では赤外線センサは可撓性を有するものとなっている。
ここで、プラスチックフィルム51の曲げに対する赤外線センサの耐久性(どの程度の曲げまでセンサとしての機能を維持できるかの度合い)を調べた結果、光学素子44の厚さに著しく依存することがわかった。その理由はこの図2に示した赤外線センサでは光学素子44が大きな面積を占めており、光学素子44は赤外線に対して透明なシリコンなどの半導体やガラスなどの誘電体で作製されることから、これらの材料は脆いため、厚くなるほど曲げ耐性が小さくなるためである。光学素子44の膜厚と曲げ耐性の関係を調べた結果、約10μmより膜厚が大きくなると、光学素子44にクラックが入る頻度が高くなり、曲げ耐性が急激になくなることがわかった。
次に、図3に示した実施例について説明する。この例では光学素子44と赤外線検出素子43との間の間隙48に対応して基板41に深溝52が形成されたものとなっている。この深溝52はエッチングによって形成され、この例では幅10μm、深さ100μmとされている。
このような深溝52を設けることにより、赤外線吸収層47で変換された熱の光学素子44や基板41への熱伝導が抑えられ赤外線吸収層47の熱絶縁性がさらに高められるため、赤外線吸収層47の温度上昇率をさらに高めることができ、より一層の高感度化と高速応答性を実現することができる。なお、この図3に示した赤外線センサは基板41に予め深溝52を形成しておき、この深溝52を挟むように赤外線検出素子43と光学素子44を形成することによって作製される。
図4は図1に示した赤外線センサに対し、反射膜45をなしとした赤外線センサを示したものであり、このように反射膜45のない構成とすることもできる。但し、この例では赤外線吸収層47に到達する赤外線光量は図1の約1/2となるため、その分赤外線検出感度は劣るものとなる。
上述した実施例では光学素子を、回折格子を備えたプレーナ型光導波路としているが、これに替え、光学素子に2次元フォトニック結晶素子を用いる構成について、次に説明する。
図5は光学素子53が2次元フォトニック結晶素子とされた赤外線センサの一実施例を示したものであり、図1と対応する部分には同一符号を付し、重複説明を省略する。
光学素子53は厚さ2μmのシリコンをパターニングすることによって形成されており、孔54が三角周期配列された2次元フォトニック結晶の中に線状欠陥により導波路55が複数本平行に形成され、さらにそれら各導波路55に沿って孔54の配列の中に孔54と大きさの異なる欠陥孔56が点欠陥として配列形成されたものとなっている。なお、図5Bにおいては孔54が開いている様子を模式的に、つまりピッチ、径を大きくして示している。
図6は光学素子53の一部を拡大して示したものであり、導波路55は1列、孔54を形成しない(孔54を1列削除する)ことによって構成され、また欠陥孔56は導波路55の両側において、それぞれ3列目の孔54の位置に位置されて形成されている。
この光学素子53は以下のようにして形成される。SiO酸化膜42上にシリコンを2μm成膜し、その上にレジストを塗布して三角周期配列の孔54のパターンを電子線リソグラフィで露光する。この時、導波路55と欠陥孔56とを含むパターンとする。レジストを現像してレジストマスクを作成し、このレジストマスクを用いてドライエッチングによりシリコンをエッチングする。その後、レジストマスクを除去し、さらにパターニングされたシリコンの下のSiO酸化膜42を選択エッチングにより除去する。これにより、シリコン層の上下を空気層で挟んだ形状のスラブが形成される。なお、この例では孔54は直径2.3μm、周期4μmとし、また欠陥孔56は直径4.6μmとした。
シリコン膜に形成した大きさの異なる欠陥孔56は、特定波長の赤外線のみを隣接する導波路55に結合させる機能をもっている。即ち、光学素子53に垂直に入射した赤外線の中で、特定波長の赤外線のみが導波路55と結合する際に90度進行方向を変え、厚さ2μmのシリコンよりなる導波路55中を伝播し、赤外線吸収層47に到達する。導波路55に結合した赤外線は、シリコン層の面内方向へは三角周期パターンにより閉じ込め効果で、面と垂直方向へは空気層との屈折率差による光閉じ込め効果で、損失なしにシリコン膜の面内を導波する。また、光学素子53に入射した赤外線の中で、赤外線検出素子43が形成されていない側へ導波した赤外線は端面に形成されている反射膜45により反射し、赤外線検出素子43が形成されている方向へ導波して赤外線吸収層47に到達する。そのため、入射した特定波長領域の赤外線を光学素子53と同一基板面内に形成した赤外線吸収層47に集光することができる。なお、図6中、矢印57は欠陥孔56に入射した特定波長の赤外線が導波路55に結合するイメージを示し、矢印58は導波路55を伝播する赤外線の方向を示す。
従来の赤外線のスポットサイズおよび赤外線吸収部の一辺の長さは前述したように100μm程度であり、これに対し、この例の赤外線のスポットサイズおよび赤外線吸収部の一辺の長さは光学素子53の導波路の厚さに相当するシリコン膜厚の2μmに縮小されている。入射した赤外線のうち、20%が欠陥孔56に入射し、50%の効率で導波路55に結合した場合、10%の赤外線を2μmのスポットに集光できる。100μmのスポット径の赤外線が入射する従来の場合と比較すると、単位面積あたりの赤外線量は5倍になる。従って、この例においても同一の赤外線光量を熱容量の非常に小さい赤外線吸収層47に集光可能であるため、赤外線吸収層47の温度上昇率を高めて、高感度化と高速応答性を実現することが可能となる。
光学素子44もしくは53と赤外線吸収層47との間の間隙48及び基板41に形成した深溝52は上述した例では空気層となっているが、これに替え、不活性ガス層や真空層とすることもできる。この場合、センサ全体をケースで囲った後、不活性ガスを充填することにより不活性ガス層とすることができ、また真空封止することにより真空層とすることができる。
図7は上述した実施例と比較するための比較例の構成を示したものであり、図7Aに示した赤外線センサは図1に示した実施例と同様の赤外線検出素子を用い、光学素子44の代わりに凸レンズを用いた構成となっている。図中、61は基板、62はレンズ、63はスペーサを示す。
図1に示した実施例と図7Aの比較例を、素子効率や感度、素子の外形寸法の観点で比較してみた。センサに入射した波長10μmの赤外線が赤外線吸収層47に集光されて発生する熱電素子46aの温接点と冷接点の温度差は、実施例の場合、比較例の約5倍であった。また、素子の厚みは、実施例では赤外線検出素子43と光学素子44が2μm程度なのに対して、比較例では赤外線吸収層47からレンズ62の上端までの距離は1mm以上必要であった。また、レンズ62による集光ビームの位置ずれについて検討した結果、比較例ではレンズ62から赤外線検出素子までの距離が長いために組み立て精度の影響が強く表れてしまうのに対して、実施例では同一基板上に赤外線検出素子43と光学素子44を作り込むので両者の光軸がずれることはなかった。
以上のように、この発明による赤外線センサは、高感度で、素子の外形寸法が小さくでき、かつ本質的に組み立て精度が高いので生産性がよいことがわかる。
次に、赤外線検出素子と光学素子との間の間隙の作製の容易さについて図7A〜Cに示した比較例をもとに説明する。レンズを用いる場合、レンズは赤外線検出素子を形成する基板の法線方向に空間的に離れた位置に形成する必要がある。そのため、レンズ62を別途作製した後、赤外線検出素子を形成した基板61と組み合わせる必要がある(図7A)。この方法では、赤外線センサの感度は組み立て精度に依存するため、工程が複雑になってコストが上昇するという問題がある。組み立て工程をなくすには、図7Bに示したように赤外線検出素子の上にSiOやSiNといった熱絶縁膜64を介してレンズ62を直接積層する方法がある。しかしながら、SiOやSiNといった熱伝導率の低い材質であっても、空気層あるいは真空層からなる間隙と比較すると熱伝導率は1桁以上高く、効率的な熱絶縁は困難である。そのため、一旦熱絶縁膜を介してレンズ62を形成した後、熱絶縁膜のみをエッチングで除去し、空気層からなる間隙65を作製することもできる(図7C)。しかしながら、熱絶縁膜のみをエッチングするには保護膜の形成など工程が複雑化し、歩留りが悪化する要因となる。以上のことから、この発明による赤外線センサは、高感度化・高速応答化を実現するために不可欠な、光学素子と赤外線検出素子との熱絶縁を高めるための間隙を作製する点で従来より容易なことがわかる。
この発明による赤外線センサの第1の実施例を示す図、Aは平面図、Bは断面図。 この発明による赤外線センサの第2の実施例を示す図、Aは平面図、Bは断面図。 この発明による赤外線センサの第3の実施例を示す図、Aは平面図、Bは断面図。 この発明による赤外線センサの第4の実施例を示す図、Aは平面図、Bは断面図。 この発明による赤外線センサの第5の実施例を示す図、Aは平面図、Bは断面図。 図5Aにおける光学素子の部分拡大図。 A〜Cはそれぞれ比較例を示す断面図。 赤外線センサの従来構成例を示す図、Aは平面図、Bは拡大断面図。 赤外線センサの従来構成の他の例を示す図、Aは略断面図、Bは赤外線センサ素子が形成されている半導体基板の詳細断面図。

Claims (7)

  1. 赤外線を受光して電気信号に変換する赤外線検出素子と、その赤外線検出素子に赤外線を導く光学素子とを具備する赤外線センサであって、
    上記光学素子は屈折率の異なる材料の配列を有する素子とされて、基板上に上記赤外線検出素子と並置されて形成され、
    上記光学素子により上記基板面と垂直方向から入射する赤外線が光路変換され、基板面と平行方向に導波されて上記赤外線検出素子に入射される構造とされていることを特徴とする赤外線センサ。
  2. 請求項1記載の赤外線センサにおいて、
    上記光学素子が回折格子を備えたプレーナ型光導波路とされていることを特徴とする赤外線センサ。
  3. 請求項1記載の赤外線センサにおいて、
    上記光学素子が複数の線状欠陥導波路とそれら各導波路に沿って配列された点欠陥とを具備する2次元フォトニック結晶素子とされていることを特徴とする赤外線センサ。
  4. 請求項2又は3記載の赤外線センサにおいて、
    上記赤外線検出素子は温接点及び冷接点が共に上記基板面上に位置されたサーモパイルと、その温接点側に配置された赤外線吸収層とよりなることを特徴とする赤外線センサ。
  5. 請求項4記載の赤外線センサにおいて、
    上記光学素子と赤外線吸収層との間に間隙が設けられていることを特徴とする赤外線センサ。
  6. 請求項5記載の赤外線センサにおいて、
    上記間隙に対応して上記基板に溝が形成されていることを特徴とする赤外線センサ。
  7. 請求項1乃至6記載のいずれかの赤外線センサにおいて、
    上記光学素子の上記赤外線検出素子と対向する端面と反対側の端面に赤外線を反射する反射体が形成されていることを特徴とする赤外線センサ。
JP2004099923A 2004-03-30 2004-03-30 赤外線センサ Pending JP2005283435A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004099923A JP2005283435A (ja) 2004-03-30 2004-03-30 赤外線センサ
US11/073,370 US20050218328A1 (en) 2004-03-30 2005-03-04 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099923A JP2005283435A (ja) 2004-03-30 2004-03-30 赤外線センサ

Publications (1)

Publication Number Publication Date
JP2005283435A true JP2005283435A (ja) 2005-10-13

Family

ID=35053277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099923A Pending JP2005283435A (ja) 2004-03-30 2004-03-30 赤外線センサ

Country Status (2)

Country Link
US (1) US20050218328A1 (ja)
JP (1) JP2005283435A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171174A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置およびその製造方法
JP2007171170A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置の製造方法
JP2010002323A (ja) * 2008-06-20 2010-01-07 Yazaki Corp 赤外線センサ及び二酸化炭素センサ
JP2010507082A (ja) * 2006-10-20 2010-03-04 アナログ・デバイシズ・インコーポレーテッド 断熱層を備える熱センサ
WO2012053491A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 光センサ素子内蔵の液晶表示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884352B1 (fr) * 2005-04-11 2007-09-28 Valeo Vision Sa Capteur photosensible et applications dans le domaine automobile
US7965444B2 (en) * 2006-08-31 2011-06-21 Micron Technology, Inc. Method and apparatus to improve filter characteristics of optical filters
FR2919759A1 (fr) * 2007-08-02 2009-02-06 Chambre De Commerce Et D Ind D Procede et generateur thermoelectrique/thermoionique de conversion d'ondes electromagnetiques par des superreseaux
US20120293546A1 (en) * 2011-05-18 2012-11-22 Tomi Lahcanski Augmented-reality mobile communicator with orientation
WO2013066447A1 (en) 2011-08-01 2013-05-10 The Trustees Of Columbia University In The City Of New York Lens-free planar imager and wireless transmitter
WO2013059665A1 (en) 2011-10-19 2013-04-25 The Trustees Of Columbia University In The City Of New York Ultracompact fabry-perot array for ultracompact hyperspectral imaging
US9063354B1 (en) * 2012-02-07 2015-06-23 Sandia Corporation Passive thermo-optic feedback for robust athermal photonic systems
WO2013148349A1 (en) 2012-03-30 2013-10-03 The Trustees Of Columbia University In The City Of New York Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions
US9954154B2 (en) * 2012-04-10 2018-04-24 Ud Holdings, Llc Superlattice quantum well thermoelectric generator via radiation exchange and/or conduction/convection
US9212948B2 (en) 2012-11-07 2015-12-15 The Trustees Of Columbia University In The City Of New York Lossless hyperspectral imaging
US10439119B2 (en) 2013-11-13 2019-10-08 Ud Holdings, Llc Thermoelectric generator with minimal thermal shunting
JP6756125B2 (ja) * 2016-03-16 2020-09-16 富士電機株式会社 半導体装置および半導体装置の製造方法
US9952097B1 (en) * 2016-10-25 2018-04-24 Institut National D'optique Infrared scene projector and conversion chip therefore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259224A (ja) * 1988-04-08 1989-10-16 Matsushita Electric Ind Co Ltd 焦電形リニアアレイ赤外検出素子
JPH0483208A (ja) * 1990-07-26 1992-03-17 Omron Corp グレーティング・カプラ
JPH09318450A (ja) * 1996-05-30 1997-12-12 Yokogawa Electric Corp マイクロ・ボロメータ素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0667046A (ja) * 1992-08-21 1994-03-11 Sharp Corp 光集積回路
US6031951A (en) * 1998-04-24 2000-02-29 Rose Research, L.L.C. Transmission-mode optical coupling mechanism and method of manufacturing the same
JP4009046B2 (ja) * 2001-04-10 2007-11-14 浜松ホトニクス株式会社 赤外線センサ
JP3721142B2 (ja) * 2002-03-26 2005-11-30 独立行政法人科学技術振興機構 2次元フォトニック結晶点欠陥干渉光共振器及び光反射器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259224A (ja) * 1988-04-08 1989-10-16 Matsushita Electric Ind Co Ltd 焦電形リニアアレイ赤外検出素子
JPH0483208A (ja) * 1990-07-26 1992-03-17 Omron Corp グレーティング・カプラ
JPH09318450A (ja) * 1996-05-30 1997-12-12 Yokogawa Electric Corp マイクロ・ボロメータ素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171174A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置およびその製造方法
JP2007171170A (ja) * 2005-11-25 2007-07-05 Matsushita Electric Works Ltd 熱型赤外線検出装置の製造方法
JP2010507082A (ja) * 2006-10-20 2010-03-04 アナログ・デバイシズ・インコーポレーテッド 断熱層を備える熱センサ
JP2010002323A (ja) * 2008-06-20 2010-01-07 Yazaki Corp 赤外線センサ及び二酸化炭素センサ
WO2012053491A1 (ja) * 2010-10-18 2012-04-26 シャープ株式会社 光センサ素子内蔵の液晶表示装置

Also Published As

Publication number Publication date
US20050218328A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP2005283435A (ja) 赤外線センサ
JP5739224B2 (ja) 光学部品の製造方法及び光学部品
JP5801151B2 (ja) 懸架式ボロメータマイクロプレートに基づく赤外線検出器
JP5969606B2 (ja) 性能が向上したマイクロボロメータアレイ
US8927934B2 (en) Thermal infrared sensor and manufacturing method thereof
US7146074B2 (en) Optical grating coupler
JPS60191548A (ja) イメ−ジセンサ
CN113432725A (zh) 一种基于cmos工艺的多层结构的红外探测器
JP2005116671A (ja) 光学センサおよびその製造方法
JP2008071908A (ja) 超伝導光検出素子
CN113447140B (zh) 一种cmos红外微桥探测器
CN113447148B (zh) 一种红外焦平面探测器
JP4208846B2 (ja) 非冷却赤外線検出素子
CN113340436B (zh) 一种非制冷cmos红外探测器
KR20070116703A (ko) 비냉각형 적외선 센서
KR102588290B1 (ko) 헬름홀츠 공진기를 가지는 광 검출기
CN113432726B (zh) 一种具有组合柱状结构的红外探测器
CN113432728B (zh) 一种单层空心红外微桥探测器
CN113447143B (zh) 一种热对称型红外探测器
CN113432724B (zh) 一种非制冷调谐型红外探测器
CN113447150A (zh) 一种微桥结构红外探测器
KR100631187B1 (ko) 마이크로 반사경이 결합된 적외선 감지 소자의 패키지 및그의 패키징 방법
CN113566982B (zh) 一种微桥结构红外探测器
JP2024130550A (ja) 光半導体デバイス
JPH11166859A (ja) 光読み出し型放射−変位変換装置及びこれを用いた映像化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323