Nothing Special   »   [go: up one dir, main page]

JP2005274386A - Hydrogen peroxide analyzer, and hydrogen peroxide analytical method - Google Patents

Hydrogen peroxide analyzer, and hydrogen peroxide analytical method Download PDF

Info

Publication number
JP2005274386A
JP2005274386A JP2004088818A JP2004088818A JP2005274386A JP 2005274386 A JP2005274386 A JP 2005274386A JP 2004088818 A JP2004088818 A JP 2004088818A JP 2004088818 A JP2004088818 A JP 2004088818A JP 2005274386 A JP2005274386 A JP 2005274386A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
water
sample water
dissolved oxygen
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088818A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawara
広 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2004088818A priority Critical patent/JP2005274386A/en
Publication of JP2005274386A publication Critical patent/JP2005274386A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen peroxide analyzer and a hydrogen peroxide analytical method capable of analyzing easily and high sensitively a micro amount of hydrogen peroxide in water. <P>SOLUTION: A water specimen serving as an analytical object is introduced into the analyzer from a prescribed position A in a water treatment process by a sample collecting tube 12, the water specimen is supplied to a main analytical line including a hydrogen peroxide decomposing part 16 constituted of a column packed with a material having hydrogen peroxide decomposing ability, and a dissolved oxygen concentration measuring part 18, and is supplied to a sub-analytical line including the dissolved oxygen concentration measuring part 18, and measured values of dissolved oxygen concentration measured in the respective lines are input into a computing part 20 to calculate a hydrogen peroxide concentration in the water specimen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水中の微量な過酸化水素を測定するための装置及び方法の改良に関する。   The present invention relates to an improved apparatus and method for measuring traces of hydrogen peroxide in water.

従来より、過酸化水素の濃度分析方法としては、試験紙または試験試薬による方法、酸化還元滴定法、比色法などが一般に知られている。このような過酸化水素の濃度分析は、種々の目的に使用されるが、例えば過酸化水素を含む排水の排水処理設備等で使用することができる。また、純水や超純水の製造設備においても、紫外線照射設備等で過酸化水素が発生することが知られており、過酸化水素の濃度分析の必要性が認識されつつある。純水や超純水の製造設備で過酸化水素の濃度分析を行うには、分析値がμg/Lレベル程度の微量分析が要求される。上述した各種分析方法のうち、試験紙または試験試薬による方法では、分析値がμg/Lレベルの測定は困難である。   Conventionally, as a method for analyzing the concentration of hydrogen peroxide, a method using a test paper or a test reagent, a redox titration method, a colorimetric method and the like are generally known. Such a concentration analysis of hydrogen peroxide is used for various purposes. For example, it can be used in a wastewater treatment facility for wastewater containing hydrogen peroxide. In addition, it is known that hydrogen peroxide is generated in an ultraviolet irradiation facility or the like in a production facility of pure water or ultrapure water, and the necessity of analyzing the concentration of hydrogen peroxide is being recognized. In order to analyze the concentration of hydrogen peroxide at a production facility of pure water or ultrapure water, a trace analysis with an analytical value of the order of μg / L is required. Among the various analysis methods described above, it is difficult to measure the analysis value at the μg / L level using the test paper or the test reagent method.

また、下記特許文献1には、上記酸化還元滴定法による過酸化水素濃度の測定法が開示され、特許文献2には、上記比色法による過酸化水素濃度の測定法が開示されている。
特開2003−313012号公報 特開平8−145879号公報
Patent Document 1 below discloses a method for measuring the hydrogen peroxide concentration by the oxidation-reduction titration method, and Patent Document 2 discloses a method for measuring the hydrogen peroxide concentration by the colorimetric method.
JP 2003-313012 A JP-A-8-145879

しかし、上記従来の技術においては、比色分析や滴定の操作が複雑であり、また、インラインの自動分析が困難であって、特に人間の介在を極力排除したい純水または超純水製造設備に不向きであるという問題があった。さらに、試薬を必要とするため、薬品コスト、メンテナンス及び分析後の廃液処理などのために、コストが高くなるという問題もあった。   However, in the above-mentioned conventional technology, the operation of colorimetric analysis and titration is complicated, and in-line automatic analysis is difficult. Especially for pure water or ultrapure water production equipment that wants to eliminate human intervention as much as possible. There was a problem of being unsuitable. Furthermore, since a reagent is required, there is a problem that the cost is increased due to chemical costs, maintenance, and waste liquid treatment after analysis.

本発明は、上記従来の課題に鑑みなされたものであり、その目的は、水中の微量の過酸化水素を簡便に且つ高感度に分析できる過酸化水素分析装置及び過酸化水素分析方法を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a hydrogen peroxide analyzer and a hydrogen peroxide analysis method that can easily and highly sensitively analyze a small amount of hydrogen peroxide in water. There is.

上記目的を達成するために、本発明は、水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析装置であって、検体水を導入する検体水導入手段と、前記検体水導入手段により導入された検体水中の過酸化水素を分解するための過酸化水素分解手段と、前記検体水及び前記過酸化水素分解手段により過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、を備えることを特徴とする。   In order to achieve the above object, the present invention provides a hydrogen peroxide analyzer for analyzing a hydrogen peroxide concentration in a sample water sampled from a predetermined position of a water treatment process. Hydrogen peroxide decomposition means for decomposing hydrogen peroxide in the sample water introduced by the sample water introduction means, and the hydrogen peroxide decomposition treatment was performed by the sample water and the hydrogen peroxide decomposition means And a dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration of the treated water.

また、本発明は、水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析装置であって、検体水を導入する検体水導入手段と、前記検体水導入手段により導入された検体水中の過酸化水素を分解するための過酸化水素分解手段と、前記検体水及び前記過酸化水素分解手段により過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、前記溶存酸素濃度測定手段による前記検体水及び処理水の溶存酸素濃度の測定結果に基づき、前記検体水中の過酸化水素濃度を算出する演算手段と、を備えることを特徴とする。   The present invention also provides a hydrogen peroxide analyzer for analyzing a hydrogen peroxide concentration in sample water collected from a predetermined position of a water treatment process, the sample water introducing means for introducing the sample water, and the sample water Hydrogen peroxide decomposing means for decomposing hydrogen peroxide in the sample water introduced by the introducing means, and dissolved oxygen concentration of the sample water and the treated water in which hydrogen peroxide is decomposed by the hydrogen peroxide decomposing means And a calculation means for calculating the hydrogen peroxide concentration in the sample water based on the measurement result of the dissolved oxygen concentration in the sample water and the treated water by the dissolved oxygen concentration measurement means. It is characterized by that.

また、上記過酸化水素分析装置は、前記検体水を前記過酸化水素分解手段に供給する前に脱気処理することが好適である。この場合、前記脱気処理には、膜式脱気装置を用いることが好適である。   The hydrogen peroxide analyzer is preferably degassed before supplying the sample water to the hydrogen peroxide decomposition means. In this case, it is preferable to use a membrane type deaerator for the deaeration process.

また、上記過酸化水素分析装置は、前記過酸化水素分解手段に、活性炭、合成炭素系吸着材、イオン交換樹脂、金属触媒の少なくとも一つを含むことが好適である。   In the hydrogen peroxide analyzer, it is preferable that the hydrogen peroxide decomposition means includes at least one of activated carbon, a synthetic carbon-based adsorbent, an ion exchange resin, and a metal catalyst.

また、本発明は、水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析方法であって、検体水を採取する工程と、前記採取された検体水中の過酸化水素を分解する工程と、前記検体水及び前記過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する工程と、を備えることを特徴とする。   The present invention also provides a hydrogen peroxide analysis method for analyzing a hydrogen peroxide concentration in sample water collected from a predetermined position of a water treatment process, the step of collecting the sample water, and the collected sample water And the step of measuring the dissolved oxygen concentration of the sample water and the treated water subjected to the decomposition treatment of the hydrogen peroxide.

また、本発明は、水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析方法であって、検体水を採取する工程と、前記採取された検体水中の過酸化水素を分解する工程と、前記検体水及び前記過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する工程と、前記検体水及び処理水の溶存酸素濃度の測定結果に基づき、前記検体水中の過酸化水素濃度を算出する工程と、を備えることを特徴とする。   The present invention also provides a hydrogen peroxide analysis method for analyzing a hydrogen peroxide concentration in sample water collected from a predetermined position of a water treatment process, the step of collecting the sample water, and the collected sample water A step of decomposing hydrogen peroxide of the sample, a step of measuring the dissolved oxygen concentration of the sample water and the treated water subjected to the decomposition treatment of the hydrogen peroxide, and a measurement result of the dissolved oxygen concentration of the sample water and the treated water. And a step of calculating a hydrogen peroxide concentration in the specimen water.

本発明によれば、水中の過酸化水素を簡便に検出及び/または定量することができ、特に、純水や超純水中の微量の過酸化水素を簡便に且つ高感度に検出及び/または定量することができる。   According to the present invention, hydrogen peroxide in water can be easily detected and / or quantified, and in particular, a small amount of hydrogen peroxide in pure water or ultrapure water can be easily detected and / or sensitively. It can be quantified.

以下、本発明を実施するための最良の形態(以下、実施形態という)を、図面に従って説明する。ただし、本発明は本実施形態に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings. However, the present invention is not limited to this embodiment.

図1は、本発明にかかる過酸化水素分析装置の一実施形態の構成を表すブロック図である。図1において、過酸化水素分析装置10は、純水や超純水の製造設備、排水処理設備等の水処理プロセスの所定位置Aから、サンプル採取用配管12により分析対象となる検体水を装置内に導入し、採取する。本実施形態では、サンプル採取用配管12が水処理プロセスの所定位置Aにおいて2つの点から検体水を導入しており、一方が過酸化水素分解部16、溶存酸素濃度測定部18を含む主分析ラインに検体水を導入し、他方が溶存酸素濃度測定部18を含む、ブランク測定用の副分析ラインに検体水を導入している。ここで、サンプル採取用配管12は、本発明の検体水導入手段に相当する。   FIG. 1 is a block diagram showing the configuration of an embodiment of the hydrogen peroxide analyzer according to the present invention. In FIG. 1, a hydrogen peroxide analyzer 10 is configured to supply sample water to be analyzed by a sampling pipe 12 from a predetermined position A of a water treatment process such as pure water or ultrapure water production equipment or wastewater treatment equipment. Introduce and collect. In this embodiment, the sample collection pipe 12 introduces sample water from two points at a predetermined position A of the water treatment process, one of which includes a hydrogen peroxide decomposition unit 16 and a dissolved oxygen concentration measurement unit 18. Sample water is introduced into the line, and the other is introduced into the blank measurement sub-analysis line including the dissolved oxygen concentration measurement unit 18. Here, the sample collecting pipe 12 corresponds to the sample water introducing means of the present invention.

サンプル採取用配管12により装置内に導入された検体水は、主分析ラインでは過酸化水素分解部16の前段で脱気装置(図示せず)により溶存している酸素が除去されてもよい。また、副分析ラインでは、溶存酸素濃度測定部18の前段に、主分析ラインに設置したものと同等の脱気装置を設置するのがよい。   The sample water introduced into the apparatus by the sample collection pipe 12 may be freed of dissolved oxygen by a degassing apparatus (not shown) in the stage preceding the hydrogen peroxide decomposition unit 16 in the main analysis line. In the sub-analysis line, it is preferable to install a deaeration device equivalent to that installed in the main analysis line before the dissolved oxygen concentration measurement unit 18.

上記脱気装置としては、例えば膜式脱気装置等が使用される。膜式脱気装置は、気体分離膜で仕切られた一方の室に被処理水を流すとともに、他方の室を減圧することにより、被処理水中に含まれるガスを気体分離膜を通して他方の室に移行させて除去する装置である。気体分離膜としては、通常、テトラフルオロエチレン系、シリコーンゴム系等の疎水性の高分子膜を中空糸膜状等の適宜形状に形成したものが使用される。   As the deaerator, for example, a membrane deaerator is used. The membrane type deaerator flows the water to be treated into one chamber partitioned by a gas separation membrane and depressurizes the other chamber, thereby allowing the gas contained in the water to be treated to flow into the other chamber through the gas separation membrane. It is a device that moves and removes. As the gas separation membrane, a membrane in which a hydrophobic polymer membrane such as tetrafluoroethylene or silicone rubber is formed into an appropriate shape such as a hollow fiber membrane is usually used.

このような脱気装置は、検体水中の溶存酸素濃度が高い場合や、大きく変動する場合に、高精度で過酸化水素濃度を測定するために有効である。検体水中の過酸化水素濃度(測定レンジ)にもよるが、例えば純水、超純水系の過酸化水素濃度は数10μg/L以下なので、ブランク値を下げるため溶存酸素濃度を100μg/L以下特に好ましくは10μg/L以下まで脱気(脱酸素)するのが好適である。また、脱気(脱酸素)の方法は特に限定しないが、コンパクトに高度な脱気処理ができる点で、上記膜式脱気装置による処理が好ましい。なお、検体水中の過酸化水素濃度が高い場合あるいは高精度での分析が必要でない場合、また元々検体水中の溶存酸素濃度が低い場合には、必ずしも脱気装置を設置する必要はない。   Such a deaeration device is effective for measuring the hydrogen peroxide concentration with high accuracy when the dissolved oxygen concentration in the specimen water is high or fluctuates greatly. Depending on the hydrogen peroxide concentration (measurement range) in the sample water, for example, the hydrogen peroxide concentration of pure water or ultrapure water is several tens of μg / L or less. Deaeration (deoxygenation) is preferably performed to 10 μg / L or less. In addition, the method of deaeration (deoxygenation) is not particularly limited, but the above-mentioned membrane type deaerator is preferable in that a high-grade deaeration process can be performed in a compact manner. If the hydrogen peroxide concentration in the sample water is high or analysis with high accuracy is not required, or if the dissolved oxygen concentration in the sample water is originally low, it is not always necessary to install a deaeration device.

主分析ラインに導入された検体水は、過酸化水素分解部16により以下のように分解される。なお、生成した酸素は水中に溶け込み、溶存酸素となる。
(化)
2H→2HO+O ・・・(1)
The sample water introduced into the main analysis line is decomposed by the hydrogen peroxide decomposition unit 16 as follows. The generated oxygen dissolves in water and becomes dissolved oxygen.
()
2H 2 O 2 → 2H 2 O + O 2 (1)

ここで、過酸化水素分解部16は、過酸化水素分解能力を有する材料を充填した容器またはカラムにより構成してもよい。過酸化水素分解能力を有する材料は、水中の過酸化水素を水と酸素に分解する能力を有するものであればよく、特に限定されるものではないが、水で溶解されず、変性し難いものが好ましい。また、過酸化水素との接触効率を上げるために、粒状、繊維状、多孔質状など表面積の大きいものが好ましい。このような材料の例としては、例えば活性炭、合成炭素系吸着材、イオン交換樹脂、金属触媒(Pt等)などを上げることができる。これらのうち、活性炭及び合成炭素系吸着材は、過酸化水素分解能力が高く、耐久性に優れかつ安価であるので、特に好適である。また、金属触媒も過酸化水素分解能力が高く、耐久性に優れているが、高価である。さらに、イオン交換樹脂は、過酸化水素分解能力が使用時間とともに低下しやすいので、長期間の使用には不向きである。   Here, the hydrogen peroxide decomposition unit 16 may be configured by a container or a column filled with a material having hydrogen peroxide decomposition ability. The material having the ability to decompose hydrogen peroxide is not particularly limited as long as it has the ability to decompose hydrogen peroxide in water into water and oxygen, but is not dissolved in water and is difficult to denature. Is preferred. Further, in order to increase the contact efficiency with hydrogen peroxide, those having a large surface area such as granular, fibrous or porous are preferable. Examples of such materials include activated carbon, synthetic carbon-based adsorbent, ion exchange resin, metal catalyst (Pt, etc.) and the like. Of these, activated carbon and synthetic carbon-based adsorbent are particularly suitable because of their high hydrogen peroxide decomposition ability, excellent durability, and low cost. Metal catalysts also have high hydrogen peroxide decomposing ability and excellent durability, but are expensive. Furthermore, ion exchange resins are not suitable for long-term use because their ability to decompose hydrogen peroxide tends to decrease with use time.

過酸化水素分解部16として過酸化水素分解能力を有する材料を充填したカラムを使用する場合、カラム通水流速は、充填材の種類や分析する検体水の過酸化水素濃度などの諸条件によって適宜決定されるが、充填材量に対しSV1から100とすることが好適である。流速を下げると、過酸化水素と充填材との接触時間が増えて過酸化水素の分解率が上がり、酸素の生成率が増加する傾向にあるが、カラムや配管系を介する大気中の酸素の透過により溶存酸素濃度上昇の影響が生じやすくなる。一方、流速を上げると、大気中の酸素の透過による溶存酸素濃度上昇の影響は生じ難くなるが、過酸化水素と充填材との接触時間が減少し、酸素の生成率が減少して分析精度が低下する可能性がある。   When a column packed with a material capable of decomposing hydrogen peroxide is used as the hydrogen peroxide decomposing portion 16, the column water flow rate is appropriately determined according to various conditions such as the type of packing material and the concentration of hydrogen peroxide in the sample water to be analyzed. Although it is determined, it is preferable to set SV1 to 100 with respect to the amount of filler. When the flow rate is lowered, the contact time between the hydrogen peroxide and the packing material increases, the hydrogen peroxide decomposition rate increases, and the oxygen production rate tends to increase. However, the oxygen production rate through the column and piping system tends to increase. Permeation tends to cause an increase in dissolved oxygen concentration. On the other hand, when the flow rate is increased, the effect of increased dissolved oxygen concentration due to the permeation of oxygen in the atmosphere is less likely to occur, but the contact time between hydrogen peroxide and the filler is reduced, and the oxygen generation rate is reduced, resulting in analysis accuracy May be reduced.

上述した主分析ライン及び副分析ラインに導入された検体水は、溶存酸素濃度測定部18で溶存酸素濃度が測定される。溶存酸素濃度測定部18は、公知の溶存酸素計により構成することができる。溶存酸素濃度測定部18の測定値は演算部20に入力され、所定の演算式に基づき検体水中の過酸化水素濃度を算出する。この場合、副分析ラインの溶存酸素濃度の測定値は、ブランク値として使用される。   The dissolved oxygen concentration of the sample water introduced into the main analysis line and the sub-analysis line is measured by the dissolved oxygen concentration measuring unit 18. The dissolved oxygen concentration measurement unit 18 can be configured by a known dissolved oxygen meter. The measurement value of the dissolved oxygen concentration measurement unit 18 is input to the calculation unit 20, and the hydrogen peroxide concentration in the sample water is calculated based on a predetermined calculation formula. In this case, the measured value of the dissolved oxygen concentration in the sub-analysis line is used as a blank value.

溶存酸素濃度から過酸化水素濃度を求めるには、例えば検量線を使用することができる。図2には、この検量線の例が示される。図2において、横軸は主分析ラインと副分析ライン(ブランク値)の溶存酸素濃度の差(ΔDO)、縦軸は検体水の過酸化水素濃度であり、後述する実施例により求めたものである。なお、主分析ラインの溶存酸素濃度を測定する際には、過酸化水素分解部16にて必ずしも検体水中の過酸化水素をすべて水と酸素に分解しておく必要はない。過酸化水素分解能力を有する材料の種類、充填量、過酸化水素分解部16における検体水の流速、温度、配管系などの諸条件を同一にし、その一定条件下において検量線を作成しておけば、検体水中の過酸化水素を検出、定量分析することができる。   In order to obtain the hydrogen peroxide concentration from the dissolved oxygen concentration, for example, a calibration curve can be used. FIG. 2 shows an example of this calibration curve. In FIG. 2, the horizontal axis represents the difference in dissolved oxygen concentration (ΔDO) between the main analysis line and the sub-analysis line (blank value), and the vertical axis represents the hydrogen peroxide concentration of the sample water, which was obtained in the examples described later. is there. When measuring the dissolved oxygen concentration in the main analysis line, it is not always necessary to decompose all the hydrogen peroxide in the sample water into water and oxygen in the hydrogen peroxide decomposition unit 16. Make a calibration curve under the same conditions with the same conditions such as the type of hydrogen peroxide-decomposable material, the filling amount, the flow rate of sample water in the hydrogen peroxide decomposition unit 16, the temperature, and the piping system. For example, hydrogen peroxide in the sample water can be detected and quantitatively analyzed.

上記過酸化水素分解部16の入口側または出口側及び溶存酸素濃度測定部18の出口側には、それぞれ流量計22を設けるのが好適である。これにより、過酸化水素分解部16及び溶存酸素濃度測定部18に適切な流量で検体水を供給することができる。また、主分析ラインにおいて、通常過酸化水素分解部16と溶存酸素濃度測定部18とでは適正流量が異なるので、溶存酸素濃度測定部18の入口側にバイパス配管を設けるのが好適である。また、主分析ライン及び副分析ラインを流れた検体水は、排水設備Bに排水される。排水は、従来の比色分析や滴定分析の排水のように試薬が添加されていないので、処理が容易であり、回収して再利用することも可能である。   It is preferable to provide a flow meter 22 on the inlet side or the outlet side of the hydrogen peroxide decomposition unit 16 and on the outlet side of the dissolved oxygen concentration measurement unit 18, respectively. Thereby, the sample water can be supplied to the hydrogen peroxide decomposition unit 16 and the dissolved oxygen concentration measurement unit 18 at an appropriate flow rate. In the main analysis line, the normal hydrogen peroxide decomposition unit 16 and the dissolved oxygen concentration measurement unit 18 have different proper flow rates, and therefore it is preferable to provide a bypass pipe on the inlet side of the dissolved oxygen concentration measurement unit 18. The sample water that has flowed through the main analysis line and the sub-analysis line is drained to the drainage facility B. Since the wastewater is not added with a reagent unlike the conventional colorimetric analysis or titration wastewater, it can be easily treated and recovered and reused.

なお、上述の過酸化水素分析装置10では、演算部20を設ける構成を説明したが、溶存酸素濃度測定部18の測定値が得られれば、上記検量線等から測定者がおよその過酸化水素濃度を判断することはできるので、簡易的に過酸化水素濃度を判断するだけであれば、必ずしも過酸化水素分析装置10に演算部20を設ける必要はない。また、上記主分析ライン及び副分析ラインは、水処理プロセスに臨時的に取り付ける構成としてもよい。   In the above-described hydrogen peroxide analyzer 10, the configuration in which the calculation unit 20 is provided has been described. However, if the measurement value of the dissolved oxygen concentration measurement unit 18 is obtained, the measurer can calculate the approximate hydrogen peroxide from the calibration curve or the like. Since the concentration can be determined, the calculation unit 20 is not necessarily provided in the hydrogen peroxide analyzer 10 if the hydrogen peroxide concentration is simply determined. The main analysis line and the sub-analysis line may be temporarily attached to the water treatment process.

以上に述べた過酸化水素分析装置10に用いられる配管、特に、検体水を導入するサンプル採取用配管12、過酸化水素分解部16及びその出入口の配管、溶存酸素濃度測定部18までの配管等には、ガス透過性の低いステンレス鋼あるいはナイロン等の材料を用いることが好ましい。その理由は、大気中の酸素が配管系を透過して大量に検体水に溶け込むと、溶存酸素濃度が上昇し、正確な測定ができなくなるからである。   Pipes used in the hydrogen peroxide analyzer 10 described above, in particular, a sample collecting pipe 12 for introducing the sample water, a hydrogen peroxide decomposition section 16 and its inlet / outlet pipe, a pipe to the dissolved oxygen concentration measuring section 18, etc. It is preferable to use a material such as stainless steel or nylon having low gas permeability. The reason is that if oxygen in the atmosphere permeates through the piping system and dissolves in a large amount of sample water, the concentration of dissolved oxygen increases and accurate measurement cannot be performed.

図3は、本発明にかかる過酸化水素分析装置の他の実施形態の構成を表すブロック図であり、図1と同一要素には同一符号を付してその説明を省略する。   FIG. 3 is a block diagram showing the configuration of another embodiment of the hydrogen peroxide analyzer according to the present invention. The same elements as those in FIG.

図3において特徴的な点は、サンプル採取用配管12が水処理プロセスの所定位置Aの1つの点から主分析ライン及び副分析ラインに検体水を導入している点である。このような構成によれば、水処理プロセスに設ける検体水採取口が1箇所でよく、実際に稼働中の水処理プロセスからの検体水の採取を容易化できる。   A characteristic point in FIG. 3 is that the sample collecting pipe 12 introduces the sample water into the main analysis line and the sub-analysis line from one point at a predetermined position A in the water treatment process. According to such a configuration, the sample water collection port provided in the water treatment process may be one place, and sample water collection from the water treatment process that is actually in operation can be facilitated.

図4は、本発明にかかる過酸化水素分析装置のさらに他の実施形態の構成を表すブロック図であり、図1と同一要素には同一符号を付してその説明を省略する。図4に示された実施形態では、図3に示された実施形態にさらに脱気装置14が追加されている。この脱気装置14は、サンプル採取用配管12が主分析ラインと副分析ラインとに分岐する手前に配置されており、脱気条件を両方のラインで同等にすることができる。   FIG. 4 is a block diagram showing the configuration of still another embodiment of the hydrogen peroxide analyzer according to the present invention. The same components as those in FIG. In the embodiment shown in FIG. 4, a deaeration device 14 is further added to the embodiment shown in FIG. This deaeration device 14 is arranged before the sample collection pipe 12 branches into a main analysis line and a sub-analysis line, and the deaeration conditions can be equalized in both lines.

図5、図6は、本発明にかかる過酸化水素分析装置のさらに他の実施形態の構成を表すブロック図であり、図1と同一要素には同一符号を付してその説明を省略する。   5 and 6 are block diagrams showing the configuration of still another embodiment of the hydrogen peroxide analyzer according to the present invention. The same elements as those in FIG.

図5において特徴的な点は、溶存酸素濃度測定部18を1基とし、弁により主分析ラインと副分析ラインとを切り替えて溶存酸素濃度を測定する構成とした点である。このような構成によれば、高価な溶存酸素濃度測定部18の数を減らすことができ、過酸化水素分析装置10のコストを低減できる。   A characteristic point in FIG. 5 is that the dissolved oxygen concentration measuring unit 18 is used as one unit, and the dissolved oxygen concentration is measured by switching the main analysis line and the sub-analysis line by a valve. According to such a configuration, the number of expensive dissolved oxygen concentration measuring units 18 can be reduced, and the cost of the hydrogen peroxide analyzer 10 can be reduced.

また、図6において特徴的な点は、上記図5の実施形態において、さらに水処理プロセスの所定位置Aの1つの点から主分析ライン及び副分析ラインに検体水を導入している点である。これにより、装置のコストを低減するとともに検体水の採取を容易化できる。   6 is characterized in that sample water is further introduced into the main analysis line and the sub-analysis line from one point at a predetermined position A in the water treatment process in the embodiment of FIG. . This can reduce the cost of the apparatus and facilitate the collection of the sample water.

以上に説明した各実施形態において、過酸化水素分解能力を有する材料として活性炭、合成炭素系吸着材等の耐久性に優れた材料を採用すると、長期間使用することができるため、メンテナンスを容易化できる。また、従来の比色や滴定法のように分析のための試薬を使用する必要がないので、過酸化水素濃度を簡易に測定することができる。   In each of the embodiments described above, when a material having excellent durability such as activated carbon or synthetic carbon-based adsorbent is used as a material having hydrogen peroxide decomposition ability, it can be used for a long time, thus facilitating maintenance. it can. Further, since it is not necessary to use a reagent for analysis as in the conventional colorimetric or titration method, the hydrogen peroxide concentration can be easily measured.

また、本発明によれば、検体水中の過酸化水素濃度の測定を自動化できるので、人間の介在を極力回避すべき純水または超純水製造設備に特に適した過酸化水素分析装置及び過酸化水素分析方法が実現できる。   Further, according to the present invention, since the measurement of the hydrogen peroxide concentration in the sample water can be automated, the hydrogen peroxide analyzer and the peroxidation particularly suitable for pure water or ultrapure water production equipment that should avoid human intervention as much as possible. Hydrogen analysis method can be realized.

以下、本発明の具体例を実施例として説明する。   Hereinafter, specific examples of the present invention will be described as examples.

以下の手順により、図2に示された検量線を作成した。   The calibration curve shown in FIG. 2 was created by the following procedure.

まず、図7に示された超純水製造システムにより、工水を前処理、一次純水処理して得られた一次純水から超純水を製造した。なお、図7に示された超純水製造システムの仕様は下記の通りである。
・膜式脱気装置(MD):大日本インキ製化学工業製モジュール SEPAREL EF-040P
・低圧紫外線照射酸化装置(UVox):千代田工販製 ADF20
・イオン交換(カートリッジポリシャー CP)装置:オルガノ製CP樹脂ESG−1
・限外ろ過膜装置(UF):旭化成工業製モジュール OLT−5026
・水温:23±1℃
First, ultrapure water was produced from primary pure water obtained by pretreatment and primary pure water treatment of industrial water using the ultrapure water production system shown in FIG. The specifications of the ultrapure water production system shown in FIG. 7 are as follows.
・ Membrane deaerator (MD): Dainippon Ink & Chemicals Module SEPAREL EF-040P
・ Low-pressure ultraviolet irradiation oxidizer (UVox): ADF20 manufactured by Chiyoda Corporation
・ Ion exchange (cartridge polisher CP) equipment: CP resin ESG-1 made by Organo
・ Ultrafiltration membrane device (UF): Module OLT-5026 manufactured by Asahi Kasei Corporation
・ Water temperature: 23 ± 1 ℃

図7に示された超純水製造システムで超純水を製造する際に、低圧紫外線照射酸化装置における紫外線照射量を変化させ、超純水中の過酸化水素濃度を変化させた。その後、低圧紫外線照射酸化装置の出口水の一部を検体水として、図1に示された過酸化水素分析装置10に導入し、溶存酸素濃度測定部18により溶存酸素濃度の分析を行った。   When producing ultrapure water with the ultrapure water production system shown in FIG. 7, the ultraviolet irradiation amount in the low-pressure ultraviolet irradiation oxidizer was changed to change the hydrogen peroxide concentration in the ultrapure water. Thereafter, a part of the outlet water of the low-pressure ultraviolet irradiation oxidizer was introduced as sample water into the hydrogen peroxide analyzer 10 shown in FIG. 1, and the dissolved oxygen concentration measurement unit 18 analyzed the dissolved oxygen concentration.

また、上記検体水中の過酸化水素濃度を、フェノールフタレイン比色法で分析した。   Further, the hydrogen peroxide concentration in the sample water was analyzed by a phenolphthalein colorimetric method.

以上の測定結果から、検体水の溶存酸素濃度差(ΔDO)と過酸化水素濃度との関係をプロットし、図2に示される検量線を得た。   From the above measurement results, the relationship between the dissolved oxygen concentration difference (ΔDO) of the specimen water and the hydrogen peroxide concentration was plotted, and the calibration curve shown in FIG. 2 was obtained.

なお、図1の過酸化水素分析装置10の仕様は下記の通りである。
・サンプル採取用配管及び溶存酸素濃度測定部の導入配管:ナイロン製チューブ
・過酸化水素分解部用のカラム:アクリル製カラム
・充填材:三菱化学カルゴン製粒状活性炭(ダイアホープ006)100mL
・溶存酸素濃度測定部の溶存酸素計:オービスフェア製3600
・カラム流速50mL/分(SV30)
・水温23±1℃
・入口溶存酸素濃度(検体水溶存酸素濃度)10μg/L以下
In addition, the specification of the hydrogen peroxide analyzer 10 of FIG. 1 is as follows.
・ Sample collection pipe and dissolved oxygen concentration measurement part introduction pipe: Nylon tube ・ Hydrogen peroxide decomposition part column: Acrylic column ・ Filling material: Mitsubishi Chemical Calgon granular activated carbon (Diahope 006) 100 mL
・ Dissolved oxygen meter of dissolved oxygen concentration measurement part: 3600 made by Orbis Fair
・ Column flow rate 50mL / min (SV30)
・ Water temperature 23 ± 1 ℃
-Inlet dissolved oxygen concentration (specimen water-soluble oxygen concentration) 10 μg / L or less

図2に示された結果から分かるように検体水の溶存酸素濃度差(ΔDO)と過酸化水素濃度には、高い相関関係があり、検体水の溶存酸素濃度差(ΔDO)を測定することにより過酸化水素濃度を高感度で検出または定量することができる   As can be seen from the results shown in FIG. 2, there is a high correlation between the dissolved oxygen concentration difference (ΔDO) of the sample water and the hydrogen peroxide concentration, and by measuring the dissolved oxygen concentration difference (ΔDO) of the sample water. Highly sensitive detection or quantification of hydrogen peroxide concentration

本発明にかかる過酸化水素分析装置の一実施形態の構成を表すブロック図であるIt is a block diagram showing the structure of one Embodiment of the hydrogen peroxide analyzer concerning this invention. 過酸化水素濃度を求めるための検量線の例を示す図である。It is a figure which shows the example of the calibration curve for calculating | requiring a hydrogen peroxide concentration. 本発明にかかる過酸化水素分析装置の他の実施形態の構成を表すブロック図である。It is a block diagram showing the structure of other embodiment of the hydrogen peroxide analyzer concerning this invention. 本発明にかかる過酸化水素分析装置のさらに他の実施形態の構成を表すブロック図である。It is a block diagram showing the structure of further another embodiment of the hydrogen peroxide analyzer concerning this invention. 本発明にかかる過酸化水素分析装置のさらに他の実施形態の構成を表すブロック図である。It is a block diagram showing the structure of further another embodiment of the hydrogen peroxide analyzer concerning this invention. 本発明にかかる過酸化水素分析装置のさらに他の実施形態の構成を表すブロック図である。It is a block diagram showing the structure of further another embodiment of the hydrogen peroxide analyzer concerning this invention. 超純水製造システムの構成例を示す図である。It is a figure which shows the structural example of an ultrapure water manufacturing system.

符号の説明Explanation of symbols

10 過酸化水素分析装置、12 サンプル採取用配管、14 脱気装置、16 過酸化水素分解部、18 溶存酸素濃度測定部、20 演算部、22 流量計。   DESCRIPTION OF SYMBOLS 10 Hydrogen peroxide analyzer, 12 Sample collection piping, 14 Deaeration apparatus, 16 Hydrogen peroxide decomposition | disassembly part, 18 Dissolved oxygen concentration measurement part, 20 Calculation part, 22 Flowmeter.

Claims (7)

水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析装置であって、
検体水を導入する検体水導入手段と、
前記検体水導入手段により導入された検体水中の過酸化水素を分解するための過酸化水素分解手段と、
前記検体水及び前記過酸化水素分解手段により過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、
を備えることを特徴とする過酸化水素分析装置。
A hydrogen peroxide analyzer for analyzing the concentration of hydrogen peroxide in sample water collected from a predetermined position of a water treatment process,
A sample water introduction means for introducing the sample water;
Hydrogen peroxide decomposing means for decomposing hydrogen peroxide in the sample water introduced by the sample water introducing means,
Dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration of the sample water and treated water that has been subjected to hydrogen peroxide decomposition treatment by the hydrogen peroxide decomposing means;
A hydrogen peroxide analyzer characterized by comprising:
水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析装置であって、
検体水を導入する検体水導入手段と、
前記検体水導入手段により導入された検体水中の過酸化水素を分解するための過酸化水素分解手段と、
前記検体水及び前記過酸化水素分解手段により過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する溶存酸素濃度測定手段と、
前記溶存酸素濃度測定手段による前記検体水及び処理水の溶存酸素濃度の測定結果に基づき、前記検体水中の過酸化水素濃度を算出する演算手段と、
を備えることを特徴とする過酸化水素分析装置。
A hydrogen peroxide analyzer for analyzing the concentration of hydrogen peroxide in sample water collected from a predetermined position of a water treatment process,
A sample water introduction means for introducing the sample water;
Hydrogen peroxide decomposing means for decomposing hydrogen peroxide in the sample water introduced by the sample water introducing means,
Dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration of the sample water and treated water that has been subjected to hydrogen peroxide decomposition treatment by the hydrogen peroxide decomposing means;
Calculation means for calculating the hydrogen peroxide concentration in the sample water based on the measurement result of the dissolved oxygen concentration in the sample water and treated water by the dissolved oxygen concentration measurement means;
A hydrogen peroxide analyzer characterized by comprising:
前記検体水を前記過酸化水素分解手段に供給する前に脱気処理することを特徴とする請求項1または請求項2に記載の過酸化水素分析装置。   3. The hydrogen peroxide analyzer according to claim 1, wherein the sample water is deaerated before being supplied to the hydrogen peroxide decomposition means. 前記脱気処理には、膜式脱気装置を用いることを特徴とする請求項3に記載の過酸化水素分析装置。   The hydrogen peroxide analyzer according to claim 3, wherein a membrane type deaerator is used for the deaeration process. 前記過酸化水素分解手段には、活性炭、合成炭素系吸着材、イオン交換樹脂、金属触媒の少なくとも一つを含むことを特徴とする請求項1から請求項4のいずれか一項に記載の過酸化水素分析装置。   5. The process according to claim 1, wherein the hydrogen peroxide decomposition means includes at least one of activated carbon, a synthetic carbon-based adsorbent, an ion exchange resin, and a metal catalyst. Hydrogen oxide analyzer. 水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析方法であって、
検体水を採取する工程と、
前記採取された検体水中の過酸化水素を分解する工程と、
前記検体水及び前記過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する工程と、
を備えることを特徴とする過酸化水素分析方法。
A hydrogen peroxide analysis method for analyzing the concentration of hydrogen peroxide in sample water collected from a predetermined position of a water treatment process,
Collecting the sample water;
Decomposing hydrogen peroxide in the collected sample water;
Measuring the dissolved oxygen concentration of the sample water and the treated water subjected to the decomposition treatment of the hydrogen peroxide;
A hydrogen peroxide analysis method comprising:
水処理プロセスの所定位置から採取した検体水中の過酸化水素濃度を分析するための過酸化水素分析方法であって、
検体水を採取する工程と、
前記採取された検体水中の過酸化水素を分解する工程と、
前記検体水及び前記過酸化水素の分解処理がされた処理水の溶存酸素濃度を測定する工程と、
前記検体水及び処理水の溶存酸素濃度の測定結果に基づき、前記検体水中の過酸化水素濃度を算出する工程と、
を備えることを特徴とする過酸化水素分析方法。
A hydrogen peroxide analysis method for analyzing the concentration of hydrogen peroxide in sample water collected from a predetermined position of a water treatment process,
Collecting the sample water;
Decomposing hydrogen peroxide in the collected sample water;
Measuring the dissolved oxygen concentration of the sample water and the treated water subjected to the decomposition treatment of the hydrogen peroxide;
Calculating the hydrogen peroxide concentration in the sample water based on the measurement result of the dissolved oxygen concentration in the sample water and the treated water;
A hydrogen peroxide analysis method comprising:
JP2004088818A 2004-03-25 2004-03-25 Hydrogen peroxide analyzer, and hydrogen peroxide analytical method Pending JP2005274386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088818A JP2005274386A (en) 2004-03-25 2004-03-25 Hydrogen peroxide analyzer, and hydrogen peroxide analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088818A JP2005274386A (en) 2004-03-25 2004-03-25 Hydrogen peroxide analyzer, and hydrogen peroxide analytical method

Publications (1)

Publication Number Publication Date
JP2005274386A true JP2005274386A (en) 2005-10-06

Family

ID=35174214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088818A Pending JP2005274386A (en) 2004-03-25 2004-03-25 Hydrogen peroxide analyzer, and hydrogen peroxide analytical method

Country Status (1)

Country Link
JP (1) JP2005274386A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127830A (en) * 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd Method and apparatus for quantifying hydrogen peroxide
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
JP2012063303A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration
WO2019150640A1 (en) * 2018-01-31 2019-08-08 オルガノ株式会社 System and method for measuring hydrogen peroxide concentration
JP2019144143A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 System and method for measuring concentration of hydrogen peroxide
KR20200114754A (en) * 2019-03-29 2020-10-07 최미순 Apparatus and method for measurement of hydrogen peroxide
JP2020176869A (en) * 2019-04-16 2020-10-29 オルガノ株式会社 Concentration analyzer
JP2020176868A (en) * 2019-04-16 2020-10-29 オルガノ株式会社 Concentration analyzer
JP2021535998A (en) * 2018-08-13 2021-12-23 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Systems and methods for measuring water composition

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127830A (en) * 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd Method and apparatus for quantifying hydrogen peroxide
JP2012061443A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Apparatus of manufacturing pure water or ultrapure water, and method of manufacturing the same
JP2012063303A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration
WO2019150640A1 (en) * 2018-01-31 2019-08-08 オルガノ株式会社 System and method for measuring hydrogen peroxide concentration
JP2019132677A (en) * 2018-01-31 2019-08-08 オルガノ株式会社 System and method for measuring hydrogen peroxide concentration
KR20200069327A (en) 2018-01-31 2020-06-16 오르가노 코포레이션 Hydrogen peroxide concentration measurement system and measurement method
CN111670362A (en) * 2018-01-31 2020-09-15 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
US11408868B2 (en) 2018-01-31 2022-08-09 Organo Corporation Measuring system and measuring method of hydrogen peroxide concentration
CN111670362B (en) * 2018-01-31 2022-04-05 奥加诺株式会社 System and method for measuring hydrogen peroxide concentration
JP2019144143A (en) * 2018-02-22 2019-08-29 オルガノ株式会社 System and method for measuring concentration of hydrogen peroxide
JP7020960B2 (en) 2018-02-22 2022-02-16 オルガノ株式会社 Hydrogen peroxide concentration measurement system and measurement method
JP2021535998A (en) * 2018-08-13 2021-12-23 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Systems and methods for measuring water composition
JP7402217B2 (en) 2018-08-13 2023-12-20 エヴォクア ウォーター テクノロジーズ エルエルシー Systems and methods for measuring water composition
KR102235405B1 (en) * 2019-03-29 2021-04-08 (주)이안 Apparatus and method for measurement of hydrogen peroxide
KR20200114754A (en) * 2019-03-29 2020-10-07 최미순 Apparatus and method for measurement of hydrogen peroxide
JP2020176868A (en) * 2019-04-16 2020-10-29 オルガノ株式会社 Concentration analyzer
JP2020176869A (en) * 2019-04-16 2020-10-29 オルガノ株式会社 Concentration analyzer
JP7252044B2 (en) 2019-04-16 2023-04-04 オルガノ株式会社 Concentration analyzer
JP7333706B2 (en) 2019-04-16 2023-08-25 オルガノ株式会社 Concentration analyzer

Similar Documents

Publication Publication Date Title
EP2423677B1 (en) Total organic carbon meter provided with system blank function
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
CN111670362B (en) System and method for measuring hydrogen peroxide concentration
JP2005274386A (en) Hydrogen peroxide analyzer, and hydrogen peroxide analytical method
WO1991006848A1 (en) Method of measuring total quantity of organic substances in ultrapure water and ultrapure water treating system utilizing said method in preparation of ultrapure water
WO2005019110A2 (en) Inorganic carbon removal
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP7020960B2 (en) Hydrogen peroxide concentration measurement system and measurement method
JP2018025454A (en) Hydrogen peroxide analyzer and hydrogen peroxide analysis method
JP3817860B2 (en) Ultrapure water production apparatus and ultrapure water production method
JP2003302389A (en) Method and apparatus for analyzing boric acid and method and apparatus for manufacturing ultrapure water
US20070238188A1 (en) Peroxide monitor
JP4591703B2 (en) Liquid processing method and apparatus
JP2008139205A (en) Water quality abnormality detecting device and method, and water treatment device
JP7195097B2 (en) Hydrogen peroxide concentration analyzer and hydrogen peroxide concentration analysis method
JP2010194479A (en) Pure-water production apparatus
JP2010216943A (en) Method and device for measuring concentration of dissolved nitrogen
JP7252044B2 (en) Concentration analyzer
JPH08117744A (en) Method for detecting break of ion exchange apparatus
JP7333706B2 (en) Concentration analyzer
JP4204712B2 (en) Cation detection device, cation detection method, water treatment device, and ultrapure water production device
CN209161706U (en) A kind of purifying water treatment system of automatic detection water quality
CN114814254A (en) Seawater ammonium nitrogen profile continuous analysis device and analysis method thereof
JP4645827B2 (en) Carbon dioxide-dissolved water evaluation method and carbon dioxide-dissolved water sample water sampling device
JPH067045U (en) Sampling device and continuous analyzer