JP2005248109A - Method for producing rubbery polymer particle and method for producing resin composition containing the same - Google Patents
Method for producing rubbery polymer particle and method for producing resin composition containing the same Download PDFInfo
- Publication number
- JP2005248109A JP2005248109A JP2004063699A JP2004063699A JP2005248109A JP 2005248109 A JP2005248109 A JP 2005248109A JP 2004063699 A JP2004063699 A JP 2004063699A JP 2004063699 A JP2004063699 A JP 2004063699A JP 2005248109 A JP2005248109 A JP 2005248109A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- polymer particles
- aggregate
- organic solvent
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
本発明は、ゴム状重合体粒子の水性ラテックスより、精製されたゴム状重合体粒子を連続的に製造する方法に関し、かき上げ型傾斜パドル翼を多段に設置した撹拌槽を用いることにより、連続的且つ安定的に製造する方法を提供する。さらに、本発明は、精製されたゴム状重合体粒子を有機溶媒に再分散した分散体を製造する方法、並びにエポキシ樹脂等の熱硬化性樹脂にゴム状重合体粒子が均一に分散した樹脂組成物の製造方法に関し、不純物が従来と比較して大幅に低減された樹脂組成物を提供することができる。 The present invention relates to a method for continuously producing purified rubber-like polymer particles from an aqueous latex of rubber-like polymer particles, and by using a stirring tank having a plurality of lifted inclined paddle blades, Provided is a method for producing a stable and stable product. Furthermore, the present invention relates to a method for producing a dispersion in which purified rubber-like polymer particles are re-dispersed in an organic solvent, and a resin composition in which rubber-like polymer particles are uniformly dispersed in a thermosetting resin such as an epoxy resin. With regard to a method for producing a product, it is possible to provide a resin composition in which impurities are significantly reduced as compared with conventional methods.
従来、ゴム状重合体粒子の水性ラテックスからゴム状重合体を製造する場合、様々な方法により、まず凝集体を得て、その後、該凝集体を脱水若しくは脱溶媒後乾燥してゴム状重合体を得る方法が実施されている。 Conventionally, when a rubber-like polymer is produced from an aqueous latex of rubber-like polymer particles, an aggregate is first obtained by various methods, and then the aggregate is dehydrated or desolvated and then dried to obtain a rubber-like polymer. The method of obtaining is implemented.
前記凝集体を得る方法としては、例えば、(1)無機電解質または酸を凝固剤として添加する方法、(2)高分子凝集剤を添加する方法、(3)有機溶媒を直接ラテックスと接触させる方法、(4)ラテックスを加熱、または凍結させる方法、(5)機械的な剪断力を与える方法、或いはこれらを適宜組み合わせた方法が提案されている。 Examples of the method for obtaining the aggregate include (1) a method of adding an inorganic electrolyte or acid as a coagulant, (2) a method of adding a polymer flocculant, and (3) a method of directly contacting an organic solvent with latex. (4) A method of heating or freezing latex, (5) a method of applying a mechanical shear force, or a method of appropriately combining these has been proposed.
この際、得られた凝集体から重合体由来の乳化剤や電解質、さらには凝固剤として使用された無機電解質などの不純物を除去する方策としては、凝集体を水と接触させる方法が広く行われている。しかしながら、これらの不純物を除去するために大量の水を必要とするのみならず、充分に不純物を除去できないのが現状である。また、有機溶媒により洗浄する方法も行われているが、工程が複雑となり工業的に不利なプロセスとなる。 At this time, as a measure for removing impurities such as an emulsifier and electrolyte derived from the polymer, and an inorganic electrolyte used as a coagulant from the obtained aggregate, a method of bringing the aggregate into contact with water is widely performed. Yes. However, the present situation is that not only a large amount of water is required to remove these impurities, but also the impurities cannot be removed sufficiently. Moreover, although the method of washing | cleaning with an organic solvent is also performed, a process becomes complicated and it becomes an industrially disadvantageous process.
一方、反応性基を有する重合性有機化合物の硬化物、例えばエポキシ樹脂の硬化物は、寸法安定性、機械的強度、電気的絶縁特性、耐熱性、耐水性、耐薬品性などの多くの点で優れている。しかしながら、エポキシ樹脂の硬化物は破壊靭性が小さく、非常に脆性的な性質を示すことがあり、広い範囲の用途においてこのような性質が問題となることが多い。 On the other hand, a cured product of a polymerizable organic compound having a reactive group, such as a cured product of an epoxy resin, has many points such as dimensional stability, mechanical strength, electrical insulation properties, heat resistance, water resistance, chemical resistance, and the like. Is excellent. However, cured products of epoxy resins have low fracture toughness and may exhibit very brittle properties, and such properties are often a problem in a wide range of applications.
これらの問題を解決するための手法の一つとして、エポキシ樹脂中にゴム成分を配合することが試みられている。その中でも、乳化重合、分散重合、懸濁重合に代表される水媒体中の重合方法などを用いて予め粒子状に調製したゴム状重合体を配合する方法は、例えば、エポキシ樹脂に対して非架橋の不定形ゴム成分を溶解混合した後、硬化過程において相分離を生じさせることで、エポキシ樹脂硬化物連続相にゴム成分の分散相を生成させる様な方法と比較して、原理上、配合硬化条件による分散状態の変動を生じにくいこと、ゴム成分を予め架橋しておくことでエポキシ樹脂硬化物連続相へのゴム成分の混入がなく耐熱性や剛性の低下が少ないこと、などの種々の利点が考えられることから、各種の製造方法が提案されている。例えば、(6)ノニオン乳化剤等を用いた乳化重合で作成された部分架橋ゴム状ランダム共重合体粒子を乳化剤の曇点以上に加熱して凝固させた後に、必要に応じて凝固体を水洗し、エポキシ樹脂と混合する方法(例えば、特許文献1〜3参照)、(7)ゴム状重合体ラテックスとエポキシ樹脂を混合した後、水分を留去して混合物を得る方法(例えば、特許文献4参照)、(8)ゴム状重合体ラテックスを有機溶剤の存在下、エポキシ樹脂に混合して混合物を得る方法(例えば、特許文献5参照)、が開示されている。 As one of the methods for solving these problems, an attempt has been made to blend a rubber component in an epoxy resin. Among them, a method of blending a rubbery polymer prepared in advance into particles using a polymerization method in an aqueous medium represented by emulsion polymerization, dispersion polymerization, suspension polymerization, etc. In principle, compared to a method in which a dispersed phase of rubber component is generated in the continuous phase of epoxy resin by causing phase separation in the curing process after dissolving and mixing the crosslinked amorphous rubber component Difficult to cause variation in dispersion state due to curing conditions, and by pre-crosslinking the rubber component, there is no mixing of the rubber component into the epoxy resin cured product continuous phase and there is little decrease in heat resistance and rigidity, etc. Various manufacturing methods have been proposed because of the advantages. For example, after (6) partially crosslinked rubbery random copolymer particles prepared by emulsion polymerization using a nonionic emulsifier or the like are heated to a temperature higher than the cloud point of the emulsifier, the solidified body is washed with water as necessary. , A method of mixing with an epoxy resin (see, for example, Patent Documents 1 to 3), (7) a method of mixing a rubbery polymer latex and an epoxy resin, and then distilling off water to obtain a mixture (for example, Patent Document 4) And (8) a method in which a rubber-like polymer latex is mixed with an epoxy resin in the presence of an organic solvent to obtain a mixture (see, for example, Patent Document 5).
上記(6)の方法では、無機電解質を中心とした凝固剤の使用により凝集体を得る方法であるので、乳化剤などの不純物は凝集の際に重合体に付着するかまたは凝集した重合体内部に閉じこめられるなどして、大量の水を使用する割には不純物を充分に除去できていないのが現状である。さらに、加熱による凝固を含め、凝固によりゴム状重合体粒子同士が強固に固着しているために、エポキシ樹脂に混合する際、相当の機械的剪断力による粉砕や分散操作を必要とし、かつ多量のエネルギーを使用する割にはエポキシ樹脂中にゴム状重合体粒子を均一に分散させることは困難であることが多い。 In the above method (6), since an aggregate is obtained by using a coagulant mainly composed of an inorganic electrolyte, impurities such as an emulsifier are attached to the polymer during aggregation or inside the aggregated polymer. The current situation is that impurities cannot be removed sufficiently even if a large amount of water is used due to being confined. Furthermore, since the rubber-like polymer particles are firmly fixed by coagulation, including coagulation by heating, when mixed with an epoxy resin, pulverization and dispersion operations with a considerable mechanical shear force are required, and a large amount In spite of the use of this energy, it is often difficult to uniformly disperse the rubber-like polymer particles in the epoxy resin.
上記(7)の方法では、重合体由来の乳化剤や電解質などの不純物がそのまま残存する上、エポキシ樹脂が水に難溶性であるため、相当の機械的剪断力を駆使してもなお未混合部分があり、この未混合部分で凝集体の塊状物が発生する場合がある。 In the method (7), impurities such as an emulsifier derived from a polymer and an electrolyte remain as they are, and the epoxy resin is hardly soluble in water. In some cases, aggregates of aggregates may be generated in this unmixed portion.
上記(8)の方法では、凝固操作を伴わないのでゴム状重合体が均一に分散したエポキシ樹脂組成物を得やすいが、ゴム状重合体ラテックスとエポキシ樹脂を混合するに当たり、有機溶剤と共に系中(混合物中)に存在する多量の水分(有機溶剤が溶解可能な水分量以上の水分)を分離、あるいは留去する必要があるが、有機溶剤層と水層の分離には例えば一昼夜等の、多大な時間を要するか、あるいは有機溶剤層と水層が安定な乳化懸濁状態を形成するために実質的には分離が困難となる場合がある。また水分を留去する場合には、多量のエネルギーを必要とする上、通常ゴム状重合体ラテックスの製造に使用する乳化剤、副原料等の水溶性不純物が組成物中に残留してしまい、品質的にも劣るものとなる。このため、分離、留去のいずれの方法においても水分の除去が煩雑であり、工業的に好ましいとはいえない。 In the above method (8), since there is no coagulation operation, it is easy to obtain an epoxy resin composition in which the rubber-like polymer is uniformly dispersed. However, in mixing the rubber-like polymer latex and the epoxy resin, It is necessary to separate or distill off a large amount of water (in the mixture) that exceeds the amount of water that the organic solvent can dissolve, but for the separation of the organic solvent layer and the aqueous layer, for example, day and night, It may take a lot of time, or the organic solvent layer and the aqueous layer may form a stable emulsified suspension state, and separation may be substantially difficult. In addition, when water is distilled off, a large amount of energy is required, and water-soluble impurities such as emulsifiers and auxiliary materials usually used in the production of rubber-like polymer latex remain in the composition. It is also inferior. For this reason, in any method of separation and distillation, removal of water is complicated and it cannot be said that it is industrially preferable.
一方で、特願2003―326711号には、ゴム状重合体粒子の水性ラテックスと、水に対し部分溶解性を示す有機溶媒との混合物に対して水を添加することにより凝集体を得る方法が示されている。
本発明の目的は、特願2003−326711号に示されている方法、すなわち、ゴム状重合体粒子の水性ラテックスから精製されたゴム状重合体粒子を製造する方法として、水性ラテックスの状態で得たゴム状重合体粒子を有機溶剤の存在下に凝固剤を用いずに緩凝集体を得るとともに不純物を水相側に排出させる製造法に関し、安定した粒子径の緩凝集体を長時間連続して製造する方法を提供することにある。さらに、該緩凝集体を前記有機溶媒に再度分散させた後、反応性を有する重合性有機化合物と混合することにより、反応性を有する重合性有機化合物中にゴム状重合体粒子を均一に混合分散でき、重合体粒子由来の乳化剤や電解質などの不純物を大幅に低減した樹脂組成物を簡便かつ効率的に製造する方法を提供することにある。 The object of the present invention is obtained in the state of aqueous latex as a method shown in Japanese Patent Application No. 2003-326711, that is, a method for producing purified rubber-like polymer particles from an aqueous latex of rubber-like polymer particles. In a production method in which loose agglomerates are obtained without using a coagulant in the presence of an organic solvent in the presence of an organic solvent and impurities are discharged to the aqueous phase side, a slow agglomerate with a stable particle size is continuously used for a long time. It is to provide a manufacturing method. Further, after the loose aggregates are dispersed again in the organic solvent and then mixed with the reactive polymerizable organic compound, the rubber-like polymer particles are uniformly mixed in the reactive polymerizable organic compound. It is an object of the present invention to provide a method for easily and efficiently producing a resin composition that can be dispersed and greatly reduces impurities such as an emulsifier derived from polymer particles and an electrolyte.
本発明の第1は、ゴム状重合体粒子(A)の水性ラテックスを水に対し部分溶解性を示す有機溶媒(B)と混合して得られる混合物(C)と水(D)とをかき上げ型傾斜パドル翼を多段に設置した撹拌槽に連続的に供給し、混合接触させて、有機溶媒(B)を含有するゴム状重合体粒子(A)の凝集体(F)を水相(E)中に生成させた後、凝集体(F)を連続的に単離することを特徴とする、精製ゴム状重合体粒子の連続製造方法に関する。 In the first aspect of the present invention, a mixture (C) obtained by mixing an aqueous latex of rubber-like polymer particles (A) with an organic solvent (B) having partial solubility in water and water (D) are scraped. Aggregates (F) of the rubber-like polymer particles (A) containing the organic solvent (B) are continuously supplied to a stirring tank provided with multi-stage inclined paddle blades and mixed and contacted with each other. E) It is related with the continuous manufacturing method of the refined rubber-like polymer particle | grains characterized by isolate | separating an aggregate (F) continuously after producing | generating in.
好ましい実施態様は、混合物(C)と水(D)を撹拌槽の底部より供給し、凝集体(F)と水相(E)の混合物を攪拌槽の上部より回収することを特徴とする、前記の製造方法に関する。 A preferred embodiment is characterized in that the mixture (C) and water (D) are supplied from the bottom of the stirring tank, and the mixture of the aggregate (F) and the aqueous phase (E) is recovered from the top of the stirring tank. It relates to the manufacturing method.
好ましい実施態様は、前記何れかに記載の製造方法により得られた精製ゴム状重合体粒子の凝集体(F)を脱水及び/又は脱溶媒後乾燥することを特徴とする、精製ゴム状重合体粒子の製造方法に関する。 In a preferred embodiment, the purified rubber-like polymer is characterized in that the aggregate (F) of purified rubber-like polymer particles obtained by any of the production methods described above is dehydrated and / or desolvated and then dried. The present invention relates to a method for producing particles.
本発明の第2は、前記何れかの製造方法により得られた精製ゴム状重合体粒子の凝集体(F)に、ゴム状重合体粒子(A)と親和性を示す有機溶媒を添加し、該ゴム状重合体粒子(A)が前記有機溶媒中に分散した分散体(G)を得ることを特徴とする、分散体(G)の製造方法に関する。 In the second aspect of the present invention, an organic solvent having an affinity for the rubber-like polymer particles (A) is added to the aggregate (F) of the purified rubber-like polymer particles obtained by any one of the above production methods, The present invention relates to a method for producing a dispersion (G), characterized in that a dispersion (G) in which the rubbery polymer particles (A) are dispersed in the organic solvent is obtained.
本発明の第3は、反応性基を有する重合性有機化合物(H)にゴム状重合体粒子(A)を分散した樹脂組成物の製造方法であって、前記の製造方法により得られた分散体(G)と前記重合性有機化合物(H)と混合した後、揮発性成分を留去することを特徴とする、樹脂組成物の製造方法に関する。 3rd of this invention is a manufacturing method of the resin composition which disperse | distributed rubber-like polymer particle (A) in the polymeric organic compound (H) which has a reactive group, Comprising: The dispersion | distribution obtained by the said manufacturing method It is related with the manufacturing method of the resin composition characterized by distilling a volatile component after mixing with a body (G) and the said polymeric organic compound (H).
本発明の第4は、反応性基を有する重合性有機化合物(H)にゴム状重合体粒子(A)を分散した樹脂組成物の製造方法であって、前記何れかに記載の製造方法により得られた凝集体(F)と前記重合性有機化合物(H)と混合した後、揮発性成分を留去することを特徴とする、樹脂組成物の製造方法に関する。 4th of this invention is a manufacturing method of the resin composition which disperse | distributed rubber-like polymer particle (A) in the polymeric organic compound (H) which has a reactive group, Comprising: By the manufacturing method in any one of the said It is related with the manufacturing method of the resin composition characterized by distilling a volatile component after mixing with the obtained aggregate (F) and the said polymeric organic compound (H).
好ましい実施態様は、前記反応性基を有する重合性有機化合物(H)がエポキシ樹脂であることを特徴とする、前記何れかに記載の樹脂組成物の製造方法に関する。 A preferred embodiment relates to the method for producing a resin composition according to any one of the above, wherein the polymerizable organic compound (H) having a reactive group is an epoxy resin.
好ましい実施態様は、前記有機溶媒(B)の20℃における水に対する溶解度が5重量%以上、40重量%以下であることを特徴とする、前記何れかに記載の製造方法に関する。 A preferred embodiment relates to any one of the production methods described above, wherein the solubility of the organic solvent (B) in water at 20 ° C. is 5 wt% or more and 40 wt% or less.
好ましい実施態様は、ゴム状重合体粒子(A)の水性ラテックスおよび水に対し部分溶解性を示す有機溶媒(B)を混合して得られる混合物(C)に対して接触させる水(D)の量が、有機溶媒(B)100重量部に対し40重量部以上、350重量部以下であることを特徴とする、前記何れかに記載の製造方法に関する。 In a preferred embodiment, water (D) is brought into contact with a mixture (C) obtained by mixing an aqueous latex of rubber-like polymer particles (A) and an organic solvent (B) having partial solubility in water. The amount is 40 to 350 parts by weight with respect to 100 parts by weight of the organic solvent (B).
好ましい実施態様は、ゴム状重合体粒子(A)が、2層以上の多層構造を有する重合体であって、少なくとも1層以上の架橋ゴム状重合体層を含むことを特徴とする、前記何れかに記載の製造方法に関する。 A preferred embodiment is characterized in that the rubber-like polymer particle (A) is a polymer having a multilayer structure of two or more layers, and includes at least one or more crosslinked rubber-like polymer layers. It relates to the manufacturing method according to the above.
好ましい実施態様は、ゴム状重合体粒子(A)が、ジエン系単量体および(メタ)アクリル酸エステル単量体から選ばれる少なくとも1種以上の単量体50〜100重量%、および他の共重合可能なビニル単量体0〜50重量%から構成されるゴム弾性体、ポリシロキサンゴム系弾性体、またはこれらの混合物からなるゴム粒子コア(A−1)40〜95重量%の存在下に、(メタ)アクリル酸エステル、芳香族ビニル、シアン化ビニル、不飽和酸誘導体、(メタ)アクリルアミド誘導体、マレイミド誘導体から選ばれる少なくとも1種のビニル重合性単量体からなるシェル層(A−2)5〜60重量%を重合して得られるグラフト共重合体であることを特徴とする、前記何れかに記載の製造方法に関する。 In a preferred embodiment, the rubber-like polymer particles (A) are 50 to 100% by weight of at least one monomer selected from diene monomers and (meth) acrylate monomers, and other In the presence of 40 to 95% by weight of a rubber particle core (A-1) comprising a rubber elastic body composed of 0 to 50% by weight of a copolymerizable vinyl monomer, a polysiloxane rubber-based elastic body, or a mixture thereof. And a shell layer (A-) comprising at least one vinyl polymerizable monomer selected from (meth) acrylic acid ester, aromatic vinyl, vinyl cyanide, unsaturated acid derivative, (meth) acrylamide derivative, and maleimide derivative. 2) The method according to any one of the above, which is a graft copolymer obtained by polymerizing 5 to 60% by weight.
好ましい実施態様は、ゴム状重合体粒子(A)のシェル層(A−2)に、エポキシ基、カルボキシル基、水酸基、炭素−炭素2重結合からなる群から選ばれる少なくとも1種の反応性官能基を有することを特徴とする、前記の製造方法に関する。 In a preferred embodiment, the shell layer (A-2) of the rubber-like polymer particle (A) has at least one reactive functional group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, and a carbon-carbon double bond. It has a group, and relates to the above production method.
本発明の製造方法によれば、ゴム状重合体粒子の水性ラテックスから、有機溶媒の存在下で凝固剤を用いずに、安定した粒子径を有する凝集体を長時間連続して得ることができ、また不純物を効率的に水相側に排出させることができる。従って、簡便な方法により精製されたゴム状重合体粒子を効率的且つ安定して製造することができる。更にこの方法によれば、凝集体の粒子径が安定するようになると共に撹拌槽内で滞留する凝集体が軽減するため、合一・成長した凝集体で槽内が閉塞する装置トラブルを低減できる。また、得られた緩凝集体は可逆性を有しているので、有機溶媒に再分散させた後、重合性有機化合物と混合することで、ゴム状重合体粒子を重合性有機化合物中に均一に混合分散できる。すなわち、重合体粒子由来の乳化剤や電解質などの不純物を大幅に低減した樹脂組成物を製造することができる。 According to the production method of the present invention, an aggregate having a stable particle diameter can be continuously obtained for a long time from an aqueous latex of rubber-like polymer particles without using a coagulant in the presence of an organic solvent. In addition, impurities can be efficiently discharged to the water phase side. Therefore, the rubber-like polymer particles purified by a simple method can be produced efficiently and stably. Furthermore, according to this method, since the aggregate particle size becomes stable and aggregates staying in the agitation tank are reduced, it is possible to reduce the trouble of the apparatus in which the inside of the tank is blocked by the coalesced and grown aggregates. . In addition, since the obtained agglomerates have reversibility, rubber particles are uniformly dispersed in the polymerizable organic compound by redispersing in an organic solvent and mixing with the polymerizable organic compound. Can be mixed and dispersed. That is, a resin composition in which impurities such as an emulsifier derived from polymer particles and an electrolyte are significantly reduced can be produced.
本発明の製造方法においては、まず、ゴム状重合体粒子(A)の水性ラテックスを、水に対し部分溶解性を示す有機溶媒(B)と混合する。前記ゴム状重合体粒子(A)については特に制限は無いが、ゴムとしての設計及び、本発明の製造方法における樹脂組成物の製造の容易さを両立しやすいという点より、2層以上の多層構造を有する重合体であることが好ましく、特にコアシェル型ポリマーと称されるものが好ましい。コアシェル型ポリマーとは、エラストマーまたはゴム状の重合体を主成分とするポリマーより形成されるゴム粒子コア(A−1)と、これにグラフト重合されたポリマー成分より形成されるシェル層(A−2)から構成されるポリマーであるが、シェル層(A−2)は、グラフト成分を構成するモノマーを前記コアにグラフト重合することでゴム粒子コア(A−1)の表面の一部若しくは全体を覆うことを特徴とする。 In the production method of the present invention, first, an aqueous latex of rubber-like polymer particles (A) is mixed with an organic solvent (B) that shows partial solubility in water. The rubber-like polymer particle (A) is not particularly limited, but it has two or more layers because it is easy to achieve both the design as a rubber and the ease of production of the resin composition in the production method of the present invention. A polymer having a structure is preferable, and a polymer called a core-shell type polymer is particularly preferable. The core-shell type polymer is a rubber particle core (A-1) formed from a polymer mainly composed of an elastomer or a rubber-like polymer, and a shell layer (A-) formed from a polymer component graft-polymerized thereto. 2), the shell layer (A-2) is a part or the whole of the surface of the rubber particle core (A-1) by graft polymerization of the monomer constituting the graft component onto the core. It is characterized by covering.
前記ゴム粒子コア(A−1)を構成するポリマーは架橋されており、ゴム粒子コア(A−1)を構成するポリマーは適切な溶媒に対して膨潤しうるが、実質的には溶解しないものが好ましい。またゴム粒子コア(A−1)は、エポキシ樹脂に分散させることを目的とする場合は、エポキシ樹脂に不溶であることが好ましく、さらにゴム粒子コア(A−1)のゲル含量は、ゴム粒子コア(A−1)中、60重量%以上、より好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは95重量%以上である。一方、乳化重合等の既知の重合法により容易に製造が可能であり、ゴムとしての性質が良好であることから、ゴム粒子コア(A−1)を構成するポリマーはガラス転移温度(Tg)が0℃以下、好ましくは−10℃以下である。 The polymer constituting the rubber particle core (A-1) is cross-linked, and the polymer constituting the rubber particle core (A-1) can swell in an appropriate solvent, but does not substantially dissolve. Is preferred. Further, when the rubber particle core (A-1) is intended to be dispersed in an epoxy resin, the rubber particle core (A-1) is preferably insoluble in the epoxy resin. In the core (A-1), it is 60% by weight or more, more preferably 80% by weight or more, particularly preferably 90% by weight or more, and most preferably 95% by weight or more. On the other hand, the polymer constituting the rubber particle core (A-1) has a glass transition temperature (Tg) because it can be easily produced by a known polymerization method such as emulsion polymerization and has good properties as a rubber. 0 ° C. or lower, preferably −10 ° C. or lower.
ゴム粒子コア(A−1)を構成するポリマーは、安価に入手でき、しかも得られる重合体のゴムとしての性質が優れているという点から、ジエン系単量体(共役ジエン系単量体)および(メタ)アクリル酸エステル系単量体から選ばれる少なくとも1種以上の単量体を50〜100重量%、および他の共重合可能なビニル単量体0〜50重量%から構成されるゴム弾性体、ポリシロキサンゴム系弾性体、またはこれらを併用することが好ましい。なお、本発明において(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。 The polymer constituting the rubber particle core (A-1) can be obtained at a low cost, and the diene monomer (conjugated diene monomer) from the viewpoint that the resulting polymer has excellent rubber properties. And a rubber composed of 50 to 100% by weight of at least one monomer selected from (meth) acrylate monomers and 0 to 50% by weight of other copolymerizable vinyl monomers It is preferable to use an elastic body, a polysiloxane rubber-based elastic body, or a combination thereof. In the present invention, (meth) acryl means acryl and / or methacryl.
前記ゴム弾性体を構成する共役ジエン系単量体としては特に制限されるものではなく、例えば、ブタジエン、イソプレン、クロロプレン等を挙げることができる。中でも、得られる重合体のゴムとしての性質が優れているという点から、ブタジエンが特に好ましい。また(メタ)アクリル酸エステル系単量体としては特に制限されるものではなく、例えば、ブチルアクリレート、2−エチルヘキシルアクリレート、ラウリルメタクリレートなどが挙げられるが、得られる重合体のゴムとしての性質が優れているという点から、ブチルアクリレート若しくは2−エチルヘキシルアクリレートが特に好ましい。これらは1種類あるいは2種以上を組み合わせて使用できる。 The conjugated diene monomer constituting the rubber elastic body is not particularly limited, and examples thereof include butadiene, isoprene and chloroprene. Of these, butadiene is particularly preferred because the resulting polymer has excellent rubber properties. Further, the (meth) acrylic acid ester monomer is not particularly limited, and examples thereof include butyl acrylate, 2-ethylhexyl acrylate, lauryl methacrylate, etc., but the properties of the resulting polymer as rubber are excellent. In view of the above, butyl acrylate or 2-ethylhexyl acrylate is particularly preferable. These can be used alone or in combination of two or more.
さらに、前記ゴム弾性体は、共役ジエン系単量体または(メタ)アクリル酸エステル系単量体の他に、これらと共重合可能なビニル単量体との共重合体であってもよい。共役ジエン系単量体または(メタ)アクリル酸エステル系単量体と共重合可能なモノマーとしては、芳香族ビニル系単量体、シアン化ビニル系単量体等が例示できる。芳香族ビニル系単量体としては、例えば、スチレン、α−メチルスチレン、ビニルナフタレン等が使用可能であり、シアン化ビニル系単量体としては、例えば、(メタ)アクリロニトリル、或いは置換アクリロニトリル等が使用可能である。これらは1種類或いは2種以上を組み合わせて使用できる。 Further, the rubber elastic body may be a copolymer of a conjugated diene monomer or a (meth) acrylic acid ester monomer and a vinyl monomer copolymerizable therewith. Examples of the monomer copolymerizable with the conjugated diene monomer or the (meth) acrylic acid ester monomer include aromatic vinyl monomers and vinyl cyanide monomers. As the aromatic vinyl monomer, for example, styrene, α-methylstyrene, vinyl naphthalene and the like can be used. As the vinyl cyanide monomer, for example, (meth) acrylonitrile, substituted acrylonitrile and the like can be used. It can be used. These can be used alone or in combination of two or more.
前記の共役ジエン系単量体若しくは(メタ)アクリル酸エステル系単量体の使用量は、前記ゴム弾性体全体の重量に対して好ましくは50重量%以上、より好ましくは60重量%以上である。ゴム弾性体全体に対する共役ジエン系単量体若しくは(メタ)アクリル酸エステル系単量体の使用量が50重量%未満の場合には、反応性基を有する重合性有機化合物(H)の硬化物、例えばエポキシ樹脂に対して靱性を付与する能力が低下する場合がある。一方、これらと共重合可能な単量体の使用量は、ゴム弾性体全体の重量に対して好ましくは50重量%以下、より好ましくは40重量%以下である。 The amount of the conjugated diene monomer or (meth) acrylic acid ester monomer used is preferably 50% by weight or more, more preferably 60% by weight or more based on the total weight of the rubber elastic body. . When the amount of the conjugated diene monomer or (meth) acrylic acid ester monomer used for the entire rubber elastic body is less than 50% by weight, a cured product of the polymerizable organic compound (H) having a reactive group For example, the ability to impart toughness to the epoxy resin may be reduced. On the other hand, the amount of the monomer copolymerizable with these is preferably 50% by weight or less, more preferably 40% by weight or less, based on the weight of the entire rubber elastic body.
また、前記ゴム弾性体を構成する成分として、架橋度を調節するために、多官能性単量体を含んでいても良い。多官能性単量体としては、例えば、ジビニルベンゼン、ブタンジオールジ(メタ)アクリレート、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等を例示できる。これらの使用量はゴム弾性体の全重量に対して10重量%以下、好ましくは5重量%以下、更に好ましくは3重量%以下である。使用量が10重量%を超えると、ゴム粒子コア(A−1)が有する、反応性基を有する重合性有機化合物(H)の硬化物に靱性を付与する能力が低下する傾向がある。 Further, as a component constituting the rubber elastic body, a polyfunctional monomer may be included in order to adjust the degree of crosslinking. Examples of the polyfunctional monomer include divinylbenzene, butanediol di (meth) acrylate, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, and the like. These are used in an amount of not more than 10% by weight, preferably not more than 5% by weight, more preferably not more than 3% by weight, based on the total weight of the rubber elastic body. When the amount used exceeds 10% by weight, the rubber particle core (A-1) has a tendency to lower the ability to impart toughness to the cured product of the polymerizable organic compound (H) having a reactive group.
また、前記ゴム弾性体を構成するポリマーの分子量や架橋度を調節するために、必要に応じて連鎖移動剤を使用してもよい。連鎖移動剤としては、例えば、炭素数5〜20のアルキルメルカプタン等が例示できる。これらの使用量はゴム弾性体の全重量に対して5重量%以下、より好ましくは3重量%以下である。使用量が5重量%を超えると、ゴム粒子コア(A−1)の未架橋成分の量が増加するため、例えばエポキシ樹脂組成物を調製した場合に、組成物の耐熱性、剛性等に悪影響を与える傾向がある。 Moreover, in order to adjust the molecular weight and the degree of crosslinking of the polymer constituting the rubber elastic body, a chain transfer agent may be used as necessary. As a chain transfer agent, a C5-C20 alkyl mercaptan etc. can be illustrated, for example. The amount of these used is 5% by weight or less, more preferably 3% by weight or less, based on the total weight of the rubber elastic body. When the amount used exceeds 5% by weight, the amount of the uncrosslinked component of the rubber particle core (A-1) increases. For example, when an epoxy resin composition is prepared, the heat resistance and rigidity of the composition are adversely affected. Tend to give.
さらに、ゴム粒子コア(A−1)として、前記ゴム弾性体に替えて、またはこれらと併用して、ポリシロキサンゴム系弾性体を使用することも可能である。ゴム粒子コア(A−1)としてポリシロキサンゴムを使用する場合には、例えば、ジメチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ等の、アルキル或いはアリール2置換シリルオキシ単位から構成されるポリシロキサンゴムが使用可能である。また、このようなポリシロキサンゴムを使用する場合には、必要に応じて、重合時に多官能性のアルコキシシラン化合物を一部併用するか、ビニル反応性基を持ったシラン化合物をラジカル反応させること等により、予め架橋構造を導入しておくことがより好ましい。 Furthermore, it is also possible to use a polysiloxane rubber-based elastic body as the rubber particle core (A-1) in place of or in combination with the rubber elastic body. When polysiloxane rubber is used as the rubber particle core (A-1), for example, polysiloxane rubber composed of alkyl or aryl disubstituted silyloxy units such as dimethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, etc. Can be used. When using such a polysiloxane rubber, if necessary, partially use a polyfunctional alkoxysilane compound during polymerization, or radically react a silane compound having a vinyl reactive group. It is more preferable to introduce a crosslinked structure in advance, for example.
シェル層(A−2)は、ゴム状重合体粒子(A)が反応性基を有する重合性有機化合物中(H)で安定に一次粒子の状態で分散するための、反応性基を有する重合性有機化合物(H)に対する親和性を与えることができる。 The shell layer (A-2) is a polymer having a reactive group for the rubber-like polymer particles (A) to be stably dispersed in the state of primary particles in the polymerizable organic compound (H) having a reactive group. Affinity for the organic compound (H) can be imparted.
シェル層(A−2)を構成するポリマーは、前記ゴム粒子コア(A−1)を構成するポリマーにグラフト重合されており、実質的にコア部(A−1)を構成するポリマーと結合していることが好ましい。シェル層(A−2)を構成するポリマーは、本発明の製造方法における樹脂組成物の製造を容易にする点から、70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上が前記コア部(A−1)に結合していることが望ましい。 The polymer constituting the shell layer (A-2) is graft-polymerized to the polymer constituting the rubber particle core (A-1), and is substantially bonded to the polymer constituting the core part (A-1). It is preferable. The polymer constituting the shell layer (A-2) is 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight from the viewpoint of facilitating the production of the resin composition in the production method of the present invention. It is desirable that the above is coupled to the core part (A-1).
シェル層(A−2)は、反応性基を有する重合性有機化合物中にゴム状重合体粒子を均一に混合分散しやすいという点から、後述する有機溶媒(B)及び反応性基を有する重合性有機化合物(H)に対して膨潤性、相容性もしくは親和性を有するものが好ましい。また、シェル層(A−2)は、使用時の必要性に応じて、反応性基を有する重合性有機化合物(H)もしくは使用時に配合される硬化剤との反応性を有し、反応性基を有する重合性有機化合物(H)が硬化剤と反応して硬化する条件下において、これらと化学反応し結合を生成できる機能を有するものであることが好ましい。 The shell layer (A-2) is a polymer having an organic solvent (B) and a reactive group, which will be described later, from the viewpoint of easily mixing and dispersing the rubber-like polymer particles in the polymerizable organic compound having a reactive group. Those having swellability, compatibility or affinity for the water-soluble organic compound (H) are preferred. Moreover, the shell layer (A-2) has reactivity with the polymerizable organic compound (H) having a reactive group or a curing agent blended at the time of use, depending on the necessity at the time of use, and is reactive. It is preferable that the polymerizable organic compound (H) having a group has a function capable of chemically reacting with these to form a bond under a condition in which the polymerizable organic compound (H) is cured by reacting with a curing agent.
シェル層(A−2)を構成するポリマーは、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物、不飽和酸誘導体、(メタ)アクリルアミド誘導体、マレイミド誘導体より選ばれる1種以上の成分を重合若しくは共重合して得られる重合体若しくは共重合体であることが好ましい。また、特にシェル層(A−2)にエポキシ樹脂硬化時の化学反応性を求める場合には、(メタ)アクリル酸アルキルエステル、芳香族ビニル化合物またはシアン化ビニル化合物等に加えて、エポキシ基、カルボキシル基、水酸基、炭素−炭素2重結合、アミノ基、アミド基等から選ばれる1種以上の官能基であって、後述する反応性基を有する重合性有機化合物(H)あるいはその硬化剤、硬化触媒等との反応性を有する官能基を含有する単量体を1種類以上共重合して得られる共重合体を用いることが好ましい。更に前記官能基としては、エポキシ基、カルボキシル基、水酸基、炭素−炭素2重結合からなる群から選ばれる少なくとも1種の反応性官能基であることがより好ましい。 The polymer constituting the shell layer (A-2) is at least one selected from (meth) acrylic acid esters, aromatic vinyl compounds, vinyl cyanide compounds, unsaturated acid derivatives, (meth) acrylamide derivatives, and maleimide derivatives. A polymer or copolymer obtained by polymerizing or copolymerizing the components is preferred. In addition, when the chemical reactivity at the time of curing the epoxy resin is particularly required for the shell layer (A-2), in addition to the (meth) acrylic acid alkyl ester, the aromatic vinyl compound or the vinyl cyanide compound, an epoxy group, A polymerizable organic compound (H) having at least one functional group selected from a carboxyl group, a hydroxyl group, a carbon-carbon double bond, an amino group, an amide group, and the like, having a reactive group described later, or a curing agent thereof; It is preferable to use a copolymer obtained by copolymerizing at least one monomer containing a functional group having reactivity with a curing catalyst or the like. Further, the functional group is more preferably at least one reactive functional group selected from the group consisting of an epoxy group, a carboxyl group, a hydroxyl group, and a carbon-carbon double bond.
前記の(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2−エチルヘキシルなど(メタ)アクリル酸アルキルエステルがあげられる。芳香族ビニル化合物としては、スチレン、α−メチルスチレン、アルキル置換スチレン、さらにブロモスチレン、クロロスチレン等のハロゲン置換スチレン類などがあげられる。また、シアン化ビニル化合物としては、(メタ)アクリロニトリルおよび置換アクリロニトリルが例示される。また、前記反応性を有する官能基を含有する単量体としては、例えば反応性側鎖を有する(メタ)アクリル酸エステル類として、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−アミノエチル、(メタ)アクリル酸グリシジルなどがあげられる。反応性基を含有するビニルエーテルとして、グリシジルビニルエーテル、アリルビニルエーテルなどがあげられる。不飽和カルボン酸誘導体としては、例えば(メタ)アクリル酸、イタコン酸、クロトン酸、無水マレイン酸などがあげられる。(メタ)アクリルアミド誘導体としては、(メタ)アクリルアミド(N−置換物を含む)などがあげられる。マレイミド誘導体としては、マレイン酸イミド(N−置換物を含む)があげられる。 Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. Can be given. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, alkyl-substituted styrene, and halogen-substituted styrenes such as bromostyrene and chlorostyrene. Examples of the vinyl cyanide compound include (meth) acrylonitrile and substituted acrylonitrile. Moreover, as a monomer containing the functional group which has the said reactivity, (meth) acrylic acid ester which has a reactive side chain, for example, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2 -Aminoethyl, glycidyl (meth) acrylate, etc. are mentioned. Examples of the vinyl ether containing a reactive group include glycidyl vinyl ether and allyl vinyl ether. Examples of the unsaturated carboxylic acid derivative include (meth) acrylic acid, itaconic acid, crotonic acid, maleic anhydride and the like. Examples of the (meth) acrylamide derivative include (meth) acrylamide (including N-substituted product). Examples of maleimide derivatives include maleic imide (including N-substituents).
ゴム状重合体粒子(A)の好ましいゴム粒子コア(A−1)/シェル層(A−2)比率(重量比)は、40/60〜95/5の範囲であり、より好ましくは60/40〜85/15である。前記(A−1)/(A−2)比率が40/60をはずれてゴム粒子コア(A−1)の比率が低下すると、反応性基を有する重合性有機化合物(H)に対する靱性改良効果が低下する傾向がある。95/5をはずれシェル層(A−2)の比率が低下すると、本製法における取扱い時に凝集をきたし易く操作性に問題が生じるとともに期待する物性が得られない可能性がある。 The preferred rubber particle core (A-1) / shell layer (A-2) ratio (weight ratio) of the rubber-like polymer particles (A) is in the range of 40/60 to 95/5, more preferably 60 / 40-85 / 15. When the ratio (A-1) / (A-2) deviates from 40/60 and the ratio of the rubber particle core (A-1) decreases, the toughness improving effect on the polymerizable organic compound (H) having a reactive group Tends to decrease. If the ratio of the shell layer (A-2) falls outside 95/5, it tends to cause aggregation during handling in the present production method, causing problems in operability and possibly preventing the expected physical properties from being obtained.
ゴム状重合体粒子(A)は、周知の方法、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などで製造することができる。この中でも特に、ゴム状重合体粒子の組成設計が容易である、工業生産が容易である、さらに本製造法に好適なゴム状重合体粒子のラテックスが容易に得られるなどの点から、乳化重合による製造方法が好適である。水媒体中での乳化若しくは分散剤としては、水性ラテックスのpHを中性とした場合でも乳化若しくは分散安定性が損なわれないものを用いることが好ましい。具体的には、ジオクチルスルホコハク酸やドデシルベンゼンスルホン酸等に代表される様なアルキルまたはアリールスルホン酸、アルキルまたはアリールエーテルスルホン酸、ドデシル硫酸に代表されるようなアルキルまたはアリール硫酸、アルキルまたはアリールエーテル硫酸、アルキルまたはアリール置換燐酸、アルキルまたはアリールエーテル置換燐酸、ドデシルザルコシン酸に代表されるようなN−アルキルまたはアリールザルコシン酸、オレイン酸やステアリン酸等に代表されるようなアルキルまたはアリールカルボン酸、アルキルまたはアリールエーテルカルボン酸等の、各種の酸類のアルカリ金属塩またはアンモニウム塩、アルキルまたはアリール置換ポリエチレングリコール等の非イオン性乳化剤或いは分散剤、ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体等の分散剤が例示される。これらは1種類または2種以上を適宜組み合わせて使用できる。 The rubber-like polymer particles (A) can be produced by a known method such as emulsion polymerization, suspension polymerization, microsuspension polymerization and the like. Among these, emulsion polymerization is particularly easy because the composition design of rubber-like polymer particles is easy, industrial production is easy, and latex of rubber-like polymer particles suitable for this production method can be easily obtained. The production method is preferred. As the emulsifying or dispersing agent in the aqueous medium, it is preferable to use an emulsifying or dispersing agent that does not impair the emulsifying or dispersing stability even when the pH of the aqueous latex is neutral. Specifically, alkyl or aryl sulfonic acid such as dioctyl sulfosuccinic acid and dodecyl benzene sulfonic acid, alkyl or aryl ether sulfonic acid, alkyl or aryl sulfuric acid such as dodecyl sulfuric acid, alkyl or aryl ether Sulfuric acid, alkyl or aryl substituted phosphoric acid, alkyl or aryl ether substituted phosphoric acid, N-alkyl or aryl sarcosine acid represented by dodecyl sarcosine acid, alkyl or aryl carboxylic acid represented by oleic acid, stearic acid, etc. Nonionic emulsifiers or dispersants such as alkali metal salts or ammonium salts of various acids such as acids, alkyl or aryl ether carboxylic acids, alkyl or aryl substituted polyethylene glycols, etc. Alcohol, alkyl substituted cellulose, polyvinyl pyrrolidone, dispersants such as polyacrylic acid derivatives. These can be used alone or in combination of two or more.
上記の乳化若しくは分散剤は、本発明の趣旨から言えば、ゴム状重合体粒子(A)のラテックス作成過程において乳化・分散安定性に支障を来さない範囲でできる限り少量を使用することが好ましく、あるいは、本製法において製造される樹脂組成物の物性に影響を及ぼさない程度の残存量まで水相(E)に抽出洗浄される性質を有していることがより好ましい。 From the viewpoint of the present invention, the above emulsifying or dispersing agent may be used as little as possible as long as it does not hinder the emulsification / dispersion stability in the latex preparation process of the rubber-like polymer particles (A). Preferably, it is more preferable that the aqueous phase (E) has a property of being extracted and washed to a residual amount that does not affect the physical properties of the resin composition produced in the present production method.
本発明の製造方法で用いることのできるゴム状重合体粒子(A)の粒子径に特に制限は無く、(A)を水性ラテックスの状態で安定的に得ることができるものであれば問題なく使用できるが、工業生産性の面からは、体積平均粒子径が0.03〜2μmのものが、製造が容易であるという点でより好ましい。 The particle size of the rubber-like polymer particles (A) that can be used in the production method of the present invention is not particularly limited, and any particles can be used as long as (A) can be stably obtained in an aqueous latex state. However, in terms of industrial productivity, those having a volume average particle size of 0.03 to 2 μm are more preferable in terms of easy production.
本発明において用いる水に対し部分溶解性を示す有機溶媒(B)は、ゴム状重合体粒子(A)の水性ラテックスを有機溶媒(B)と混合する場合に、ゴム状重合体粒子(A)が実質的に凝固析出することなく混合が達成され得る少なくとも1種若しくは2種以上の有機溶媒若しくは有機溶媒混合物であれば制限無く使用できるが、20℃における水に対する溶解度が5重量%以上、40重量%以下である有機溶媒であることが好ましく、更には5重量%以上、30重量%以下であることがより好ましい。有機溶媒(B)の20℃における水に対する溶解度が40重量%を越えると、重合体粒子(A)の水性ラテックスが一部凝固を生じて円滑な混合操作に支障をきたす場合がある。前記水に対する溶解度が5重量%未満では、重合体粒子(A)の水性ラテックスとの混合性が不十分となり、円滑な混合が困難になり易い傾向がある。 The organic solvent (B) having partial solubility in water used in the present invention is obtained when the aqueous latex of rubber-like polymer particles (A) is mixed with the organic solvent (B). Can be used without limitation as long as at least one or two or more organic solvents or organic solvent mixtures can be mixed without substantially solidifying and precipitating, but the solubility in water at 20 ° C. is 5% by weight or more, 40 The organic solvent is preferably not more than wt%, more preferably not less than 5 wt% and not more than 30 wt%. If the solubility of the organic solvent (B) in water at 20 ° C. exceeds 40% by weight, the aqueous latex of the polymer particles (A) may partially coagulate and hinder smooth mixing operation. When the solubility in water is less than 5% by weight, the mixing property of the polymer particles (A) with the aqueous latex becomes insufficient, and smooth mixing tends to be difficult.
前記有機溶媒(B)の具体例としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン類、エタノール、(イソ)プロパノール、ブタノール等のアルコール類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等から選ばれる1種以上の有機溶媒あるいはその混合物であって、20℃における水に対する溶解度が上記の範囲を満たすものがあげられる。なかでも、反応性を有する重合性有機化合物との親和性および入手のしやすさなどの点から、メチルエチルケトンを50重量%以上含むものがより好ましく、更には75重量%以上含むものが特に好ましい。 Specific examples of the organic solvent (B) include esters such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone, diethyl ketone and methyl isobutyl ketone, ethanol, (iso) propanol, One kind selected from alcohols such as butanol, ethers such as tetrahydrofuran, tetrahydropyran, dioxane and diethyl ether, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as methylene chloride and chloroform, etc. Examples of the organic solvent or mixture thereof are those having a solubility in water at 20 ° C. satisfying the above range. Of these, those containing 50% by weight or more of methyl ethyl ketone are more preferred, and those containing 75% by weight or more are particularly preferred from the viewpoints of affinity with a polymerizable organic compound having reactivity and availability.
有機溶媒(B)の使用量は、ゴム状重合体粒子(A)の種類、あるいはゴム状重合体粒子(A)の水性ラテックス中での固形分濃度によっても変化しうるが、ゴム状重合体粒子(A)のラテックス100重量部に対し有機溶媒(B)を50〜400重量部用いることが好ましく、より好ましくは70〜300重量部である。有機溶媒(B)の量が50重量部未満では、ゴム状重合体粒子(A)を安定して分散できなくなる場合があり、粘度が上昇して取り扱いが困難になる傾向がある。逆に400重量部を超えると、有機溶媒(B)の量が多くなり、後の除去を考慮すると不経済である。 The amount of the organic solvent (B) used may vary depending on the type of the rubber-like polymer particles (A) or the solid content concentration of the rubber-like polymer particles (A) in the aqueous latex. The organic solvent (B) is preferably used in an amount of 50 to 400 parts by weight, more preferably 70 to 300 parts by weight, based on 100 parts by weight of the latex of the particles (A). If the amount of the organic solvent (B) is less than 50 parts by weight, the rubber-like polymer particles (A) may not be stably dispersed, and the viscosity tends to increase and handling becomes difficult. On the other hand, when the amount exceeds 400 parts by weight, the amount of the organic solvent (B) increases, which is uneconomical in consideration of subsequent removal.
ゴム状重合体粒子(A)の水性ラテックスおよび水に対し部分溶解性を示す有機溶媒(B)との混合操作に際しては、特別な装置あるいは方法は必要ではなく、良好な混合状態が得られる装置あるいは方法であれば、公知のものが使用可能である。一般的な装置としては、攪拌翼つきの攪拌槽が挙げられるが、スタティックミキサ(静止混合器)やラインミキサ(配管の一部に攪拌装置を組み込む方式)による連続処理も可能である。 No special apparatus or method is required for the mixing operation of the rubber-like polymer particles (A) with the aqueous latex and the organic solvent (B) having partial solubility in water, and an apparatus capable of obtaining a good mixed state. Alternatively, any known method can be used. A typical apparatus includes an agitation tank with an agitating blade, but continuous processing using a static mixer (static mixer) or a line mixer (a system in which an agitator is incorporated in a part of piping) is also possible.
本発明においては、前記により得られた混合物(C)を水(D)と接触させる。この操作により、混合物(C)に含まれる有機溶媒(B)の一部が水(D)に溶解し、水相(E)となる。同時に、混合物(C)に含まれる水性ラテックス由来の水分も水相(E)へ排除される。このため、混合物(C)は水を含んだ有機溶媒(B)中にゴム状重合体粒子(A)を濃縮した形となり、結果として凝集体(F)を生成する。 In the present invention, the mixture (C) obtained as described above is brought into contact with water (D). By this operation, a part of the organic solvent (B) contained in the mixture (C) is dissolved in water (D) to form an aqueous phase (E). At the same time, water derived from the aqueous latex contained in the mixture (C) is also removed to the aqueous phase (E). For this reason, the mixture (C) becomes the form which concentrated the rubber-like polymer particle (A) in the organic solvent (B) containing water, and produces | generates an aggregate (F) as a result.
この凝集体生成操作は、部分的な未凝集体の発生防止の観点から、攪拌下あるいは攪拌と同等の流動性を付与させることができる流動条件下で実施することが望ましい。例えば、攪拌機を備えた攪拌槽での回分操作あるいは連続操作により実施することができる。本発明では、この凝集体生成操作をより効率的且つ安定して行うため、混合物(C)と水(D)をかき上げ型傾斜パドル翼を多段に設置した撹拌槽に連続的に供給し、混合接触させて、凝集体(F)と水相(E)を連続的に得ることを特徴とする。撹拌翼径、槽形状は特に制限されず公知のものが使用できるが、槽内で滞留する凝集体を軽減する点で、撹拌翼径と槽径の比は、0.5〜0.8程度が好ましい。撹拌翼径と槽径の比が0.8を越える場合は、撹拌翼と槽のクリアランスが狭くなり、凝集体の上昇を阻害する場合があり、逆に0.5未満であれば、槽壁での撹拌効果が低下し、凝集体が滞留する場合がある。 From the viewpoint of preventing partial generation of non-aggregates, it is desirable that the aggregate generation operation be performed under stirring or under flow conditions that can impart fluidity equivalent to that of stirring. For example, it can be carried out by batch operation or continuous operation in a stirring tank equipped with a stirrer. In the present invention, in order to perform this agglomerate production operation more efficiently and stably, the mixture (C) and water (D) are continuously supplied to a stirring tank in which the inclined type paddle blades are installed in multiple stages, By mixing and contacting, the aggregate (F) and the aqueous phase (E) are obtained continuously. The stirring blade diameter and the tank shape are not particularly limited, and known ones can be used, but the ratio of the stirring blade diameter and the tank diameter is about 0.5 to 0.8 in terms of reducing aggregates staying in the tank. Is preferred. When the ratio between the stirring blade diameter and the tank diameter exceeds 0.8, the clearance between the stirring blade and the tank becomes narrow, which may hinder the rise of the aggregates. In some cases, the agitation effect is reduced, and aggregates may remain.
なお、上記かき上げ型傾斜パドル翼については、特に制限されず公知のものが使用できるが、パドル翼の傾斜角度は、30〜60°程度が好ましい。かき上げ型傾斜パドル翼の傾斜角度が60°を越える場合、逆に30°未満であれば、凝集体が上昇できず滞留する場合がある。また、かき上げ型傾斜パドル翼の段数は特に制限されるものではないが、翼と翼との間隔は槽径に対して、0.45倍〜0.75倍程度が好ましい。更に好ましくは、0.6倍程度である。翼と翼との間隔が0.75倍を越える場合は、凝集体が上昇できず滞留する場合があり、逆に0.45倍未満であれば、粒子間の接触が増え、粒子が合一し、粒子径が不安定になる場合がある。 The above-described lift-up type inclined paddle blade is not particularly limited and a known one can be used, but the inclination angle of the paddle blade is preferably about 30 to 60 °. When the inclination angle of the lift-up type inclined paddle blade exceeds 60 °, conversely, if it is less than 30 °, the aggregate may not rise and may stay. The number of steps of the lift-up type inclined paddle blade is not particularly limited, but the distance between the blade and the blade is preferably about 0.45 to 0.75 times the tank diameter. More preferably, it is about 0.6 times. When the distance between the wings exceeds 0.75 times, the aggregate may not rise and may stay, whereas if the distance is less than 0.45 times, the contact between the particles increases and the particles are united. However, the particle size may become unstable.
このようにして得られた凝集体の粒子径は、湿式ふるい測定による、ふるい上重量基準の50%径が、±20%内の変動に制御可能で、連続して得ることができる。なお、粒子径の測定に用いた湿式ふるい測定の方法としては、凝集体(F)と水相(E)を20〜100g秤量し、粒子径に応じた目開きの標準ふるいの上にのせ、ピヘット等で、凝集体(F)を取り除いた、水相(E)をふりかけるようにして均一に注ぎ、通過した水相(E)と凝集体(F)の混合物を乾燥、秤量した。その後、網上に残留した凝集体(F)をより大きい目開きのふるいの上に移して同様の操作を繰り返した。ここで得られた粒子径と重量の関係から、重量基準の粒子径を算出できる。 The particle size of the agglomerate thus obtained can be obtained continuously by controlling the fluctuation within a range of ± 20% of the 50% diameter on the sieve based on the wet sieve measurement. In addition, as a wet sieve measurement method used for the measurement of the particle size, 20 to 100 g of the aggregate (F) and the aqueous phase (E) are weighed and placed on a standard sieve having an opening according to the particle size. The agglomerate (F) was removed with a piget or the like, and the aqueous phase (E) was evenly poured, and the mixture of the passed aqueous phase (E) and agglomerate (F) was dried and weighed. Thereafter, the agglomerate (F) remaining on the net was transferred onto a sieve having a larger opening, and the same operation was repeated. From the relationship between the particle size and the weight obtained here, the particle size based on weight can be calculated.
また、凝集体(F)は水相(E)に対し一般に浮上性があるため、混合物(C)と水(D)を攪拌槽の底部より供給し、凝集体(F)と水相(E)を攪拌槽の上部より抜き出す方法が好ましい。ここで、装置の底部とは装置の底面より液面までの高さに対して底より1/3以下の位置であることを意味し、また装置の上部とは装置の底面より液面までの高さに対して上部より1/3以上であることを意味する。このように凝集体(F)の生成操作を連続化することにより、装置の小型化による設備コストの抑制、並びに生産性の向上を図ることができる。 In addition, since the aggregate (F) is generally floatable with respect to the aqueous phase (E), the mixture (C) and water (D) are supplied from the bottom of the stirring tank, and the aggregate (F) and the aqueous phase (E ) Is preferably extracted from the upper part of the stirring tank. Here, the bottom of the device means that the height from the bottom of the device to the liquid level is 1/3 or less from the bottom, and the top of the device means from the bottom of the device to the liquid level. It means that the height is 1/3 or more from the top. Thus, by making the production | generation operation | movement of an aggregate (F) continuous, the suppression of the installation cost by the size reduction of an apparatus and the improvement of productivity can be aimed at.
前記混合物(C)と混合接触させる水(D)の量は、ゴム状重合体粒子(A)の種類、ゴム状重合体粒子(A)の水性ラテックス中での固形分濃度、有機溶媒(B)の種類や量によっても変化し得るが、前記水(D)の量は、水性ラテックスと混合させる際に使用した有機溶媒(B)100重量部に対し、40重量部以上、350重量部以下であることが好ましく、60重量部以上、250重量部以下であることがより好ましい。前記水(D)の量が40重量部未満では、ゴム状重合体粒子(A)の凝集体(F)が生成しにくくなる傾向があり、逆に350重量部を超えると生成した凝集体(F)中の有機溶媒(B)の濃度が低くなるため、後工程において凝集体(F)を有機溶媒へ再分散させる所要時間が長期化するなど分散性が低下する傾向がある。 The amount of water (D) to be mixed and contacted with the mixture (C) depends on the kind of the rubber-like polymer particles (A), the solid content concentration of the rubber-like polymer particles (A) in the aqueous latex, and the organic solvent (B). The amount of water (D) is 40 parts by weight or more and 350 parts by weight or less with respect to 100 parts by weight of the organic solvent (B) used for mixing with the aqueous latex. Preferably, it is 60 parts by weight or more and 250 parts by weight or less. If the amount of the water (D) is less than 40 parts by weight, the aggregate (F) of the rubber-like polymer particles (A) tends to be difficult to be formed. Since the concentration of the organic solvent (B) in F) becomes low, the dispersibility tends to decrease, for example, the time required to redisperse the aggregate (F) in the organic solvent in a later step is prolonged.
本発明における凝集操作および生成した凝集体(F)は、以下のような特徴を有するものである。(a)一般に電解質や酸などの凝固剤添加や加熱操作による凝集操作では、ゴム状重合体粒子(A)のラテックスに由来する乳化剤や電解質の大部分が凝集体表面に吸着される、若しくは凝集体内部に包含されている場合が多く、凝集後に水洗操作を行った場合でも除去することは容易ではない。これに対し、本発明では、ゴム状重合体粒子(A)のラテックスと有機溶媒(B)との混合からゴム状重合体粒子(A)の凝集までの操作を通じ、ゴム状重合体粒子(A)に由来する乳化剤や電解質は、凝集体(F)より遊離した後、水相(E)に移行するため、これらを容易に除去することができる。(b)一般に電解質や酸などの凝固剤添加や加熱操作で生成した凝集体は、機械的剪断によっても凝集体からゴム状重合体粒子(A)の1次粒子の状態まで再分散させることが困難であるような強固な凝集体である。これに対し、本発明で得られた凝集体(F)においては、その後、例えばゴム状重合体粒子(A)と親和性を示す有機溶媒と攪拌下で混合させることにより、その大部分がゴム状重合体(A)の1次粒子として再び分散することができる。すなわち、本発明で得られる凝集体(F)は、粒子の合一分散に関して有機溶媒中において可逆性を有する。本発明では、これを緩凝集体という。 The aggregation operation and the produced aggregate (F) in the present invention have the following characteristics. (A) In general, in an agglomeration operation by adding a coagulant such as an electrolyte or an acid or a heating operation, most of the emulsifier and electrolyte derived from the latex of the rubber-like polymer particles (A) are adsorbed on the aggregate surface, or coagulation is performed. In many cases, it is contained within the aggregate, and even if it is washed with water after aggregation, it is not easy to remove it. On the other hand, in the present invention, rubbery polymer particles (A) are obtained through operations from mixing of latex of rubbery polymer particles (A) and organic solvent (B) to aggregation of rubbery polymer particles (A). Since the emulsifier and electrolyte derived from) move from the aggregate (F) to the aqueous phase (E), they can be easily removed. (B) In general, an aggregate formed by adding a coagulant such as an electrolyte or an acid or a heating operation can be re-dispersed from the aggregate to the state of primary particles of the rubber-like polymer particles (A) by mechanical shearing. It is a strong agglomerate that is difficult. On the other hand, in the aggregate (F) obtained in the present invention, after that, for example, by mixing with an organic solvent having an affinity with the rubber-like polymer particles (A) under stirring, most of the aggregate (F) is rubber. It can be dispersed again as primary particles of the polymer (A). That is, the aggregate (F) obtained by the present invention has reversibility in the organic solvent with respect to the coalescence dispersion of the particles. In the present invention, this is called a slow aggregate.
ここで、上記(b)に関する理由は充分に解明できていないが、本発明の製造方法においては、ゴム状重合体粒子(A)が、有機溶媒(B)中に粒子分散している状態から、水(D)の添加に伴い、有機溶媒(B)成分の水相(E)への溶出によるポリマーの濃縮過程を経て、有機溶媒を含有した穏やかな凝集状態にまで可逆的に変化した結果、凝集体(F)が生成するものと思われ、このため有機溶剤の再添加によって容易にゴム状重合体粒子(A)の粒子分散が再現できるものと考えている。 Here, although the reason regarding the above (b) has not been fully elucidated, in the production method of the present invention, the rubber-like polymer particles (A) are dispersed from the organic solvent (B). As a result of the addition of water (D), the polymer was concentrated through the elution of the organic solvent (B) component into the aqueous phase (E), resulting in a reversible change to a mild aggregate state containing the organic solvent. It is considered that aggregates (F) are formed, and therefore, it is considered that the dispersion of the rubber-like polymer particles (A) can be easily reproduced by re-addition of the organic solvent.
従って、生成した凝集体(F)と、有機溶媒(B)を含む水相(E)とを分離することにより、凝集体(F)に同伴する有機溶剤(B)に含まれる水分を除き、ゴム状重合体粒子(A)由来の乳化剤や電解質の大部分を水相(E)とともにゴム状重合体粒子(A)から分離除去した精製ゴム状重合体粒子を得ることができる。 Therefore, by separating the produced aggregate (F) and the aqueous phase (E) containing the organic solvent (B), the moisture contained in the organic solvent (B) accompanying the aggregate (F) is removed, Purified rubber-like polymer particles obtained by separating and removing most of the emulsifier and electrolyte derived from the rubber-like polymer particles (A) from the rubber-like polymer particles (A) together with the aqueous phase (E) can be obtained.
凝集体(F)および水相(E)との分離性は良好であり、濾紙、濾布や比較的開き目の粗い金属製スクリーンを使った濾過操作など一般的な濾過装置を用いて実施することができる。 Separation from the agglomerates (F) and aqueous phase (E) is good, and is carried out using a general filtration device such as filtration using filter paper, filter cloth, or a relatively coarse metal screen. be able to.
前記精製ゴム状重合体粒子を乾燥粉体として得たい場合には、凝集体(F)を脱水及び/又は脱溶媒後乾燥することにより得ることができる。この際、凝集体(F)を最後に有機溶媒(B)を含まない水で洗浄するのが好ましい。なぜなら有機溶媒(B)を多量に含むと乾燥途中で粒子同士が合一しやすいためである。以上により、不純物の極めて少ないゴム状重合体粒子の乾燥粉体を得ることができる。 When it is desired to obtain the purified rubber-like polymer particles as a dry powder, the aggregate (F) can be obtained by dehydration and / or desolvation followed by drying. At this time, it is preferable that the aggregate (F) is finally washed with water not containing the organic solvent (B). This is because if the organic solvent (B) is contained in a large amount, the particles are easily united during drying. As described above, a dry powder of rubber-like polymer particles with very few impurities can be obtained.
一方、ゴム状重合体粒子(A)と親和性を示す有機溶媒あるいは反応性基を有する重合性有機化合物(H)にゴム状重合体粒子(A)を分散した分散体(G)若しくは樹脂組成物を製造する場合、前記の凝集および分離操作を経て得られた凝集体(F)に含まれる有機溶媒(B)の量は、凝集体(F)全体の重量に対して30重量%以上であることが好ましく、35重量%以上であることがより好ましい。有機溶媒(B)の含有により、引き続き実施するゴム状重合体粒子(A)と親和性を示す有機溶媒若しくは反応性基を有する重合性有機化合物への分散を良好に実施することができる。有機溶媒(B)の含有量が凝集体(F)全体の重量に対して30重量%未満では、次工程であるゴム状重合体粒子(A)と親和性を示す有機溶媒若しくは反応性基を有する重合性有機化合物(H)へ分散させるのに要する時間が長期化したり、不可逆な凝集体が残存しやすくなるなどの不都合が生じる場合があり、結果としてゴム状重合体粒子(A)の重合性有機化合物(H)中での分散性が著しく低下する傾向がある。 On the other hand, a dispersion (G) or a resin composition in which rubber-like polymer particles (A) are dispersed in an organic solvent having an affinity for rubber-like polymer particles (A) or a polymerizable organic compound (H) having a reactive group When the product is produced, the amount of the organic solvent (B) contained in the aggregate (F) obtained through the above aggregation and separation operations is 30% by weight or more with respect to the total weight of the aggregate (F). It is preferable that the content is 35% by weight or more. By containing the organic solvent (B), it is possible to satisfactorily disperse in the organic solvent or the polymerizable organic compound having a reactive group having an affinity with the rubber-like polymer particles (A) to be subsequently carried out. When the content of the organic solvent (B) is less than 30% by weight with respect to the total weight of the aggregate (F), an organic solvent or reactive group having an affinity with the rubber-like polymer particles (A) as the next step is added. In some cases, the time required for dispersing in the polymerizable organic compound (H) may be prolonged, or irreversible aggregates may easily remain, resulting in polymerization of the rubber-like polymer particles (A). The dispersibility in the volatile organic compound (H) tends to be remarkably lowered.
以上の一連の操作で分離除去した水相(E)中に含まれるゴム状重合体粒子(A)の量は、水相(E)全量に対し10重量%以下であり、好ましくは5重量%以下、更に好ましくは2重量%以下であり、実質的にゴム状重合体粒子(A)が含まれないことが最も好ましい。 The amount of the rubber-like polymer particles (A) contained in the water phase (E) separated and removed by the above series of operations is 10% by weight or less, preferably 5% by weight, based on the total amount of the water phase (E). Hereinafter, it is more preferably 2% by weight or less, and most preferably the rubber-like polymer particles (A) are not substantially contained.
次いで、得られた凝集体(F)をゴム状重合体粒子(A)と親和性を示す有機溶媒に再び分散させることについて説明する。この操作により、凝集体(F)中の精製ゴム状重合体粒子(A)が有機溶媒中に実質的に1次粒子の状態で分散された分散体(G)を得ることができる。 Next, the dispersion of the obtained aggregate (F) in an organic solvent having an affinity for the rubber-like polymer particles (A) will be described. By this operation, it is possible to obtain a dispersion (G) in which the purified rubber-like polymer particles (A) in the aggregate (F) are substantially dispersed in the state of primary particles in the organic solvent.
この際添加する有機溶媒の量は、ゴム状重合体粒子(A)の種類、有機溶媒の種類や量によっても変化しうる。添加する有機溶媒の量は、好ましくはゴム状重合体粒子(A)100重量部に対し、好ましくは40〜1400重量部であり、より好ましくは200〜1000重量部である。添加する有機溶媒の量が40重量部未満では、有機溶媒中にゴム状重合体粒子(A)が均一に分散しにくくなり、ゴム状重合体粒子(A)の凝集体(F)の塊が残ったり、粘度が上昇して取り扱いにくくなる傾向がある。1400重量部を超えると、最終的な揮発分の蒸発留去に際して多量のエネルギーおよび大規模な装置を必要として不経済である。なお、ここで用いるゴム状重合体粒子(A)と親和性を示す有機溶媒としては、ゴム状重合体粒子(A)を再分散可能なものであれば特に制限はないが、例えば、前工程で用いた有機溶媒(B)で例示したもの、更にはヘキサン、ヘプタン、オクタン、シクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素、並びにこれらの混合物を例示することができる。また、緩凝集体の再分散性をより確実にするという観点からは、前工程で用いた有機溶媒(B)と同一種の有機溶媒を用いることが好ましい。 The amount of the organic solvent added at this time can vary depending on the type of the rubber-like polymer particles (A) and the type and amount of the organic solvent. The amount of the organic solvent to be added is preferably 40 to 1400 parts by weight, more preferably 200 to 1000 parts by weight with respect to 100 parts by weight of the rubber-like polymer particles (A). When the amount of the organic solvent to be added is less than 40 parts by weight, the rubber-like polymer particles (A) are difficult to uniformly disperse in the organic solvent, and the aggregates (F) of the rubber-like polymer particles (A) are formed. It tends to remain or become difficult to handle due to an increase in viscosity. If it exceeds 1400 parts by weight, a large amount of energy and a large-scale apparatus are required for the final evaporation of volatile components, which is uneconomical. The organic solvent having an affinity for the rubber-like polymer particles (A) used here is not particularly limited as long as the rubber-like polymer particles (A) can be redispersed. Examples thereof include those exemplified for the organic solvent (B) used in 1), aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane and ethylcyclohexane, and mixtures thereof. Further, from the viewpoint of ensuring the redispersibility of the loose agglomerates, it is preferable to use the same type of organic solvent as the organic solvent (B) used in the previous step.
本発明において、凝集体(F)とゴム状重合体粒子(A)と親和性を示す有機溶媒の混合操作は特に制限されるものではなく、一般的な攪拌混合機能をもった装置で実施することができる。 In the present invention, the mixing operation of the organic solvent having an affinity for the aggregate (F) and the rubber-like polymer particles (A) is not particularly limited, and is carried out with an apparatus having a general stirring and mixing function. be able to.
次に、このようにして得られたゴム状重合体粒子(A)を分散させた分散体(G)に反応性基を有する重合性有機化合物(H)を混合した後、揮発性成分を留去することについて説明する。この操作により、反応性基を有する重合性有機化合物(H)中にゴム状重合体粒子(A)が分散し、かつ重合体粒子に由来する乳化剤や電解質をほとんど含まない樹脂組成物を得ることができる。 Next, after mixing the polymerizable organic compound (H) having a reactive group with the dispersion (G) in which the rubber-like polymer particles (A) thus obtained are dispersed, the volatile components are removed. Explain what to leave. By this operation, a rubber-like polymer particle (A) is dispersed in the polymerizable organic compound (H) having a reactive group, and a resin composition containing almost no emulsifier or electrolyte derived from the polymer particle is obtained. Can do.
本発明で用いる反応性基を有する重合性有機化合物(H)としては、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、ビニルエステル樹脂等の熱硬化性樹脂、芳香族ビニル化合物、(メタ)アクリル酸誘導体、シアン化ビニル化合物、マレイミド化合物等のラジカル重合性単量体、ジメチルテレフタレート、アルキレングリコール等の芳香族ポリエステル原料等が挙げられる。なかでも、通常前記ようなゴム状重合体粒子を配合することが比較的困難である、エポキシ樹脂を代表とする熱硬化性樹脂に対して、本発明の方法は特に好適に用いることができる。 Examples of the polymerizable organic compound (H) having a reactive group used in the present invention include thermosetting resins such as epoxy resins, phenol resins, polyurethane resins, and vinyl ester resins, aromatic vinyl compounds, and (meth) acrylic acid. Examples thereof include radical polymerizable monomers such as derivatives, vinyl cyanide compounds and maleimide compounds, and aromatic polyester raw materials such as dimethyl terephthalate and alkylene glycol. Especially, the method of this invention can be used especially suitably with respect to the thermosetting resin represented by the epoxy resin in which it is comparatively difficult to mix | blend the above rubber-like polymer particle | grains normally.
本発明に用いられうるエポキシ樹脂は、エポキシ基を有する化合物であれば特に制限されないが、本発明に用いられうるエポキシ樹脂はポリエポキシドとも言われるエポキシ樹脂であることが好ましい。前記のエポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビフェノール、フェノール類ノボラック等の多価フェノールとエピクロルヒドリンの付加反応生成物などのポリグリシジルエーテル、アニリン、ジアミノベンゼン、アミノフェノール、フェニレンジアミン、ジアミノフェニルエーテル等のモノアミンおよび多価アミンより誘導される多価グリシジルアミン化合物、シクロヘキシルエポキシ等の脂環式エポキシ構造を有する脂環式エポキシ樹脂、多価アルコール類とエピクロルヒドリンとの付加反応生成物、これらの一部の水素を臭素等のハロゲン元素で置換したハロゲン化エポキシ樹脂、アリルグリシジルエーテル等の不飽和モノエポキシドを含む単量体を重合して得られるホモポリマーもしくはコポリマーなどが例示される。これらは1種または2種以上の混合物であっても良い。多価フェノールより合成される多くのポリエポキシドは、例えば米国特許第4,431,782号に開示されている。ポリエポキシドの例としては更に、米国特許第3,804,735号、同第3,892,819号、同第3,948,698号、同第4,014,771号、及び、エポキシ樹脂ハンドブック(日刊工業新聞社、昭和62年)に開示されているものが挙げられる。 The epoxy resin that can be used in the present invention is not particularly limited as long as it is a compound having an epoxy group, but the epoxy resin that can be used in the present invention is preferably an epoxy resin also called a polyepoxide. Examples of the epoxy resin include polyglycidyl ethers such as addition reaction products of polyphenols such as bisphenol A, bisphenol F, biphenol, and phenol novolac and epichlorohydrin, aniline, diaminobenzene, aminophenol, phenylenediamine, and diaminophenyl ether. Polyamines derived from monoamines such as polyamines and polyamines, alicyclic epoxy resins having an alicyclic epoxy structure such as cyclohexyl epoxy, addition reaction products of polyhydric alcohols and epichlorohydrin, Examples include halogenated epoxy resins in which part of the hydrogen is substituted with a halogen element such as bromine, and homopolymers or copolymers obtained by polymerizing monomers containing unsaturated monoepoxides such as allyl glycidyl ether. It is. These may be one kind or a mixture of two or more kinds. Many polyepoxides synthesized from polyhydric phenols are disclosed, for example, in US Pat. No. 4,431,782. Examples of polyepoxides are further described in U.S. Pat. Nos. 3,804,735, 3,892,819, 3,948,698, 4,014,771, and an epoxy resin handbook ( Nikkan Kogyo Shimbun, 1987).
本発明で用いられ得るエポキシ樹脂は前述のようなものであるが、一般的にはエポキシ等量(Epoxy Equivalent Weight)として、80〜2000を有するものが挙げられる。これらのポリエポキシドは周知の方法で得ることができるが、通常よく用いられる方法として、例えば、多価アルコールもしくは多価フェノールなどに対して過剰量のエピハロヒドリンを塩基存在下で反応させることがあげられる。 The epoxy resin that can be used in the present invention is as described above, and generally includes an epoxy resin having an epoxy equivalent weight of 80 to 2000. These polyepoxides can be obtained by a well-known method. As a commonly used method, for example, an excess amount of epihalohydrin is reacted with a polyhydric alcohol or polyhydric phenol in the presence of a base.
本発明で用いられ得るエポキシ樹脂には、反応性希釈剤としてモノエポキシド、例えば、脂肪族グリシジルエーテル、例えばブチルグリシジルエーテル、あるいはフェニルグリシジルエーテル、クレジルグリシジルエーテルを含んでいても良い。一般的に知られているように、モノエポキシドはポリエポキシド配合物の化学量論に影響を及ぼすが、これの調整は硬化剤の量、あるいはその他周知の方法で行われ得る。 The epoxy resin that can be used in the present invention may contain a monoepoxide, for example, an aliphatic glycidyl ether such as butyl glycidyl ether, phenyl glycidyl ether, or cresyl glycidyl ether as a reactive diluent. As is generally known, the monoepoxide affects the stoichiometry of the polyepoxide formulation, but this can be adjusted by the amount of hardener or other well-known methods.
本発明で用いるエポキシ樹脂成分には、上記エポキシ基含有化合物の硬化剤および/または硬化促進剤を含有することも可能であるが、本製造方法の条件下においては実質的にエポキシ樹脂と意図しない硬化反応を起こさない硬化剤および/または硬化促進剤であることが好ましい。かかる硬化剤および/または硬化促進剤としては、例えば、前述のエポキシ樹脂ハンドブックに記載のものから上記要件を満たすものを選択して使用することができる。 The epoxy resin component used in the present invention may contain a curing agent and / or a curing accelerator of the above epoxy group-containing compound, but is not substantially intended as an epoxy resin under the conditions of this production method. A curing agent and / or a curing accelerator that does not cause a curing reaction is preferable. As such curing agents and / or curing accelerators, for example, those satisfying the above requirements can be selected from those described in the aforementioned epoxy resin handbook.
なお、有機溶媒(B)などの揮発分の留去方法としては、公知の方法が適用できる。例えば、槽内に該混合物を仕込み加熱減圧留去する方法、槽内で乾燥ガスと該混合物を向流接触させる方法、薄膜式蒸発機を用いるような連続式の方法、脱揮機構を備えた押出機あるいは連続式攪拌槽を用いる方法などが挙げられる。揮発分を留去する際の温度や所要時間等の条件は、樹脂組成物の品質を損なわない範囲で適宜選択することができる。また、該組成物に残存する揮発分の量は該組成物の使用目的に応じ、問題のない範囲で適宜選択できる。 In addition, a well-known method is applicable as a distillation method of volatile matters, such as an organic solvent (B). For example, a method of charging the mixture into a tank and distilling it under reduced pressure, a method of countercurrently contacting the mixture with a dry gas in the tank, a continuous method using a thin film evaporator, and a devolatilization mechanism Examples thereof include a method using an extruder or a continuous stirring tank. Conditions such as temperature and required time for distilling off the volatile components can be appropriately selected within a range that does not impair the quality of the resin composition. Further, the amount of volatile components remaining in the composition can be appropriately selected within a range where there is no problem depending on the purpose of use of the composition.
本発明の製造方法により、前記重合性有機化合物(H)、例えばエポキシ樹脂成分中に、ゴム状重合体粒子(A)が均一に分散され、更に不純物が少ないエポキシ樹脂組成物を簡便かつ効率的に製造することができる。本発明により得られた樹脂組成物、例えばエポキシ樹脂組成物は、産業用資材やスポーツ用品に有用な繊維あるいはフィラー強化複合材料、接着剤、塗料、コーティング材料、バインダー、半導体封止剤や回路基盤用積層板、樹脂付き金属箔等の電気・電子部品材料などの、エポキシ樹脂が通常使用される各種の用途に対して幅広く利用が可能であり、硬化物中のゴム状重合体粒子(A)の分散状態が非常に安定で、かつ不純物の少ない硬化成型物を得ることができる。 According to the production method of the present invention, an epoxy resin composition in which the rubber-like polymer particles (A) are uniformly dispersed in the polymerizable organic compound (H), for example, an epoxy resin component, and further contains few impurities, is simple and efficient. Can be manufactured. The resin composition obtained by the present invention, for example, an epoxy resin composition is a fiber or filler reinforced composite material useful for industrial materials and sports equipment, adhesives, paints, coating materials, binders, semiconductor encapsulants and circuit boards. Rubber-like polymer particles (A) in cured products that can be widely used for various applications in which epoxy resins are usually used, such as laminates for plastics, and electrical / electronic component materials such as resin-coated metal foil It is possible to obtain a cured molded product having a very stable dispersion state and having few impurities.
前述したように、本発明により、不純物を大幅に取り除いた凝集体(F)を連続的に得ることが可能となる。これにより、凝集体(F)と水相(E)の混合物を脱水及び/又は脱溶媒する操作、脱水及び/又は脱溶媒後の凝集体(F)を再度有機溶媒に分散させる操作、凝集体(F)の分散した分散体(G)を重合性有機化合物(H)と混合する操作、分散体(G)と重合性有機化合物(H)との混合物より揮発分を留去する操作を連続的に実施することでき、多量少品種の製造に好適な連続製造方式とすることが可能となる。 As described above, according to the present invention, it is possible to continuously obtain an aggregate (F) from which impurities are largely removed. Thereby, the operation of dehydrating and / or desolvating the mixture of the aggregate (F) and the aqueous phase (E), the operation of dispersing the aggregate (F) after the dehydration and / or desolving again in the organic solvent, the aggregate The operation of mixing the dispersion (G) in which the dispersion (F) is dispersed with the polymerizable organic compound (H) and the operation of distilling off the volatile components from the mixture of the dispersion (G) and the polymerizable organic compound (H) are continuously performed. Therefore, it is possible to achieve a continuous production method suitable for producing a large quantity and a small variety.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
なお、以下において、不純物の残存量は、乳化剤量(アニオン系界面活性剤)、全イオンを指標として分析した。また、エポキシ樹脂成分中のゴム状重合体粒子の分散状態、すなわち凝集の有無は、得られたエポキシ樹脂組成物の硬化物より超薄切片を作成した後、透過型電子顕微鏡(TEM)にて観察することにより判断した。 In the following, the residual amount of impurities was analyzed using the amount of emulsifier (anionic surfactant) and total ions as indicators. In addition, the dispersion state of the rubber-like polymer particles in the epoxy resin component, that is, the presence or absence of aggregation, was determined with a transmission electron microscope (TEM) after making an ultrathin section from the cured product of the obtained epoxy resin composition. Judgment was made by observation.
実施例に先立ち、本発明で用いた分析測定方法について以下に説明する。 Prior to the examples, the analytical measurement method used in the present invention will be described below.
[1]残存乳化剤量
残存乳化剤量は、エポキシ樹脂(H)と混合する前の分散体(G)中に残存する乳化剤量を下記の分析方法により測定し、ゴム状重合体粒子(A)の重合に使用された乳化剤全量を100重量%とした際の割合(重量%)として数値化し、指標とした。
[1] Amount of residual emulsifier The amount of residual emulsifier is determined by measuring the amount of emulsifier remaining in the dispersion (G) before mixing with the epoxy resin (H) by the following analytical method. The amount of emulsifier used in the polymerization was expressed as a ratio (% by weight) based on 100% by weight and used as an index.
[1−1]サンプル前処理
下記の実施例においてエポキシ樹脂(H)と混合する前のゴム状重合体粒子(A)が分散した分散体(G)を5ml分取し、乾固後、ビーカー内にエタノール50mlとともに投入した。当該試料を10分間撹拌した後、上澄み液を、後述するメチレンブルー法による分析試料とした。
[1-1] Sample Pretreatment In the following Examples, 5 ml of the dispersion (G) in which the rubber-like polymer particles (A) before mixing with the epoxy resin (H) are dispersed is taken, dried, and then beakered. The solution was put together with 50 ml of ethanol. After stirring the sample for 10 minutes, the supernatant was used as an analysis sample by the methylene blue method described later.
[1−2]メチレンブルー法
分液ロートに水30ml、アルカリ性ホウ酸ナトリウム溶液10ml、メチレンブルー溶液(0.025重量%水溶液)5mlを投入した。これにクロロホルム20mlを加え、3〜5分間振とうし、クロロホルム層を分離除去した。前記クロロホルムの添加/除去の操作をクロロホルム層の着色がなくなるまで繰り返した。次に、希硫酸(2.9重量%水溶液)3mlとクロロホルム20mlと[1−1]で調製した試料2mlを加え、3〜5分間振とうした後、クロロホルム層を分光光度計((株)島津製作所製、分光光度計UV−2200)を用い、波長650nmの吸収において、エポキシ樹脂(A)を混合する前の分散体(G)中の残存乳化剤量を測定した。なお、アルカリ性ホウ酸ナトリウム溶液は、四ホウ酸ナトリウム十水和物1.9重量%水溶液500mlに0.4重量%水酸化ナトリウム溶液500mlを混合し、作製した。
[1-2] Methylene blue method 30 ml of water, 10 ml of an alkaline sodium borate solution, and 5 ml of a methylene blue solution (0.025 wt% aqueous solution) were charged into a separating funnel. To this, 20 ml of chloroform was added and shaken for 3 to 5 minutes to separate and remove the chloroform layer. The operation of adding / removing chloroform was repeated until the chloroform layer was no longer colored. Next, 3 ml of dilute sulfuric acid (2.9 wt% aqueous solution), 20 ml of chloroform and 2 ml of the sample prepared in [1-1] were added and shaken for 3 to 5 minutes, and then the chloroform layer was subjected to a spectrophotometer (Corporation). Using a spectrophotometer UV-2200 manufactured by Shimadzu Corporation, the amount of residual emulsifier in the dispersion (G) before mixing the epoxy resin (A) was measured in absorption at a wavelength of 650 nm. The alkaline sodium borate solution was prepared by mixing 500 ml of a 0.4 wt% sodium hydroxide solution with 500 ml of a 1.9 wt% aqueous solution of sodium tetraborate decahydrate.
[2]残存電解質(全イオン)
サンプル前処理と同様にして得た上澄み液を、電気伝導度測定用試料とし、電気伝導度計(京都電子工業(株)製、GM−117)を用い測定した。ゴム状重合体粒子(A)のラテックスに由来するイオン量の全量(ゴム状重合体粒子(A)を乾固したものでの測定値)に対する、一連の操作により除去されたイオン量の割合を、全イオン除去率として算出した。
[2] Residual electrolyte (total ions)
The supernatant obtained in the same manner as the sample pretreatment was used as a sample for measuring electrical conductivity, and measured using an electrical conductivity meter (GM-117, manufactured by Kyoto Electronics Industry Co., Ltd.). The ratio of the amount of ions removed by a series of operations to the total amount of ions derived from the latex of the rubber-like polymer particles (A) (measured value obtained by drying the rubber-like polymer particles (A)) The total ion removal rate was calculated.
[3]エポキシ樹脂組成物中の揮発成分
実施例および比較例においては、エポキシ樹脂組成物を得るために、下記に定義する揮発成分が5000ppmに達するまで減圧留去を継続した。エポキシ樹脂組成物約3gを精秤後、熱風乾燥機内で設定温度170℃にて20分間加熱し、加熱前後の重量を測定することにより、減少した重量分を揮発成分(ppm)として、加熱前の重量に対する重量分率を算出した。
[3] Volatile component in epoxy resin composition In Examples and Comparative Examples, in order to obtain an epoxy resin composition, vacuum distillation was continued until the volatile component defined below reached 5000 ppm. About 3 g of the epoxy resin composition is precisely weighed and then heated in a hot air dryer at a set temperature of 170 ° C. for 20 minutes. By measuring the weight before and after heating, the reduced weight is used as a volatile component (ppm) before heating. The weight fraction with respect to the weight of was calculated.
[4]ゴム状重合体粒子の分散状態
[4−1]エポキシ樹脂硬化物の作成
100mlビーカーに、実施例および比較例で得られたエポキシ樹脂組成物51.9gおよびジアミノジフェニルスルホン(東京化成社製)13.1gを投入し、撹拌下で混合した。この混合物を真空乾燥機内に静置し、まず窒素雰囲気下で130℃に加熱した後、減圧下で10分間揮発成分を脱泡除去した。この混合物を100mm×150mm×3mm寸法の金型に注入後、180℃で2時間加熱してから更に220℃で2時間加熱して硬化させ、硬化成型物を得た。
[4] Dispersion state of rubbery polymer particles [4-1] Preparation of cured epoxy resin In a 100 ml beaker, 51.9 g of epoxy resin compositions obtained in Examples and Comparative Examples and diaminodiphenyl sulfone (Tokyo Kasei Co., Ltd.) (Made) 13.1 g was added and mixed under stirring. The mixture was allowed to stand in a vacuum dryer, and first heated to 130 ° C. under a nitrogen atmosphere, and then the volatile components were defoamed and removed for 10 minutes under reduced pressure. This mixture was poured into a 100 mm × 150 mm × 3 mm size mold, heated at 180 ° C. for 2 hours, and further cured at 220 ° C. for 2 hours to obtain a cured molded product.
[4−2]透過型電子顕微鏡によるゴム状重合体粒子の分散状態の観察
得られた成型物の一部を切り出し、酸化オスミウムでゴム状重合体粒子を染色処理した後に薄片を切り出し、透過型電子顕微鏡(日本電子製、JEM1200EX型)を用いて倍率10000倍にて観察してエポキシ樹脂硬化物中のゴム状重合体粒子の分散状態を判定した。
[4-2] Observation of dispersion state of rubber-like polymer particles by transmission electron microscope A part of the obtained molding was cut out, and after the rubber-like polymer particles were dyed with osmium oxide, a thin piece was cut out. Using an electron microscope (manufactured by JEOL Ltd., JEM1200EX type), the dispersion state of the rubber-like polymer particles in the cured epoxy resin was determined by observation at a magnification of 10,000 times.
(製造例1)ゴム状重合体粒子(A)ラテックスの製造
100L耐圧重合機中に、水200重量部、リン酸三カリウム0.03重量部、リン酸二水素カリウム0.25重量部、エチレンジアミン4酢酸0.002重量部、硫酸第一鉄0.001重量部およびドデシルベンゼンスルホン酸ナトリウム1.5重量部を投入し、攪拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン75重量部およびスチレン25重量部を系中に投入し、45℃に昇温した。パラメンタンハイドロパーオキサイド0.015重量部、続いてナトリウムホルムアルデヒドスルホキシレート0.04重量部を投入し重合を開始した。重合開始から4時間目に、パラメンタンハイドロパーオキサイド0.01重量部、エチレンジアミン4酢酸0.0015重量部および硫酸第一鉄0.001重量部を投入した。重合10時間目に減圧下残存モノマーを脱揮除去し、重合を終了した。重合転化率は98%、得られたスチレン−ブタジエンゴムラテックスの体積平均粒子径は0.1μmあった。
(Production Example 1) Production of rubber-like polymer particles (A) Latex In a 100 L pressure-resistant polymerization machine, water 200 parts by weight, tripotassium phosphate 0.03 parts by weight, potassium dihydrogen phosphate 0.25 parts by weight, ethylenediamine After adding 0.002 parts by weight of 4 acetic acid, 0.001 part by weight of ferrous sulfate and 1.5 parts by weight of sodium dodecylbenzenesulfonate, nitrogen was sufficiently substituted while stirring to remove oxygen, and then butadiene 75 Part by weight and 25 parts by weight of styrene were charged into the system, and the temperature was raised to 45 ° C. Polymerization was initiated by adding 0.015 parts by weight of paramentane hydroperoxide, followed by 0.04 parts by weight of sodium formaldehyde sulfoxylate. Four hours after the start of polymerization, 0.01 part by weight of paramentane hydroperoxide, 0.0015 part by weight of ethylenediaminetetraacetic acid and 0.001 part by weight of ferrous sulfate were added. At 10 hours after the polymerization, the residual monomer was removed by devolatilization under reduced pressure to complete the polymerization. The polymerization conversion was 98%, and the volume average particle diameter of the obtained styrene-butadiene rubber latex was 0.1 μm.
続いて3Lガラス容器に、前記ゴムラテックス1300g(スチレン・ブタジエンゴム粒子420gを含み、乳化剤としてゴムの固形分に対して1.5重量%のドデシルベンゼンスルホン酸ナトリウムを含む。)および純水440gを仕込み、窒素置換を行いながら70℃で攪拌した。アゾビスイソブチロニトリル(AIBN)1.2gを加えた後、スチレン54g、メタクリル酸メチル72g、アクリロニトリル36g、メタクリル酸グリシジル18gの混合物を3時間かけて連続的に添加しグラフト重合した。添加終了後、更に2時間攪拌して反応を終了させ、ゴム状重合体粒子(A)のラテックスを得た。重合転化率は99.5%であった。得られたラテックスはそのまま使用した。 Subsequently, 1300 g of the rubber latex (including 420 g of styrene / butadiene rubber particles and 1.5 wt% sodium dodecylbenzenesulfonate based on the solid content of the rubber) and 440 g of pure water are added to a 3 L glass container. The mixture was charged and stirred at 70 ° C. while replacing with nitrogen. After adding 1.2 g of azobisisobutyronitrile (AIBN), a mixture of 54 g of styrene, 72 g of methyl methacrylate, 36 g of acrylonitrile, and 18 g of glycidyl methacrylate was continuously added over 3 hours for graft polymerization. After completion of the addition, the reaction was terminated by further stirring for 2 hours to obtain a latex of rubber-like polymer particles (A). The polymerization conversion rate was 99.5%. The obtained latex was used as it was.
(実施例1)
槽径70mm、高さ350mmの竪型1L撹拌槽に、翼径50mmのかき上げ型45°傾斜パドル翼を4段設置し、450rpmで撹拌した。続いて、製造例1のゴム状重合体粒子(A)の水性ラテックスと、メチルエチルケトン(B)を等重量で混合したもの(C)を、撹拌槽の底面から50mmの位置より128ml/minの供給速度で供給した。同時に、撹拌槽の底部の同じ高さに設置した別の供給口より水(D)を92ml/minの供給速度で供給した。ゴム状重合体粒子(A)の水性ラテックス、メチルエチルケトン(B)、水(D)の混合比率は、100重量部、100重量部、160重量部であり、撹拌槽内の滞留時間は4.5分であった。撹拌槽底から液面までの高さは300mmであった。撹拌槽上部の液面位置からのオーバーフローにより凝集体(F)と水相(E)からなるスラリー液を回収した。3時間操作を行い、ゴム状重合体粒子(A)の水性ラテックス10.4kgの凝集を行った。撹拌槽上部の液面位置より15分毎に回収した凝集体の粒子径を湿式ふるいにて測定した結果、ふるい上重量基準における50%径がどれも1500μmであり、95%径は750μm、5%径は3000μmで変化はなかった。また槽内での滞留による凝集体の成長粒子は見られず安定した連続運転が可能であった。更に得られたスラリーを脱液し、凝集体(F)にメチルエチルケトンを加えて分散体(G)を作成し、残存する乳化剤および電解質を測定した。乳化剤および電解質の除去率はそれぞれ95%および90%であった。
(Example 1)
In a vertical 1 L stirring tank having a tank diameter of 70 mm and a height of 350 mm, four stages of a raised 45 ° inclined paddle blade having a blade diameter of 50 mm were installed and stirred at 450 rpm. Subsequently, an aqueous latex of rubber-like polymer particles (A) of Production Example 1 and methyl ethyl ketone (B) mixed at an equal weight (C) were supplied at a rate of 128 ml / min from a position 50 mm from the bottom of the stirring tank. Feeded at speed. At the same time, water (D) was supplied at a supply rate of 92 ml / min from another supply port installed at the same height at the bottom of the stirring tank. The mixing ratio of the aqueous latex of the rubber-like polymer particles (A), methyl ethyl ketone (B), and water (D) is 100 parts by weight, 100 parts by weight, and 160 parts by weight, and the residence time in the stirring tank is 4.5. Minutes. The height from the bottom of the stirring tank to the liquid level was 300 mm. The slurry liquid which consists of an aggregate (F) and an aqueous phase (E) was collect | recovered by the overflow from the liquid level position of a stirring tank upper part. The operation was carried out for 3 hours to agglomerate 10.4 kg of the aqueous latex of rubber-like polymer particles (A). As a result of measuring the particle diameter of the aggregate collected every 15 minutes from the liquid surface position in the upper part of the stirring tank with a wet sieve, the 50% diameter on the basis of the weight on the sieve is 1500 μm, and the 95% diameter is 750 μm, 5 The% diameter was 3000 μm and there was no change. In addition, no agglomerated particles were observed due to staying in the tank, and stable continuous operation was possible. Furthermore, the obtained slurry was dehydrated, methyl ethyl ketone was added to the aggregate (F) to prepare a dispersion (G), and the remaining emulsifier and electrolyte were measured. The removal rates of emulsifier and electrolyte were 95% and 90%, respectively.
(実施例2)
実施例1で得られた凝集体94gにメチルエチルケトン136gを加え、毎分500rpmの撹拌条件で30分混合し、ゴム状重合体粒子を均一に分散した分散体を得た。この分散体をジャケットおよび撹拌機付き1L槽(内径100mm、翼型90mmのアンカー翼を設置した攪拌機)に移し、エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート828)92gを加えて均一混合後、ジャケット温度(温水)を60℃に設定し、真空ポンプ(油回転式真空ポンプ、佐藤真空株式会社製TSW−150)を用い、揮発成分が減圧下に所定の濃度(5000ppm)に達するまで留去を継続し、ゴム状重合体粒子を含んだ透明度のあるエポキシ樹脂組成物を得た。揮発に要した時間は、5時間20分であった。このエポキシ樹脂組成物より得られた硬化物中のゴム状重合体粒子の分散状態を観察した結果、ゴム状重合体粒子は凝集することなく均一に分散されていた。
(Example 2)
136 g of methyl ethyl ketone was added to 94 g of the aggregate obtained in Example 1, and mixed for 30 minutes under a stirring condition of 500 rpm per minute to obtain a dispersion in which rubbery polymer particles were uniformly dispersed. This dispersion was transferred to a 1 L tank with a jacket and a stirrer (a stirrer equipped with an anchor blade having an inner diameter of 100 mm and an airfoil of 90 mm), and 92 g of epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) was added and mixed uniformly. The jacket temperature (warm water) is set to 60 ° C., and the vacuum pump (oil rotary vacuum pump, TSW-150 manufactured by Sato Vacuum Co., Ltd.) is used until the volatile components reach a predetermined concentration (5000 ppm) under reduced pressure. The process was continued and a transparent epoxy resin composition containing rubber-like polymer particles was obtained. The time required for volatilization was 5 hours and 20 minutes. As a result of observing the dispersion state of the rubber-like polymer particles in the cured product obtained from this epoxy resin composition, the rubber-like polymer particles were uniformly dispersed without agglomeration.
(実施例3)
実施例1で得られた凝集体10gを、乾燥機を用いて70℃の温度で2時間乾燥を行った。乾燥後の粒子を湿式ふるいにて測定した結果、ふるい上重量基準における50%径が、1400μmの球状の粒子が得られた。
(Example 3)
10 g of the aggregate obtained in Example 1 was dried for 2 hours at a temperature of 70 ° C. using a dryer. As a result of measuring the dried particles with a wet sieve, spherical particles having a 50% diameter of 1400 μm based on the weight on the sieve were obtained.
(実施例4)
水(D)の供給量を106ml/min、184重量部とした以外は、実施例1と同様の操作を行った。装置内の滞留時間は4.3分であった。撹拌槽上部の液面位置より15分毎に回収した凝集体の粒子径を湿式ふるいにて測定した結果、ふるい上重量基準における50%径がどれも700μmであり、95%径180μm、5%径1300μmで変化はなかった。また槽内での滞留による凝集体の成長粒子は見られず安定した連続運転が可能であった。更に、撹拌槽上部の液面位置からのオーバーフローにより回収した凝集体(F)の一部にメチルエチルケトンを加えて分散ドープを作成し、残存する乳化剤および電解質を測定した。乳化剤および電解質の除去率はそれぞれ90%および80%であった。
Example 4
The same operation as in Example 1 was performed except that the supply amount of water (D) was 106 ml / min and 184 parts by weight. The residence time in the apparatus was 4.3 minutes. As a result of measuring the particle diameter of the aggregate collected every 15 minutes from the liquid surface position in the upper part of the stirring tank with a wet sieve, the 50% diameter on the basis of the weight on the sieve is 700 μm, and the 95% diameter is 180 μm and 5%. There was no change at a diameter of 1300 μm. In addition, no agglomerated particles were observed due to staying in the tank, and stable continuous operation was possible. Further, a dispersion dope was prepared by adding methyl ethyl ketone to a part of the aggregate (F) recovered by overflow from the liquid level at the top of the stirring tank, and the remaining emulsifier and electrolyte were measured. The removal rates of emulsifier and electrolyte were 90% and 80%, respectively.
(実施例5)
実施例4で得られた凝集体にメチルエチルケトン173gを加え、毎分400rpmの撹拌条件で30分混合し、ゴム状重合体粒子を均一に分散した分散体を得た。この分散体をジャケットおよび撹拌機付き1L槽(内径100mm、翼型90mmのアンカー翼を設置した攪拌機)に移し、エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート828)116gを加えて均一混合後、ジャケット温度(温水)を60℃に設定し、真空ポンプを用い揮発成分を減圧下に所定の濃度(5000ppm)まで留去を継続し、ゴム状重合体粒子を含んだ透明度のあるエポキシ樹脂組成物を得た。揮発に要した時間は、5時間20分であった。このエポキシ樹脂組成物より得られた硬化物中のゴム状重合体粒子の分散状態を観察した結果、ゴム状重合体粒子は凝集することなく均一に分散されていた。
(Example 5)
173 g of methyl ethyl ketone was added to the aggregate obtained in Example 4 and mixed for 30 minutes under a stirring condition of 400 rpm per minute to obtain a dispersion in which rubber-like polymer particles were uniformly dispersed. This dispersion was transferred to a 1 L tank with a jacket and a stirrer (stirrer equipped with an anchor blade having an inner diameter of 100 mm and an airfoil of 90 mm), and 116 g of epoxy resin (Epicoat 828, manufactured by Japan Epoxy Resin Co., Ltd.) was added and mixed uniformly. The jacket temperature (warm water) is set to 60 ° C., and a volatile component is continuously distilled off to a predetermined concentration (5000 ppm) under reduced pressure using a vacuum pump, and a transparent epoxy resin composition containing rubbery polymer particles I got a thing. The time required for volatilization was 5 hours and 20 minutes. As a result of observing the dispersion state of the rubber-like polymer particles in the cured product obtained from this epoxy resin composition, the rubber-like polymer particles were uniformly dispersed without agglomeration.
(実施例6)
実施例4で得られた凝集体10gを、乾燥機を用いて70℃の温度で2時間乾燥を行った。乾燥後の粒子を湿式ふるいにて測定した結果は、ふるい上重量基準における50%径が、600μmの球状の粒子が得られた。
(Example 6)
10 g of the aggregate obtained in Example 4 was dried at a temperature of 70 ° C. for 2 hours using a dryer. As a result of measuring the dried particles with a wet sieve, spherical particles having a 50% diameter of 600 μm based on the weight on the sieve were obtained.
(比較例1)
槽径70mm、高さ350mmの竪型1L撹拌槽に、翼径50mmのフラットタービン翼を4段設置し、450rpmで撹拌した。続いて、製造例1のゴム状重合体粒子(A)の水性ラテックスと、メチルエチルケトン(B)を等重量で混合したもの(C)を、撹拌槽の底面から50mmの位置より128ml/minの供給速度で供給した。同時に、撹拌槽底部の同じ高さに設置した別の供給口より水(D)を92ml/minで供給した。ゴム状重合体粒子(A)の水性ラテックス、メチルエチルケトン(B)、水(D)の混合比率は、100重量部、100重量部、160重量部であり、撹拌槽内の滞留時間は4.5分であった。撹拌槽底から液面までの高さは300mmであった。撹拌槽上部の液面位置からのオーバーフローにより凝集体(F)と水相(E)からなるスラリー液を回収した。60分間操作を行い、ゴム状重合体粒子(A)の水性ラテックス10.4kgの凝集を行った。撹拌槽上部の液面位置より15分毎に回収した凝集体の粒子径を湿式ふるいにて測定した結果、15分後のふるい上重量基準における50%径が1500μm、95%径が750μm、5%径が3000μmであった。60分後のふるい上重量基準における50%径が3000μm、95%径が750μm、5%径が4000μmであり、経時的に粒子の成長が見られ、安定した粒子径は得られなかった。また、槽内に粒子の滞留によってゴム状重合体粒子(A)が積層された、30mm程度の塊状の粒子が見られ安定した連続運転ができなかった。
(Comparative Example 1)
Four stages of flat turbine blades having a blade diameter of 50 mm were installed in a vertical 1 L stirring tank having a tank diameter of 70 mm and a height of 350 mm, and stirred at 450 rpm. Subsequently, an aqueous latex of rubber-like polymer particles (A) of Production Example 1 and methyl ethyl ketone (B) mixed at an equal weight (C) were supplied at a rate of 128 ml / min from a position 50 mm from the bottom of the stirring tank. Feeded at speed. At the same time, water (D) was supplied at 92 ml / min from another supply port installed at the same height at the bottom of the stirring tank. The mixing ratio of the aqueous latex of the rubber-like polymer particles (A), methyl ethyl ketone (B), and water (D) is 100 parts by weight, 100 parts by weight, and 160 parts by weight, and the residence time in the stirring tank is 4.5. Minutes. The height from the bottom of the stirring tank to the liquid level was 300 mm. The slurry liquid which consists of an aggregate (F) and an aqueous phase (E) was collect | recovered by the overflow from the liquid level position of a stirring tank upper part. The operation was performed for 60 minutes to aggregate 10.4 kg of the aqueous latex of rubber-like polymer particles (A). As a result of measuring the particle diameter of the aggregate collected every 15 minutes from the liquid surface position in the upper part of the stirring tank with a wet sieve, the 50% diameter on the basis of the sieve weight after 15 minutes is 1500 μm, the 95% diameter is 750 μm, 5 The% diameter was 3000 μm. After 50 minutes, the 50% diameter on the basis of the weight on the sieve was 3000 μm, the 95% diameter was 750 μm, and the 5% diameter was 4000 μm. Grain growth was observed over time, and a stable particle diameter was not obtained. In addition, massive particles of about 30 mm in which the rubber-like polymer particles (A) were laminated due to particle retention in the tank were observed, and stable continuous operation was not possible.
(比較例2)
水(D)の供給量を106ml/min、184重量部とした以外は、比較例1と同様の操作を行った。装置内の滞留時間は4.3分であった。攪拌機上部の液面位置より15分毎に回収した凝集体の粒子径を湿式ふるいにて測定した結果、15分後のふるい上重量基準の50%径が680μm、95%径が180μm、5%径は1300μmであった。60分後のふるい上重量基準における50%径は1400μm、95%径は750μm、5%径は3000μmであり、経時的に粒子の成長が見られ、安定した連続運転ができなかった。
(Comparative Example 2)
The same operation as in Comparative Example 1 was performed except that the supply amount of water (D) was 106 ml / min and 184 parts by weight. The residence time in the apparatus was 4.3 minutes. As a result of measuring the particle size of the aggregates collected every 15 minutes from the liquid level at the top of the stirrer with a wet sieve, the 50% diameter on the sieve after 15 minutes is 680 μm, the 95% diameter is 180 μm, and 5%. The diameter was 1300 μm. After 50 minutes, the 50% diameter on the basis of the weight on the sieve was 1400 μm, the 95% diameter was 750 μm, and the 5% diameter was 3000 μm. Grain growth was observed over time, and stable continuous operation was not possible.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063699A JP2005248109A (en) | 2004-03-08 | 2004-03-08 | Method for producing rubbery polymer particle and method for producing resin composition containing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004063699A JP2005248109A (en) | 2004-03-08 | 2004-03-08 | Method for producing rubbery polymer particle and method for producing resin composition containing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005248109A true JP2005248109A (en) | 2005-09-15 |
Family
ID=35028896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004063699A Pending JP2005248109A (en) | 2004-03-08 | 2004-03-08 | Method for producing rubbery polymer particle and method for producing resin composition containing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005248109A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105189A1 (en) * | 2007-02-28 | 2008-09-04 | Kaneka Corporation | Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof |
WO2009014037A1 (en) * | 2007-07-25 | 2009-01-29 | Kaneka Corporation | Resin composition and polycondensation product using the resin composition |
WO2009119467A1 (en) | 2008-03-25 | 2009-10-01 | 東レ株式会社 | Epoxy resin composition, fiber-reinforced composite material and method for producing the same |
KR101116749B1 (en) * | 2008-10-17 | 2012-02-22 | 금호석유화학 주식회사 | Process for recovering solvents from poymer solution in the process of synthetic rubber |
WO2013031245A1 (en) | 2011-08-29 | 2013-03-07 | ハイモ株式会社 | Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same |
JP2021085018A (en) * | 2019-11-29 | 2021-06-03 | 株式会社カネカ | Method for producing particle-containing composition, and system for producing particle-containing composition |
-
2004
- 2004-03-08 JP JP2004063699A patent/JP2005248109A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008105189A1 (en) * | 2007-02-28 | 2008-09-04 | Kaneka Corporation | Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof |
US8217098B2 (en) | 2007-02-28 | 2012-07-10 | Kaneka Corporation | Thermosetting resin composition having rubbery polymer particle dispersed therein, and process for production thereof |
WO2009014037A1 (en) * | 2007-07-25 | 2009-01-29 | Kaneka Corporation | Resin composition and polycondensation product using the resin composition |
WO2009119467A1 (en) | 2008-03-25 | 2009-10-01 | 東レ株式会社 | Epoxy resin composition, fiber-reinforced composite material and method for producing the same |
US10538637B2 (en) | 2008-03-25 | 2020-01-21 | Toray Industries, Inc. | Epoxy resin composition, fiber-reinforced composite material, and method for producing the same |
KR101116749B1 (en) * | 2008-10-17 | 2012-02-22 | 금호석유화학 주식회사 | Process for recovering solvents from poymer solution in the process of synthetic rubber |
WO2013031245A1 (en) | 2011-08-29 | 2013-03-07 | ハイモ株式会社 | Pulverulent hydrophilic polymer, method for producing same, and flocculation treatment agent using same |
JP2021085018A (en) * | 2019-11-29 | 2021-06-03 | 株式会社カネカ | Method for producing particle-containing composition, and system for producing particle-containing composition |
JP7356883B2 (en) | 2019-11-29 | 2023-10-05 | 株式会社カネカ | Method for producing particle-containing composition and system for producing particle-containing composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4761965B2 (en) | Method for producing rubber-like polymer particles and method for producing resin composition containing the same | |
JP4668788B2 (en) | Method for producing modified epoxy resin | |
JP5027509B2 (en) | Epoxy resin composition for semiconductor encapsulant and epoxy resin molding material | |
JP5544162B2 (en) | Rubber-like polymer particle-dispersed thermosetting resin composition and method for producing the same | |
CN102481535B (en) | Polymer-latex-resin-powder producing device, and a method for producing a polymer latex resin powder employing the same | |
JP2004315572A (en) | Method for producing epoxy resin composition | |
CN110637061A (en) | Solvent composition and method for producing same | |
JP2005248109A (en) | Method for producing rubbery polymer particle and method for producing resin composition containing the same | |
CN116406398A (en) | Hollow particles | |
JP2006045292A (en) | Method for producing rubbery polymer particle and method for producing resin composition containing the same | |
CN100392005C (en) | Process for producing rubbery polymer particle and process for producing resin composition containing the same | |
JP5208003B2 (en) | Polymer fine particle dispersion composition and method for producing the same | |
JP2006241404A (en) | Polymer particle and method for producing dispersion containing the same | |
JP2010018667A (en) | Method for manufacturing dispersion containing polymer particle and resin composition containing polymer particle |