Nothing Special   »   [go: up one dir, main page]

JP2005180988A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2005180988A
JP2005180988A JP2003419057A JP2003419057A JP2005180988A JP 2005180988 A JP2005180988 A JP 2005180988A JP 2003419057 A JP2003419057 A JP 2003419057A JP 2003419057 A JP2003419057 A JP 2003419057A JP 2005180988 A JP2005180988 A JP 2005180988A
Authority
JP
Japan
Prior art keywords
ultrasonic
flow velocity
pipe
velocity measuring
flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003419057A
Other languages
Japanese (ja)
Inventor
Masaki Takamoto
正樹 高本
Hiroaki Ishikawa
博朗 石川
Seigo Hirayama
誠吾 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kaijo Sonic Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Kaijo Sonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Kaijo Sonic Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003419057A priority Critical patent/JP2005180988A/en
Publication of JP2005180988A publication Critical patent/JP2005180988A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-accurate ultrasonic flowmeter capable making ultrasonic waves propagate approximately in parallel with the pipe axis, and suppressing unwanted waves propagating along the pipe axis. <P>SOLUTION: In this ultrasonic flowmeter, an inflow part 2 and an outflow part 3 are provided on a flow velocity measuring pipe 1, and ultrasonic transducers 4, 5 are mounted respectively on the inflow and outflow parts, so as to be located opposite so that each normal thereof approximately coincides with the axis of the flow velocity measuring pipe, and an internal pipe 12, having the inner diameter which, is smaller than the diameter of the wave transmission/reception face of each ultrasonic transducer and approximately constant in the pipe axis direction is formed coaxially in the flow velocity measuring pipe 12. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定対象の流体中に超音波を伝播させ、この超音波の流路の上流方向と下流方向への伝播時間差に基づいて流体の流速や流量を測定する超音波流量計に関するものであり、特に、水素ガスなど密度の小さなをガスの流量測定に適した超音波流量計に関するものである。
The present invention relates to an ultrasonic flowmeter that propagates ultrasonic waves into a fluid to be measured and measures the flow velocity and flow rate of the fluid based on the difference in propagation time between the upstream and downstream directions of the flow path of the ultrasonic waves. In particular, the present invention relates to an ultrasonic flowmeter suitable for measuring the flow rate of a gas having a low density such as hydrogen gas.

従来、超音波を測定対象の流路内の流体中に伝播させ、この超音波が流路の上流方向と下流方向に伝播する際の伝播所要時間の違いを利用して流体の流速(流量) を測定する超音波流量計が汎用されてきた。   Conventionally, an ultrasonic wave is propagated in the fluid in the flow channel to be measured, and the flow velocity (flow rate) of the fluid is utilized by utilizing the difference in propagation time when the ultrasonic wave propagates in the upstream and downstream directions of the flow channel. Ultrasonic flowmeters that measure the pressure have been widely used.

図3は、上記従来の典型的な超音波流量計の流路部分の構成を示す断面図である。直線状の流速測定管路21の両端に、流体の流入部22と流出部23とを取り付け、これら流入部22と流出部23のそれぞれの外側に超音波トランスジューサ24と25を対向させて取り付ける。超音波トランスジューサ24,25の間を伝搬する超音波の伝搬所要時間から流速測定管路21内を上流方向や下流方向に流れる流体の流速が測定される。   FIG. 3 is a cross-sectional view showing the configuration of the flow path portion of the conventional typical ultrasonic flowmeter. A fluid inflow portion 22 and an outflow portion 23 are attached to both ends of the linear flow velocity measuring pipe 21, and ultrasonic transducers 24 and 25 are attached to the outer sides of the inflow portion 22 and the outflow portion 23, respectively. The flow velocity of the fluid flowing in the upstream and downstream directions in the flow velocity measurement pipe 21 is measured from the time required for propagation of the ultrasonic waves propagating between the ultrasonic transducers 24 and 25.

上記従来の超音波流量計では、超音波トランスジューサの径が流速測定管路の径よりも小さいため、超音波の波面が伝播しながら拡大する。すなわち、伝播経路が管路の中心軸と交わる成分が発生し、内壁面で多重反射が生じる。この結果、長さの異なる多数の伝播経路(マルチパス)が形成され、受信波形の立ち上がり部分がなまって受信信号の出現時点が不明確になり、検出誤差が生じる。逆に、超音波ビームを絞られすぎると、流路断面の中心部分など特定の箇所の流速が検出される。この場合、特定箇所の流速を断面内の平均流速に換算しなければならず、誤差の原因となる。   In the conventional ultrasonic flowmeter, since the ultrasonic transducer has a diameter smaller than that of the flow velocity measuring pipe, the ultrasonic wavefront expands while propagating. That is, a component in which the propagation path intersects the central axis of the pipe is generated, and multiple reflection occurs on the inner wall surface. As a result, a large number of propagation paths (multipaths) having different lengths are formed, the rising portion of the received waveform is distorted, the current output time of the received signal becomes unclear, and a detection error occurs. Conversely, if the ultrasonic beam is too narrowed, the flow velocity at a specific location such as the central portion of the channel cross section is detected. In this case, the flow velocity at a specific location must be converted to the average flow velocity in the cross section, which causes an error.

特開平10−274551号公報(特許文献1)や、特開2002−71409号公報(特許文献2)には、流速測定管路の内径を管軸方向に滑らかに変化させることにより、管路中央部の内径を超音波トランスジューサの送受波面の径よりも小さくした構成が開示されている。   In JP-A-10-274551 (Patent Document 1) and JP-A-2002-71409 (Patent Document 2), by smoothly changing the inner diameter of the flow velocity measuring pipe in the pipe axis direction, A configuration in which the inner diameter of the part is smaller than the diameter of the transmission / reception surface of the ultrasonic transducer is disclosed.

また、図3に示した従来の超音波流量計では、超音波トランスジューサ24,25の一方が発生した超音波の一部が、流入部22、流出部23および流速測定管路21の管壁中、あるいは管壁に沿って、縦波、横波、表面波などとして伝搬し、超音波トランスジューサ24,25の他方に受信される。この受信信号成分は、流速測定管路21の内部の流体中を伝搬して受信される所望の信号成分に対して不要な妨害波となり、測定の精度を低下させるという問題もある。   Further, in the conventional ultrasonic flowmeter shown in FIG. 3, a part of the ultrasonic waves generated by one of the ultrasonic transducers 24, 25 are in the pipe wall of the inflow part 22, the outflow part 23, and the flow velocity measurement pipe 21. Or, it propagates along the tube wall as a longitudinal wave, a transverse wave, a surface wave, etc., and is received by the other of the ultrasonic transducers 24 and 25. This received signal component becomes an unnecessary interference wave with respect to a desired signal component that is propagated through the fluid in the flow velocity measuring pipe 21 and received, and there is a problem that the accuracy of measurement is lowered.

流速測定管路21、流入部22、流出部23を金属ではなく、エポキシ樹脂などの樹脂で構成すれば、これらの表面や内部を伝搬する超音波信号の減衰量が増大し、不要波による妨害がかなり軽減される。しかしながら、測定対象の流体が水素など原子番号の小さな気体の場合には、管路を樹脂で構成すると流体の漏洩が生じ、安全や衛生上の問題を引き起こす。この流体の漏洩を防止するうえで、流速測定管路などを緻密な組織を有し音波の伝播減衰量が小さな金属やシリカなどの特殊な素材で構成しなければならないという制約が生じる。   If the flow velocity measuring pipe 21, the inflow portion 22, and the outflow portion 23 are made of resin such as epoxy resin instead of metal, the attenuation amount of the ultrasonic signal propagating on the surface and inside thereof increases, and interference by unnecessary waves. Is considerably reduced. However, when the fluid to be measured is a gas having a small atomic number such as hydrogen, if the pipe is made of resin, the fluid leaks, causing a safety and hygiene problem. In order to prevent the leakage of the fluid, there is a restriction that the flow velocity measurement pipe and the like must be made of a special material such as a metal or silica having a dense structure and a small propagation attenuation of sound waves.

特開平2002─236042号公報(特許文献3)には、超音波トランスジューサの間の管壁に振動減衰手段を形成することにより管壁を伝播する超音波を減衰させる構成が開示されている。   Japanese Laid-Open Patent Publication No. 2002-236042 (Patent Document 3) discloses a configuration in which ultrasonic waves propagating through a tube wall are attenuated by forming vibration damping means on the tube wall between ultrasonic transducers.

特開平10−274551号公報(要約)JP-A-10-274551 (summary) 特開2002−71409号公報(要約)JP 2002-71409 A (summary) 特開2002−236042号公報(図1、図4)Japanese Patent Laid-Open No. 2002-236042 (FIGS. 1 and 4)

上記特許文献1,2に開示された構成では、管路の内径がその両端部と中央部分とで大幅に変化するため、その流体の流速が流れの方向にそって大幅に変化してしまい、その結果、流速の算定が複雑化し、測定誤差の原因にもなるという問題がある。従って、本発明が解決しようとする課題の一つは、流量方向への流速の大幅な変化を回避しつつ超音波を管軸とほぼ平行に伝播させることにより精度を向上させた超音波流量計を提供することにある。   In the configurations disclosed in Patent Documents 1 and 2, since the inner diameter of the pipe line varies greatly between the both end portions and the central portion, the flow velocity of the fluid varies significantly along the flow direction, As a result, there is a problem that calculation of the flow velocity becomes complicated and causes measurement errors. Accordingly, one of the problems to be solved by the present invention is that an ultrasonic flowmeter with improved accuracy by propagating ultrasonic waves substantially parallel to the tube axis while avoiding a significant change in flow velocity in the flow direction. Is to provide.

また、上記特許文献3に開示された管壁の内部や表面を伝播する不要な超音波信号の減衰方法では、管路上に形成する減衰機構が複雑になり、製造コストがかさむという問題がある。従って、本発明が解決しようとする他の課題の一つは、管壁の内部や表面を伝播する不要な超音波信号を抑圧可能な簡易・安価な減衰機構を備えた超音波流量計を提供することにある。   In addition, in the method for attenuating an unnecessary ultrasonic signal propagating inside or on the surface of a tube wall disclosed in Patent Document 3, there is a problem that an attenuation mechanism formed on the conduit is complicated and the manufacturing cost is increased. Accordingly, one of the other problems to be solved by the present invention is to provide an ultrasonic flowmeter equipped with a simple and inexpensive attenuation mechanism capable of suppressing unnecessary ultrasonic signals propagating inside or on the surface of a tube wall. There is to do.

上記従来技術の課題を解決する本発明の超音波流量計は、直線状の流速測定管路の両端に流体の流入部と流出部とを配置し、これら流入部と流出部のそれぞれに送受波面の法線が前記流速測定管路の軸線とほぼ一致するように対向させて超音波トランスジューサを取り付け、前記流速測定管路の内部を上流方向と下流方向に伝搬する超音波の伝搬所要時間の相違に基づき前記流速測定管路内を流れる流体の流速と流量とを測定するように構成されている。そして、この超音波流量計は、上記流速測定管路内に同軸状に形成され、かつ超音波トランスジューサの送受波面の径よりも小さくかつ管軸方向にほぼ同一の内径を有する内部管路を備えている。   The ultrasonic flowmeter of the present invention that solves the above-mentioned problems of the prior art has a fluid inflow portion and an outflow portion disposed at both ends of a linear flow velocity measurement pipe, and a wave transmitting / receiving surface at each of the inflow portion and the outflow portion. An ultrasonic transducer is attached so that the normal line of the flow velocity is substantially coincident with the axial line of the flow velocity measuring pipe, and the difference in the propagation time of ultrasonic waves propagating in the upstream direction and the downstream direction in the flow velocity measuring line The flow velocity and the flow rate of the fluid flowing in the flow velocity measuring pipe are measured based on the above. The ultrasonic flowmeter includes an internal pipe that is coaxially formed in the flow velocity measuring pipe and that has an inner diameter that is smaller than the diameter of the transmission / reception surface of the ultrasonic transducer and substantially the same in the pipe axis direction. ing.

流速測定管路内に同軸状に形成される内部管路は、超音波トランスジューサの送受波面の径よりも小さな内径を有するため、内部管路の内部をほぼ平行にかつ均一なエネルギー分布で超音波が伝播する。このため、断面内の平均流速が検出される。また、内部管路は管軸方向にほぼ同一の内径を有するので、流路にそって流速が大幅に変化することがなくなり、測定値そのものが流路内の流れの方向と断面内の平均の流速となる。   The inner pipe formed coaxially in the flow velocity measurement pipe has an inner diameter smaller than the diameter of the transmission / reception surface of the ultrasonic transducer, so that the inner pipe is ultrasonically distributed in a substantially parallel and uniform energy distribution. Is propagated. For this reason, the average flow velocity in the cross section is detected. Also, since the internal pipe line has almost the same inner diameter in the pipe axis direction, the flow velocity does not change significantly along the flow path, and the measured value itself is the average of the flow direction in the flow path and the cross section. It becomes a flow velocity.

本発明の最良のな実施の形態によれば、上記内部管路の内壁面には、端面に向けて内径が緩やかに拡大するテーパーが形成されることにより放射された超音波のひろがりを防止するように構成されている。   According to the preferred embodiment of the present invention, the inner wall surface of the inner pipe is formed with a taper whose inner diameter gradually increases toward the end surface, thereby preventing the spread of the emitted ultrasonic waves. It is configured as follows.

本発明の他の好適な実施の形態によれば、上記超音波トランスジューサは、上記流速測定管路の端部に形成されたフランジに対してガスケット、Oリングその他の音響インピーダンスが互いに異なる素材の複数のスペーサを介在させながら取付けられることにより、トランスジューサの発生した超音波をスペーサの境界面で反射させ、この超音波が管壁に伝播するのを阻止するように構成されている。   According to another preferred embodiment of the present invention, the ultrasonic transducer comprises a plurality of materials having different acoustic impedances such as a gasket, an O-ring, and the like, with respect to a flange formed at an end of the flow velocity measuring pipe. The ultrasonic wave generated by the transducer is reflected at the boundary surface of the spacer, and the ultrasonic wave is prevented from propagating to the tube wall.

本発明のさらに他の好適な実施の形態によれば、超音波トランスジューサをフランジに取付けるボルトに対して合成樹脂製のガスケットを用いることにより、トランスジューサで発生し、ボルトの内部や表面を伝播した超音波を音響インピーダンスの異なる合成樹脂製のガスケット境界面で反射させ、不要な妨害成分として管壁に伝播するのをより有効に阻止するように構成されている。   According to still another preferred embodiment of the present invention, by using a synthetic resin gasket for the bolt for attaching the ultrasonic transducer to the flange, the ultrasonic wave generated in the transducer and propagated through the inside or the surface of the bolt. A sound wave is reflected at a gasket boundary surface made of synthetic resin having different acoustic impedance, and is more effectively prevented from propagating to the tube wall as an unnecessary interference component.

本発明のさらに他の好適な実施の形態によれば、上記内部管路の流路に沿って離間する2点に設置された受信専用の超音波センサと、これら受信専用の超音波センサで受信された超音波信号の時間差を各受信信号の波形の相関に基づき検出することにより前記伝播所要時間を検出する検出部とを備え、伝播時間をより正確に検出することにより測定精度の向上を図るように構成されている。   According to still another preferred embodiment of the present invention, the reception-dedicated ultrasonic sensors installed at two points spaced apart along the flow path of the internal conduit and the reception-dedicated ultrasonic sensors receive signals. A detection unit that detects the time required for propagation by detecting a time difference between the received ultrasonic signals based on the correlation of the waveforms of the received signals, and improves the measurement accuracy by more accurately detecting the propagation time. It is configured as follows.

本発明のさらに他の好適な実施の形態によれば、上記超音波トランスジューサのそれぞれの送受波面に音響整合層が形成されることより、超音波の送信と受信の効率をより向上させるように構成されている。   According to still another preferred embodiment of the present invention, an acoustic matching layer is formed on each transmission / reception surface of the ultrasonic transducer so that the efficiency of transmission and reception of ultrasonic waves is further improved. Has been.

図1は、本発明の一実施例の超音波流量計の全体構成を示す図であり、図示の便宜上、管路部分については断面図で、回路部分については機能ブロック図で示している。図中、1は直線状の流量測定管路、2は流入部、3は流出部、4,5は超音波トランスジューサ、6は送信回路、7は受信回路、8は制御回路、9は信号処理回路、10と11は受信専用の受信センサである。さらに、12は内部管路、13はこの内部管路を保持する保持部である。   FIG. 1 is a diagram showing an overall configuration of an ultrasonic flowmeter according to an embodiment of the present invention. For convenience of illustration, a pipe portion is a cross-sectional view, and a circuit portion is a functional block diagram. In the figure, 1 is a linear flow rate measuring line, 2 is an inflow section, 3 is an outflow section, 4 and 5 are ultrasonic transducers, 6 is a transmission circuit, 7 is a reception circuit, 8 is a control circuit, and 9 is signal processing. Circuits 10 and 11 are reception sensors dedicated to reception. Furthermore, 12 is an internal pipe line, and 13 is a holding part for holding the internal pipe line.

直線状の流速測定管路1の両端に流体(この実施例では水素ガス)の流入部2と流出部3とが形成されている。これら流入部2と流出部3のそれぞれに、超音波トランスジューサ4と5が取り付けられている。超音波トランスジューサ4と5は、それぞれの送受波面の法線が流速測定管路1の軸線とほぼ一致するように、真っ正面から対向させて取り付けられている。   An inflow portion 2 and an outflow portion 3 for a fluid (hydrogen gas in this embodiment) are formed at both ends of the linear flow velocity measuring pipe 1. Ultrasonic transducers 4 and 5 are attached to the inflow portion 2 and the outflow portion 3, respectively. The ultrasonic transducers 4 and 5 are mounted so as to face each other from the front so that the normal line of each transmission / reception surface substantially coincides with the axis of the flow velocity measuring pipe 1.

超音波トランスジューサ4と5は、送受共用のものではなく送信専用のものである。これら送信専用の超音波トランスジューサ4と5から下流方向や上流方向に放出された超音波信号を受信するために、流速測定回路1内に適宜な距離を保って受信専用の受信センサ10と11が設置されている。   The ultrasonic transducers 4 and 5 are not for transmission and reception but for transmission only. In order to receive the ultrasonic signals emitted from these ultrasonic transducers 4 and 5 in the downstream direction or the upstream direction, the reception sensors 10 and 11 dedicated to reception are kept at an appropriate distance in the flow velocity measuring circuit 1. is set up.

内部管路12は、流速測定管路1内に同軸状に形成されている。この内部管路12は、超音波トランスジューサ4、5の送受波面の径よりもわずかに小さな内径を有することにより、送受波面から放射された超音波がこの内部管路の中心線に沿ってほぼ平行に、かつこの内部管路の断面内で均一なエネルギー密度で伝播するようにする。この内部管路12の内壁面には、上流側と下流側の各端面に向けて内径が緩やかに拡大するテーパーが形成されている。このテーパの傾斜がゆるやかでかつテーパー部分の長さも小さいため、内部管路12の内径と流路の方向に沿ってほぼ同一の値に保たれる。   The internal conduit 12 is formed coaxially in the flow velocity measuring conduit 1. The inner conduit 12 has an inner diameter slightly smaller than the diameter of the transmitting / receiving surfaces of the ultrasonic transducers 4 and 5, so that the ultrasonic waves radiated from the transmitting / receiving surfaces are substantially parallel along the center line of the inner conduit. And with a uniform energy density in the cross section of the internal conduit. The inner wall surface of the internal conduit 12 is formed with a taper whose inner diameter gradually increases toward the upstream and downstream end faces. Since the taper has a gentle slope and the length of the taper portion is small, the inner diameter of the inner pipe 12 and the direction of the flow path are maintained at substantially the same value.

内部管路12の先端面を超音波トランスジューサ4と5の送受波面に接近させればさせるほど、送受波面から放射された超音波のエネルギーの大部分をこの内部管路内に伝播させることが可能になる。しかしながら、このようにすると、この接近箇所の圧力損失が過大になり、被測定系に悪影響を与えるという点で測定器として不適切なものとなる。そこで、内部管路12の先端面を超音波トランスジューサ4と5の送受波面に過度に接近させることなく、しかも、放射された超音波エネルギーの拡がりを防止して大部分を内部管路内に伝播させることを目的としてゆるやかなテーパーが形成されている。   The closer the tip surface of the internal conduit 12 is to the transmission / reception surfaces of the ultrasonic transducers 4 and 5, the greater the amount of ultrasonic energy radiated from the transmission / reception surfaces can be propagated into the internal conduit. become. However, if this is done, the pressure loss at this approaching location will be excessive, making it unsuitable as a measuring instrument in that it will adversely affect the system under measurement. Therefore, the distal end surface of the internal conduit 12 is not excessively brought close to the transmission / reception surfaces of the ultrasonic transducers 4 and 5, and most of the radiated ultrasonic energy is prevented from spreading and propagated in the internal conduit. A gentle taper is formed for the purpose.

より具体的には、超音波トランスジューサ4と5から送信されて水素ガス中を伝播する超音波の伝播速度はぼ1200m/sec であり、空気中の音速の3.5 倍程度の値となる。このため、超音波の波長も同一倍率だけ長くなる。この結果、超音波の指向角が大きくなり、横方向に拡がりやすくなる。この横方向への拡がりを抑制するために、内部管路12の内径を超音波トランスジューサ3と4の送受波面の径よりもわずかに小さくすると共に、端面に向けて内径が緩やかに拡大するテーパーが形成されている。内部管路12の内径の流路方向への変化量を小さな値(好のましくは、数%以下の値)とすることにより、水素ガスの流速を流路方向にほぼ一定値と近似できるようにするため、上記テーパーはきわめてゆるやな値に設定される。   More specifically, the propagation speed of the ultrasonic waves transmitted from the ultrasonic transducers 4 and 5 and propagating through the hydrogen gas is about 1200 m / sec, which is about 3.5 times the speed of sound in the air. For this reason, the wavelength of an ultrasonic wave also becomes long only by the same magnification. As a result, the directivity angle of the ultrasonic wave becomes large, and it becomes easy to spread in the lateral direction. In order to suppress the lateral expansion, the inner pipe 12 has an inner diameter slightly smaller than the diameter of the transmission / reception surfaces of the ultrasonic transducers 3 and 4, and a taper that gradually increases the inner diameter toward the end face. Is formed. The flow rate of hydrogen gas can be approximated to a substantially constant value in the flow path direction by setting the amount of change in the flow path direction of the inner diameter of the internal conduit 12 to a small value (preferably a value of several percent or less). Therefore, the taper is set to a very gentle value.

超音波トランスジューサ4の細部の構造を図2に示す。図2では、構造の説明に必要な部分のみが断面図で示されている。ステンレス鋼を素材とするケース41は、円筒形状の側部とこの側部の先端面を閉じる円板形状の先端面とが一体に形成された構造を有している。ケース41の先端面の内側には、円盤形状の圧電素子(PZT)42が固定されている。   The detailed structure of the ultrasonic transducer 4 is shown in FIG. In FIG. 2, only a portion necessary for the description of the structure is shown in a sectional view. The case 41 made of stainless steel has a structure in which a cylindrical side portion and a disc-shaped tip surface that closes the tip surface of the side portion are integrally formed. A disc-shaped piezoelectric element (PZT) 42 is fixed inside the front end surface of the case 41.

ケース41の先端面と側部には、5mmほどの厚みの四弗化エチレン(TFE)の被覆43で覆われている。この被覆43のうちケース41の先端面に取付けられた部分は、音響整合層として機能する。すなわち、ケース41の先端面に形成された被覆43を構成するTFEは、ケース41の先端面を構成するステンレス鋼の音響インピーダンスと、計測対象の流体である水素ガスの音響インピーダンスとの幾何平均値に近い音響インピーダンスを有している。この被覆43の厚みは、この被覆内部を伝播する超音波信号の1/4波長の値に設定される。送信される超音波の中心周波数を100KHz、TFE中の音速を2000m/sec とすれば、λ/4は上述のように、ほぼ5mmとなる。   The front end surface and side portions of the case 41 are covered with a coating 43 of ethylene tetrafluoride (TFE) having a thickness of about 5 mm. A portion of the covering 43 attached to the front end surface of the case 41 functions as an acoustic matching layer. That is, TFE which comprises the coating | cover 43 formed in the front end surface of case 41 is the geometric mean value of the acoustic impedance of the stainless steel which comprises the front end surface of case 41, and the acoustic impedance of the hydrogen gas which is the fluid of measurement object It has an acoustic impedance close to. The thickness of the coating 43 is set to a value of a quarter wavelength of the ultrasonic signal propagating inside the coating. Assuming that the center frequency of the transmitted ultrasonic wave is 100 KHz and the speed of sound during TFE is 2000 m / sec, λ / 4 is approximately 5 mm as described above.

被覆43が形成されたケース41の側部と管路1に形成されたフランジ14との間にはパッキン44で封止されている。この管路のフランジ14とケース41に形成されたフランジ44との間には、アルミニュウム合金製のガスケット47の前後をTFEを素材とするガスケット45と46とで挟んだ構造の音響反射構造が形成されている。   The side portion of the case 41 where the covering 43 is formed and the flange 14 formed on the pipe line 1 are sealed with a packing 44. Between the flange 14 of the pipe line and the flange 44 formed on the case 41, an acoustic reflection structure is formed in which the front and rear of the gasket 47 made of aluminum alloy are sandwiched between gaskets 45 and 46 made of TFE. Has been.

すなわち、圧電素子42が発生した超音波は、ケース41の先端面と側部とを通して超音波トランスジューサ4のフランジ44に伝達され、このフランジ44からガスケット44、ガスケット47、ガスケット46を通って管路1のフランジ14に伝播し、ここから、さらに管路1の管壁に伝播する。この管路1の管壁を伝播する超音波は、不要な妨害波となるので、その振幅をいかに抑圧するかが、測定精度を高める上で必要となる。   That is, the ultrasonic wave generated by the piezoelectric element 42 is transmitted to the flange 44 of the ultrasonic transducer 4 through the front end surface and the side portion of the case 41, and the pipe 44 passes through the gasket 44, the gasket 47, and the gasket 46 from this flange 44. 1 propagates to the flange 14, and further propagates to the pipe wall of the pipe 1. Since the ultrasonic wave propagating through the pipe wall of the pipe line 1 becomes an unnecessary interference wave, it is necessary to improve the measurement accuracy how to suppress the amplitude.

この超音波トランスジューサ4のフランジ44から管路1のフランジ14に伝播する超音波の不要信号の伝播経路上に、音響インピーダンスが大幅に異なるTFEを素材とするガスケット45,46とアルミニウム合金を素材とするガスケット47とを交互に配置することにより、相互の境界面で超音波を反射させ、これによって超音波の不要成分が管路1の管壁に伝播されることが阻止される。この超音波の不要成分の反射による伝播の阻止をさらに徹底するために、ステンレス鋼を素材とするボルト48に対してTFE製のブッシュを使用し、音響インピーダンスが大きく異なるボルトとブッシュとの境界面で超音波を反射させ、管路の内部や表面を通って受信センサ10や11に受信される不要波の振幅が抑圧される。   On the propagation path of the unnecessary ultrasonic signal propagating from the flange 44 of the ultrasonic transducer 4 to the flange 14 of the pipe line 1, gaskets 45 and 46 made of TFE having a significantly different acoustic impedance and an aluminum alloy are used. By alternately disposing the gaskets 47, the ultrasonic waves are reflected at the mutual boundary surfaces, thereby preventing unnecessary components of the ultrasonic waves from being propagated to the pipe wall of the pipe line 1. In order to further prevent the propagation of this ultrasonic wave due to reflection of unnecessary components, a TFE bushing is used for the bolt 48 made of stainless steel, and the interface between the bolt and the bushing with greatly different acoustic impedance. Thus, the ultrasonic waves are reflected, and the amplitude of unnecessary waves received by the reception sensors 10 and 11 through the inside and the surface of the pipeline is suppressed.

前述した、被覆43のうちケース41の側面を覆う部分は、ステンレス鋼を素材とするケース44の側面と同じくステンレス鋼を素材とするフランジ14と44との間に介在されることにより、ケース41の側面からフランジ14と44へに伝播しようとする超音波の不要波成分の反射を促し、伝播を阻止する機能を果たす。この被覆43のうちケース41の側面を覆う部分は、同時に、振動エネルギーを熱に代える振動吸収材としても機能する。   The portion of the covering 43 that covers the side surface of the case 41 is interposed between the flanges 14 and 44 made of stainless steel as well as the side surface of the case 44 made of stainless steel. The reflection of the unnecessary wave component of the ultrasonic wave which is going to propagate from the side surface of the lens to the flanges 14 and 44 is promoted and the propagation is prevented. A portion of the covering 43 covering the side surface of the case 41 simultaneously functions as a vibration absorbing material that replaces vibration energy with heat.

送信専用の超音波トランスジューサ3と4は、制御回路8から供給される送信トリガパルスを受けると、流路内に超音波を送信する。超音波トランスジューサ4から送信された超音波は水素ガス中を下流に向けて伝播し、超音波トランスジューサ5から送信された超音波は水素ガス中を上流に向けて伝播する。   When receiving the transmission trigger pulse supplied from the control circuit 8, the ultrasonic transducers 3 and 4 dedicated for transmission transmit ultrasonic waves in the flow path. The ultrasonic wave transmitted from the ultrasonic transducer 4 propagates downstream in the hydrogen gas, and the ultrasonic wave transmitted from the ultrasonic transducer 5 propagates upstream in the hydrogen gas.

受信回路7は、制御回路から送信トリガを受けると、受信専用の受信センサ10と11から供給される受信超音波信号を受信し、濾波し、増幅して信号処理回路に9に供給する。信号処理回路9は、先行の受信超音波信号に一定の遅延量τを付与しながら後続の受信超音波信号との相関をとる。信号処理回路9は、最大の相関値を得るために付与した遅延量τ0 を受信センサ10と11との間の超音波の下流方向と上流方向への伝播所要時間として検出し、この伝播所要時間に基づいて水素ガスの流速と流量を算定する。 When receiving a transmission trigger from the control circuit, the receiving circuit 7 receives, filters, amplifies, and supplies the received ultrasonic signals supplied from the receiving sensors 10 and 11 dedicated for reception to the signal processing circuit 9. The signal processing circuit 9 obtains a correlation with the subsequent reception ultrasonic signal while giving a constant delay amount τ to the previous reception ultrasonic signal. The signal processing circuit 9 detects the delay amount τ 0 given to obtain the maximum correlation value as the time required for propagation of the ultrasonic waves between the receiving sensors 10 and 11 in the downstream direction and the upstream direction, and this propagation requirement is detected. Calculate the flow rate and flow rate of hydrogen gas based on time.

このように、受信専用の超音波センサを流路の沿って2個配置し、両者の受信信号の相関をとることによって伝播所要時間を検出する方法を採用すると、受信波形のくずれなどによる測定精度の低下を有効に防止でき、高精度の検出を行うことができる。このような高精度の測定方法の更に詳細な内容については、本出願人の先願の特許第3368305などを参照されたい。   In this way, when two ultrasonic sensors dedicated to reception are arranged along the flow path and the method of detecting the required propagation time by correlating the received signals of both is used, the measurement accuracy due to the reception waveform breakage etc. Can be effectively prevented, and highly accurate detection can be performed. For further details of such a high-accuracy measurement method, refer to Japanese Patent No. 3368305 filed by the present applicant.

以上、水素ガスの流量を測定する場合に例にあげて本発明の超音波流量計を説明した。しかしながら、測定対象は水素ガスに限られず、他の適宜な気体や液体などの流体とすることができる。   The ultrasonic flowmeter of the present invention has been described above by way of example when measuring the flow rate of hydrogen gas. However, the measurement target is not limited to hydrogen gas, and may be other appropriate gas or fluid such as liquid.

また、管路のフランジと超音波トランスジューサとの間にTFEのガスケットとアルミニュウム合金製のガスケットとをスペーサーとして介在させて相互の境界面で超音波を反射させることにより、超音波の伝播を阻止する構成を例示した。しかしながら、音響インピーダンスの異なる素材の複数のスペーサーどうしでありさえすれば、この組合せに限定されず、ゴム製のOリングなどを金属製のガスケットと組合せて使用することもできる。   In addition, the TFE gasket and the aluminum alloy gasket are interposed as spacers between the flange of the duct and the ultrasonic transducer, and the ultrasonic waves are reflected by the mutual interface to prevent the propagation of the ultrasonic waves. The configuration is illustrated. However, as long as there are a plurality of spacers made of materials having different acoustic impedances, the present invention is not limited to this combination, and a rubber O-ring or the like can be used in combination with a metal gasket.

本発明の一実施例の超音波流量計の全体構成を示す図であり、管路部分については断面図で、回路部分については機能ブロック図で示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the whole structure of the ultrasonic flowmeter of one Example of this invention, A sectional view is shown about a pipe line part, and a functional block diagram is shown about a circuit part. 図1の超音波トランスジューサ4とその取付け部分の詳細を示す部分断面図である。It is a fragmentary sectional view which shows the detail of the ultrasonic transducer 4 of FIG. 1, and its attachment part. 従来の超音波流量計の管路部分の構成を示す断面図である。It is sectional drawing which shows the structure of the pipe line part of the conventional ultrasonic flowmeter.

符号の説明Explanation of symbols

1 流量測定管路
2 流入部
3 流出部
4,5 超音波トランスジューサ
6 送信回路
7 受信回路
8 制御回路
9 信号処理回路
10,11 受信センサ
12 内部管路
13 保持部
41 ケース
42 圧電素子(PZT)
43 被覆
44 フランジ
45,46 TFE製のガスケット
47 アルミ合金製のガスケット
48 ブッシュ付き締めつけボルト
21 流速測定管路
22 流入部
23 流出部
24,25 トランスジューサ
1 Flow measurement line
2 Inflow section
3 Outflow part
4,5 Ultrasonic transducer
6 Transmitter circuit
7 Receiver circuit
8 Control circuit
9 Signal processing circuit
10,11 Receive sensor
12 Internal pipeline
13 Holding part
41 cases
42 Piezoelectric element (PZT)
43 Coating
44 Flange
45,46 TFE gasket
47 Gasket made of aluminum alloy
48 Tightening bolt with bush
21 Flow velocity measurement line
22 Inlet
23 Outflow part
24,25 Transducer

Claims (7)

直線状の流速測定管路の両端に流体の流入部と流出部とを形成し、これら流入部と流出部のそれぞれに送受波面の法線が前記流速測定管路の軸線とほぼ一致するように対向させて超音波トランスジューサを取り付け、前記流速測定管路の内部を上流方向と下流方向に伝搬する超音波の伝搬所要時間の相違に基づき前記流速測定管路内を流れる流体の流速と流量とを測定する超音波流量計において、
前記流速測定管路内に同軸に形成されかつ前記超音波トランスジューサの送受波面の径よりも小さくかつ管軸方向にほぼ同一の内径を有する内部管路を備えたことを特徴とする超音波流量計。
An inflow portion and an outflow portion of the fluid are formed at both ends of the linear flow velocity measuring pipe, and the normal line of the transmission / reception surface at each of the inflow portion and the outflow portion substantially coincides with the axis of the flow velocity measuring pipe. The ultrasonic transducers are attached to face each other, and the flow velocity and flow rate of the fluid flowing in the flow velocity measurement pipe are determined based on the difference in the propagation time of the ultrasonic waves propagating in the upstream direction and the downstream direction in the flow velocity measurement line. In the ultrasonic flowmeter to measure,
An ultrasonic flowmeter comprising an inner pipe formed coaxially in the flow velocity measuring pipe and having a diameter that is smaller than the diameter of the wave transmitting / receiving surface of the ultrasonic transducer and substantially the same in the pipe axis direction. .
請求項1において、
前記内部管路の両端部の内壁面には、各端面に向けて内径が緩やかに拡大するテーパーが形成されたことを特徴とする超音波流量計。
In claim 1,
2. An ultrasonic flowmeter according to claim 1, wherein inner walls of both end portions of the inner pipe are formed with a taper whose inner diameter gradually increases toward each end surface.
請求項1と2のそれぞれにおいて、
前記超音波トランスジューサは、前記流速測定管路の端部に形成されたフランジに対してガスケット、Oリングその他の音響インピーダンスが互いに異なる素材の複数のスペーサを介在させながら取付けられたことを特徴とする超音波流量計。
In each of claims 1 and 2,
The ultrasonic transducer is attached to a flange formed at an end portion of the flow velocity measuring pipe while interposing a plurality of spacers made of materials having different acoustic impedances such as gaskets, O-rings, and the like. Ultrasonic flow meter.
請求項3において、
前記超音波トランスジューサは、前記フランジに取付けるボルトに対して合成樹脂製のガスケットを用いたことを特徴とする超音波流量計。
In claim 3,
The ultrasonic flowmeter is characterized in that the ultrasonic transducer uses a gasket made of synthetic resin for a bolt attached to the flange.
請求項1乃至4のそれぞれにおいて、
前記内部管路の流路に沿って離間する2点に設置された受信専用の超音波センサと、
これら受信専用の超音波センサで受信された超音波信号の時間差を各受信信号の波形の相関に基づき検出することにより前記伝播所要時間を検出する検出部とを備えたことを特徴とする超音波流量計。
In each of claims 1 to 4,
A reception-only ultrasonic sensor installed at two points spaced along the flow path of the internal conduit;
An ultrasonic wave comprising: a detecting unit that detects the time required for propagation by detecting a time difference between ultrasonic signals received by these dedicated ultrasonic sensors based on a correlation between waveforms of the received signals. Flowmeter.
請求項1乃至5のそれぞれにおいて、
前記超音波トランスジューサのそれぞれの送受波面に音響整合層が形成されたことを特徴とする超音波流量計。
In each of claims 1 to 5,
An ultrasonic flowmeter characterized in that an acoustic matching layer is formed on each transmitting / receiving surface of the ultrasonic transducer.
請求項1乃至6のそれぞれにおいて、
前記流体は水素であり、前記流速測定管路、前記流入部および流出部の素材は金属であることを特徴とする超音波流量計。




In each of claims 1 to 6,
2. The ultrasonic flowmeter according to claim 1, wherein the fluid is hydrogen, and the material for the flow velocity measuring pipe, the inflow portion, and the outflow portion is metal.




JP2003419057A 2003-12-17 2003-12-17 Ultrasonic flowmeter Pending JP2005180988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419057A JP2005180988A (en) 2003-12-17 2003-12-17 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419057A JP2005180988A (en) 2003-12-17 2003-12-17 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2005180988A true JP2005180988A (en) 2005-07-07

Family

ID=34781056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419057A Pending JP2005180988A (en) 2003-12-17 2003-12-17 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2005180988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074932A (en) * 2007-09-20 2009-04-09 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
KR101064324B1 (en) 2009-10-30 2011-09-14 (주)씨엠엔텍 Ultrasonic flowmeter
JP2013113791A (en) * 2011-11-30 2013-06-10 Yazaki Energy System Corp Gas meter
WO2017048848A1 (en) * 2015-09-14 2017-03-23 Michael Mullin Flow meter system
CN108593026A (en) * 2018-07-04 2018-09-28 湖北锐意自控系统有限公司 A kind of flow passage structure and gas flowmeter scale based on ultrasonic wave principle
CN111595397A (en) * 2020-04-24 2020-08-28 清华大学 Measuring pipe body structure for ultrasonic gas meter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074932A (en) * 2007-09-20 2009-04-09 Aichi Tokei Denki Co Ltd Ultrasonic flowmeter
KR101064324B1 (en) 2009-10-30 2011-09-14 (주)씨엠엔텍 Ultrasonic flowmeter
JP2013113791A (en) * 2011-11-30 2013-06-10 Yazaki Energy System Corp Gas meter
WO2017048848A1 (en) * 2015-09-14 2017-03-23 Michael Mullin Flow meter system
GB2558473A (en) * 2015-09-14 2018-07-11 Cameron Tech Ltd Flow meter system
US10281306B2 (en) 2015-09-14 2019-05-07 Cameron International Corporation Flow meter system
GB2558473B (en) * 2015-09-14 2021-12-22 Cameron Tech Ltd Flow meter system
CN108593026A (en) * 2018-07-04 2018-09-28 湖北锐意自控系统有限公司 A kind of flow passage structure and gas flowmeter scale based on ultrasonic wave principle
CN111595397A (en) * 2020-04-24 2020-08-28 清华大学 Measuring pipe body structure for ultrasonic gas meter

Similar Documents

Publication Publication Date Title
JP5629265B2 (en) Ultrasonic flow meter
JP2008134267A (en) Ultrasonic flow measurement method
US6681641B2 (en) Clamp-on gas flowmeter
WO2005061997A1 (en) Ultrasonic flowmeter
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
JP3761399B2 (en) Ultrasonic flow meter
JP2015001507A (en) Ultrasonic flow meter
JP5046330B2 (en) Ultrasonic flowmeter and ultrasonic transducer unit
CN103477194A (en) Coupling element of an ultrasonic transducer for an ultrasonic flow meter
RU2708904C1 (en) Method and system for ultrasonic overhead flow measurement and body for measurement
JP2018105735A (en) Ultrasonic flowmeter, ultrasonic shock absorber, ultrasonic flow measurement, ultrasonic shock absorption method, and method of attaching ultrasonic shock absorber
JP2005180988A (en) Ultrasonic flowmeter
US6820500B2 (en) Small pipe bore ultrasonic flowmeter detector
JP2011038870A (en) Ultrasonic flow meter and flow rate measuring method using the same
JP2002236042A (en) Flowmeter
JP2006208159A (en) Ultrasonic flowmeter
JP7151344B2 (en) Pressure measuring device
US20180299306A1 (en) Apparatus for ultrasonically measuring the flow rate of a fluid in a measuring channel, achieving an attenuation of the parasitic signals
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
JP4561071B2 (en) Flow measuring device
JP2005195371A (en) Ultrasonic flowmeter, and sound absorbing material for ultrasonic flowmeter
JP2024058751A (en) Ultrasonic flowmeter
JP6187661B2 (en) Ultrasonic flow meter
JP4296947B2 (en) Ultrasonic transceiver unit of Doppler type ultrasonic flow velocity distribution meter
JP3721404B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808