CN111595397A - Measuring pipe body structure for ultrasonic gas meter - Google Patents
Measuring pipe body structure for ultrasonic gas meter Download PDFInfo
- Publication number
- CN111595397A CN111595397A CN202010332755.7A CN202010332755A CN111595397A CN 111595397 A CN111595397 A CN 111595397A CN 202010332755 A CN202010332755 A CN 202010332755A CN 111595397 A CN111595397 A CN 111595397A
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- port
- ultrasonic sensor
- gas meter
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/662—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/18—Supports or connecting means for meters
- G01F15/185—Connecting means, e.g. bypass conduits
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Electromagnetism (AREA)
Abstract
本发明涉及一种用于超声波气表的测量管体结构,其包括:一第一端口气舱、一第二端口气舱、一直线型测量管、一第一超声波传感器、一第二超声波传感器以及密封螺栓;所述第一超声波传感器和所述第二超声波传感器的中心轴线,与所述直线型测量管的中心轴线重合。本发明通过超声波气表两端设计的端口气舱进行缓冲,保证测量管路内气流稳定;利用直线型测量管路进行测量,流速测量灵敏度高,超声波气表流量测量的准确性好;外形简单,易于加工和装配,并具有良好的密封效果。
The invention relates to a measuring tube structure for an ultrasonic gas meter, which comprises: a first port air chamber, a second port air chamber, a linear measuring tube, a first ultrasonic sensor, and a second ultrasonic sensor and a sealing bolt; the central axes of the first ultrasonic sensor and the second ultrasonic sensor coincide with the central axis of the linear measuring tube. The invention uses the port air chambers designed at both ends of the ultrasonic gas meter for buffering, so as to ensure the stable airflow in the measurement pipeline; using a linear measurement pipeline for measurement, the flow velocity measurement sensitivity is high, and the accuracy of the ultrasonic gas meter flow measurement is good; and the shape is simple. , easy to process and assemble, and has a good sealing effect.
Description
技术领域technical field
本发明涉及一种用于超声波气表的测量管体结构,属于计量设备技术领域。The invention relates to a measuring tube body structure for an ultrasonic gas meter, and belongs to the technical field of measuring equipment.
背景技术Background technique
近年来,我国天然气行业发展迅速,年消耗量逐年攀升,根据相关数据可以得知,我国天然气消费总量在1994年时为173亿立方米,而到了2010年增加到了1076亿立方米,并且年增长率也很高,截止到2016年,这一数据已经翻了一倍,已经达到了2058亿立方米。虽然近年来天然气的产量和消费增速有所放缓,但是市场依旧非常庞大。此外,随着国家产业能源结构的调整,天然气属于清洁能源,在国家的能源结构中的占比也会逐渐增加,然而我国现有的居民天然气结算方式相对还很老旧,不仅不利于国家数据的统计和资源分配,同时也不方便居民进行天然气资源的使用。In recent years, my country's natural gas industry has developed rapidly, and the annual consumption has been rising year by year. According to relevant data, the total natural gas consumption in my country was 17.3 billion cubic meters in 1994, but increased to 107.6 billion cubic meters in 2010. The growth rate is also high, and as of 2016, this figure has doubled to 205.8 billion cubic meters. Although the growth rate of natural gas production and consumption has slowed down in recent years, the market is still very large. In addition, with the adjustment of the national industrial energy structure, natural gas is a clean energy, and its proportion in the country's energy structure will gradually increase. However, my country's existing residential natural gas settlement method is relatively old, which is not only unfavorable for national data. statistics and resource allocation, and it is also inconvenient for residents to use natural gas resources.
从2005年开始,城市的燃气普及率就逐年提高,到2009年就已经达到了91.4%,“十二五”之后,城市的燃气普及率达到了94%以上,县城的燃气普及率达到了65%以上,用气家庭达到了2亿户。相关数据表明,我国膜式燃气表的市场规模在数千万台左右。Since 2005, the gas penetration rate in cities has been increasing year by year, and reached 91.4% in 2009. After the "Twelfth Five-Year Plan", the gas penetration rate in cities has reached more than 94%, and the gas penetration rate in county towns has reached 65%. % or more, and the number of households using gas has reached 200 million. Relevant data show that the market size of membrane gas meters in my country is about tens of millions.
2016年,上海市已经开始了“水,电,气”的三表集抄,利用原有的电表自动集抄的通道,将不同通信结构的智能水表,气表的数据采集之后,经过电力线载波或短距离无线等方式上传至电力集中器,利用原有的用电信息采集系统将数据传送至后台数据服务器。从而实现广大居民“抄表不进户,付费不出社区”的便利。而全国范围内的三表和四表集抄也将会是未来数字化社会的重要发展方向。由于传统的膜式气表是采用机械结构进行的气体流量的测量,很难进行智能化的集成,因此也需要更加精准、高效、稳定的新一代智能化气表来代替传统的膜式天然气表。In 2016, Shanghai has started the centralized reading of "water, electricity and gas" three meters, using the original automatic meter reading channel, after collecting the data of smart water meters and gas meters with different communication structures, through the power line carrier wave. Or short-distance wireless upload to the power concentrator, and use the original power consumption information collection system to transmit the data to the background data server. In this way, it is convenient for the majority of residents to "do not enter the household for meter reading, and do not pay for the community". The nationwide three-meter and four-meter collection copying will also be an important development direction of the future digital society. Since the traditional membrane gas meter uses a mechanical structure to measure the gas flow, it is difficult to integrate intelligently. Therefore, a more accurate, efficient and stable new generation of intelligent gas meters is needed to replace the traditional membrane gas meters. .
“十三五”时期(2016-2020年)将是我国全面建成小康社会,实现中华民族伟大复兴中国梦的关键时期,能源发展面临前所未有的机遇和挑战,天然气在我国能源革命中占据重要地位。在国家继续深化改革的政策指引下,天然气行业的发展环境将发生显著变化。天然气行业的不断发展与普及将及大的推动智能燃气表的发展。The "13th Five-Year Plan" period (2016-2020) will be a critical period for my country to build a moderately prosperous society in an all-round way and realize the Chinese dream of the great rejuvenation of the Chinese nation. Energy development faces unprecedented opportunities and challenges, and natural gas occupies an important position in my country's energy revolution. Under the guidance of the state's policy of continuing to deepen reforms, the development environment of the natural gas industry will undergo significant changes. The continuous development and popularization of the natural gas industry will greatly promote the development of smart gas meters.
当前,传统智能燃气表在解决燃气客户痛点时存在许多问题,比如数据传输不稳定、功耗高和抄表成功率低等。而以超声波流量测量技术并配备有物联网功能模块的超声波电子式燃气表具有高安全、广覆盖、大连接、低功耗和低成本等特点,可以较好的解决上述问题,并更好的满足燃气客户的发展需求。然而,现有超声波电子式燃气表中燃气流量测量的灵敏度较低。At present, traditional smart gas meters have many problems in solving the pain points of gas customers, such as unstable data transmission, high power consumption and low meter reading success rate. The ultrasonic electronic gas meter with ultrasonic flow measurement technology and equipped with the Internet of Things functional module has the characteristics of high security, wide coverage, large connection, low power consumption and low cost, which can better solve the above problems, and better Meet the development needs of gas customers. However, the sensitivity of gas flow measurement in existing ultrasonic electronic gas meters is low.
发明内容SUMMARY OF THE INVENTION
超声波燃气表的核心技术是对燃气流量的准确测量。本发明的目的是提供一种用于超声波气表的测量管体结构,采用了超声波测量气体流速的方式,可以精确地测量管道内部燃气/天然气/煤气的流速。The core technology of ultrasonic gas meter is the accurate measurement of gas flow. The purpose of the present invention is to provide a measuring tube structure for an ultrasonic gas meter, which can accurately measure the flow rate of gas/natural gas/gas inside the pipeline by adopting the method of measuring the gas flow rate by ultrasonic waves.
一种用于超声波气表的测量管体结构,其包括:一第一端口气舱、一第二端口气舱、一直线型测量管、一第一超声波传感器、一第二超声波传感器以及密封螺栓;所述第一超声波传感器和所述第二超声波传感器的中心轴线,与所述直线型测量管的中心轴线重合。A measuring tube body structure for an ultrasonic gas meter, comprising: a first port air chamber, a second port air chamber, a linear measuring tube, a first ultrasonic sensor, a second ultrasonic sensor and sealing bolts ; The central axes of the first ultrasonic sensor and the second ultrasonic sensor coincide with the central axis of the linear measuring tube.
一种用于超声波气表的测量管体结构,其包括:一第一端口气舱,该第一端口气舱设置一进气口;一第二端口气舱,该第二端口气舱设置一出气口;一直线型测量管;一第一超声波传感器;一第二超声波传感器;以及密封螺栓;所述直线型测量管相对的两端分别插入所述第一端口气舱和所述第二端口气舱;所述第一超声波传感器和所述第二超声波传感器的中心轴线,与所述直线型测量管的中心轴线重合。A measuring tube body structure for an ultrasonic gas meter, comprising: a first port air chamber, the first port air chamber is provided with an air inlet; a second port air chamber, the second port air chamber is provided with a air outlet; a straight measuring tube; a first ultrasonic sensor; a second ultrasonic sensor; and a sealing bolt; the opposite ends of the straight measuring tube are respectively inserted into the first port air chamber and the second end a tone chamber; the central axes of the first ultrasonic sensor and the second ultrasonic sensor coincide with the central axis of the linear measuring tube.
与现有技术相比,本发明提供的用于超声波气表的测量管体结构中,第一超声波传感器、第二超声波传感器的中心轴线与直线型测量管的中心轴线重合,直线型测量段距离较长,超声波在气流中传播的距离也较长,可以显著提高流速测量灵敏度,并可以降低可测最小流量和测量死区。Compared with the prior art, in the measuring tube structure for an ultrasonic gas meter provided by the present invention, the central axes of the first ultrasonic sensor and the second ultrasonic sensor coincide with the central axis of the linear measuring tube, and the distance between the linear measuring sections is Longer, the ultrasonic wave travels in the airflow for a longer distance, which can significantly improve the flow velocity measurement sensitivity, and can reduce the measurable minimum flow rate and measurement dead zone.
附图说明Description of drawings
图1是本发明提出的用于超声波气表的测量管体结构的结构示意图。FIG. 1 is a schematic structural diagram of a measuring tube structure for an ultrasonic gas meter proposed by the present invention.
图2是图1所示的用于超声波气表的测量管体结构的渲染图。FIG. 2 is a rendering diagram of the structure of the measuring tube for the ultrasonic gas meter shown in FIG. 1 .
图3是图1所示的用于超声波气表的测量管体结构的正视剖面图。FIG. 3 is a front sectional view of the measuring tube structure for the ultrasonic gas meter shown in FIG. 1 .
图4是图1所示的用于超声波气表的测量管体结构的标准三视图。FIG. 4 is a standard three view of the structure of the measuring tube body for the ultrasonic gas meter shown in FIG. 1 .
图5是本发明提出的超声波气表的测量原理示意图。FIG. 5 is a schematic diagram of the measurement principle of the ultrasonic gas meter proposed by the present invention.
图6是基于图1所示的用于超声波气表的测量管体结构的两块气表实际测试的误差结果。FIG. 6 is the error result of the actual test of two gas meters based on the measuring tube structure of the ultrasonic gas meter shown in FIG. 1 .
主要元件符号说明Description of main component symbols
测量管体结构 10
第一端口气舱 12First
进气口 122
第一通孔 124first through
第二通孔 126second through
第二端口气舱 142nd
出气口 142
第三通孔 144third through
第四通孔 146Fourth through
直线型测量管 16
第一端 162
第二端 164
第一超声波传感器 11first
第二超声波传感器 13Second
密封螺栓 18
出线孔 182
圆盘 15
通孔 152Through
如下具体实施方式将结合上述附图进一步说明本发明。The following specific embodiments will further illustrate the present invention in conjunction with the above drawings.
具体实施方式Detailed ways
下面将结合附图及具体实施例对本发明提供的用于超声波气表的测量管体结构作进一步的详细说明。The structure of the measuring tube body for the ultrasonic gas meter provided by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments.
请参见图1至图4,本发明提供的超声波气表的测量管体结构10包括一第一端口气舱12、一第二端口气舱14、一直线型测量管16、一第一超声波传感器11、一第二超声波传感器13和两个密封螺栓18。Referring to FIGS. 1 to 4 , the
所述第一端口气舱12具有一进气口122、一第一通孔124和一第二通孔126。所述进气口122为整个测量管体结构10的进气口122。所述第二端口气舱14具有一出气口142、一第三通孔144和一第四通孔146。所述出气口142为整个测量管体结构10的出气口142。优选的,所述进气口122和出气口142位于直线型测量管16的同侧。本实施例中,所述进气口122和出气口142位于直线型测量管16的上侧。The first
所述直线型测量管16是一中空的管状结构,包括第一端162和与第一端162相对的第二端164。所述第一端口气舱12与直线型测量管16的第一端162连接,所述第二端口气舱14与直线型测量管16的第二端164连接。所述第一端口气舱12和第二端口气舱14对称设置在所述直线型测量管16相对的两端。具体的,所述直线型测量管16的第一端162设置在所述第一端口气舱12的第二通孔126处,直线型测量管16的第二端164设置在所述第二端口气舱14的第三通孔144处。本实施例中,所述直线型测量管16的第一端162从第一端口气舱12的第二通孔126插入第一端口气舱12中,所述直线型测量管16的第二端164从第二端口气舱14的第三通孔144插入第二端口气舱14中。所述第一端口气舱12和第二端口气舱14通过密封圈或密封胶与所述直线型测量管16密封连接,并使用螺栓或钢箍固定。优选的,所述第一端162和第二端164呈喇叭口形状。The
所述第一超声波传感器11设置在第一端口气舱12远离所述直线型测量管16的一侧,所述第二超声波传感器13设置在第二端口气舱14远离所述直线型测量管16的一侧。具体的,所述第一超声波传感器11设置在第一端口气舱12的第一通孔124处,所述第二超声波传感器13设置在第二端口气舱14的第四通孔146处,并且第一超声波传感器11、第二超声波传感器13的中心轴线与所述直线型测量管16的中心轴线重合。也即,第一超声波传感器11和第二超声波传感器13的中心轴线与所述直线型测量管16的中心轴线形成的角度为零。所述第一超声波传感器11和所述第二超声波传感器13对称地设置在所述直线型测量管16相对的两端,但并未与所述直线型测量管16相对的两端(第一端162和第二端164)直接接触。本实施例中,第一超声波传感器11和第二超声波传感器13的中心轴线与所述直线型测量管16的中心轴线平行且重合。The first
所述第一超声波传感器11远离第一端口气舱12的一侧设有密封螺栓18,所述第二超声波传感器13远离第二端口气舱14的一侧设有密封螺栓18。所述密封螺栓18的中心留有出线孔182,以便第一超声波传感器11和第二超声波传感器13的导线穿过所述出线孔182与外电路连接。The side of the first
进一步,所述用于超声波气表的测量管体结构10还可以包括一圆盘15,该圆盘15具有一通孔152,所述直线型测量管16穿过所述圆盘15的通孔152,分别插入所述第一端口气舱12和第二端口气舱14。所述圆盘15设置在第一端口气舱12和第二端口气舱14的之间,用于与第一端口气舱12和第二端口气舱14连接,还可以使用密封圈或密封胶实现密封,使用螺栓或钢箍进行固定。Further, the measuring
也即,所述用于超声波气表的测量管体结构10的主体结构分为左中右三个部分。左、右两部分对称安装,其上部分别留有进气口122和出气口142,内部为空心气舱。所述左、右部分均是端口气舱,中间部分为圆盘15和直线型测量段(直线型测量管16)。圆盘15用于与左、右部分的端口气舱连接,可以使用密封圈或密封胶实现密封,使用螺栓或钢箍进行固定。直线型测量段的两端分别插入左、右两个端口气舱中,直线型测量段两端的喇叭口结构起到稳定气流的作用。超声波传感器安装在所述主体结构的左右两侧,使用密封螺栓18进行固定,密封螺栓18上留有出线孔182,供超声波传感器的导线穿出。所述左部分(第一端口气舱12)、右部分(第二端口气舱14)与中间部分(直线型测量管16)通过密封圈或者密封胶密封连接,并使用螺栓或钢箍固定。That is, the main structure of the measuring
请参见图5,所述用于超声波气表的测量管体结构10在使用时,气流从所述进气口122流入第一端口气舱12,在第一端口气舱12中减速,然后从直线型测量管16的第一端162流入直线型测量管16中,流经测量段(直线型测量管16)后,从直线型测量管16的第二端164流出,并进入第二端口气舱14,最后从所述出气口142排出。Referring to FIG. 5 , when the measuring
本发明采用所述用于超声波气表的测量管体结构10以及超声波时差法测量原理测量气体流速,并进而计算气体流量。气体的流动会导致第一超声波传感器11和第二超声波传感器13接收到的对方的超声信号的时间不同,该时间差的大小与气体流速成正相关。根据该原理即可测量出所述测量管体结构10内部的气体流速。所述超声波气表的种类不限,比如可以为超声波燃气表。本实施例中,所述超声波气表为超声波燃气表。The present invention adopts the measuring
图6给出了基于所述测量管体结构10的两个超声波燃气表的实际测试的误差结果,由图6可知,所述两个燃气表的测量精度达标。因此,实验证明所述用于超声波气表的测量管体结构10能够优化流体稳定性,减小测量误差。FIG. 6 shows the error results of the actual test of the two ultrasonic gas meters based on the measuring
进一步,直线型测量管16的直径越小,其节流效应越明显,即流经直线型测量管16的气体流速随其管径的减小而增大,同时超声波气表的测量管体结构10的压力损失随直线型测量管16的管径的减小而增大。因此,在满足国家标准规定的压力损失的指标下(即小于国家标准规定的压力损失),可以尽量减小直线型测量管16的直径,使得气体在直线型测量管16内的流速尽可能大,从而提高流速的检测灵敏度并改善最小流量检测下限。因此,可以通过减小直线型测量管16的直径的方式,进一步提高流速的检测灵敏度并降低最小流量检测下限。Further, the smaller the diameter of the linear measuring
所述用于超声波气表的测量管体结构10具有以下优点:第一、所述第一超声波传感器11、第二超声波传感器13的中心轴线与直线型测量管16的中心轴线重合,直线型测量段距离较长,因此超声波在气流中传播的距离也较长,可以显著提高流速测量灵敏度、降低可测最小流量、降低测量死区;第二、第一端口气舱12和第二端口气舱14分别位于直线型测量管16的两端,直线型测量管16两端的端口气舱对气流起到了较好的缓冲和稳流效果,使得测量管道内流场稳定,也可以控制测量噪声;第三、可以优化流体稳定性,减小测量误差;第四、外形简单,易于加工和装配,并具有良好的密封效果;第五、可以通过减小直线型测量管16的直径的方式,进一步提高流速的检测灵敏度以及降低最小流量的检测下限;第六、由于所述测量管体结构10为对称结构,也即第一端口气舱12和第二端口气舱14对称设置,第一超声波传感器11和第二超声波传感器13对称设置,两个密封螺栓18也对称设置,可以将两个端口气舱、两个超声波传感器、两个密封螺栓和所述直线型测量管16组装成为所述测量管体结构10,因此,制备方法简单,便于批量化生产。The measuring
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included within the scope of the claimed protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332755.7A CN111595397A (en) | 2020-04-24 | 2020-04-24 | Measuring pipe body structure for ultrasonic gas meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332755.7A CN111595397A (en) | 2020-04-24 | 2020-04-24 | Measuring pipe body structure for ultrasonic gas meter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111595397A true CN111595397A (en) | 2020-08-28 |
Family
ID=72185214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010332755.7A Pending CN111595397A (en) | 2020-04-24 | 2020-04-24 | Measuring pipe body structure for ultrasonic gas meter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111595397A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4365518A (en) * | 1981-02-23 | 1982-12-28 | Mapco, Inc. | Flow straighteners in axial flowmeters |
JPH1151722A (en) * | 1997-08-06 | 1999-02-26 | Yazaki Corp | Gas meter and its gas velocity measuring tube |
JP2005180988A (en) * | 2003-12-17 | 2005-07-07 | National Institute Of Advanced Industrial & Technology | Ultrasonic flow meter |
JP2006337059A (en) * | 2005-05-31 | 2006-12-14 | Aichi Tokei Denki Co Ltd | Ultrasonic flow meter |
JP2008128841A (en) * | 2006-11-21 | 2008-06-05 | Aichi Tokei Denki Co Ltd | Ultrasonic flow meter |
US20120118074A1 (en) * | 2010-11-12 | 2012-05-17 | Tatung Company | Ultrasonic gas flow measurement device |
CN105091963A (en) * | 2015-09-17 | 2015-11-25 | 成都千易信息技术有限公司 | Intelligent ultrasonic water meter |
US20170241822A1 (en) * | 2016-02-24 | 2017-08-24 | Wai Tung Ivan Wong | Utility mass flow gas meter |
CN108955789A (en) * | 2018-07-20 | 2018-12-07 | 广东万和新电气股份有限公司 | A kind of ultrasonic wave water flow sensor |
CN212340336U (en) * | 2020-04-24 | 2021-01-12 | 清华大学 | Measuring tube structure for ultrasonic gas meters |
-
2020
- 2020-04-24 CN CN202010332755.7A patent/CN111595397A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4365518A (en) * | 1981-02-23 | 1982-12-28 | Mapco, Inc. | Flow straighteners in axial flowmeters |
JPH1151722A (en) * | 1997-08-06 | 1999-02-26 | Yazaki Corp | Gas meter and its gas velocity measuring tube |
JP2005180988A (en) * | 2003-12-17 | 2005-07-07 | National Institute Of Advanced Industrial & Technology | Ultrasonic flow meter |
JP2006337059A (en) * | 2005-05-31 | 2006-12-14 | Aichi Tokei Denki Co Ltd | Ultrasonic flow meter |
JP2008128841A (en) * | 2006-11-21 | 2008-06-05 | Aichi Tokei Denki Co Ltd | Ultrasonic flow meter |
US20120118074A1 (en) * | 2010-11-12 | 2012-05-17 | Tatung Company | Ultrasonic gas flow measurement device |
CN105091963A (en) * | 2015-09-17 | 2015-11-25 | 成都千易信息技术有限公司 | Intelligent ultrasonic water meter |
US20170241822A1 (en) * | 2016-02-24 | 2017-08-24 | Wai Tung Ivan Wong | Utility mass flow gas meter |
CN108955789A (en) * | 2018-07-20 | 2018-12-07 | 广东万和新电气股份有限公司 | A kind of ultrasonic wave water flow sensor |
CN212340336U (en) * | 2020-04-24 | 2021-01-12 | 清华大学 | Measuring tube structure for ultrasonic gas meters |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109506729B (en) | Online detection method and device for gas-liquid two-phase flow parameters | |
CN103837214B (en) | Combined container type gas flow detection device by pVTt method | |
US10775214B2 (en) | Insertion type ultrasonic flow meter, flow measuring system and method | |
CN102322907B (en) | Dual flow measuring head integrated intelligent gas flow meter | |
CN107356297A (en) | Plug-in type ultrasonic flowmeter, Flow Measuring System and method | |
CN201837418U (en) | High-precision wide-range integrated throttle device | |
CN203964971U (en) | Bicavate ultrasonic wave gas meter | |
CN212340336U (en) | Measuring tube structure for ultrasonic gas meters | |
CN206945063U (en) | A kind of long throat Venturi tube and detection means for two-phase flow | |
CN111397678A (en) | A multi-stage rectifier MEMS gas flow meter | |
CN108801378B (en) | Civil ultrasonic gas meter and flow detection method with integrated transducer | |
CN202057366U (en) | Wide-range intelligence gas flow meter | |
CN111595397A (en) | Measuring pipe body structure for ultrasonic gas meter | |
CN106678553A (en) | Calculating method of propagation speed of leakage dynamic pressure waves in in-pipe gas | |
CN105157762A (en) | Turbo type flow meter | |
CN209014066U (en) | One kind being based on TDC-GP30 double-channel gas ultrasonic flowmeter | |
CN209296061U (en) | A kind of inserting-type flowmeter suitable for low flow velocity | |
CN203163793U (en) | Natural gas flow-meter | |
CN216246558U (en) | Reducing type porous balance flowmeter | |
CN207163510U (en) | Plug-in two-channel ultrasonic flowmeter | |
CN202329696U (en) | Online intelligent elbow meter | |
CN110792424A (en) | External axial type ultrasonic flow measurement device and method | |
CN116337167A (en) | Double-bent-tube flow pressure measuring structure and method thereof | |
CN108489563A (en) | A kind of measurement pipe structure for ultrasonic wave gas meter | |
CN205991821U (en) | Double ratio method dampness liquid phase content measurement apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |