JP2005179699A - Method for inhibiting potential of stainless steel from becoming noble - Google Patents
Method for inhibiting potential of stainless steel from becoming noble Download PDFInfo
- Publication number
- JP2005179699A JP2005179699A JP2003418217A JP2003418217A JP2005179699A JP 2005179699 A JP2005179699 A JP 2005179699A JP 2003418217 A JP2003418217 A JP 2003418217A JP 2003418217 A JP2003418217 A JP 2003418217A JP 2005179699 A JP2005179699 A JP 2005179699A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- potential
- water
- corrosion
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
本発明は、河川水・湖水・地下水貯蔵用タンク類、河川水・湖水・地下水輸送用パイプ類、河口堰、水門、工業用水・農業用水利用設備、上水・下水処理設備、温度調節用循環水設備、産業排水処理設備など、直接微生物が存在する淡水と接する環境で使用する、ステンレス鋼の電位貴化抑制方法に関するものである。 The present invention includes river water / lake water / ground water storage tanks, river water / lake water / ground water transport pipes, estuary weirs, sluice gates, industrial water / agricultural water utilization equipment, water / sewage treatment equipment, temperature control circulation The present invention relates to a method for suppressing potential nobleness of stainless steel used in an environment that is in direct contact with fresh water in which microorganisms exist, such as water facilities and industrial wastewater treatment facilities.
従来、河川水・湖水・地下水貯蔵用タンク類、河川水・湖水・地下水輸送用パイプ類、河口堰、水門、工業用水・農業用水利用設備、上水・下水処理設備、温度調節用循環水設備、産業排水処理設備などの淡水に直接接触する機器類の材料には、塩濃度や温度条件によって炭素鋼、低合金鋼、ステンレス鋼、銅合金、チタンなどが使い分けられている。
また、これ以外に有機被覆やFRP被覆、亜鉛メッキなどを施した材料も多く用いられているのが現状である。
Conventionally, tanks for river water / lake water / ground water storage, pipes for river water / lake water / ground water transport, estuary weirs, sluices, industrial water / agricultural water use facilities, water / sewage treatment facilities, circulating water facilities for temperature control Carbon steel, low alloy steel, stainless steel, copper alloy, titanium, etc. are properly used as materials for equipment that comes into direct contact with fresh water, such as industrial wastewater treatment facilities, depending on the salt concentration and temperature conditions.
In addition to this, the present situation is that many materials coated with organic coating, FRP coating, galvanization, etc. are used.
塩濃度が高い海水環境中では、すきま腐食や約60℃以上の使用条件で応力腐食割れの生ずる可能性があるため、耐海水性ステンレス鋼として、20%Cr−25%Ni−4.5%Mo−1.5%Cu鋼や、20%Cr−24%Ni−6%Mo鋼などのオ−ステナイト系ステンレス鋼や、28%Cr−1.2%Ni−3.5%Mo鋼や、29%Cr−2%Ni−4%Mo鋼などのフェライト系ステンレス鋼などがある。
オーステナイト系耐海水性ステンレス鋼は、NiおよびMoを高濃度で添加する必要があり、フェライト系耐海水性ステンレス鋼はCrおよびMoを高濃度で添加する必要があることから高価である。なお、本明細書において特に説明がない場合は、%は質量%をあらわす。
In seawater environments where the salt concentration is high, crevice corrosion and stress corrosion cracking may occur under operating conditions of about 60 ° C or higher. Therefore, 20% Cr-25% Ni-4.5% Austenitic stainless steel such as Mo-1.5% Cu steel, 20% Cr-24% Ni-6% Mo steel, 28% Cr-1.2% Ni-3.5% Mo steel, There are ferritic stainless steels such as 29% Cr-2% Ni-4% Mo steel.
Austenitic seawater resistant stainless steel is expensive because Ni and Mo need to be added at high concentrations, and ferritic seawater resistant stainless steel needs to be added at high concentrations of Cr and Mo. Unless otherwise specified in the present specification,% represents mass%.
これに対し、海水と比較して、塩素イオン濃度が低い河川水・湖沼水などの淡水では汎用ステンレス鋼であり、比較的安価なSUS304(18%Cr−8%Ni)などが使用される。耐食性の観点からは、淡水中でも先に記述したような耐海水性ステンレス鋼を用いることは可能である。しかし耐海水性ステンレス鋼は非常に高価であることから、淡水中で使用するためにはコスト的に大きな課題がある。 On the other hand, compared to seawater, fresh water such as river water and lake water having a low chlorine ion concentration is general-purpose stainless steel, and relatively inexpensive SUS304 (18% Cr-8% Ni) is used. From the viewpoint of corrosion resistance, it is possible to use seawater resistant stainless steel as described above even in fresh water. However, since seawater-resistant stainless steel is very expensive, there is a significant cost problem in order to use it in fresh water.
河川水・湖沼水などの淡水中で、微生物が酸素を利用できる好気的な条件下でステンレス鋼を使用すると、ステンレス鋼の表面には好気性の微生物が付着増殖してバイオフィルムが形成される。そして生物の代謝物の作用によって、ステンレス鋼の自然電位が貴な電位へシフト(貴化)する。ステンレス鋼が接する水の中に好気性微生物が少しでも存在すれば、微生物が増殖することにより電位貴化は起こり得る。そして電位の貴化はステンレス鋼のアノード溶解を加速させる要因となるため、電位が貴化したステンレス鋼では、すきま腐食などの腐食が発生しやすくなる。このように微生物作用が原因で起こる腐食は微生物腐食と呼ばれている。 When stainless steel is used in fresh water such as river water and lake water under aerobic conditions where microorganisms can use oxygen, aerobic microorganisms adhere to and grow on the surface of stainless steel to form a biofilm. The The natural potential of stainless steel shifts to a noble potential due to the action of biological metabolites. If there are any aerobic microorganisms in the water in contact with the stainless steel, potential nomination can occur due to the growth of the microorganisms. Since the noble potential becomes a factor that accelerates anodic dissolution of the stainless steel, corrosion such as crevice corrosion is likely to occur in the stainless steel with the noble potential. Such corrosion caused by microbial action is called microbial corrosion.
このように微生物を含む淡水と接触して使用するステンレス鋼の電位が貴化すると、腐食発生の原因となる。さらに、電位貴化はステンレス鋼自体の腐食のみならずステンレス鋼と電気的に接触している、軟鋼のような電気化学的に卑な金属との間でガルバニックセルを形成して、接触している金属の腐食をさらに促進する要因ともなる。したがって、ステンレス鋼の電位貴化を抑制する技術の確立が求められている。 Thus, when the potential of stainless steel used in contact with fresh water containing microorganisms becomes noble, it causes corrosion. In addition, the potential nomination not only corrodes the stainless steel itself, but also makes electrical contact with the stainless steel, forming a galvanic cell with an electrochemically base metal such as mild steel and making contact. It is also a factor that further accelerates the corrosion of existing metals. Therefore, establishment of the technique which suppresses the potential nomination of stainless steel is required.
淡水中で起こる微生物腐食を防止するために、いくつかの方法が提案されている。
特許文献1はステンレス鋼を6価のCrイオンと3価のFeイオンが存在する溶液中で通電により、電解酸化処理と電解還元処理を行うことで、ステンレス鋼の表面を改質し、電位貴化を抑制して腐食を防止しようとする技術である。
特許文献2は、ステンレス鋼が接する水中の塩素イオンを硫酸イオンなどの他の陰イオンで置き換えて、電位貴化により起こるステンレス鋼のすき間腐食に対して、塩素イオンがすき間腐食部位に流入するのを抑制して腐食を抑制しようとする技術である。
Several methods have been proposed to prevent microbial corrosion that occurs in fresh water.
In
In
特許文献3は、冷却水管などでステンレス鋼が接する水の中に水処理剤として殺菌剤を添加して、微生物を殺菌あるいは静菌することにより、微生物作用を抑制して腐食を防止しようとする技術である。
特許文献4は、ステンレス鋼組成に抗菌性が知られるAgを添加することにより、微生物作用を抑制して腐食を防止しようとする技術である。
特許文献5は、外部から電位を印加して、微生物作用による電位貴化を強制的に発生させず、腐食を防止しようとする技術である。
特許文献6および特許文献7は、実際の河川水、湖沼水中にステンレス鋼での試験片を浸漬した場合の、貴化した自然電位の実測データを元に、貴化した自然電位の実測値よりも高い値のすき間腐食再不働態化電位(ER,CREV)を持つ、耐すき間腐食性の淡水用ステンレス鋼に関するものである。
以上のように、微生物が酸素を利用できる好気的な環境で、好気性微生物が存在する河川水、湖沼水などの淡水中で、微生物作用により起こる電位貴化に対する耐食性、特に最も発生しやすいすき間腐食に対して、淡水と接触する環境で使用するステンレス鋼の電位貴化を抑制し、すき間腐食を抑制する方法の開発が望まれている。
尚、本発明が対照とする淡水とは、河川水、湖沼水、地下水、雨水や、これらを利用する上下水道水、工業用水、農業用水、冷却水などの、海水(塩素イオン濃度19000mg/L)と比較して塩素イオン濃度が低い水のことである。したがって、純水から河口付近の河川水までの塩素イオン濃度を想定しており、塩素イオン濃度が0mg/L以上、1000mg/L以下である水を、本発明では淡水として記載する。
As described above, in the aerobic environment where microorganisms can use oxygen, in the fresh water such as river water and lake water where aerobic microorganisms exist, corrosion resistance against potential nobleness caused by microbial action, especially most likely to occur With respect to crevice corrosion, it is desired to develop a method for suppressing potential corrosion of stainless steel used in an environment in contact with fresh water and suppressing crevice corrosion.
In addition, the fresh water which this invention contrasts is seawater (chlorine ion density | concentration 19000 mg / L), such as river water, lake water, groundwater, rainwater, and the water and sewage water which uses these, industrial water, agricultural water, and cooling water ) Is a water having a low chloride ion concentration compared to. Therefore, the chlorine ion concentration from pure water to the river water near the river mouth is assumed, and water having a chlorine ion concentration of 0 mg / L or more and 1000 mg / L or less is described as fresh water in the present invention.
河川水、湖沼水などの塩濃度の低い淡水環境において使用するステンレス鋼で、好気性微生物の作用による自然電位(腐食電位や、Open Circuit Potentialとも呼ばれる)の貴化に起因する腐食、特に発生しやすいすき間腐食に対して、対策技術がいくつか提案されているものの、これらには以下のような課題がある。 Stainless steel used in freshwater environments with low salt concentrations, such as river water and lake water. Corrosion caused by the nobleness of natural potential (also called corrosion potential or Open Circuit Potential) due to the action of aerobic microorganisms. Although several countermeasure techniques have been proposed for easy crevice corrosion, these have the following problems.
まず特許文献1の、ステンレス鋼を6価のCrイオンと3価のFeイオンが存在する溶液中で通電により、電解酸化処理と電解還元処理を行うことで、ステンレス鋼の表面を改質し、電位貴化を抑制して腐食を防止しようとする技術についてであるが、ステンレス鋼に対してこのような電解処理を実施することは、多大なコストを生ずる原因となり、現実的でない。また、特許文献1では僅か3ヶ月間という短期間の浸漬試験で、電位貴化抑制と、耐すき間腐食性が向上に効果があったと記述されている。しかしながら、特許文献6に示されているように、十分な電位貴化の作用を調べるためには最低でも1年間以上の浸漬期間が必要であると考えられる。表面改質の効果が長期間維持されるということも実証されていない。
First, the surface of stainless steel is modified by conducting electrolytic oxidation treatment and electrolytic reduction treatment of the stainless steel of
特許文献2および特許文献3の、ステンレス鋼が接する水の組成を変えたり、抗菌剤などの水処理剤を用いて腐食を抑制しようとする技術については、冷却水系など水量が限られている場合には適用可能と考えられるが、河川水や湖沼水に浸漬して用いる場合などには、水の組成を変えることは一般に困難であり、水処理剤の投入も難しい。
特許文献4の、ステンレス鋼組成に抗菌性が知られるAgを添加することにより、微生物作用を抑制して腐食を防止しようとする技術については、Agを添加すると高価になること、そして耐食性が劣化することに大きな課題がある。また、Agの抗菌作用が淡水環境の微生物に効果があって、微生物付着を本当に長期間防止できるのか全く証明されていない点にも課題がある。
When the amount of water, such as a cooling water system, is limited for the techniques of changing the composition of water in contact with the stainless steel of
Regarding the technology for preventing corrosion by suppressing the microbial action by adding Ag, which is known to have antibacterial properties, to the stainless steel composition of
特許文献5の、外部から電位を印加して、微生物作用による電位貴化を強制的に発生させず腐食を防止しようとする技術については、基本的に一般に実施されている電気防食である。電位印加のための設備コストが必要となる他、電位印加装置の運転と維持管理にもコストがかかる。したがって、長期間の使用では大幅なコスト増加となる課題がある。
The technique of
特許文献6および特許文献7は、実際の河川水、湖沼水中にステンレス鋼での試験片を浸漬した場合の、貴化した自然電位の実測データを元に、貴化した自然電位の実測値よりも高い値のすき間腐食再不働態化電位(ER,CREV)を持つ、耐すき間腐食性の淡水用ステンレス鋼についてである。
特許文献6は、オーステナイト系ステンレス鋼に関するものである。鋼中のNi含有量を10〜15%に規定している。Niは高価な元素であるため、Ni含有量を10%より下げて安価にできることが望ましい。
特許文献7はフェライト系ステンレス鋼に関するものであり、Ni含有量も低く低価格である。しかし、淡水で一般に使用されているSUS304やSUS316Lのようなオーステナイト系ステンレス鋼と比べると、フェライト系ステンレス鋼は耐すき間腐食性に劣ると考えられており、使用実績が少なく使用は限られたものとなる。
そこで本発明は、このような塩濃度の低い淡水環境に適用可能な耐すき間腐食性に優れた淡水用ステンレス鋼に関するものであって、河川水・湖水・地下水貯蔵用タンク類、河川水・湖水・地下水輸送用パイプ類、河口堰、水門、工業用水・農業用水利用設備、上水・下水処理設備、温度調節用循環水設備、産業排水処理設備などの設備材料として使用され、当該設備の長寿命化・安全性などを長期にわたってメンテナンスフリーで確保することを可能する淡水用ステンレス鋼を提供するものである。
具体的には、淡水環境で汎用されるオーステナイト系ステンレス鋼のSUS304(18%Cr8%Ni)の基本組成をベースとして、新たな金属元素を添加することにより微生物作用による電位貴化を抑制し、耐すき間腐食性に優れ、且つ経済性にも優れた、淡水と接触する環境で使用するステンレス鋼の電位貴化抑制方法を提供するものである。
Accordingly, the present invention relates to a stainless steel for fresh water having excellent crevice corrosion resistance applicable to such a fresh water environment having a low salt concentration, and includes tanks for storing river water, lake water and groundwater, river water and lake water.・ Used as equipment materials for underground water transport pipes, estuaries weirs, sluice gates, industrial water / agricultural water use facilities, water and sewage treatment facilities, circulating water facilities for temperature control, industrial wastewater treatment facilities, etc. We provide stainless steel for fresh water that can ensure longevity and safety over a long period of time without maintenance.
Specifically, based on the basic composition of SUS304 (18% Cr8% Ni) of austenitic stainless steel that is widely used in freshwater environments, the addition of a new metal element suppresses potential nobility due to microbial action, It is an object of the present invention to provide a method for suppressing potential nobleness of stainless steel used in an environment in contact with fresh water, which is excellent in crevice corrosion resistance and economical.
ステンレス鋼の電位貴化は、酸素を利用できる好気的な環境で、微生物が存在する河川水、湖沼水、地下水などの淡水中や、海水中などで共通して起こる現象である。好気性微生物が極僅かでも存在すれば、増殖等により電位貴化が生じる。
特許文献6では、河川水・湖水にSUS304を浸漬した場合の自然電位の経時変化を報告している。いずれの河川水・湖水中においても自然電位は、浸漬時間の経過と共に貴な電位に貴化し、概ね1〜2年でほぼ一定値に貴化して落ち着くことが報告されている。
Stainless steel potential nobility is an aerobic environment in which oxygen can be used, and is a phenomenon that occurs in common in fresh water such as river water, lake water, and groundwater in which microorganisms exist, and in seawater. If there is a very small amount of aerobic microorganisms, potential nomination occurs due to growth or the like.
実環境では約+400mV(飽和塩化カリウム入り銀−塩化銀電極基準)程度まで自然電位が貴化することが報告されている。また、微生物作用がないイオン交換水中では、SUS304鋼を浸漬した場合の自然電位が約+100〜+150mV(飽和塩化カリウム入り銀−塩化銀電極基準)であることも報告されている。この相違は微生物の電位貴化作用によるものである。
同様に非特許文献1では、自然海水中でも微生物作用により、SUS304の自然電位が+400mV(飽和塩化カリウム入り銀−塩化銀電極基準)程度まで貴化することも報告されている。なお、本発明で記載する電位値は全て飽和塩化カリウム入り銀−塩化銀電極基準で測定した値である。
従って、SUS304の自然電位の貴化は、淡水、海水で共通して起こる現象である。
It has been reported that the natural potential becomes noble to about +400 mV (saturated potassium chloride-containing silver-silver chloride electrode standard) in an actual environment. It has also been reported that in ion-exchanged water having no microbial action, the natural potential when SUS304 steel is immersed is about +100 to +150 mV (saturated potassium chloride-containing silver-silver chloride electrode standard). This difference is due to the potential noble action of microorganisms.
Similarly,
Therefore, the nomination of the natural potential of SUS304 is a phenomenon that occurs in common in fresh water and seawater.
例えば、淡水用ステンレス鋼として汎用されているSUS304を河川水、湖沼水に浸漬すると1〜2年間で電位は貴化するが、腐食はなかなか起こらない。実際の構造物等でSUS304を使用する場合、数十年間以上の長期間にわたって使用されることを考えると、実使用と相当する期間、浸漬試験を行なって耐食性を評価することは、容易ではない。 For example, when SUS304, which is widely used as a stainless steel for fresh water, is immersed in river water or lake water, the potential becomes noble in 1 to 2 years, but corrosion hardly occurs. When SUS304 is used in an actual structure or the like, it is not easy to evaluate the corrosion resistance by performing an immersion test for a period corresponding to actual use, considering that it will be used for a long period of several decades or more. .
そこで本発明者らは、上述の観点から、淡水中よりも厳しい腐食環境であり、かつ電位貴化が起こる自然海水中に、約2年間の長期間にわたってすき間構造を有する種々のステンレス鋼試験材を浸漬して、その自然電位(自然ポテンシャルと呼ぶ)測定を継続して行なうと共に、耐食性を評価することにした。海水中で浸漬試験することで、淡水よりも劣悪な腐食環境で耐食性を評価することにより、淡水での使用に十分な耐食性を発揮できるステンレス鋼を見出すことが可能と考えたからである。 Therefore, from the above viewpoint, the present inventors have developed various stainless steel test materials having a gap structure over a long period of about two years in natural seawater, which is a more severe corrosive environment than fresh water and in which potential nobleness occurs. The natural potential (called natural potential) was continuously measured and the corrosion resistance was evaluated. This is because it was considered possible to find stainless steel capable of exhibiting sufficient corrosion resistance for use in fresh water by evaluating the corrosion resistance in a corrosive environment worse than fresh water by performing an immersion test in seawater.
そして浸漬試験完了後、種々のステンレス鋼の耐食性評価を行なった。鋭意検討の結果、基本組成が304系のステンレス鋼の鋼中に、Mo、またはMoに加えてCu,Vの1種または2種を添加するか、若しくはCu、またはCuおよびV、またはVおよびTiを添加することにより、304系ステンレス鋼で生ずる微生物作用による電位貴化を抑制でき、良好な耐食性が確保できることを見出した。そこで適切な上記元素の組み合わせ添加量の特定により本発明を完成した。 After completion of the immersion test, various stainless steels were evaluated for corrosion resistance. As a result of intensive studies, Mo or one or two of Cu and V in addition to Mo or Mo, or Cu, or Cu and V, or V and V is added to stainless steel having a basic composition of 304 series. It has been found that by adding Ti, potential nomination due to microbial action that occurs in 304 series stainless steel can be suppressed, and good corrosion resistance can be ensured. Therefore, the present invention was completed by specifying an appropriate combination amount of the above elements.
すなわち、本発明の要旨とするところは以下の通りである。
(1)質量%で、
C :0.004〜0.05%、 Si:0.01〜1%、
Mn:0.1〜2%、 P :0.03%以下、
S :0.01%以下、 Cr:17〜20%、
Ni:7.5〜10%、 Al:0.05%以下、
N :0.1〜0.3%、 O :0.005%以下
を含有し、さらに下記の1群の元素または2群の元素のいずれかを含有し、残部が鉄および不可避的不純物からなるステンレス鋼を、好気性微生物を含む、塩素イオン濃度が0mg/L以上1000mg/L以下の淡水と接触させ、自然電位を飽和塩化カリウム入り銀−塩化銀電極基準で+150mV以下に維持することを特徴とするステンレス鋼の電位貴化抑制方法。
1群:Mo:0.5〜4%、
または、Mo:0.5〜4%に加え、Cu:0.5〜2%、
V :0.5〜3%の1種または2種。
2群:Cu:0.5〜2%、
または、Cu:0.5〜2%およびV:0.5〜3%、
または、Ti:0.01〜0.4%およびV:0.5〜1.5%。
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.004 to 0.05%, Si: 0.01 to 1%,
Mn: 0.1 to 2%, P: 0.03% or less,
S: 0.01% or less, Cr: 17-20%,
Ni: 7.5 to 10%, Al: 0.05% or less,
N: 0.1 to 0.3%, O: 0.005% or less, further containing either one of the
Group 1: Mo: 0.5-4%
Or, in addition to Mo: 0.5-4%, Cu: 0.5-2%,
V: One or two of 0.5 to 3%.
Group 2: Cu: 0.5-2%,
Or Cu: 0.5-2% and V: 0.5-3%,
Or Ti: 0.01-0.4% and V: 0.5-1.5%.
本発明により、淡水での耐微生物腐食性を大幅に改善することが可能となり、淡水中で使用できる、微生物作用による自然電位の貴化を抑制する、耐すき間腐食性に優れ、且つ経済性にも優れた、ステンレス鋼の電位貴化抑制およびすき間腐食防止が可能となる。 According to the present invention, it becomes possible to greatly improve the microbial corrosion resistance in fresh water, and can be used in fresh water, suppress noble natural potential due to microbial action, is excellent in crevice corrosion resistance, and economical. In addition, it is possible to suppress the noble potential of stainless steel and prevent crevice corrosion.
以下、本発明を詳細に説明する。
特許文献6では、実際のいくつかの河川水・湖沼水にSUS304鋼を浸漬した場合の自然電位の経時変化を報告している。いずれの河川水・湖水中においても浸漬時間の経過とともに貴な電位に貴化し、概ね1〜2年でほぼ一定値に貴化して落ち着くことが報告されている。実測値では約+400mV(飽和塩化カリウム入り銀−塩化銀電極基準)程度まで自然電位が貴化することが報告されている。
Hereinafter, the present invention will be described in detail.
これに対して滅菌したイオン交換水中では、自然電位を測定すると約+100〜+150mV(飽和塩化カリウム入り銀−塩化銀電極基準)である。この自然電位の相違は、微生物の電位貴化作用に起因するものである(特許文献6)。また自然海水中でも、河川水や湖沼水と同様に、微生物作用により、ステンレス鋼(SUS304)の自然電位が約+400mV程度まで貴化することもわかっている(非特許文献1)。したがって、ステンレス鋼(SUS304)の電位貴化は、淡水、海水で共通して起こる現象である。 On the other hand, in sterilized ion-exchanged water, when the natural potential is measured, it is about +100 to +150 mV (silver-silver chloride electrode containing saturated potassium chloride). This difference in natural potential is due to the potential noble action of microorganisms (Patent Document 6). Moreover, it is also known that the natural potential of stainless steel (SUS304) is precious to about +400 mV due to the microbial action in the natural seawater as well as river water and lake water (Non-patent Document 1). Therefore, the potential nomination of stainless steel (SUS304) is a phenomenon that occurs in common in fresh water and seawater.
次に本発明者らは、上記知見に基づき、塩素濃度が高く、淡水中よりも厳しい腐食環境である自然海水中に、約2年間の長期間にわたってすき間構造を有する種々のステンレス鋼試験材を浸漬して、その自然電位(自然ポテンシャルと呼ぶ)測定を継続して行なった。試験材の形状を図1に示す。 Next, based on the above findings, the present inventors have developed various stainless steel test materials having a gap structure over a long period of about two years in natural seawater, which has a high chlorine concentration and is more corrosive than fresh water. Immersion was performed, and the natural potential (referred to as natural potential) measurement was continuously performed. The shape of the test material is shown in FIG.
同一組成のステンレス鋼である、30w×30l×2tmm寸法の小試験片1及び50w×90l×4tmm寸法の大試験片2を1組として、これらの全面を湿式研磨(600番)し、50℃の30%−硝酸溶液中に1時間浸漬し、不動態化処理を施し、水洗の後、風乾した。次いで、50w×90lmmの大試験片の上端にエナメル被覆銅線3をハンダ接続により固定し、シリコンシーラントにより絶縁被覆した。その後、海水を試験面に塗布した状態で図1のように、ポリカーボネイト製のボルト4、ナット5、ワッシャー6を用いて組み立てた。
One set of a
このようにして組み立てた試験片を自然海水を連続して取り込む海水試験槽の海水中に浸漬した。約2年間、その自然電位(自然ポテンシャルと呼ぶ)測定を継続して行なった。参照電極には飽和KCl Ag/AgCl電極を用いた。
上記のような海水浸漬試験により、SUS304の自然電位は特許文献6で河川水・湖沼水で実測したのと同レベルの約+400mV(飽和KCl Ag/AgCl)まで貴化した。
The test piece assembled in this manner was immersed in seawater in a seawater test tank that continuously took in natural seawater. Measurement of the natural potential (called natural potential) was continued for about two years. A saturated KCl Ag / AgCl electrode was used as a reference electrode.
By the seawater immersion test as described above, the natural potential of SUS304 was nominated to about +400 mV (saturated KCl Ag / AgCl), which is the same level as that measured in river water and lake water in
これに対して、鋼中にMoを添加させたステンレス鋼は、含有しないステンレス鋼と比較して、自然電位の貴化が大幅に抑制されることを本発明者らは見出した。さらに、電位貴化が抑制されることで優れた耐食性を示すことも見出した。
同様に、鋼中にMoに加えて、Cu,Vの1種または2種を併せて添加させたステンレス鋼について、電位貴化の抑制効果と優れた耐食性を見出した。更には、Moを添加しなくても、Cu、またはCuおよびV、またはTiおよびVを添加させたステンレス鋼について、電位貴化の抑制効果と優れた耐食性を見出した。
本発明者らは、かかる知見に基づいて淡水での使用に十分耐え得るステンレス鋼の含有すべき元素とその量を限定し、本発明を完成させた。
On the other hand, the present inventors have found that the preciousness of the natural potential is greatly suppressed in the stainless steel in which Mo is added to the steel as compared with the stainless steel not containing. Furthermore, it has also been found that excellent corrosion resistance is exhibited by suppressing potential nobleness.
Similarly, for the stainless steel in which one or two of Cu and V were added in addition to Mo in the steel, the effect of suppressing potential nobleness and excellent corrosion resistance were found. Furthermore, even without adding Mo, the effect of suppressing potential nobleness and excellent corrosion resistance were found for stainless steel to which Cu, Cu and V, or Ti and V were added.
Based on this knowledge, the inventors of the present invention limited the elements and amounts of stainless steel that can be sufficiently used in fresh water, and completed the present invention.
以下に本発明の構成要件の限定理由を述べる。
Cは、ステンレス鋼の耐食性に有害であるが、強度の観点からある程度の含有量は必要である。0.004%未満の極低C量では製造コストが高くなる。また、0.05%を超えると耐食性を大幅に劣化させるため、0.004〜0.05%とした。
The reasons for limiting the constituent requirements of the present invention will be described below.
C is harmful to the corrosion resistance of stainless steel, but a certain content is necessary from the viewpoint of strength. With an extremely low C content of less than 0.004%, the production cost increases. Further, if it exceeds 0.05%, the corrosion resistance is greatly deteriorated, so 0.004 to 0.05% was set.
Siは、耐食性に影響を及ぼさない範囲で熱間圧延可能な通常のステンレス鋼の成分範囲としてSi量を1%以下とした。また、Si量が0.01%未満では製造コストが高くなることから、0.01%以上とした。 Si has a Si content of 1% or less as a component range of normal stainless steel that can be hot-rolled within a range that does not affect the corrosion resistance. Further, if the Si amount is less than 0.01%, the manufacturing cost becomes high, so the content was made 0.01% or more.
Mnは、オーステナイト安定化元素であり、高価なNiの代替として添加することが可能であるが、2%超では耐食性向上に効果がなく、Mn量の上限として2%以下とした。また、Mn量が0.1%未満では製造コストが高くなることから0.1%以上とした。 Mn is an austenite stabilizing element and can be added as an alternative to expensive Ni. However, if it exceeds 2%, there is no effect in improving corrosion resistance, and the upper limit of the amount of Mn is 2% or less. Further, if the amount of Mn is less than 0.1%, the manufacturing cost becomes high, so the content was made 0.1% or more.
Pは、耐食性および熱間加工性の観点から少ないことが望ましい。0.03%を超えると熱間加工性が極端に劣化するため、P量は0.03%以下とした。 P is desirably small in terms of corrosion resistance and hot workability. If it exceeds 0.03%, the hot workability is extremely deteriorated, so the P content is set to 0.03% or less.
Sは、耐食性よりも熱間加工性に著しく影響する元素で、その量は低いほど良い。そこでS量は0.01%以下とした。 S is an element that significantly affects the hot workability rather than the corrosion resistance, and the lower the amount, the better. Therefore, the S amount is set to 0.01% or less.
Crは、本発明のステンレス鋼の基本成分であり、自然河川水中で良好な耐すきま腐食性を得るには17%以上の添加が必要である。Cr量が多いほど耐食性は向上するが、20%を超える場合には製造性がやや困難になり、経済的にも高価となる。よってCr量の範囲を17〜20%に限定した。 Cr is a basic component of the stainless steel of the present invention, and it is necessary to add 17% or more in order to obtain good crevice corrosion resistance in natural river water. The corrosion resistance improves as the amount of Cr increases, but if it exceeds 20%, the productivity becomes somewhat difficult, and the cost becomes expensive. Therefore, the Cr content range is limited to 17-20%.
Niは、Crと共に本発明のステンレス鋼の基本成分である。ステンレス鋼の厚板製造を容易にするために金属組織をオ−ステナイト相にする必要があり、Ni添加は必須である。本発明鋼をオ−ステナイト相にするための最低限のNi量は7.5%である。また、Ni量が多すぎると価格が高くなる。経済的にも安価でオ−ステナイト相を保つNi量の上限として10%とした。 Ni is a basic component of the stainless steel of the present invention together with Cr. In order to facilitate the production of stainless steel plate, the metal structure needs to be an austenite phase, and Ni addition is essential. The minimum amount of Ni for making the steel of the present invention an austenite phase is 7.5%. Moreover, when there is too much Ni amount, a price will become high. The upper limit of the amount of Ni that keeps the austenite phase economically is set to 10%.
Alは、脱酸剤として0.05%以下の範囲で添加される。0.05%を超えると耐すきま腐食性や熱間加工性を劣化させる。よってAl量の範囲を0.05%以下とした。 Al is added in a range of 0.05% or less as a deoxidizer. If it exceeds 0.05%, crevice corrosion resistance and hot workability are deteriorated. Therefore, the range of Al content was made 0.05% or less.
Nは、強いオーステナイト形成元素であると同時に、ステンレス鋼に発生したすきま腐食の進行を阻害する元素でもある。安定した耐食性を得るためには少なくとも0.1%以上のN量が必要である。また0.3%を超える添加は製鋼上、非常に困難であり、かつステンレス鋼の熱間加工性を劣化させる。よってN量の範囲を0.1〜0.3%と限定した。 N is a strong austenite-forming element and at the same time an element that inhibits the progress of crevice corrosion occurring in stainless steel. In order to obtain stable corrosion resistance, an N amount of at least 0.1% or more is necessary. Moreover, addition over 0.3% is very difficult on steelmaking, and deteriorates the hot workability of stainless steel. Therefore, the range of N amount is limited to 0.1 to 0.3%.
Oも、Sと同様に熱間加工性に著しく影響する元素であり、低いほど良い。Oは通常のステンレス鋼製鋼法で得られる0.005%以下と限定した。 O, like S, is an element that significantly affects hot workability, and the lower the better. O was limited to 0.005% or less obtained by a normal stainless steel manufacturing method.
Moは、耐孔食性向上作用がある。特に塩化物イオン濃度が高くなる恐れのある環境では、孔食成長抑制に重要な元素である。上記、17〜20%のCrと7.5〜10%のNiと共に、0.5〜4%の範囲でMoのみを単独で、あるいはV,Cuと共存して添加することにより耐食性を向上させる。0.5%未満では耐食性が不十分となるが、4%を超えると耐食性の改善効果が飽和するし、かつ高価となる。経済性を重視すると、更に好ましくは0.5〜2%である。 Mo has an effect of improving pitting corrosion resistance. Particularly in an environment where the chloride ion concentration is likely to be high, this element is important for suppressing pitting corrosion growth. In addition to the above 17-20% Cr and 7.5-10% Ni, the corrosion resistance is improved by adding Mo alone in the range of 0.5-4% or coexisting with V, Cu. . If it is less than 0.5%, the corrosion resistance becomes insufficient, but if it exceeds 4%, the effect of improving the corrosion resistance is saturated and expensive. If the economy is emphasized, it is more preferably 0.5 to 2%.
Vは、Tiと同様に炭化物を作りやすく、結晶粒を微細化し、耐粒界腐食性を向上させる作用がある。上記17〜20%のCrと7.5〜10%のNiと共に、0.5〜3%のVをMo,Cuと共存して添加することにより、耐食性を向上させる。また、0.5〜1.5%の範囲でTiと共存して添加することにより耐食性を向上させる。
Vが0.5%未満の添加では十分な耐食性は得られない。Tiと共存して添加する場合には、1.5%を超えて添加すると耐食性を悪化させる。またMo,Cuと共存して添加する場合には、3%を超えて添加すると熱間加工性が著しく劣化し、鋼製造が困難となり、経済的にも高価となる。経済性を重視すると、Mo,Cuと共存して添加する場合、より好ましくは0.5〜2%である。
V, like Ti, is easy to form carbides, has the effect of refining crystal grains and improving intergranular corrosion resistance. Corrosion resistance is improved by adding 0.5 to 3% of V together with Mo and Cu together with 17 to 20% of Cr and 7.5 to 10% of Ni. Moreover, corrosion resistance is improved by adding together with Ti in 0.5 to 1.5% of range.
When V is less than 0.5%, sufficient corrosion resistance cannot be obtained. When adding together with Ti, adding over 1.5% degrades the corrosion resistance. In addition, when it is added together with Mo and Cu, if it exceeds 3%, hot workability is remarkably deteriorated, making it difficult to produce steel and making it economically expensive. If the economy is emphasized, when adding together with Mo and Cu, it is more preferably 0.5 to 2%.
Cuは、Agと同じく抗菌作用が知られる。また、オーステナイト化を促進する元素でもある。上記17〜20%のCrと7.5〜10%のNiと共に、0.5〜2%のCuをMoあるいはVと共存して添加することにより、耐食性を向上させる。0.5%未満の添加では十分な耐食性は得られない。また2%を超えて添加すると耐食性を劣化させる他、経済的にも高価となる。 Cu is known to have an antibacterial action as is Ag. It is also an element that promotes austenitization. Corrosion resistance is improved by adding 0.5 to 2% of Cu together with Mo or V together with 17 to 20% of Cr and 7.5 to 10% of Ni. If the addition is less than 0.5%, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 2%, the corrosion resistance is deteriorated and it is economically expensive.
Tiは、耐食性を有効に向上させ得る元素である。TiはVと同様に炭化物を作りやすく、耐粒界腐食性を向上させる作用がある。上記17〜20%のCrと7.5〜10%のNiと共に、0.01〜0.4%のTiをVと共存して添加することにより、耐食性を向上させる。なお0.01%未満の添加では十分な耐食性は得られない。また0.4%を超えて添加すると耐食性が劣化する他、経済的に高価となる。 Ti is an element that can effectively improve the corrosion resistance. Ti, like V, easily forms carbides and has the effect of improving intergranular corrosion resistance. Corrosion resistance is improved by adding 0.01 to 0.4% Ti together with V together with 17 to 20% Cr and 7.5 to 10% Ni. If the addition is less than 0.01%, sufficient corrosion resistance cannot be obtained. On the other hand, if it exceeds 0.4%, the corrosion resistance is deteriorated and it is economically expensive.
以下、本発明の実施例を説明するが、本発明は本実施例に限定されるものではない。
表1は本発明鋼及び比較鋼の化学組成を示す。比較鋼として、表1の試料番号1のSUS304(18%Cr8%Ni)を用いた。比較鋼であるSUS304の基本組成をベースに、新たな金属元素を添加することで試験材を作成した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
Table 1 shows the chemical compositions of the inventive steel and the comparative steel. As a comparative steel, SUS304 (18% Cr8% Ni) of
各試験材は、次のように作製した。
それぞれ鋼中含有成分の重量割合が目的の値になるように原料を秤量後、電気炉真空溶解法によって溶解し鋳型に鋳込み、インゴットを作製した。その後、1150〜1250℃で0.5〜1時間のソ−キング処理を施し、再び1250℃に加熱し、板厚6mmまで熱間圧延を行ない、1100℃で30分加熱後、水焼き入れの固溶化熱処理を行ない、図1に示したすきま腐食試験片を作製し、浸漬試験に供した。
Each test material was produced as follows.
The raw materials were weighed so that the weight ratios of the components contained in the steel each reached the target value, then melted by an electric furnace vacuum melting method and cast into a mold to prepare an ingot. Then, a soaking treatment is performed at 1150 to 1250 ° C. for 0.5 to 1 hour, heated again to 1250 ° C., hot-rolled to a thickness of 6 mm, heated at 1100 ° C. for 30 minutes, and then subjected to water quenching. A solution heat treatment was performed to produce a crevice corrosion test piece shown in FIG. 1 and subjected to a dipping test.
浸漬試験は、淡水と同様に電位貴化が起こり、かつ淡水中よりも腐食が加速されて起こることから、自然海水を連続的に流入させている海水槽中の海水へ浸漬することで実施した。そして経時的に試験片の自然電位を測定した。参照電極には飽和KCl Ag/AgCl電極を用いた。約2年間浸漬試験を行ない、試験終了後、試験片の腐食によるすき間腐食試験片を構成する大小試験片の重量減少量、および大試験片に存在した最大腐食深さを測定した。 The immersion test was carried out by immersing in seawater in a seawater tank in which natural seawater is continuously flowing in, because noble potential occurs as in freshwater, and corrosion occurs more rapidly than in freshwater. . Then, the natural potential of the test piece was measured over time. A saturated KCl Ag / AgCl electrode was used as a reference electrode. The immersion test was conducted for about 2 years. After the test was completed, the weight loss of the large and small test pieces constituting the crevice corrosion test piece due to the corrosion of the test piece and the maximum corrosion depth existing in the large test piece were measured.
表1の試料番号1から14について、自然電位の平均値と腐食による重量減少量の測定結果を、すき間腐食試験片を構成した大小試験片について、図2,図3に示す。また、自然電位の平均値と大試験片に存在した最大腐食深さの測定結果を図4に示す。
また、表1の試料番号1(比較鋼)および試料番号15から28について、自然電位の平均値と腐食による重量減少量の測定結果を、すき間腐食試験片を構成した大小試験片について、図5,図6に示す。また、自然電位の平均値と大試験片に存在した最大腐食深さの測定結果を図7に示す。
以上の結果から、鋼中へのMo添加により微生物作用による電位貴化を抑制できること、さらに耐食性を向上できることが明らかになった。また、Moに加えて、鋼中へCu,Vの1種または2種を合わせて添加することにより、微生物作用による電位貴化を抑制できること、さらに耐食性を向上できることも明らかになった。
For
Further, for sample number 1 (comparative steel) and
From the above results, it has been clarified that addition of Mo to steel can suppress potential nomination due to microbial action, and can further improve corrosion resistance. In addition to Mo, it has also been clarified that addition of one or two of Cu and V to steel can suppress potential nomination due to microbial action and further improve corrosion resistance.
表1の試料番号1(比較鋼)および試料番号29から36について、自然電位の平均値と腐食による重量減少量の測定結果を、すき間腐食試験片を構成した大小試験片について、図8,図9に示す。また、自然電位の平均値と大試験片に存在した最大腐食深さの測定結果を図10に示す。
以上の結果から、鋼中へのCu添加により微生物作用による電位貴化を抑制できること、さらに耐食性を向上できることが明らかになった。また、鋼中へCuとVを組み合わせて添加することにより、微生物作用による電位貴化を抑制できること、さらに耐食性を向上できることも明らかになった。
For Sample No. 1 (Comparative Steel) and Sample Nos. 29 to 36 in Table 1, the average value of the natural potential and the measurement result of the weight loss due to corrosion are shown for the large and small test pieces constituting the crevice corrosion test piece. 9 shows. Moreover, the measurement result of the average value of a natural potential and the maximum corrosion depth which existed in the large test piece is shown in FIG.
From the above results, it has been clarified that addition of Cu to steel can suppress potential nomination due to microbial action and can further improve corrosion resistance. It has also been clarified that by adding Cu and V in combination to steel, potential nomination due to microbial action can be suppressed, and further, corrosion resistance can be improved.
表1の試料番号1(比較鋼)および試料番号37から45について、自然電位の平均値と腐食による重量減少量の測定結果を、すき間腐食試験片を構成した大小試験片について、図11,図12に示す。また、自然電位の平均値と大試験片に存在した最大腐食深さの測定結果を図13に示す。
以上の結果から、鋼中へのTiとVの組み合わせ添加により微生物作用による電位貴化を抑制できること、さらに耐食性を向上できることが明らかになった。
For sample number 1 (comparative steel) and
From the above results, it has been clarified that the addition of Ti and V in steel can suppress potential nomination due to microbial action and can further improve the corrosion resistance.
表1の試料番号1(比較鋼)および試料番号46から57について、自然電位の平均値と腐食による重量減少量の測定結果を、すき間腐食試験片を構成した大小試験片について、図14,図15に示す。また、自然電位の平均値と大試験片に存在した最大腐食深さの測定結果を図16に示す。
以上の結果から、17〜20%Crおよび7.5〜10%Niを含有するステンレス鋼において、微生物作用による電位貴化を+150mV以下に抑制し維持できること、さらに耐食性を向上できることが明らかになった。
For sample number 1 (comparative steel) and
From the above results, it became clear that in stainless steel containing 17 to 20% Cr and 7.5 to 10% Ni, potential nomination due to microbial action can be suppressed and maintained at +150 mV or less, and corrosion resistance can be further improved. .
1:小試験片
2:大試験片
3:エナメル被覆銅線
4:ボルト
5:ナット
6:ワッシャー
1: Small test piece 2: Large test piece 3: Enamelled copper wire 4: Bolt 5: Nut 6: Washer
Claims (1)
C :0.004〜0.05%、
Si:0.01〜1%、
Mn:0.1〜2%、
P :0.03%以下、
S :0.01%以下、
Cr:17〜20%、
Ni:7.5〜10%、
Al:0.05%以下、
N :0.1〜0.3%、
O :0.005%以下
を含有し、さらに下記の1群の元素または2群の元素のいずれかを含有し、残部が鉄および不可避的不純物からなるステンレス鋼を、好気性微生物を含む、塩素イオン濃度が0mg/L以上1000mg/L以下の淡水と接触させ、自然電位を飽和塩化カリウム入り銀−塩化銀電極基準で+150mV以下に維持することを特徴とするステンレス鋼の電位貴化抑制方法。
1群:Mo:0.5〜4%、
または、Mo:0.5〜4%に加え、Cu:0.5〜2%、
V :0.5〜3%の1種または2種。
2群:Cu:0.5〜2%、
または、Cu:0.5〜2%およびV:0.5〜3%、
または、Ti:0.01〜0.4%およびV:0.5〜1.5%。
% By mass
C: 0.004 to 0.05%,
Si: 0.01 to 1%,
Mn: 0.1 to 2%,
P: 0.03% or less,
S: 0.01% or less,
Cr: 17-20%
Ni: 7.5 to 10%,
Al: 0.05% or less,
N: 0.1-0.3%
O 2: chlorine containing 0.005% or less, further containing either of the following group 1 elements or group 2 elements, the balance being stainless steel consisting of iron and inevitable impurities, including aerobic microorganisms A method for inhibiting potential nobleening of stainless steel, characterized by contacting with fresh water having an ion concentration of 0 mg / L or more and 1000 mg / L or less and maintaining a natural potential at +150 mV or less based on a silver-silver chloride electrode containing saturated potassium chloride.
Group 1: Mo: 0.5-4%
Or, in addition to Mo: 0.5-4%, Cu: 0.5-2%,
V: One or two of 0.5 to 3%.
Group 2: Cu: 0.5-2%,
Or Cu: 0.5-2% and V: 0.5-3%,
Or Ti: 0.01-0.4% and V: 0.5-1.5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003418217A JP2005179699A (en) | 2003-12-16 | 2003-12-16 | Method for inhibiting potential of stainless steel from becoming noble |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003418217A JP2005179699A (en) | 2003-12-16 | 2003-12-16 | Method for inhibiting potential of stainless steel from becoming noble |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005179699A true JP2005179699A (en) | 2005-07-07 |
Family
ID=34780488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003418217A Pending JP2005179699A (en) | 2003-12-16 | 2003-12-16 | Method for inhibiting potential of stainless steel from becoming noble |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005179699A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1992712A1 (en) * | 2006-02-23 | 2008-11-19 | Sumitomo Electric Industries, Ltd. | High-strength stainless steel spring and process for manufacturing the same |
JP2013127097A (en) * | 2011-12-19 | 2013-06-27 | Ihi Corp | Stainless steel |
JP2013231965A (en) * | 2012-04-10 | 2013-11-14 | Schott Ag | Camera objective lens with infrared filter and camera module with camera objective lens |
WO2014203302A1 (en) * | 2013-06-17 | 2014-12-24 | 株式会社Ihi | Precipitation-hardening stainless steel and stainless steel component |
CN108660373A (en) * | 2018-05-11 | 2018-10-16 | 上海申江锻造有限公司 | A kind of manufacturing method of high intensity austenitic stainless steel impeller axle |
WO2024024236A1 (en) * | 2022-07-29 | 2024-02-01 | Jfeスチール株式会社 | Microbiologically assisted cracking-resistant low-alloy steel |
-
2003
- 2003-12-16 JP JP2003418217A patent/JP2005179699A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1992712A1 (en) * | 2006-02-23 | 2008-11-19 | Sumitomo Electric Industries, Ltd. | High-strength stainless steel spring and process for manufacturing the same |
EP1992712A4 (en) * | 2006-02-23 | 2011-04-27 | Sumitomo Electric Industries | High-strength stainless steel spring and process for manufacturing the same |
JP2013127097A (en) * | 2011-12-19 | 2013-06-27 | Ihi Corp | Stainless steel |
JP2013231965A (en) * | 2012-04-10 | 2013-11-14 | Schott Ag | Camera objective lens with infrared filter and camera module with camera objective lens |
WO2014203302A1 (en) * | 2013-06-17 | 2014-12-24 | 株式会社Ihi | Precipitation-hardening stainless steel and stainless steel component |
JP5974380B2 (en) * | 2013-06-17 | 2016-08-23 | 株式会社Ihi | Precipitation hardening type stainless steel and stainless steel parts, and method for producing precipitation hardening type stainless steel |
CN108660373A (en) * | 2018-05-11 | 2018-10-16 | 上海申江锻造有限公司 | A kind of manufacturing method of high intensity austenitic stainless steel impeller axle |
WO2024024236A1 (en) * | 2022-07-29 | 2024-02-01 | Jfeスチール株式会社 | Microbiologically assisted cracking-resistant low-alloy steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Potgieter et al. | Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels | |
Nan et al. | Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli | |
Tomio et al. | Role of alloyed molybdenum on corrosion resistance of austenitic Ni–Cr–Mo–Fe alloys in H2S–Cl–environments | |
Antony et al. | Role of microstructure on corrosion of duplex stainless steel in presence of bacterial activity | |
Tomio et al. | Role of alloyed copper on corrosion resistance of austenitic stainless steel in H2S–Cl− environment | |
CN105296874B (en) | A kind of stainless steel, preparation method and application | |
JP6792951B2 (en) | Duplex stainless steel for ozone-containing water | |
KR20050044557A (en) | Super-austenitic stainless steel | |
Liu et al. | Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti | |
Dagur et al. | Microstructure, mechanical properties and biocorrosion behavior of dissimilar welds of AISI 904L and UNS S32750 | |
CN102168230B (en) | 304 substituting nickel-saving austenitic stainless steel and preparation method thereof | |
JP2016216816A (en) | Two-phase stainless steel material, two-phase stainless steel pipe and surface treatment method for two-phase stainless steel material | |
CN107012407A (en) | A kind of corrosion resistant two phase stainless steel and preparation method thereof | |
Lu et al. | Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements | |
KR102379904B1 (en) | Austenitic stainless steel and manufacturing method thereof | |
JP2007277616A (en) | Steel material for bottom plate of crude oil tank having excellent corrosion resistance | |
JP2005179699A (en) | Method for inhibiting potential of stainless steel from becoming noble | |
Neville et al. | Corrosion of stainless steels in marine conditions containing sulphate reducing bacteria | |
CN107988556A (en) | A kind of new stanniferous two phase stainless steel | |
JP6745373B1 (en) | Stainless steel excellent in corrosion resistance and method of manufacturing the same | |
JP2001254149A (en) | Stainless steel for fresh water excellent in crevice corrosion resistance | |
JP2756545B2 (en) | Austenitic stainless steel with excellent corrosion resistance in hot water | |
JP3691283B2 (en) | Inexpensive stainless steel for natural seawater | |
JP4780846B2 (en) | Ferritic stainless steel for fresh water | |
TWI752854B (en) | Vostian iron series stainless steel and spring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080602 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081216 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090216 |
|
A02 | Decision of refusal |
Effective date: 20090310 Free format text: JAPANESE INTERMEDIATE CODE: A02 |