Nothing Special   »   [go: up one dir, main page]

JP2007277616A - Steel material for bottom plate of crude oil tank having excellent corrosion resistance - Google Patents

Steel material for bottom plate of crude oil tank having excellent corrosion resistance Download PDF

Info

Publication number
JP2007277616A
JP2007277616A JP2006103475A JP2006103475A JP2007277616A JP 2007277616 A JP2007277616 A JP 2007277616A JP 2006103475 A JP2006103475 A JP 2006103475A JP 2006103475 A JP2006103475 A JP 2006103475A JP 2007277616 A JP2007277616 A JP 2007277616A
Authority
JP
Japan
Prior art keywords
less
crude oil
steel material
bottom plate
oil tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006103475A
Other languages
Japanese (ja)
Other versions
JP4868917B2 (en
Inventor
Shinji Sakashita
真司 阪下
Hiroki Imamura
弘樹 今村
Akihiko Tatsumi
明彦 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006103475A priority Critical patent/JP4868917B2/en
Priority to CN2008101729051A priority patent/CN101413085B/en
Priority to KR1020070032897A priority patent/KR100994606B1/en
Publication of JP2007277616A publication Critical patent/JP2007277616A/en
Priority to KR1020080102361A priority patent/KR100992289B1/en
Priority to KR1020090076712A priority patent/KR20090098775A/en
Priority to KR1020090076710A priority patent/KR20090098774A/en
Application granted granted Critical
Publication of JP4868917B2 publication Critical patent/JP4868917B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for the bottom plate of a crude oil tank in which both of local corrosion resistance and coating corrosion resistance are excellent. <P>SOLUTION: The steel material for the bottom plate of a crude oil tank has a composition comprising 0.01 to 0.3% C, 0.01 to 2% Si, 0.01 to 2% Mn, 0.005 to 0.1% Al, 0.01 to 1% Cu, 0.01 to 1% Cr, 0.0001 to 0.005% Ca, 0.005 to 0.2% Ti and 0.01 to 1% Ni, and the balance Fe with inevitable impurities, and has a structure composed of, by area ratio, 5 to 25% pearlite, <20% bainite and <10% martensite, and the balance ferrite, and in which the number per unit area of nonmetallic inclusions whose diameter of the equivalent circle exceeds 20 μm is ≤0.20 pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原油または原油スラッジを貯蔵するための原油タンカーのタンク底板(以下、「原油タンク底板」と省略することがある。)として用いられる耐食性に優れた鋼材に関するものである。   The present invention relates to a steel material having excellent corrosion resistance used as a tank bottom plate of a crude oil tanker (hereinafter sometimes abbreviated as “crude oil tank bottom plate”) for storing crude oil or crude oil sludge.

近年、原油タンク底板では、塩化物を高濃度で含むタンク底に滞留した水分(滞留水)や、原油由来の硫黄分などにより、鋼材が激しい局部腐食を受けて穴あきが生ずるという問題が顕在化している。こうしたタンク鋼材の腐食は、例えば原油タンカーの沈没という重大な事故を招きかねないために、鋼材には何らかの防食手段を施す必要がある。   In recent years, a problem has arisen in the bottom plate of crude oil tanks that the steel material is subjected to severe local corrosion due to moisture (residual water) accumulated in the tank bottom containing chloride at a high concentration and sulfur derived from crude oil. It has become. Such corrosion of the tank steel material may cause a serious accident such as the sinking of a crude oil tanker. For this reason, it is necessary to apply some anticorrosion means to the steel material.

通常行われている防食手段としては、(i)塗装、(ii)防錆・防食シート、(iii)電気防食等がよく知られており、実用化されている。このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、収容されている石油類の早期漏洩に繋がることになる。防錆・防食シートによる鋼材の保護も比較的効果は認められるものの、塗装と同様に、シート傷部の鋼材露出部分での腐食は避けられないという問題がある。   As the conventional anticorrosion means, (i) painting, (ii) rust / corrosion prevention sheet, (iii) electrocorrosion prevention, etc. are well known and put into practical use. Of these, in coatings represented by heavy coating, there is a high possibility that coating film defects exist, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel material corrodes locally and intensively, leading to early leakage of stored petroleum. Although protection of the steel material by the anticorrosion / corrosion protection sheet is relatively effective, there is a problem that corrosion of the scratched part of the steel material is unavoidable as in the case of coating.

電気防食は、海水などの導電率が高い電解質水溶液中に完全に浸漬された部位に対しては、非常に有効である。しかし、原油タンク底板では電解質水溶液として作用する滞留水が充分多くはない(滞留水厚が薄い)ため、犠牲アノードが作用する距離が小さく電気防食は不向きである。   Electrocorrosion is very effective for a part completely immersed in an aqueous electrolyte solution having a high conductivity such as seawater. However, in the crude oil tank bottom plate, there is not enough retained water acting as an electrolyte aqueous solution (thin residence water thickness is thin), so that the distance on which the sacrificial anode acts is small and unsuitable for anticorrosion.

前記手段のほか、特許文献1では、化学成分を調整することにより、特にNi含有量を適正量としたうえで、N含有量を増加することにより、原油タンク底板用鋼材の耐局部腐食性を向上させることが開示されている。特許文献2では、一般的な溶接構造用鋼の化学組成を基本として、Crを実質的に無添加とし、特定量のMo、Wのいずれかまたは両方とCuとを複合添加し、不純物であるP、Sの添加量を限定し、Alを添加することにより、原油油槽用鋼の局部腐食損傷を軽減することが開示されている。特許文献3では、所定量のCoとMgを併用させて含有させると共に、化学成分組成を適切に調整することにより、船舶用鋼材の耐食性を向上させることが開示されている。
特開2005−97709号公報(殊に、特許請求の範囲、段落0012) 特開2004−204344号公報(殊に、特許請求の範囲、段落0060) 特開2006−9128号公報(殊に、特許請求の範囲、段落0010)
In addition to the above means, in Patent Document 1, by adjusting the chemical components, particularly by making the Ni content appropriate, and increasing the N content, the local corrosion resistance of the steel for the bottom plate of the crude oil tank can be improved. It is disclosed to improve. In Patent Document 2, on the basis of the chemical composition of general welded structural steel, Cr is substantially non-added, and a specific amount of either Mo or W or both and Cu are added in combination to form impurities. It is disclosed that the amount of P and S added is limited, and Al is added to reduce local corrosion damage of crude oil tank steel. Patent Document 3 discloses that a predetermined amount of Co and Mg are contained in combination, and the corrosion resistance of the marine steel is improved by appropriately adjusting the chemical composition.
Japanese Patent Laying-Open No. 2005-97709 (in particular, claims, paragraph 0012) Japanese Patent Application Laid-Open No. 2004-204344 (in particular, claims, paragraph 0060) Japanese Patent Laying-Open No. 2006-9128 (in particular, claims, paragraph 0010)

しかしながら原油タンク底板が曝される腐食環境は厳しく、そのために用いられる鋼材には、さらなる耐食性(殊に耐局部腐食性)の向上が絶えず求められている。またダブルハル(二重殻)構造の原油タンカーにおいては、タンク底板外面はバラストタンク側となって、通常はエポキシ系塗料などによる塗装を施した状態で用いられる。このバラストタンク側は、空荷時には海水を充填するため、その塩分による腐食作用を受け、一方、原油輸送時には高温多湿による腐食作用を受けるため、優れた塗装耐食性が要求される。従ってダブルハル構造の原油タンク底板では、耐局部腐食性(内面側)と塗装耐食性(バラストタンク側)の両方が優れていることが要求される。   However, the corrosive environment to which the bottom plate of the crude oil tank is exposed is severe, and the steel materials used for this purpose are constantly required to be further improved in corrosion resistance (particularly local corrosion resistance). Further, in a crude tanker having a double hull (double shell) structure, the outer surface of the tank bottom plate is the ballast tank side and is usually used in a state of being coated with an epoxy paint or the like. The ballast tank side is filled with seawater when it is empty, and therefore receives a corrosive action due to its salt content. On the other hand, it is subject to a corrosive action due to high temperature and humidity when transporting crude oil, and therefore requires excellent coating corrosion resistance. Accordingly, the bottom plate of the crude tank having a double hull structure is required to have both excellent local corrosion resistance (inner surface side) and coating corrosion resistance (ballast tank side).

本発明は前記のような事情に着目してなされたものであって、その目的は、耐局部腐食性(原油と接する内面側)および塗装耐食性(海水と接するバラストタンク側)の両方が優れた原油タンク底板用鋼材を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is excellent in both local corrosion resistance (inner side in contact with crude oil) and coating corrosion resistance (in ballast tank side in contact with seawater). It is to provide steel materials for crude oil tank bottom plates.

前記目的を達成することのできた本発明の原油タンク底板用鋼材とは、
C:0.01〜0.3%(質量%の意味、以下同じ)、
Si:0.01〜2%、
Mn:0.01〜2%、
Al:0.005〜0.1%、
Cu:0.01〜1%、
Cr:0.01〜1%、
Ca:0.0001〜0.005%、
Ti:0.005〜0.2%、および
Ni:0.01〜1%
を含有し、残部がFeおよび不可避不純物からなる組成を有し、
面積率で、パーライト:5〜25%、ベイナイト:20%未満、マルテンサイト:10%未満であり、残部がフェライトからなる組織を有し、
円相当径が20μmを超える非金属介在物の単位面積あたりの数が、0.20個/mm2以下であることを特徴とする。
The steel material for the bottom plate of the crude oil tank of the present invention capable of achieving the above object is as follows.
C: 0.01 to 0.3% (meaning mass%, the same shall apply hereinafter)
Si: 0.01-2%
Mn: 0.01-2%
Al: 0.005 to 0.1%,
Cu: 0.01 to 1%,
Cr: 0.01-1%,
Ca: 0.0001 to 0.005%,
Ti: 0.005 to 0.2%, and Ni: 0.01 to 1%
And the balance has a composition consisting of Fe and inevitable impurities,
In area ratio, pearlite: 5 to 25%, bainite: less than 20%, martensite: less than 10%, the balance has a structure made of ferrite,
The number per unit area of a circle nonmetallic inclusions equivalent diameter exceeds 20μm, characterized in that 0.20 pieces / mm 2 or less.

また本発明の原油タンク底板用鋼材においては、必要に応じて、さらに(ア)Mg:0.005%以下(0%を含まない)および/またはSr:0.005%以下(0%を含まない)、(イ)Zr:0.2%以下(0%を含まない)および/またはHf:0.2%以下(0%を含まない)、(ウ)Co:1%以下(0%を含まない)、(エ)La:0.01%以下(0%を含まない)、Ce:0.01%以下(0%を含まない)、Nd:0.01%以下(0%を含まない)、およびSm:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、および/または(オ)B:0.01%以下(0%を含まない)、V:0.5%以下(0%を含まない)、およびNb:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、等を含有させることも有効であり、含有させる成分の種類に応じて、原油タンク底板用鋼材の特性がさらに改善されることになる。   Further, in the steel plate for crude oil tank bottom plate according to the present invention, (a) Mg: 0.005% or less (not including 0%) and / or Sr: 0.005% or less (including 0%) as necessary. (B) Zr: 0.2% or less (excluding 0%) and / or Hf: 0.2% or less (excluding 0%), (c) Co: 1% or less (0% Not included), (d) La: 0.01% or less (not including 0%), Ce: 0.01% or less (not including 0%), Nd: 0.01% or less (not including 0%) ), And Sm: 0.01% or less (excluding 0%), and / or (e) B: 0.01% or less (excluding 0%), V: selected from the group consisting of 0.5% or less (not including 0%) and Nb: 0.5% or less (not including 0%) Is at least one element, such as is also effective to contain, depending on the type of component to be contained, so that the characteristics of the steel material for a crude oil tank bottom plate is further improved.

この原油タンク底板用鋼材において、Ca、MgおよびSrをa群に、Ti、ZrおよびHfをb群に、CoおよびNiをc群に分類し、a群元素の合計含有量をS(a)%(質量%の意味、以下同じ)、b群元素の合計含有量をS(b)%、c群元素の合計含有量をS(c)%とした場合に、a〜c群元素の合計含有量を、下記式(1)および(2)を満たすように調整することが好ましい。
20≦S(c)/S(a)≦350 ・・・ (1)
1.00≦S(c)/S(b)≦ 60 ・・・ (2)
In this crude steel tank bottom plate steel, Ca, Mg and Sr are classified into group a, Ti, Zr and Hf are classified into group b, Co and Ni are classified into group c, and the total content of group a elements is S (a). % (Meaning of mass%, the same applies hereinafter), the total content of group b elements being S (b)%, and the total content of group c elements being S (c)%, the total of elements a to c It is preferable to adjust the content so as to satisfy the following formulas (1) and (2).
20 ≦ S (c) / S (a) ≦ 350 (1)
1.00 ≦ S (c) / S (b) ≦ 60 (2)

本発明の原油タンク底板用鋼材は、耐局部腐食性および塗装耐食性の両方が優れているので、殊にダブルハル構造の原油タンカーのタンク底板として用いることが好ましい。   The steel material for a crude oil tank bottom plate of the present invention is excellent in both local corrosion resistance and paint corrosion resistance, and therefore is preferably used as a tank bottom plate of a crude tanker having a double hull structure.

本発明の原油タンク底板用鋼材において、(I)化学成分組成を適切に調整すること、殊にpH低下を抑制する効果のあるCaなど、表面錆被膜を安定化する効果のあるTiなど、および緻密な表面錆被膜を形成する効果のあるNiなどを適正量で含有させること、(II)鋼材組織を適切に制御すること、および(III)鋼材中に存在する非金属介在物を抑制することにより、耐局部腐食性および塗装耐食性の両方が優れた原油タンク底板用鋼材を実現できた。   In the steel plate for crude oil tank bottom plate of the present invention, (I) appropriately adjusting the chemical component composition, in particular, Ca having an effect of suppressing pH decrease, Ti having an effect of stabilizing the surface rust film, and the like, and Containing an appropriate amount of Ni or the like that has the effect of forming a dense surface rust film, (II) appropriately controlling the steel material structure, and (III) suppressing non-metallic inclusions present in the steel material. As a result, it was possible to realize a steel plate for a crude oil tank bottom plate that was excellent in both local corrosion resistance and paint corrosion resistance.

本発明の原油タンク底板用鋼材は、耐食性を向上させるために、化学成分組成が適切に調整されていることを特徴の1つとする。よってまず、鋼材の化学成分組成について説明する。   The steel material for crude oil tank bottom plate of the present invention is characterized in that the chemical composition is appropriately adjusted in order to improve the corrosion resistance. Therefore, first, the chemical composition of the steel material will be described.

〈C:0.01〜0.3%〉
Cは、材料の強度確保のために必要な元素である。原油タンクの構造部材として要求される強度を得るためには、0.01%以上含有させる必要がある。しかし0.3%を超えて過剰に含有させると、靱性が劣化する。そこでC量を0.01〜0.3%と定めた。C量の好ましい下限は0.02%であり、より好ましくは0.04%以上である。その好ましい上限は0.28%であり、より好ましくは0.26%以下である。
<C: 0.01 to 0.3%>
C is an element necessary for ensuring the strength of the material. In order to obtain the strength required as a structural member of a crude oil tank, it is necessary to contain 0.01% or more. However, if the content exceeds 0.3%, the toughness deteriorates. Therefore, the C amount is set to 0.01 to 0.3%. The minimum with the preferable amount of C is 0.02%, More preferably, it is 0.04% or more. The upper limit is preferably 0.28%, more preferably 0.26% or less.

〈Si:0.01〜2%〉
Siは、脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材として要求される強度を確保できない。しかし2%を超えて過剰に含有させると、溶接性が劣化する。そこでSi量を0.01〜2%と定めた。Si量の好ましい下限は0.02%であり、より好ましくは0.05%以上である。その好ましい上限は1.8%であり、より好ましくは1.6%以下である。
<Si: 0.01-2%>
Si is a necessary element for deoxidation and securing strength, and the strength required as a structural member cannot be secured unless it is less than 0.01%. However, if the content exceeds 2%, weldability deteriorates. Therefore, the Si amount is determined to be 0.01-2%. The minimum with the preferable amount of Si is 0.02%, More preferably, it is 0.05% or more. The preferable upper limit is 1.8%, more preferably 1.6% or less.

〈Mn:0.01〜2%〉
Mnも、Siと同様に、脱酸および強度確保のために必要であり、0.01%に満たないと構造部材として要求される強度を確保できない。しかし2%を超えて過剰に含有させると、靱性が劣化する。そこでMn量を0.01〜2%と定めた。Mn量の好ましい下限は0.05%であり、より好ましくは0.10%以上である。その好ましい上限は1.8%であり、より好ましくは1.6%以下である。
<Mn: 0.01-2%>
Similar to Si, Mn is also necessary for deoxidation and securing strength, and if it is less than 0.01%, the strength required as a structural member cannot be secured. However, if the content exceeds 2%, the toughness deteriorates. Therefore, the amount of Mn is set to 0.01 to 2%. The minimum with the preferable amount of Mn is 0.05%, More preferably, it is 0.10% or more. The preferable upper limit is 1.8%, more preferably 1.6% or less.

〈Al:0.005〜0.1%〉
Alも、SiおよびMnと同様に、脱酸および強度確保のために必要であり、充分な脱酸のために0.005%以上必要である。しかし0.1%を超えて過剰に含有させると、溶接性を害する。そこでAl量を0.005〜0.1%と定めた。Al量の好ましい下限は0.010%であり、より好ましくは0.015%以上である。その好ましい上限は0.09%であり、より好ましくは0.08%以下である。
<Al: 0.005-0.1%>
Al is also necessary for deoxidation and securing of strength, similarly to Si and Mn, and 0.005% or more is necessary for sufficient deoxidation. However, if the content exceeds 0.1%, weldability is impaired. Therefore, the Al content is determined to be 0.005 to 0.1%. The minimum with the preferable amount of Al is 0.010%, More preferably, it is 0.015% or more. The preferable upper limit is 0.09%, more preferably 0.08% or less.

〈Cu:0.01〜1%〉
Cuは、耐食性向上に有効な元素である。詳しくは、Cuは、表面錆被膜の緻密性を高める作用を有しており、環境遮断性を高めて耐食性を向上させるのに有効な元素である。これらの効果を充分に発揮させるためには、0.01%以上含有させることが必要であるが、1%を超えて過剰に含有させると、溶接性や熱間加工性が劣化する。そこでCu量を0.01〜1%と定めた。Cu量の好ましい下限は0.05%であり、好ましい上限は0.9%である。
<Cu: 0.01 to 1%>
Cu is an element effective for improving corrosion resistance. Specifically, Cu has an effect of increasing the denseness of the surface rust film, and is an element effective for improving the environmental barrier properties and improving the corrosion resistance. In order to fully exhibit these effects, it is necessary to contain 0.01% or more, but when it contains exceeding 1% excessively, weldability and hot workability will deteriorate. Therefore, the amount of Cu is set to 0.01 to 1%. A preferable lower limit of the amount of Cu is 0.05%, and a preferable upper limit is 0.9%.

〈Cr:0.01〜1%〉
Crは、耐食性向上に有効な元素である。詳しくは、Crは、Cuと同様に、表面錆被膜の緻密性を高める作用を有しており、環境遮断性を高めて耐食性を向上させる元素である。また適量のCrは、靭性を向上させるのに有効であり、原油タンク底板用鋼材として必要な機械特性を得るためにも必要な元素である。これらの効果を充分に発揮させるためには0.01%以上含有させることが必要であるが、1%を超えて過剰に含有させると、溶接性や熱間加工性が劣化する。そこでCr量を0.01〜1%と定めた。Cr量の好ましい下限は0.05%であり、好ましい上限は0.8%である。
<Cr: 0.01 to 1%>
Cr is an element effective for improving corrosion resistance. Specifically, Cr, like Cu, has an effect of increasing the denseness of the surface rust film, and is an element that improves the environmental barrier properties and improves the corrosion resistance. Moreover, an appropriate amount of Cr is effective for improving toughness, and is an element necessary for obtaining mechanical properties necessary as a steel material for a crude oil tank bottom plate. In order to fully exhibit these effects, it is necessary to contain 0.01% or more, but when it contains exceeding 1% excessively, weldability and hot workability will deteriorate. Therefore, the Cr amount is set to 0.01 to 1%. The preferable lower limit of the Cr amount is 0.05%, and the preferable upper limit is 0.8%.

〈Ca:0.0001〜0.005%〉
Caは、耐食性向上に有効な元素である。詳しくは、Caは、腐食によって溶解したFeの加水分解によるpH低下を抑制する作用を有する。この作用により、外部への水素イオン拡散が起こりにくい構造的すきま部において、pH低下を抑制して、腐食促進を抑制することによって、殊に耐すきま腐食性を向上させることができる。この作用は、Caを0.0001%以上含有させることによって有効に発揮される。しかし0.005%を超えて過剰に含有させると加工性と溶接性とを劣化させる。そこでCa量を0.0001〜0.005%と定めた。Ca量の好ましい下限は0.0005%であり、好ましい上限は0.004%である。
<Ca: 0.0001 to 0.005%>
Ca is an element effective for improving corrosion resistance. In detail, Ca has the effect | action which suppresses the pH fall by the hydrolysis of Fe melt | dissolved by corrosion. Due to this action, the crevice corrosion resistance can be particularly improved by suppressing the decrease in pH and the promotion of corrosion in the structural crevice where the diffusion of hydrogen ions to the outside hardly occurs. This action is effectively exerted by containing Ca in an amount of 0.0001% or more. However, if over 0.005% is contained, workability and weldability are deteriorated. Therefore, the Ca content is determined to be 0.0001 to 0.005%. A preferable lower limit of the Ca content is 0.0005%, and a preferable upper limit is 0.004%.

〈Ti:0.005〜0.2%〉
Tiは、耐食性向上に有効な元素である。詳しくは、Tiは、腐食環境において形成される表面錆被膜を安定化させる作用を有しており、表面錆被膜による腐食抑制効果を長期間にわたって発現させるのに有効な元素である。この効果を発揮させるためには0.005%以上含有させることが好ましい。しかし含有量が過剰になると溶接性や熱間加工性が劣化することから、0.2%以下とすることが好ましい。そこでTi量を0.005〜0.2%と定めた。Ti量の好ましい下限は0.008%であり、好ましい上限は0.15%である。
<Ti: 0.005-0.2%>
Ti is an element effective for improving corrosion resistance. Specifically, Ti has an action of stabilizing a surface rust film formed in a corrosive environment, and is an element effective for developing a corrosion inhibiting effect by the surface rust film over a long period of time. In order to exhibit this effect, it is preferable to contain 0.005% or more. However, if the content is excessive, weldability and hot workability deteriorate, so 0.2% or less is preferable. Therefore, the Ti amount is determined to be 0.005 to 0.2%. The preferable lower limit of the Ti amount is 0.008%, and the preferable upper limit is 0.15%.

〈Ni:0.01〜1%〉
Niは、耐食性向上に有効である。詳しくは、Niは、腐食環境において緻密な表面錆被膜を形成される作用を有しており、表面錆被膜による腐食抑制効果を発現する元素である。さらにNiは、Cuを含有することによる赤熱脆性を防止する効果を有する。こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかし1%を超えて過剰に含有すると溶接性や熱間加工性が劣化する。そこでNi量を0.01〜1%と定めた。Ni量の好ましい下限は0.02%であり、好ましい上限は0.9%である。
<Ni: 0.01 to 1%>
Ni is effective in improving corrosion resistance. Specifically, Ni has an action of forming a dense surface rust film in a corrosive environment, and is an element that exhibits a corrosion inhibition effect by the surface rust film. Further, Ni has an effect of preventing red heat brittleness due to containing Cu. In order to exhibit such an effect, it is preferable to make it contain 0.01% or more. However, if the content exceeds 1%, weldability and hot workability deteriorate. Therefore, the amount of Ni is set to 0.01 to 1%. The preferable lower limit of the amount of Ni is 0.02%, and the preferable upper limit is 0.9%.

本発明の原油タンク底板用鋼材の基本成分は前記の通りであり、残部は鉄および不可避不純物(例えばP、S、O、N、H、Mo、W等)からなるものである。但し、不可避不純物は、鋼材の特性を阻害しない程度の量とする必要がある。   The basic components of the steel plate for crude oil tank bottom plate of the present invention are as described above, and the balance is made of iron and inevitable impurities (for example, P, S, O, N, H, Mo, W, etc.). However, the inevitable impurities need to be an amount that does not hinder the properties of the steel material.

また、本発明の原油タンク底板用鋼材には、前記成分のほか必要に応じて、(ア)Mg:0.005%以下(0%を含まない)および/またはSr:0.005%以下(0%を含まない)、(イ)Zr:0.2%以下(0%を含まない)および/またはHf:0.2%以下(0%を含まない)、(ウ)Co:1%以下(0%を含まない)、(エ)La:0.01%以下(0%を含まない)、Ce:0.01%以下(0%を含まない)、Nd:0.01%以下(0%を含まない)、およびSm:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、および/または(オ)B:0.01%以下(0%を含まない)、V:0.5%以下(0%を含まない)、およびNb:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素、等を含有させることも有効であり、含有させる成分の種類に応じて、原油タンク底板用鋼材の特性がさらに改善されることになる。   In addition to the above components, the steel material for a crude oil tank bottom plate of the present invention includes (a) Mg: 0.005% or less (excluding 0%) and / or Sr: 0.005% or less (as required) (B) Zr: 0.2% or less (not including 0%) and / or Hf: 0.2% or less (not including 0%), (c) Co: 1% or less (Not including 0%), (D) La: 0.01% or less (not including 0%), Ce: 0.01% or less (not including 0%), Nd: 0.01% or less (0 %), And Sm: at least one element selected from the group consisting of 0.01% or less (excluding 0%), and / or (e) B: 0.01% or less (0% Not including), V: 0.5% or less (not including 0%), and Nb: 0.5% or less (not including 0%) At least one element selected, etc. is also effective to contain, depending on the type of component to be contained, so that the characteristics of the steel material for a crude oil tank bottom plate is further improved.

〈Mg:0.005%以下および/またはSr:0.005%以下〉
MgおよびSrは、耐食性向上に有効な元素であり、必要に応じて含有させることができる。詳しくは、これらはCaと同様に、腐食によって溶解したFeの加水分解によるpH低下を抑制する作用を有しており、pH低下による腐食促進を抑制する。この作用により、殊に耐すきま腐食性の向上に有効である。またMgは、Coが共存する場合に、特に耐食性向上に有効である。こうした作用を充分に発揮させるために、MgおよびSrを、それぞれ、好ましくは0.0001%以上、より好ましくは0.0005%以上含有させることが推奨される。しかしこれらを過剰に含有させると、加工性と溶接性とを劣化させる。そこで含有させる場合、MgおよびSr量の上限は、それぞれ0.005%であり、より好ましくは0.004%以下である。
<Mg: 0.005% or less and / or Sr: 0.005% or less>
Mg and Sr are effective elements for improving the corrosion resistance, and can be contained as necessary. In detail, like Ca, these have the effect | action which suppresses the pH fall by the hydrolysis of Fe melt | dissolved by corrosion, and suppress the corrosion promotion by pH fall. This action is particularly effective for improving crevice corrosion resistance. Mg is particularly effective in improving corrosion resistance when Co is present. In order to sufficiently exert such an action, it is recommended that Mg and Sr are each preferably contained in an amount of 0.0001% or more, more preferably 0.0005% or more. However, when these are contained excessively, workability and weldability are deteriorated. Therefore, when contained, the upper limit of the amount of Mg and Sr is 0.005%, and more preferably 0.004% or less.

〈Zr:0.2%以下および/またはHf:0.2%以下〉
ZrおよびHfは、耐食性向上に有効な元素であり、必要に応じて含有させることができる。詳しくは、これらはTiと同様に、腐食環境において形成される表面錆被膜を安定化させる作用を有しており、表面錆被膜による腐食抑制効果を長期間にわたって発現させるのに有効な元素である。この効果を充分に発揮させるために、ZrおよびHfを、それぞれ、好ましくは0.005%以上、より好ましくは0.008%以上含有させることが推奨される。しかしこれらの量が過剰になると、溶接性や熱間加工性が劣化する。そこで含有させる場合、ZrおよびHf量の上限は、それぞれ0.2%であり、より好ましくは0.15%以下である。
<Zr: 0.2% or less and / or Hf: 0.2% or less>
Zr and Hf are effective elements for improving corrosion resistance, and can be contained as necessary. Specifically, like Ti, these elements have the effect of stabilizing the surface rust film formed in the corrosive environment, and are effective elements for expressing the corrosion inhibition effect by the surface rust film over a long period of time. . In order to fully exhibit this effect, it is recommended that Zr and Hf are each preferably contained in an amount of 0.005% or more, more preferably 0.008% or more. However, when these amounts are excessive, weldability and hot workability deteriorate. Therefore, when contained, the upper limit of the amount of Zr and Hf is 0.2%, more preferably 0.15% or less.

〈Co:1%以下〉
Coは、耐食性向上に有効な元素であり、必要に応じて含有させることができる。詳しくは、Coは、Niと同様に、腐食環境において緻密な表面錆被膜を形成させる作用を有しており、表面錆被膜による腐食抑制効果を発現する元素である。特にMgとの共存により、著しい耐食効果が得られる。こうした効果を充分に発揮させるために、Coを、好ましくは0.01%以上、より好ましくは0.02%以上含有させることが推奨される。しかしCo量が過剰になると、溶接性や熱間加工性が劣化する。そこで含有させる場合、Co量の上限は1%であり、より好ましくは0.8%以下である。
<Co: 1% or less>
Co is an element effective for improving the corrosion resistance, and can be contained as necessary. Specifically, Co, like Ni, has an action of forming a dense surface rust film in a corrosive environment, and is an element that exhibits a corrosion inhibition effect by the surface rust film. In particular, due to the coexistence with Mg, a remarkable corrosion resistance effect is obtained. In order to sufficiently exhibit such effects, it is recommended that Co be contained in an amount of preferably 0.01% or more, more preferably 0.02% or more. However, when the amount of Co becomes excessive, weldability and hot workability deteriorate. Therefore, when it is contained, the upper limit of the amount of Co is 1%, more preferably 0.8% or less.

〈La:0.01%以下、Ce:0.01%以下、Nd:0.01%以下、およびSm:0.01%以下よりなる群から選ばれる少なくとも1種の元素〉
La、Ce、NdおよびSmは、いずれも耐食性向上に有効な元素であり、必要に応じて含有させることができる。詳しくは、これらは、CaなどによるpH低下抑制効果や、Tiなどによる表面錆被膜の安定化効果を助長して、耐食性をさらに高める作用を有する。こうした作用を充分に発揮させるためにLa、Ce、NdおよびSmを、それぞれ、好ましくは0.0001%以上、より好ましくは0.0005%以上含有させることが推奨される。しかしこれらを過剰に含有させると、加工性と溶接性とが劣化する。そこで含有させる場合、La、Ce、NdおよびSm量の上限は、それぞれ0.01%であり、より好ましくは0.008%である。
<At least one element selected from the group consisting of La: 0.01% or less, Ce: 0.01% or less, Nd: 0.01% or less, and Sm: 0.01% or less>
La, Ce, Nd, and Sm are all effective elements for improving corrosion resistance, and can be contained as necessary. Specifically, these have the effect of further enhancing the corrosion resistance by promoting the effect of suppressing pH decrease by Ca and the like and the effect of stabilizing the surface rust film by Ti and the like. In order to sufficiently exhibit such an action, it is recommended that La, Ce, Nd and Sm are each preferably contained in an amount of 0.0001% or more, more preferably 0.0005% or more. However, when these are contained excessively, workability and weldability deteriorate. Therefore, when contained, the upper limits of the amounts of La, Ce, Nd and Sm are each 0.01%, and more preferably 0.008%.

〈B:0.01%以下、V:0.5%以下、およびNb:0.5%以下よりなる群から選ばれる少なくとも1種の元素〉
B、VおよびNbは、いずれも強度向上に有効な元素であり、必要に応じて含有させることができる。これらの効果を充分に発揮させるために(殊にBについては焼入性の向上の観点から)、Bは、好ましくは0.0001%以上、より好ましくは0.0003%以上、Vは、好ましくは0.01%以上、より好ましくは0.02%以上、およびNbは、好ましくは0.003%以上、より好ましくは0.005%以上含有させることが推奨される。しかしこれらを過剰に含有させると、鋼材の靭性が劣化する。そこで含有させる場合、B量の上限は0.01%であり、より好ましくは0.009%以下であり、V量の上限は0.5%であり、より好ましくは0.45%以下であり、Nb量の上限は0.5%であり、より好ましくは0.45%以下である。
<At least one element selected from the group consisting of B: 0.01% or less, V: 0.5% or less, and Nb: 0.5% or less>
B, V and Nb are all effective elements for improving the strength, and can be contained as required. In order to fully exhibit these effects (especially B from the viewpoint of improving hardenability), B is preferably 0.0001% or more, more preferably 0.0003% or more, and V is preferably Is recommended to be contained at 0.01% or more, more preferably 0.02% or more, and Nb is preferably contained at 0.003% or more, more preferably 0.005% or more. However, when these are contained excessively, the toughness of the steel material deteriorates. Therefore, when contained, the upper limit of the B amount is 0.01%, more preferably 0.009% or less, and the upper limit of the V amount is 0.5%, more preferably 0.45% or less. The upper limit of the amount of Nb is 0.5%, more preferably 0.45% or less.

上述のように、pH低下を抑制する効果のあるCa、MgおよびSrをa群に、表面錆被膜を安定化する効果のあるTi、ZrおよびHfをb群に、CoおよびNiをc群に分類すると、効果の異なるa〜c群元素は、互いに相乗的に作用する。よってa群元素、b群元素およびc群元素の合計含有量の比を適切に制御することによって、耐食性を一層向上させることができる。   As described above, Ca, Mg and Sr, which have the effect of suppressing pH reduction, are in the a group, Ti, Zr and Hf, which have the effect of stabilizing the surface rust film, are in the b group, and Co and Ni are in the c group. When classified, the a to c group elements having different effects act synergistically. Therefore, the corrosion resistance can be further improved by appropriately controlling the ratio of the total content of the a group element, the b group element, and the c group element.

具体的には、a群元素の合計含有量をS(a)%(質量%の意味、以下同じ)、b群元素の合計含有量をS(b)%、c群元素の合計含有量をS(c)%とした場合に、耐全面腐食性の観点から、好ましくは20≦S(c)/S(a)≦350、より好ましくは50≦S(c)/S(a)≦170となるように、a群元素およびc群元素の合計含有量を調整することが推奨される。また耐すきま腐食性の観点から、好ましくは1.00≦S(c)/S(b)≦60、より好ましくは10≦S(c)/S(b)≦30となるように、b群元素およびc群元素の合計含有量を調整することが推奨される。   Specifically, the total content of group a elements is S (a)% (meaning mass%, the same applies hereinafter), the total content of group b elements is S (b)%, and the total content of group c elements is In the case of S (c)%, from the viewpoint of general corrosion resistance, it is preferably 20 ≦ S (c) / S (a) ≦ 350, more preferably 50 ≦ S (c) / S (a) ≦ 170. It is recommended to adjust the total content of the a group element and the c group element so that From the viewpoint of crevice corrosion resistance, the group b is preferably 1.00 ≦ S (c) / S (b) ≦ 60, more preferably 10 ≦ S (c) / S (b) ≦ 30. It is recommended to adjust the total content of elements and group c elements.

本発明の原油タンク底板用鋼材は、耐食性を向上させるために、鋼材組織が適切に制御されていること、具体的には、面積率で、パーライト:5〜25%、ベイナイト:20%未満、マルテンサイト:10%未満であり、残部がフェライトからなる組織を有することを特徴の1つとする。   In order to improve corrosion resistance, the steel material for the crude oil tank bottom plate of the present invention has a steel material structure appropriately controlled, specifically, in terms of area ratio, pearlite: 5 to 25%, bainite: less than 20%, Martensite: less than 10%, and one of the characteristics is that the balance has a structure made of ferrite.

本発明において組織の面積率は、鋼材の厚みが6mm以上の場合は、表面より深さ3mmの部位において、鋼材の厚みが6mm未満の場合は、鋼材の厚みの1/2の部位において、原則400倍の観察倍率、および150μm×200μm以上の観察視野にて光学顕微鏡で観察し、任意の30視野で得られた面積率の平均値を採用する。なお深さの基準となる表面とは、圧延で力を加えられた鋼材の面をいう。   In the present invention, the area ratio of the structure is, in principle, in a portion having a depth of 3 mm from the surface when the thickness of the steel material is 6 mm or more, and in a half of the thickness of the steel material when the thickness of the steel material is less than 6 mm. Observation with an optical microscope at an observation magnification of 400 times and an observation visual field of 150 μm × 200 μm or more, and an average value of area ratios obtained in arbitrary 30 visual fields is adopted. In addition, the surface used as the reference | standard of a depth means the surface of steel materials with which force was applied by rolling.

上述のように本発明の鋼材組織は、フェライトを主体とする。フェライトは、溶接性や加工性に優れ、また塩化物による応力腐食割れに対する感受性が小さいため、海水という塩化物環境で用いられる構造部材の組織として好ましい。   As described above, the steel structure of the present invention is mainly composed of ferrite. Ferrite is preferable as a structure of a structural member used in a chloride environment called seawater because it is excellent in weldability and workability and has low sensitivity to stress corrosion cracking due to chloride.

パーライトは、鋼材の強度を得るために必要である。またパーライト面積率が小さすぎると、パーライトが局所的に点在する傾向を示し、孔食やすきま腐食などの局部腐食を生じる傾向が大きくなる。強度と耐局部腐食性の観点から、パーライト面積率を5%以上と定めた。しかしパーライトの増大は、靭性と溶接性の劣化を引き起こすことに加えて、腐食反応のカソードサイトとして作用して、耐食性(耐全面腐食性)を劣化させる。そこでパーライト面積率を、25%以下と定めた。パーライト面積率のより好ましい範囲は8〜20%である。   Perlite is necessary to obtain the strength of the steel material. If the pearlite area ratio is too small, the pearlite tends to be locally scattered, and the tendency to cause local corrosion such as pitting corrosion and crevice corrosion increases. From the viewpoint of strength and local corrosion resistance, the pearlite area ratio was set to 5% or more. However, in addition to causing deterioration of toughness and weldability, the increase in pearlite acts as a cathodic site for corrosion reaction and deteriorates corrosion resistance (total corrosion resistance). Therefore, the pearlite area ratio was set to 25% or less. A more preferable range of the pearlite area ratio is 8 to 20%.

ベイナイトは、鋼材の靭性を向上させるために有効な組織である。しかしフェライト中にベイナイトが存在すると、ベイナイト部の腐食が促進されて、耐局部腐食性を低下させる。そこでベイナイト面積率は、20%未満、好ましくは18%未満とすることが推奨される。   Bainite is an effective structure for improving the toughness of steel materials. However, if bainite is present in the ferrite, corrosion of the bainite portion is promoted and local corrosion resistance is lowered. Therefore, it is recommended that the bainite area ratio is less than 20%, preferably less than 18%.

マルテンサイトは、強度向上に有効な組織であるが、靭性や溶接性を害する。そこで靭性や溶接性の確保の点から、マルテンサイト面積率は、10%未満、好ましくは8%未満とすることが推奨される。   Martensite is an effective structure for improving strength, but it impairs toughness and weldability. Therefore, from the viewpoint of securing toughness and weldability, it is recommended that the martensite area ratio is less than 10%, preferably less than 8%.

本発明の原油タンク底板用鋼材は、耐食性を向上させるために、鋼材中に存在する非金属介在物が抑制されていることを特徴の1つとする。この非金属介在物は、局部腐食の起点となることがある。ここで本発明における「非金属介在物」とは、MnSなどの硫化物系、Al23やSiO2などの酸化物系およびTiNなどの窒化物系の介在物を意味する。 The steel material for crude oil tank bottom plate of the present invention is characterized in that non-metallic inclusions present in the steel material are suppressed in order to improve corrosion resistance. This non-metallic inclusion may be a starting point for local corrosion. Here, the “non-metallic inclusion” in the present invention means a sulfide type inclusion such as MnS, an oxide type such as Al 2 O 3 or SiO 2 and a nitride type inclusion such as TiN.

原油タンク底板の環境では、円相当径が20μmを超える大きな非金属介在物が特に有害であり、当該介在物の数を0.20個/mm2以下、より好ましくは0.1個/mm2以下とすることが推奨される。 In the environment of the crude oil tank bottom plate, large non-metallic inclusions having an equivalent circle diameter exceeding 20 μm are particularly harmful, and the number of inclusions is 0.20 pieces / mm 2 or less, more preferably 0.1 pieces / mm 2 or less. It is recommended to do.

本発明において20μmを超える非金属介在物の単位面積あたりの数は、鋼材の厚みが6mm以上の場合は、表面より深さ3mmの部位において、鋼材の厚みが6mm未満の場合は、鋼材の厚みの1/2の部位において、原則400倍の観察倍率、および150μm×200μm以上の観察視野にて光学顕微鏡で観察し、任意の30視野で得られた当該介在物の単位面積あたりの数の平均値を採用する。なお深さの基準となる表面とは、圧延で力を加えられた鋼材の面をいう。また光学顕微鏡の観察方法は、JIS G0555に記載されている「鋼の非金属介在物の顕微鏡試験方法」に準ずる。   In the present invention, the number per unit area of non-metallic inclusions exceeding 20 μm is the thickness of the steel material when the thickness of the steel material is 6 mm or more and the thickness of the steel material is less than 6 mm at a portion 3 mm deep from the surface. The average of the number per unit area of the inclusions obtained in an arbitrary 30 visual fields when observed with an optical microscope at an observation magnification of 400 times and an observation visual field of 150 μm × 200 μm or more in principle Adopt value. In addition, the surface used as the reference | standard of a depth means the surface of steel materials with which force was applied by rolling. The observation method of the optical microscope is in accordance with “Microscopic test method for non-metallic inclusions in steel” described in JIS G0555.

本発明の原油タンク底板用鋼材は、例えば以下の方法により、製造することができる。まず転炉、電気炉等の通常の溶製方法により、化学成分組成が、前記範囲を満たすように調整しながら溶製を行い、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とする。なお脱酸形式としては、機械特性や溶接性の観点でキルド鋼を用いることが好ましく、さらに好ましくはAlキルド鋼が推奨される。ここで円相当径が20μmを超える非金属介在物の単位面積あたりの数を0.20個/mm2以下に減少させることは、例えばDH法やRH法という真空脱ガス法などの炉外精錬を行うことにより達成できる。 The steel material for a crude oil tank bottom plate of the present invention can be manufactured, for example, by the following method. First, the ingot is prepared by a normal casting method such as a converter or an electric furnace while adjusting the chemical composition so that the chemical composition satisfies the above range. And As a deoxidation type, it is preferable to use killed steel from the viewpoint of mechanical properties and weldability, and Al killed steel is more preferable. Here, reducing the number per unit area of non-metallic inclusions having an equivalent circle diameter of more than 20 μm to 0.20 pieces / mm 2 or less is, for example, outside refining such as a vacuum degassing method such as DH method or RH method. Can be achieved by performing

次いで得られた鋼塊を、1100〜1200℃の温度域に加熱した後、熱間圧延を行って、所望の寸法形状にすることが好ましい。このとき熱間圧延終了温度を、750〜850℃に制御し、熱間圧延終了後から500℃までの冷却速度を、0.5〜15℃/秒の範囲に制御することにより、パーライト:5〜25%、ベイナイト:20%未満、マルテンサイト:10%未満であり、残部がフェライトからなる組織の鋼材を得ることができる。   Subsequently, after heating the obtained steel ingot to a temperature range of 1100 to 1200 ° C., it is preferable to perform hot rolling to obtain a desired size and shape. At this time, the end temperature of hot rolling is controlled to 750 to 850 ° C., and the cooling rate from the end of hot rolling to 500 ° C. is controlled in the range of 0.5 to 15 ° C./second, whereby pearlite: 5 Steel material having a structure of ˜25%, bainite: less than 20%, martensite: less than 10%, and the balance being composed of ferrite can be obtained.

本発明の原油タンク底板用鋼材は、耐局部腐食性および塗装耐食性の両方が優れているので、ダブルハル構造の原油タンカーのタンク底板として、殊に原油タンク側は裸(無処理)で、バラストタンク側は塗装して、用いることが好ましい。但し原油タンク側も、必要に応じて、初期の錆止めを目的としたジンクリッチペイントやショッププライマーなどの処理を施しても良い。バラストタンク側の塗料としては、タールエポキシ樹脂系塗料、変性エポキシ樹脂塗料、またはそれ以外の代表的な重防食塗料などが挙げられる。また電気防食(流電陽極法、外部電源法)などの他の防食方法と併用して、本発明の原油タンク底板用鋼材を用いても良い。   The steel plate for crude oil tank bottom plate according to the present invention is excellent in both local corrosion resistance and paint corrosion resistance. Therefore, as a tank bottom plate of a double hull structure crude oil tanker, the crude oil tank side is bare (untreated), and the ballast tank The side is preferably painted and used. However, the crude oil tank may also be subjected to a treatment such as zinc rich paint or shop primer for the purpose of preventing initial rust as needed. Examples of the paint on the ballast tank side include tar epoxy resin-based paints, modified epoxy resin paints, and other representative heavy anticorrosion paints. Further, the steel material for the bottom plate of the crude oil tank of the present invention may be used in combination with other anticorrosion methods such as cathodic protection (galvanic anode method, external power supply method).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

〈供試材の作製〉
表1に示す化学成分の鋼材を転炉で溶製し、連続鋳造法によって作製したスラブを1150℃に加熱したのちに熱間圧延を行って鋼板を作製した。鋼材組織は、製造時における熱間圧延終了温度、および熱延終了から500℃までの冷却速度を変化させることによって調整した。円相当径が20μmを超える非金属介在物の数は、RH法による脱ガス処理時間を増減させることによって調整した。
<Production of test material>
Steel materials having chemical components shown in Table 1 were melted in a converter, and a slab produced by a continuous casting method was heated to 1150 ° C. and then hot-rolled to produce a steel plate. The steel structure was adjusted by changing the hot rolling end temperature during production and the cooling rate from the end of hot rolling to 500 ° C. The number of non-metallic inclusions having an equivalent circle diameter exceeding 20 μm was adjusted by increasing or decreasing the degassing treatment time by the RH method.

表2に、熱間圧延終了温度を「圧延終了温度」として、熱延終了から500℃までの冷却速度を「冷却速度」として、鋼材組織の面積率を「組織面積率」として、および円相当径が20μmを超える非金属介在物の数を「非金属介在物」として記載する。また表2には、S(c)/S(a)およびS(c)/S(b)の値も記載する。   Table 2 shows the hot rolling end temperature as “rolling end temperature”, the cooling rate from the end of hot rolling to 500 ° C. as “cooling rate”, the area ratio of steel structure as “structure area ratio”, and the circle equivalent The number of nonmetallic inclusions having a diameter exceeding 20 μm is described as “nonmetallic inclusions”. Table 2 also describes the values of S (c) / S (a) and S (c) / S (b).

以上のようにして得られた鋼板を切断および表面研削することにより、原油タンク側の模擬環境で用いる試験片として、300×300×25(mm)の大きさの試験片Aを作製した。試験片Aの外観形状を図1に示す。また、図2に示すように60×60×5(mm)の小試験片4個を、300×300×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは、同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に10mmφの孔を、基材側(大試験片側)に開けて、M8プラスチック製ねじで固定した。   By cutting and surface grinding the steel plate obtained as described above, a test piece A having a size of 300 × 300 × 25 (mm) was produced as a test piece used in a simulated environment on the crude oil tank side. The external shape of the test piece A is shown in FIG. Further, as shown in FIG. 2, four small test pieces of 60 × 60 × 5 (mm) are brought into contact with a large test piece of 300 × 300 × 25 (mm) (the same as the test piece A), A test piece B having a clearance was formed. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece A. Then, a 10 mmφ hole was opened in the center of the small test piece on the base material side (large test piece side), and fixed with an M8 plastic screw.

さらにバラストタンク側の模擬環境で用いる試験片として、変性エポキシ樹脂塗装(平均膜厚:50μm)を全面に施した試験片C(図3)も作製した。また防食塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、前記試験片Cに素地まで達するカット疵1本(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した試験片D(図4)も作製した。これら試験片CおよびDの試験面には、大きさ20mmφ×25mmの純亜鉛片を、亜鉛片の中心と試験片の端部との距離が20mmとなるように取り付けて電気防食を施した。またいずれの試験片においても、腐食状況を評価する面(試験面)は一面のみであり、試験面以外の面はシリコーンシーラントにより被覆を施して腐食を防止した。   Furthermore, as a test piece used in the simulated environment on the ballast tank side, a test piece C (FIG. 3) in which a modified epoxy resin coating (average film thickness: 50 μm) was applied to the entire surface was also produced. In addition, in order to investigate the degree of corrosion progression when the base steel material is exposed due to scratches on the anticorrosive coating film, one cut ridge reaching the base to the test piece C (length: 100 mm, width: about 0.5 mm) A test piece D (FIG. 4) formed with a cutter knife was also produced. On the test surfaces of these test pieces C and D, a pure zinc piece having a size of 20 mmφ × 25 mm was attached so that the distance between the center of the zinc piece and the end of the test piece was 20 mm, and was subjected to cathodic protection. In each test piece, only one surface (test surface) was evaluated for corrosion status, and the surfaces other than the test surface were coated with a silicone sealant to prevent corrosion.

〈腐食試験〉
(I)原油タンク側の模擬環境における試験
原油タンカーより採取した原油スラッジと兵庫県加古川市にて採取した天然海水とを体積比で1:1に混合した原油模擬溶媒に、試験片AおよびBを水平に浸漬し、分圧比で5%O2−0.5%H2Sー10%CO2(残部N2)の混合ガスを試験槽内に導入した。試験片の個数は、試験片AおよびBとも、それぞれ10個ずつであり、試験期間は1年である。試験終了後に、試験片Aについて、クエン酸水素二アンモニウム水溶液中での陰極電解法(JIS K8284)により鉄錆等の腐食生成物の除去を行った。また試験片Bについても、すきま形成用の小試験片を取り外し、同様の方法で腐食生成物の除去を行った。
該模擬環境にて試験した試験片AおよびBで、耐全面腐食性、腐食均一性および耐すきま腐食性を、表3に示す基準で評価した。腐食試験の結果を表4に示す。
<Corrosion test>
(I) Test in a simulated environment on the crude oil tank side Specimens A and B were added to a crude oil simulation solvent in which crude oil sludge collected from a crude oil tanker and natural seawater collected in Kakogawa City, Hyogo Prefecture were mixed at a volume ratio of 1: 1. Were immersed horizontally, and a mixed gas of 5% O 2 -0.5% H 2 S-10% CO 2 (remainder N 2 ) in a partial pressure ratio was introduced into the test tank. The number of test pieces is 10 for each of the test pieces A and B, and the test period is one year. After completion of the test, the test piece A was subjected to removal of corrosion products such as iron rust by a cathodic electrolysis method (JIS K8284) in a diammonium hydrogen citrate aqueous solution. For test piece B, the small test piece for forming the gap was removed, and the corrosion products were removed in the same manner.
Test specimens A and B tested in the simulated environment were evaluated for overall corrosion resistance, corrosion uniformity, and crevice corrosion resistance according to the criteria shown in Table 3. The results of the corrosion test are shown in Table 4.

(II)バラストタンク側の模擬環境における試験
試験片CおよびDを、密閉された腐食試験槽に垂直に設置し、バラストタンク内に海水を導入した期間を想定した「海水浸漬状態」と、原油を搭載してバラストタンク内が空である期間を想定した「高温高湿状態」とを、それぞれ2週間毎に繰り返して適用した。このとき用いた海水は兵庫県加古川市にて採取した天然海水であり、海水温度を30℃に保持した。高温高湿状態では、雰囲気温度40℃、湿度90%RH以上となるように温調および加湿を行った。試験片の個数は、試験片CおよびDとも、それぞれ10個ずつであり、合計の試験期間は1年である。
該模擬環境にて試験した試験片CおよびDで、耐塗膜膨れ性および塗膜疵部耐食性を、表3に示す基準で評価した。腐食試験の結果を表4に示す。
(II) Test in simulated environment on the ballast tank side Test pieces C and D were installed vertically in a sealed corrosion test tank, and “seawater immersed state” assuming the period of seawater introduced into the ballast tank, and crude oil The “high temperature and high humidity state” assuming a period when the ballast tank is empty was repeatedly applied every 2 weeks. The seawater used at this time was natural seawater collected in Kakogawa City, Hyogo Prefecture, and the seawater temperature was kept at 30 ° C. In a high temperature and high humidity state, the temperature was adjusted and humidified so that the atmospheric temperature was 40 ° C. and the humidity was 90% RH or higher. The number of test pieces is 10 for each of the test pieces C and D, and the total test period is one year.
With respect to the test pieces C and D tested in the simulated environment, the coating film swelling resistance and coating film butt corrosion resistance were evaluated according to the criteria shown in Table 3. The results of the corrosion test are shown in Table 4.

(1)耐全面腐食性および腐食均一性
試験片Aで、試験前後の質量変化を平均板厚減少量D−ave(mm)に換算し、試験片10個の平均値を算出して、各供試材の耐全面腐食性を評価した。また、触針式三次元形状測定装置を用いて、試験片Aの最大侵食深さD−max(mm)を求め、D−max/D−aveを算出して、腐食均一性を評価した。
(1) Overall corrosion resistance and corrosion uniformity In test piece A, the change in mass before and after the test was converted to an average thickness reduction amount D-ave (mm), and the average value of 10 test pieces was calculated. The overall corrosion resistance of the test material was evaluated. Moreover, the maximum erosion depth D-max (mm) of the test piece A was calculated | required using the stylus type three-dimensional shape measuring apparatus, D-max / D-ave was calculated, and corrosion uniformity was evaluated.

(2)耐すきま腐食性
試験片Bで、触針式三次元形状測定装置を用いて、大試験片側のすきま腐食深さを測定し、試験片10個の最大値を最大すきま腐食深さD−crev(mm)として、耐すきま腐食性を評価した。
(2) Crevice corrosion resistance Measure the crevice corrosion depth on the large test piece side using the stylus type three-dimensional shape measuring device on test piece B, and set the maximum value of 10 test pieces to the maximum crevice corrosion depth D. As crev (mm), crevice corrosion resistance was evaluated.

(3)耐塗膜膨れ性
試験片Cで、適宜観察を行って、塗膜に目視で確認できる膨れが発生するまでの時間(日)を計測し、耐塗膜膨れ性を評価した。
(3) Coating film swell resistance Test piece C was appropriately observed, and the time (day) until swelling that can be visually confirmed on the coating film was measured to evaluate the swell resistance of the coating film.

(4)塗膜疵部耐食性
試験片Dで、カット傷に垂直方向の塗膜膨れ幅(mm)をノギスで測定し、試験片10個の最大値を最大膨れ幅として算出し、塗膜疵部耐食性を評価した。
(4) Corrosion resistance of coating film ridge part Measure the coating film swelling width (mm) in the direction perpendicular to the cut scratches with test piece D with calipers, and calculate the maximum value of 10 test pieces as the maximum swelling width. The corrosion resistance was evaluated.

鋼材No.1は、Cu、Cr、Ca、NiおよびTiを含有しない従来鋼であり、腐食試験の全ての項目で、不良な結果となっている。鋼材No.2は、No.1に比べて、耐全面腐食性や塗膜膨れ性がやや改善しているが、Cr量が所定量に満たないため、その他の項目で不良な結果となっている。鋼材No.3およびNo.4は、本発明で規定する化学成分組成の要件を満たすが、それぞれパーライト面積率およびベイナイト面積率が規定値を超えているため、耐食性の改善が不充分である。鋼材No.5も、化学成分組成の要件を満たすが、非金属介在物数の要件を満たさないため、耐すきま腐食性や耐塗膜膨れ性が不良である。   Steel No. Reference numeral 1 is a conventional steel that does not contain Cu, Cr, Ca, Ni, and Ti, and has poor results in all items of the corrosion test. Steel No. 2 is No.2. Compared to 1, the overall corrosion resistance and the film swellability are slightly improved, but the Cr amount is less than the predetermined amount, resulting in poor results in other items. Steel No. 3 and no. No. 4 satisfies the requirements of the chemical component composition defined in the present invention, but the pearlite area ratio and the bainite area ratio exceed the specified values, respectively, so that the corrosion resistance is insufficiently improved. Steel No. No. 5 also satisfies the requirements for the chemical composition, but does not meet the requirements for the number of non-metallic inclusions, so the crevice corrosion resistance and the coating film swelling resistance are poor.

これに対して本発明の要件を全て満たす鋼材No.6〜27は、原油タンク側とバラストタンク側のいずれの模擬環境下でも優れた耐食性を示しており、原油タンク底板用鋼材として好ましいことが分かる。これらの鋼材No.6〜27について、耐全面腐食性とS(c)/S(a)値との関係、および耐すきま腐食性とS(c)/S(b)値との関係を示すグラフを、図5および図6に示す。   On the other hand, steel No. satisfying all the requirements of the present invention. Nos. 6 to 27 show excellent corrosion resistance in both simulated environments on the crude oil tank side and the ballast tank side, and it is understood that the steel materials for the crude oil tank bottom plate are preferable. These steel materials No. 6 to 27 are graphs showing the relationship between the general corrosion resistance and the S (c) / S (a) value, and the relationship between the crevice corrosion resistance and the S (c) / S (b) value. And shown in FIG.

表2および4、並びに図5で示されるように、耐全面腐食性において、20≦S(c)/S(a)≦350の範囲では、良好な結果(○)であり、50≦S(c)/S(a)≦170の範囲では、極めて良好な結果(◎)となっている。また表2および4、並びに図6で示されるように、耐すきま腐食性において、1.00≦S(c)/S(b)≦60の範囲では、良好な結果(○)であり、10≦S(c)/S(b)≦30の範囲では、極めて良好な結果(◎)となっている。このように、S(c)/S(a)およびS(c)/S(b)を適切に制御することにより、さらに耐食性(殊に耐全面腐食性および耐すきま腐食性)を向上させることができる。   As shown in Tables 2 and 4 and FIG. 5, in the general corrosion resistance, in the range of 20 ≦ S (c) / S (a) ≦ 350, good results (◯) are obtained, and 50 ≦ S ( In the range of c) / S (a) ≦ 170, extremely good results (◎) are obtained. Further, as shown in Tables 2 and 4 and FIG. 6, in the crevice corrosion resistance, good results (◯) were obtained in the range of 1.00 ≦ S (c) / S (b) ≦ 60. In the range of ≦ S (c) / S (b) ≦ 30, extremely good results (◎) are obtained. Thus, by appropriately controlling S (c) / S (a) and S (c) / S (b), the corrosion resistance (especially, general corrosion resistance and crevice corrosion resistance) can be further improved. Can do.

腐食試験に用いた試験片Aの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece A used for the corrosion test. 腐食試験に用いた試験片Bの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece B used for the corrosion test. 腐食試験に用いた試験片Cの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece C used for the corrosion test. 腐食試験に用いた試験片Dの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece D used for the corrosion test. 実施例で作製した鋼材No.6〜27における、耐全面腐食性とS(c)/S(a)値との関係を示すグラフである。The steel material No. produced in the Example. It is a graph which shows the relationship between the general corrosion resistance and S (c) / S (a) value in 6-27. 実施例で作製した鋼材No.6〜27における、耐すきま腐食性とS(c)/S(b)値との関係を示すグラフである。The steel material No. produced in the Example. It is a graph which shows the relationship between crevice corrosion resistance and S (c) / S (b) value in 6-27.

Claims (8)

C:0.01〜0.3%(質量%の意味、以下同じ)、
Si:0.01〜2%、
Mn:0.01〜2%、
Al:0.005〜0.1%、
Cu:0.01〜1%、
Cr:0.01〜1%、
Ca:0.0001〜0.005%、
Ti:0.005〜0.2%、および
Ni:0.01〜1%
を含有し、残部がFeおよび不可避不純物からなる組成を有し、
面積率で、パーライト:5〜25%、ベイナイト:20%未満、マルテンサイト:10%未満であり、残部がフェライトからなる組織を有し、
円相当径が20μmを超える非金属介在物の単位面積あたりの数が、0.20個/mm2以下であることを特徴とする耐食性に優れた原油タンク底板用鋼材。
C: 0.01 to 0.3% (meaning mass%, the same shall apply hereinafter)
Si: 0.01-2%
Mn: 0.01-2%
Al: 0.005 to 0.1%,
Cu: 0.01 to 1%,
Cr: 0.01-1%,
Ca: 0.0001 to 0.005%,
Ti: 0.005 to 0.2%, and Ni: 0.01 to 1%
And the balance has a composition consisting of Fe and inevitable impurities,
In area ratio, pearlite: 5 to 25%, bainite: less than 20%, martensite: less than 10%, the balance has a structure made of ferrite,
A steel material for a bottom plate of a crude oil tank excellent in corrosion resistance, characterized in that the number per unit area of non-metallic inclusions having an equivalent circle diameter exceeding 20 μm is 0.20 pieces / mm 2 or less.
さらにMg:0.005%以下(0%を含まない)および/またはSr:0.005%以下(0%を含まない)を含有する、請求項1に記載の原油タンク底板用鋼材。   The steel material for a crude oil tank bottom plate according to claim 1, further comprising Mg: 0.005% or less (not including 0%) and / or Sr: 0.005% or less (not including 0%). さらにZr:0.2%以下(0%を含まない)および/またはHf:0.2%以下(0%を含まない)を含有する、請求項1または2に記載の原油タンク底板用鋼材。   The steel material for a crude oil tank bottom plate according to claim 1 or 2, further comprising Zr: 0.2% or less (not including 0%) and / or Hf: 0.2% or less (not including 0%). さらにCo:1%以下(0%を含まない)を含有する、請求項1〜3のいずれかに記載の原油タンク底板用鋼材。   Furthermore, Co: Steel material for crude oil tank bottom plates in any one of Claims 1-3 containing 1% or less (excluding 0%). Ca、MgおよびSrをa群に、Ti、ZrおよびHfをb群に、CoおよびNiをc群に分類し、a群元素の合計含有量をS(a)%(質量%の意味、以下同じ)、b群元素の合計含有量をS(b)%、c群元素の合計含有量をS(c)%とした場合に、下記式(1)および(2)を満たす、請求項1〜4のいずれかに記載の原油タンク底板用鋼材。
20≦S(c)/S(a)≦350 ・・・ (1)
1.00≦S(c)/S(b)≦ 60 ・・・ (2)
Ca, Mg and Sr are classified into a group, Ti, Zr and Hf are classified into b group, Co and Ni are classified into c group, and the total content of group a elements is S (a)% (meaning mass%, hereinafter The same formula (1) and (2) are satisfied when the total content of the b group elements is S (b)% and the total content of the c group elements is S (c)%. Steel material for crude oil tank bottom plate in any one of -4.
20 ≦ S (c) / S (a) ≦ 350 (1)
1.00 ≦ S (c) / S (b) ≦ 60 (2)
さらにLa:0.01%以下(0%を含まない)、Ce:0.01%以下(0%を含まない)、Nd:0.01%以下(0%を含まない)、およびSm:0.01%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含有する、請求項1〜5のいずれかに記載の原油タンク底板用鋼材。   Furthermore, La: 0.01% or less (not including 0%), Ce: 0.01% or less (not including 0%), Nd: 0.01% or less (not including 0%), and Sm: 0 The steel material for a crude oil tank bottom plate according to any one of claims 1 to 5, comprising at least one element selected from the group consisting of 0.01% or less (not including 0%). さらにB:0.01%以下(0%を含まない)、V:0.5%以下(0%を含まない)、およびNb:0.5%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含有する、請求項1〜6のいずれかに記載の原油タンク底板用鋼材。   Further, from the group consisting of B: 0.01% or less (not including 0%), V: 0.5% or less (not including 0%), and Nb: 0.5% or less (not including 0%) The steel material for a crude oil tank bottom plate according to any one of claims 1 to 6, comprising at least one element selected. ダブルハル構造の原油タンカーのタンク底板に用いられる、請求項1〜7のいずれかに記載の原油タンク底板用鋼材。   The steel material for a crude oil tank bottom plate according to any one of claims 1 to 7, which is used for a tank bottom plate of a crude tanker having a double hull structure.
JP2006103475A 2006-04-04 2006-04-04 Steel material for crude oil tank bottom plate with excellent corrosion resistance Expired - Fee Related JP4868917B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006103475A JP4868917B2 (en) 2006-04-04 2006-04-04 Steel material for crude oil tank bottom plate with excellent corrosion resistance
CN2008101729051A CN101413085B (en) 2006-04-04 2007-04-02 Steel with excellent corrosion resistance for shipping
KR1020070032897A KR100994606B1 (en) 2006-04-04 2007-04-03 Steel for ship having excellent corrosion resistance
KR1020080102361A KR100992289B1 (en) 2006-04-04 2008-10-20 Steel for ship having excellent corrosion resistance
KR1020090076712A KR20090098775A (en) 2006-04-04 2009-08-19 Double hull fuel tanker
KR1020090076710A KR20090098774A (en) 2006-04-04 2009-08-19 Steel for ballast tank having excellent corrosion resistance, and ship having ballast tank made therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103475A JP4868917B2 (en) 2006-04-04 2006-04-04 Steel material for crude oil tank bottom plate with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2007277616A true JP2007277616A (en) 2007-10-25
JP4868917B2 JP4868917B2 (en) 2012-02-01

Family

ID=38679359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103475A Expired - Fee Related JP4868917B2 (en) 2006-04-04 2006-04-04 Steel material for crude oil tank bottom plate with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4868917B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
KR100951249B1 (en) * 2007-11-23 2010-04-02 주식회사 포스코 Steel palte with high sohic resistance and low temperature toughness at the h2s containing environment and manufacturing
JP2010126765A (en) * 2008-11-27 2010-06-10 Kobe Steel Ltd Steel for ship
WO2010074307A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker
JP2011169882A (en) * 2010-01-22 2011-09-01 Kobe Steel Ltd Corrosion resistance evaluation method and corrosion fatigue resistance evaluation method for steel material for coating
JP2016008342A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 High-tensile strength steel for welding
EP4074859A4 (en) * 2019-12-09 2023-11-01 Posco Structural steel plate having excellent seawater resistance, and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795844B (en) * 2020-12-29 2021-12-03 钢铁研究总院 Low-carbon Cr-Ni series high-strength corrosion-resistant steel and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951249B1 (en) * 2007-11-23 2010-04-02 주식회사 포스코 Steel palte with high sohic resistance and low temperature toughness at the h2s containing environment and manufacturing
JP2009209412A (en) * 2008-03-04 2009-09-17 Kobe Steel Ltd Steel for ship having excellent corrosion resistance
JP2010126765A (en) * 2008-11-27 2010-06-10 Kobe Steel Ltd Steel for ship
WO2010074307A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker
JP4502075B1 (en) * 2008-12-24 2010-07-14 Jfeスチール株式会社 Corrosion resistant steel for crude oil tankers
JP2010216005A (en) * 2008-12-24 2010-09-30 Jfe Steel Corp Corrosion-resistant steel material for crude oil tanker
JP2011169882A (en) * 2010-01-22 2011-09-01 Kobe Steel Ltd Corrosion resistance evaluation method and corrosion fatigue resistance evaluation method for steel material for coating
JP2016008342A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 High-tensile strength steel for welding
EP4074859A4 (en) * 2019-12-09 2023-11-01 Posco Structural steel plate having excellent seawater resistance, and method for manufacturing same
JP7429782B2 (en) 2019-12-09 2024-02-08 ポスコホールディングス インコーポレーティッド Structural steel plate with excellent seawater resistance and manufacturing method thereof

Also Published As

Publication number Publication date
JP4868917B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4640529B2 (en) Corrosion resistant steel material for crude oil tank, method for producing the same, and crude oil tank
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4668141B2 (en) Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
JP4525686B2 (en) Corrosion resistant steel for crude oil tank and crude oil tank
JP2006009129A (en) Steel for vessel having excellent corrosion resistance
JP2010222665A (en) Corrosion resistant shape steel member for crude oil tank and method for producing the same
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP2005220394A (en) Seawater corrosion resisting steel
JP2005290479A (en) Steel material for bottom plate of crude oil tank
JP5265944B2 (en) Marine steel with excellent corrosion resistance
JP4502948B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP4579837B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP2006137963A (en) Welded joint for crude oil tank, and crude oil tank
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2007197757A (en) High tensile strength marine steel having excellent corrosion resistance and base metal toughness
JP2017078222A (en) Thick steel plate and weld joint
JP5143707B2 (en) Marine steel
CN103469101A (en) Corrosion-resistant steel for high-Nb crude oil cargo ship cabin base plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4868917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees