JP2004514095A - Ultra low temperature liquid transfer device and transfer method - Google Patents
Ultra low temperature liquid transfer device and transfer method Download PDFInfo
- Publication number
- JP2004514095A JP2004514095A JP2002542800A JP2002542800A JP2004514095A JP 2004514095 A JP2004514095 A JP 2004514095A JP 2002542800 A JP2002542800 A JP 2002542800A JP 2002542800 A JP2002542800 A JP 2002542800A JP 2004514095 A JP2004514095 A JP 2004514095A
- Authority
- JP
- Japan
- Prior art keywords
- annulus
- transport line
- inner conduit
- cryogenic fluid
- flexible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000012546 transfer Methods 0.000 title claims description 30
- 239000012530 fluid Substances 0.000 claims abstract description 49
- 239000002131 composite material Substances 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims description 18
- 239000000956 alloy Substances 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000002681 cryosurgery Methods 0.000 claims description 5
- 238000003754 machining Methods 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 230000007613 environmental effect Effects 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 2
- 230000008602 contraction Effects 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 abstract description 5
- 230000035515 penetration Effects 0.000 abstract description 4
- 239000012466 permeate Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000011555 saturated liquid Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C6/00—Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0326—Valves electrically actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0329—Valves manually actuated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0332—Safety valves or pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0355—Insulation thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0358—Pipes coaxial
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
- F17C2205/0364—Pipes flexible or articulated, e.g. a hose
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/037—Quick connecting means, e.g. couplings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/01—Purifying the fluid
- F17C2265/015—Purifying the fluid by separating
- F17C2265/017—Purifying the fluid by separating different phases of a same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/02—Applications for medical applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/05—Applications for industrial use
- F17C2270/0545—Tools
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Insulation (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Pipeline Systems (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
超低温流体のトランスフェリング用の方法と装置を開示する。複合、同軸の搬送ラインは、超低温流体の第一部分が内方の管を流れ、第二部分が内方の管と外方の管の間の環体で、内方の管よりも低い圧力が環体を流れるよう使用される。内方の管はほぼ非浸透性であり、超低温流体の第一部分と第二部分の少なくとも一部分を内方の管と環体とにそれぞれ分配する流れ制御手段が搬送ラインの上流に設けられている。第二の実施形態では、内方の管は気体浸透及び液体浸透のいずれも許容し、第一部分の気体状の部分や液状の部分のいずれも環体内に浸透して、第二部分の少なくとも一部を形成する。A method and apparatus for transferring a cryogenic fluid is disclosed. The composite, coaxial transport line has a lower pressure than the inner tube, with the first part of the cryogenic fluid flowing through the inner tube and the second part being the annulus between the inner and outer tubes. Used to flow through the annulus. The inner tube is substantially impermeable and flow control means for distributing at least a portion of the first and second portions of the cryogenic fluid to the inner tube and annulus, respectively, is provided upstream of the transport line. . In a second embodiment, the inner tube allows both gas and liquid penetration, and both the gaseous and liquid portions of the first portion penetrate into the annulus and at least one of the second portions. Form a part.
Description
【0001】
発明の背景
超低温流体を搬送する多くの場合では、できる限り完全な液体状態で流体を移動することが重要である。従来は、流体をまず相分離したり、熱交換器で過冷したり、真空ジャケッティングによりラインを断熱状態に保ったりすることが必要であった。さもなければ、搬送ラインの熱漏れはボイルオフを招来し、ひいては搬送ライン内における波動、不安定さ、脈動等、一般的に望ましくない流れの原因となる。長い搬送ラインでは、特に熱漏れが問題となる。
【0002】
本発明は、超低温流体の第一部分が内方の管内を流れ、第二部分が内方の管と外方の管との間の環体内を流れ、外方の管における環体が内方の管よりも圧力が低く同軸、又は“チューブインチューブ”構造の超低温搬送ラインに関するものである。この圧力の違いにより、容易に環体内の流体により内方の管内(煮沸など)にある液体の冷却が可能になり、飽和液体状態に留められる。液体をさらに冷却し、冷却“クッション”として熱漏れに対応可能にする事が望ましい。
【0003】
また、多くの超低温流体トランスファー装置では搬送ラインが軽量で可撓性を有することが重要である。これは導入時、操作時、保守時に最大の自由度を提供し、ラインが繰り返し曲がることを防げるようにする。本発明は第二に可撓性材料(重合体素材など)からラインの少なくとも一部分を形成する超低温搬送ラインに関するものである。
【0004】
従来の技術では超低温搬送ラインのこれら双方の重要な問題が解決されていない。
米国特許第3696627号(ロングスワース(Longsworth))の超低温トランスファーシステムは、堅固な同軸パイピングの構成により超低温流の過冷や安定化を開示している。米国特許第4296610号(デービス(Davis))、米国特許第4336689号(デービス(Davis))、米国特許第4715187号(スターンズ(Stearns))及び、米国特許第5477691号(ホワイト(White))でも同様のシステムを開示している。
【0005】
チャン等(Chang et al)が開示した非金属、可撓超低温搬送ラインは超低温を冷凍手術システム内のクリオプローブを冷却する超低温システムに使用している(“高パフォーマンスマルチプルーブ冷凍手術デバイスの開発”バイオメディカル インストゥルメンション アンド テクノロジー(Biomedical Instrumentation and Techology)、 9月/10月 1994年 383−390ページ)。チャンの可撓性を有するライン設計に起因する熱漏れボイルオフのため、本質的に防熱が弱いこともあいまって、これらのラインは短くする必要があり、適切に稼動させるため十分に過冷された(−214℃)超低温液体で充満される必要がある。これは複雑にして高価な超低温の貯蔵装置と、供給装置と制御システムを上流側に必要とする。
【0006】
また超低温搬送ラインが機械加工に使用されることも知られている。機械加工においては、起寒剤は切削工具や被加工物のインターフェースとして使用される。例として、米国特許第2635399号(ウエスト(West))、米国特許第5103701号(ランデン(Lundin))、米国特許第5509335号(エマーソン(Emerson))、米国特許第5592863号(ジャスコウィック(Jaskowiak))、米国特許第5761974号(ワグナー(Wagner))、米国特許第5901623号(ホン(Hong))がある。チャンと同様に、これらのラインは短く、熱漏れボイルオフの防止のために過冷超低温液体を流す必要があり、従って上流に高価な過冷システムを必要とする。
【0007】
米国特許第3433028号(クレー(Klee))は、純単層内において超低温流体を一定の距離にわたって運ぶ同軸システムを開示している。大きさが決定された、超低温搬送内部ライン)入口オリフィスを使用することにより、外部熱漏れの影響を受ける場合、液体は蒸発するために外部ラインへ通過することが許容される。同軸ラインの出口端に設置された温度センサよりなるフロー制御ユニットは必要温度(通常、50−100°F)になると、外部ラインの蒸気の流れを止める。その結果、外部ラインの圧力が超低温ソースの圧力に近づいてくる。また、外部ラインの蒸気は常に内部ラインの液体よりも暖かくなる。さらに、蒸発するために外部ラインへ通過する液体の量は、入口に設けた非可変的に設けられたオリフィスにより常に制限されるため、高い熱漏れは完全に防ぐことができない。これらの操作原理において、ラインの設置工事中に耐高圧材、非可撓性金属管材、や断熱素材の使用を必要とする。
【0008】
日本国特許出願公開06210105号は非超低温のガス抜き用同軸搬送ラインを開示している。このチューブの素材の特性では、超低温にて使用される搬送ラインの使用が困難である。
【0009】
発明の概要
本発明は超低温流体搬送方法及び搬送装置に関する。同軸搬送ラインは内方の導管を超低温流体の第一部分が流れるように使用され、超低温流体の第二部分が内方の導管と外方の導管との間の環体内を流れる。環体内の圧力は内方の導管内の圧力よりも低い。一実施例においては、内方の導管はほぼ非孔質であり、搬送ラインの上流には流れ制御手段が設けられている。流れ制御手段は、超低温流体の第一の部分と第二の部分を内方の導管と環体とに分配をする。手段が第二の実施例では、内方の導管の少なくとも一部分は、超低温流体の第一部分の気体浸透や液体浸透に対応するように浸透性を有し、第一部分の気体部及び液状部が環体に浸透して第二部分の少なくとも一部を構成する。
【0010】
本発明の詳細な説明
本発明の複合的、同軸搬送ラインは、図1に示すように、流れ制御ボックス20の下流側に搬送ライン22が配置されている。搬送ライン22において、内方の管72の周囲に外方の管74が配置されている。外方の管74の周囲には断熱材70が設けられ、同断熱材70の周囲には可撓保護ケース68が設けられている。超低温流体の第一部分は内方の管内を流れ、第二部分は内方の管と外方の管の間の環体内を流れる。第一部分は第二部分より高い圧力を有する。
【0011】
搬送ラインの少なくも一部分は複合素材など、可撓性材料で形成される。ほぼ全ての内方の管と、ほぼ全ての外方の管を可撓性のある複合材料にて形成することも可能である。さらに、ほぼ全ての外方の管を可撓性に富む複合材料で形成し、ほぼ全ての内方の管を、超低温下で脆くならず、かつ可撓性を備えた非複合材料、例えば、(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ製品から形成することも可能である。さらに、ほぼ全ての内方の管と、ほぼ全ての外方の管を(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品などから選択された可撓性非複合素材から形成することも可能である。加えて、ほぼ全ての外方の管を可撓性を有する断熱材料で形成することも可能である。さらに、内方の導管及び外方の導管のうちの少なくとも一方がほぼ四辺形、多辺形、楕円形、他の一般的な幾何学的な断面を有する形状にしてもよい。
【0012】
内方の管はほぼ非孔性を有し、このため環体内における流体の第二部分は内方の管を通じた浸透の結果ではない。又は、内方の管の少なくとも一部分には複数の穴が形成されるか、気体浸透及び液体浸透が可能なように浸透質に形成され、第一の部分の気体状部及び液状部が環体に浸透し、第二の部分の少なくとも一部を形成する。また、内方の管の複数の部分は、より詳細に述べるならば内方の管の長さ方向において等間隔をおいて配置された複数の部分は、それら浸透性が増強され得る。
【0013】
搬送ラインの上流には、超低温流体の第一部分と第二部分の少なくとも所定量を内方の導管と環体に対して分配する流れ制御手段、例えば図1に示す流れ制御ボックス20が有効に配置されている。流れ制御手段は、一般に環体に分配される流体の第二部分の少なくとも一部の圧力を減少する手段(バルブなど)と一体化される。この差圧により、環体内の液体が内方の管の内部の流体を冷却できる。内方の管が少なくとも部分的に浸透質に形成されている場合、内方の管から環体気体内への浸透は流れ制御ボックスによって実行される流体分配の少なくとも一部分を補完する。流れ制御ボックスと内部コンポーネントは3つのオン/オフ(ソレノイド)バルブ61,62,63とマニュアルメタリングバルブ64を備え、これらのバルブは入口を介して流れ制御ボックスに連通し、超低温の流れの受け入れ、圧力を制御する。流れ制御ボックス20内部の主要コンポーネントは3方向連結器66であり、これは内方の管と環体にそれぞれ超低温流体の第一部分と第二部分を導入する。ねじ78は3方向連結器66を外方の管74に連結する。クランプ部材76はねじを挟むようにして外方の管に固定するために使われる。流れ制御ボックス20は断熱ケーシングを有し、断熱フィルターを任意に備える。圧力リリーフ弁84を設けてもよい。オン/オフバルブ62、63はその内壁又はバルブシートに開口が形成され、バイパスオリフィス(86,88)が設けられている。
【0014】
環体内における流体の第二部分の少なくとも一部は内方の管内の液体と共に搬送目的箇所及び/又は冷却対象に搬送される。任意に、環体内の流体の第二部分の少なくとも一部が搬送目的箇所及び/又は冷却対象から発散される。前者の場合、搬送ラインの内方の導管と連通する内方管と、搬送ラインの環体と連通する外方管とからなる同軸ノズルの使用により達成される。後者の場合、環体の流体全てが発散される。環体内の流れの方向が内方の管の流れの方向と同一になることを回避するノズルは搬送ラインのインターフェースとノズル管と間の漏れを防止するための熱収縮コネクターを備える事が望ましい。
【0015】
本発明の搬送ラインに適した複合材料として、炭素系ポリマ、炭素・フッ素系ポリマ、コポリマ及びその混合物、例えばテフロン(E.I.デュポン社の商標名)が挙げられる。
【0016】
本発明における搬送ラインに流される超低温流体の例としては、窒素、アルゴン、これらの混合物が挙げられる。
本発明における超低温流体を搬送する装置と方法は、搬送目的箇所や冷却対象が、比較的流速が低く、液体の高い応答性を必要とする時、特に使用に適している。このような本発明の搬送ラインが使用されるの搬送目的箇所及び/又は冷却対象の例として以下に示すものが挙げられる。
【0017】
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)冷凍手術システムのクリオプローブ
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す概略図[0001]
BACKGROUND OF THE INVENTION In many cases of transporting cryogenic fluids, it is important to move the fluid in as perfect a liquid state as possible. Conventionally, it has been necessary to first separate the phase of the fluid, to supercool the fluid in a heat exchanger, and to keep the line insulated by vacuum jacketing. Otherwise, heat leaks in the transport line will lead to boil-off and thus cause generally undesirable flows, such as waves, instability, pulsations, etc. in the transport line. On long transport lines, heat leakage is a particular problem.
[0002]
The present invention provides that the first portion of the cryogenic fluid flows in the inner tube, the second portion flows in the annulus between the inner and outer tubes, and the annulus in the outer tube is the inner portion. It relates to a cryogenic transfer line having a lower pressure than a tube and a coaxial or "tube-in-tube" structure. Due to this pressure difference, the liquid in the inner tube (such as boiling) can be easily cooled by the fluid in the annulus, and the liquid is kept in a saturated liquid state. It is desirable to further cool the liquid so that it can respond to heat leaks as a cooling "cushion".
[0003]
It is also important for many cryogenic fluid transfer devices that the transport line be lightweight and flexible. This provides maximum flexibility during installation, operation and maintenance, and prevents repeated bending of the line. The present invention secondly relates to a cryogenic transfer line that forms at least a portion of the line from a flexible material (such as a polymeric material).
[0004]
The prior art does not solve both of these important problems of cryogenic transfer lines.
The cryogenic transfer system of U.S. Pat. No. 3,696,627 (Longsworth) discloses the subcooling and stabilization of cryogenic flow through a rigid coaxial piping configuration. Similarly, US Pat. No. 4,296,610 (Davis), US Pat. No. 4,336,689 (Davis), US Pat. No. 4,715,187 (Stearns), and US Pat. No. 5,477,691 (White). Discloses a system.
[0005]
The non-metallic, flexible cryogenic transfer line disclosed by Chang et al. Uses cryogenic temperatures in cryogenic systems that cool cryoprobes in cryosurgery systems ("Development of high performance multi-probe cryosurgery devices"). Biomedical Instrumentation and Technology, September / October 1994 pp. 383-390. These lines needed to be short and subcooled enough to operate properly due to inherently poor heat insulation due to heat leakage boil-off due to Chang's flexible line design (−214 ° C.) needs to be filled with ultra low temperature liquid. This requires a complicated and expensive ultra-low temperature storage device and a supply and control system upstream.
[0006]
It is also known that cryogenic transfer lines are used for machining. In machining, cryogens are used as interfaces for cutting tools and workpieces. By way of example, US Pat. No. 2,635,399 (West), US Pat. No. 5,103,701 (Lundin), US Pat. No. 5,509,335 (Emerson), US Pat. No. 5,592,863 (Jaskowiak) U.S. Pat. No. 5,761,974 (Wagner) and U.S. Pat. No. 5,901,623 (Hong). Like Chang, these lines are short and require the flow of supercooled cryogenic liquid to prevent heat leak boil-off, and thus require expensive subcooling systems upstream.
[0007]
U.S. Patent No. 3,433,028 (Klee) discloses a coaxial system that carries a cryogenic fluid over a distance in a pure monolayer. The use of a sized, cryogenic conveying inner line) inlet orifice allows the liquid to pass to the outer line to evaporate if affected by external heat leaks. The flow control unit, consisting of a temperature sensor located at the exit end of the coaxial line, stops the flow of steam in the external line when the required temperature (typically 50-100 ° F) is reached. As a result, the pressure of the external line approaches the pressure of the cryogenic source. Also, the vapor in the outer line is always warmer than the liquid in the inner line. Furthermore, high heat leakage cannot be completely prevented, since the amount of liquid passing to the external line for evaporation is always limited by a non-variably provided orifice provided at the inlet. These operating principles require the use of high pressure resistant materials, non-flexible metal tubing, and heat insulating materials during line installation work.
[0008]
Japanese Patent Application Publication No. 06210105 discloses a non-ultra low temperature degassing coaxial transfer line. Due to the characteristics of the material of the tube, it is difficult to use a transfer line used at an extremely low temperature.
[0009]
SUMMARY OF THE INVENTION The present invention relates to an ultra-low temperature fluid transfer method and transfer apparatus. A coaxial transport line is used to allow a first portion of the cryogen to flow through the inner conduit, and a second portion of the cryogen to flow through the annulus between the inner and outer conduits. The pressure in the annulus is lower than the pressure in the inner conduit. In one embodiment, the inner conduit is substantially non-porous and a flow control is provided upstream of the transport line. The flow control means distributes the first portion and the second portion of the cryogenic fluid to an inner conduit and an annulus. In a second embodiment, at least a portion of the inner conduit is permeable to accommodate gas and liquid penetration of the first portion of the cryogenic fluid, and the gas and liquid portions of the first portion are annular. Permeates the body to form at least a portion of the second part.
[0010]
DETAILED DESCRIPTION OF THE INVENTION The composite, coaxial transport line of the present invention has a transport line 22 located downstream of a flow control box 20, as shown in FIG. In the transfer line 22, an outer pipe 74 is arranged around the inner pipe 72. A heat insulator 70 is provided around the outer tube 74, and a flexible protective case 68 is provided around the heat insulator 70. A first portion of the cryogenic fluid flows in the inner tube and a second portion flows in the annulus between the inner and outer tubes. The first part has a higher pressure than the second part.
[0011]
At least a portion of the transport line is formed of a flexible material, such as a composite material. It is also possible to make substantially all the inner tubes and almost all the outer tubes from a flexible composite material. Further, substantially all outer tubes are formed of a flexible composite material, and substantially all inner tubes are non-composite materials that are not brittle and flexible at ultra-low temperatures, such as, for example, (I) copper and its alloys; (ii) aluminum and its alloys; (iii) nickel and its alloys; (iv) austenitic stainless steel; (v) high-concentration graphite; and (vi) ceramic fiber braided products. It is possible. Furthermore, almost all inner tubes and almost all outer tubes are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys (iv) austenitic stainless steel, v) It can also be formed from a flexible non-composite material selected from, for example, high-concentration graphite (vi) ceramic fiber braided tubular products. In addition, it is possible for almost all outer tubes to be formed of a flexible insulating material. Further, at least one of the inner conduit and the outer conduit may be substantially quadrilateral, polygonal, elliptical, or any other shape having a general geometric cross-section.
[0012]
The inner tube is substantially non-porous, so that the second portion of the fluid within the annulus is not a result of penetration through the inner tube. Alternatively, a plurality of holes are formed in at least a portion of the inner tube, or a plurality of holes are formed in the permeate so as to allow gas permeation and liquid permeation, and the gaseous portion and the liquid portion of the first portion are annular. And form at least a portion of the second portion. Also, portions of the inner tube, more specifically, portions that are equally spaced along the length of the inner tube, may have enhanced permeability.
[0013]
Upstream of the transport line, flow control means for distributing at least a predetermined amount of the first and second portions of the cryogenic fluid to the inner conduit and annulus, for example, a flow control box 20 shown in FIG. Have been. The flow control means is generally integrated with a means (such as a valve) for reducing the pressure of at least a portion of the second portion of the fluid distributed to the annulus. This differential pressure allows the liquid in the annulus to cool the fluid inside the inner tube. Where the inner tube is at least partially formed into permeate, penetration from the inner tube into the annulus gas complements at least a portion of the fluid distribution performed by the flow control box. The flow control box and internal components are equipped with three on / off (solenoid) valves 61, 62, 63 and a manual metering valve 64, which communicate with the flow control box via inlets to receive ultra-cold flow. Control the pressure. A key component within flow control box 20 is a three-way coupler 66, which introduces a first portion and a second portion of cryogenic fluid into the inner tube and annulus, respectively. A screw 78 connects the three-way connector 66 to the outer tube 74. The clamp member 76 is used for fixing the screw to the outer tube so as to sandwich the screw. The flow control box 20 has an insulating casing and optionally includes an insulating filter. A pressure relief valve 84 may be provided. The on / off valves 62 and 63 have openings formed in their inner walls or valve seats, and are provided with bypass orifices (86, 88).
[0014]
At least a portion of the second portion of the fluid in the annulus is transported with the liquid in the inner tube to the destination and / or to be cooled. Optionally, at least a portion of the second portion of the fluid in the annulus emanates from the point of transport and / or the object to be cooled. The former case is achieved by the use of a coaxial nozzle consisting of an inner tube communicating with the conduit inside the conveying line and an outer tube communicating with the annulus of the conveying line. In the latter case, all of the fluid in the annulus is vented. Preferably, the nozzle, which prevents the flow direction in the annulus from being the same as the flow direction of the inner tube, is provided with a heat-shrinkable connector to prevent leakage between the interface of the transfer line and the nozzle tube.
[0015]
Composite materials suitable for the transport line of the present invention include carbon-based polymers, carbon-fluorine-based polymers, copolymers and mixtures thereof, such as Teflon (trade name of EI DuPont).
[0016]
Examples of the cryogenic fluid flowing through the transfer line in the present invention include nitrogen, argon, and a mixture thereof.
The apparatus and method for transporting an ultra-low temperature fluid according to the present invention are particularly suitable for use when the transport destination or the object to be cooled has a relatively low flow rate and requires high liquid responsiveness. Examples of the transfer destination and / or cooling object in which the transfer line of the present invention is used include the following.
[0017]
(I) environmental test chambers used for stress screening electronic components (ii) shrink-fitted components (iii) specimen storage containers used for biological preservation (iv) nitrogen droplet dispensers ( v) Cryoprobe of cryosurgery system [Brief description of drawings]
FIG. 1 is a schematic diagram showing an embodiment of the present invention.
Claims (28)
(a)超低温流体の第一部分が内方の導管を流れ、第二部分が内方の導管と外方の導管との間の環体を流れ、
(b)第一部分が第二部分より圧力が高く、
(c)搬送ラインの少なくとも一部が可撓性材料にて形成され、
(d)環体の内方の流体の第二部分の少なくとも一分画が内方の導管の内部の流体の第一部分を冷却する液体であることからなる搬送ライン。A cryogenic fluid transfer line comprising an inner conduit surrounded by an outer conduit,
(A) a first portion of the cryogenic fluid flows through the inner conduit, a second portion flows through the annulus between the inner and outer conduits,
(B) the first part has a higher pressure than the second part;
(C) at least a part of the transfer line is formed of a flexible material,
(D) a transport line, wherein at least a fraction of the second portion of fluid inside the annulus is a liquid that cools the first portion of fluid inside the inner conduit.
(i)超低温流体の受け入れに適した入口と、
(ii)流体経路内に配置され、入口を有するとともに、超低温流体の流れを受け入れ、圧力調整に適した少なくとも一つのバルブがオン/オフ切換バルブであり、少なくとも一つのバルブが計測バルブからなる複数のバルブと、
(iii )第1の端が流体経路内に配置されるとともに、少なくとも一つバルブにより、第2の端が搬送ラインに対して連通された3方向へ接続されることと、からなる制御ボックスである請求項4に記載の搬送ライン。A flow control box having (i) an inlet suitable for receiving a cryogenic fluid;
(Ii) a plurality of at least one valve disposed in the fluid path, having an inlet, receiving the flow of the cryogenic fluid and suitable for pressure regulation, being an on / off switching valve, and at least one valve being a measurement valve; And the valve
(Iii) a control box comprising: a first end disposed in a fluid path, and at least one valve connected to a second end in three directions communicating with a transport line. 5. The transport line according to claim 4, wherein:
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存用に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)機械加工に使用される切削工具及び/又は被加工物
(vi)冷凍手術システムのクリオプローブ
からなる請求項1に記載の搬送ライン。An environmental test chamber wherein a transfer line is used to deliver at least a portion of the cryogenic fluid to a transfer destination and / or a cooling target, wherein the transfer destination and / or the cooling target are used for (i) a stress screening electronic component. (Ii) shrink-fitted components after contraction; (iii) specimen storage containers used for biological preservation; (iv) nitrogen droplet dispensers; (v) cutting tools used for machining. The transport line according to claim 1, wherein the workpiece (vi) comprises a cryoprobe of a cryosurgery system.
(a)第一部分が第二部分より圧力が高く、
(b)搬送ラインの少なくとも一部が可撓性を有する複合素材から形成される、
(d)環体内部の流体の第二部分の少なくも一つの分画が内方の導管内部の流体の第一部分を冷却する、
ことからなる搬送ラインを使用する超低温流体を移動する方法。An outer conduit surrounding the inner conduit, a first portion of the cryogenic fluid flowing through the inner conduit, and a second portion flowing through the annulus between the inner conduit and the outer conduit;
(A) the first part has a higher pressure than the second part,
(B) at least a part of the transfer line is formed from a flexible composite material;
(D) at least one fraction of the second portion of fluid inside the annulus cools the first portion of fluid inside the inner conduit;
Moving a cryogenic fluid using a transport line comprising:
(i)超低温流体の受け入れに適した入口と、
(ii)流体経路内に配置され、入口を有するとともに、超低温流体の流れを受け入れ、圧力調整に適した少なくとも一つのバルブがオン/オフ切換バルブであり、少なくとも一つのバルブが計測バルブからなる複数のバルブと、
(iii )第1の端が流体経路内に配置されるとともに、少なくとも一つバルブによりなり、第2の端が搬送ラインに対して連通された3方向へ接続されることと、
からなる制御ボックスである請求項14に記載の方法。A flow control box having (i) an inlet suitable for receiving a cryogenic fluid;
(Ii) a plurality of at least one valve disposed in the fluid path, having an inlet, receiving the flow of the cryogenic fluid and suitable for pressure regulation, being an on / off switching valve, and at least one valve being a measurement valve; And the valve
(Iii) a first end disposed in the fluid path, comprising at least one valve, and a second end connected in three directions communicating with the transport line;
15. The method of claim 14, wherein the control box comprises:
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存用に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)機械加工に使用されるの切削工具及び/又は被加工物
(vi)冷凍手術システムのクリオプローブ
からなる請求項11に記載の方法。A transfer line used to deliver at least a portion of the cryogenic fluid to a transfer destination and / or a cooling target, wherein the transfer target and the target are (i) an environmental test chamber used for stress screening electronic components (ii). Shrink-fitted components (iii) Specimen storage containers used for biological preservation (iv) Nitrogen droplet dispensers (v) Cutting tools and / or workpieces used for machining 12. The method according to claim 11, comprising the object (vi) a cryoprobe of a cryosurgery system.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71268000A | 2000-11-14 | 2000-11-14 | |
US09/911,027 US6513336B2 (en) | 2000-11-14 | 2001-07-23 | Apparatus and method for transferring a cryogenic fluid |
PCT/US2001/047516 WO2002040915A2 (en) | 2000-11-14 | 2001-11-08 | Apparatus and method for transferring a cryogenic fluid |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004514095A true JP2004514095A (en) | 2004-05-13 |
JP2004514095A5 JP2004514095A5 (en) | 2008-12-25 |
JP4242645B2 JP4242645B2 (en) | 2009-03-25 |
Family
ID=27108869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002542800A Expired - Fee Related JP4242645B2 (en) | 2000-11-14 | 2001-11-08 | Transport line and transport method for moving cryogenic fluid |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1334306B1 (en) |
JP (1) | JP4242645B2 (en) |
CN (1) | CN1237303C (en) |
AT (1) | ATE287064T1 (en) |
AU (2) | AU2892502A (en) |
BR (1) | BR0115316B1 (en) |
CA (1) | CA2428777C (en) |
DE (1) | DE60108415T2 (en) |
MX (1) | MXPA03004259A (en) |
TW (1) | TW536601B (en) |
WO (1) | WO2002040915A2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI652210B (en) | 2017-11-20 | 2019-03-01 | 國璽幹細胞應用技術股份有限公司 | Smart automation storage device for bio-material |
CN112709873A (en) * | 2020-12-25 | 2021-04-27 | 浙江启尔机电技术有限公司 | Double-layer pipe, pipe joint and fluid conveying system |
CN112709878B (en) * | 2020-12-25 | 2022-11-15 | 浙江启尔机电技术有限公司 | Double-layer pipe quick joint |
CN112709872A (en) * | 2020-12-25 | 2021-04-27 | 浙江启尔机电技术有限公司 | Double-layer pipe |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH260393A (en) * | 1946-04-10 | 1949-03-15 | Rateau Soc | Thermal insulation device for low temperature and low density gas pipelines, in particular for cold and expanded air pipelines of aircraft engine test benches. |
US3433028A (en) * | 1966-09-02 | 1969-03-18 | Air Prod & Chem | Cryogenic fluid conveying system |
US3706208A (en) * | 1971-01-13 | 1972-12-19 | Air Prod & Chem | Flexible cryogenic liquid transfer system and improved support means therefor |
US3696627A (en) * | 1971-01-18 | 1972-10-10 | Air Prod & Chem | Liquid cryogen transfer system |
FR2624949B1 (en) * | 1987-12-22 | 1990-06-15 | Commissariat Energie Atomique | LIQUEFIED GAS TRANSFER LINE COMPRISING AT LEAST ONE BYPASS OF THE VAPORS OF THIS GAS |
US5477691A (en) * | 1994-09-30 | 1995-12-26 | Praxair Technology, Inc. | Liquid cryogen delivery system |
GB0004174D0 (en) * | 2000-02-22 | 2000-04-12 | Gore & Ass | Cryogenic fluid transfer tube |
-
2001
- 2001-11-08 JP JP2002542800A patent/JP4242645B2/en not_active Expired - Fee Related
- 2001-11-08 BR BRPI0115316-1A patent/BR0115316B1/en not_active IP Right Cessation
- 2001-11-08 CN CN01818843.5A patent/CN1237303C/en not_active Expired - Lifetime
- 2001-11-08 MX MXPA03004259A patent/MXPA03004259A/en active IP Right Grant
- 2001-11-08 CA CA002428777A patent/CA2428777C/en not_active Expired - Lifetime
- 2001-11-08 EP EP01990051A patent/EP1334306B1/en not_active Expired - Lifetime
- 2001-11-08 AU AU2892502A patent/AU2892502A/en active Pending
- 2001-11-08 DE DE60108415T patent/DE60108415T2/en not_active Expired - Lifetime
- 2001-11-08 WO PCT/US2001/047516 patent/WO2002040915A2/en active IP Right Grant
- 2001-11-08 AU AU2002228925A patent/AU2002228925B9/en not_active Expired
- 2001-11-08 AT AT01990051T patent/ATE287064T1/en not_active IP Right Cessation
- 2001-11-12 TW TW090127992A patent/TW536601B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP4242645B2 (en) | 2009-03-25 |
ATE287064T1 (en) | 2005-01-15 |
EP1334306A2 (en) | 2003-08-13 |
DE60108415D1 (en) | 2005-02-17 |
CA2428777A1 (en) | 2002-05-23 |
CN1474920A (en) | 2004-02-11 |
WO2002040915A3 (en) | 2003-05-01 |
AU2002228925B2 (en) | 2005-04-21 |
TW536601B (en) | 2003-06-11 |
CN1237303C (en) | 2006-01-18 |
MXPA03004259A (en) | 2004-12-03 |
WO2002040915A2 (en) | 2002-05-23 |
BR0115316A (en) | 2003-10-21 |
EP1334306B1 (en) | 2005-01-12 |
DE60108415T2 (en) | 2005-12-22 |
CA2428777C (en) | 2006-09-12 |
AU2002228925B9 (en) | 2005-09-08 |
AU2892502A (en) | 2002-05-27 |
BR0115316B1 (en) | 2011-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6513336B2 (en) | Apparatus and method for transferring a cryogenic fluid | |
CA2917035C (en) | Device for cooling a consumer with a super-cooled liquid in a cooling circuit | |
US8950194B2 (en) | Reduction of cryogen loss during transportation | |
CN108692187B (en) | Cryostat deployment system | |
US20230360823A1 (en) | Apparatus for transmitting electrical energy with a superconducting current carrier | |
JPS6012541B2 (en) | Improved cryostat structure | |
US9078733B2 (en) | Closed-loop system for cryosurgery | |
JP2004514095A (en) | Ultra low temperature liquid transfer device and transfer method | |
JP2003524135A (en) | Cryogenic fluid transport pipe | |
AU2002228925A1 (en) | Apparatus and method for transferring a cryogenic fluid | |
US9835701B2 (en) | Displacer in magnetic resonance imaging system | |
WO2019132657A1 (en) | Sampling device and method for sampling a cryogenic fluid for measuring at least one property | |
US4048437A (en) | Superconducting magnet cooling system | |
Hosoyama et al. | Development of a high performance transfer line system | |
JP2004514095A5 (en) | Cryogenic fluid transfer device and transfer method | |
GB2458147A (en) | Cryostat comprising a heat exchanger to provide cooling for a thermal shield | |
US6519952B2 (en) | Cryostat | |
Duda et al. | Entropy Analysis of Support Systems in Multi-Channel Cryogenic Lines | |
Smith et al. | Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing below 2K | |
JP2024151309A (en) | Mechanical pressure regulator for cryogenic fluids | |
JP2023089737A (en) | piping system | |
WO2005116514A1 (en) | Reduction of cryogen loss during transportation of cryostats | |
JP2007088146A (en) | Cryostat | |
JPH01123974A (en) | Medium feeding device | |
Rode et al. | CEBAF Transfer Line Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060110 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20060410 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20060419 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20060710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070613 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080812 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080819 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080912 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080918 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080922 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080918 |
|
A524 | Written submission of copy of amendment under article 19 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A524 Effective date: 20081107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081216 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4242645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |