Nothing Special   »   [go: up one dir, main page]

JP2004514095A - Ultra low temperature liquid transfer device and transfer method - Google Patents

Ultra low temperature liquid transfer device and transfer method Download PDF

Info

Publication number
JP2004514095A
JP2004514095A JP2002542800A JP2002542800A JP2004514095A JP 2004514095 A JP2004514095 A JP 2004514095A JP 2002542800 A JP2002542800 A JP 2002542800A JP 2002542800 A JP2002542800 A JP 2002542800A JP 2004514095 A JP2004514095 A JP 2004514095A
Authority
JP
Japan
Prior art keywords
annulus
transport line
inner conduit
cryogenic fluid
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002542800A
Other languages
Japanese (ja)
Other versions
JP2004514095A5 (en
JP4242645B2 (en
Inventor
ズレキ、ジビグニュー
フレイ、ジョン ハーバート
トレンブレー、ジャン−フィリップ
Original Assignee
エアー プロダクツ エンド ケミカルズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/911,027 external-priority patent/US6513336B2/en
Application filed by エアー プロダクツ エンド ケミカルズ インコーポレーテッド filed Critical エアー プロダクツ エンド ケミカルズ インコーポレーテッド
Publication of JP2004514095A publication Critical patent/JP2004514095A/en
Publication of JP2004514095A5 publication Critical patent/JP2004514095A5/en
Application granted granted Critical
Publication of JP4242645B2 publication Critical patent/JP4242645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/037Quick connecting means, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/02Applications for medical applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0545Tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Pipeline Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

超低温流体のトランスフェリング用の方法と装置を開示する。複合、同軸の搬送ラインは、超低温流体の第一部分が内方の管を流れ、第二部分が内方の管と外方の管の間の環体で、内方の管よりも低い圧力が環体を流れるよう使用される。内方の管はほぼ非浸透性であり、超低温流体の第一部分と第二部分の少なくとも一部分を内方の管と環体とにそれぞれ分配する流れ制御手段が搬送ラインの上流に設けられている。第二の実施形態では、内方の管は気体浸透及び液体浸透のいずれも許容し、第一部分の気体状の部分や液状の部分のいずれも環体内に浸透して、第二部分の少なくとも一部を形成する。A method and apparatus for transferring a cryogenic fluid is disclosed. The composite, coaxial transport line has a lower pressure than the inner tube, with the first part of the cryogenic fluid flowing through the inner tube and the second part being the annulus between the inner and outer tubes. Used to flow through the annulus. The inner tube is substantially impermeable and flow control means for distributing at least a portion of the first and second portions of the cryogenic fluid to the inner tube and annulus, respectively, is provided upstream of the transport line. . In a second embodiment, the inner tube allows both gas and liquid penetration, and both the gaseous and liquid portions of the first portion penetrate into the annulus and at least one of the second portions. Form a part.

Description

【0001】
発明の背景
超低温流体を搬送する多くの場合では、できる限り完全な液体状態で流体を移動することが重要である。従来は、流体をまず相分離したり、熱交換器で過冷したり、真空ジャケッティングによりラインを断熱状態に保ったりすることが必要であった。さもなければ、搬送ラインの熱漏れはボイルオフを招来し、ひいては搬送ライン内における波動、不安定さ、脈動等、一般的に望ましくない流れの原因となる。長い搬送ラインでは、特に熱漏れが問題となる。
【0002】
本発明は、超低温流体の第一部分が内方の管内を流れ、第二部分が内方の管と外方の管との間の環体内を流れ、外方の管における環体が内方の管よりも圧力が低く同軸、又は“チューブインチューブ”構造の超低温搬送ラインに関するものである。この圧力の違いにより、容易に環体内の流体により内方の管内(煮沸など)にある液体の冷却が可能になり、飽和液体状態に留められる。液体をさらに冷却し、冷却“クッション”として熱漏れに対応可能にする事が望ましい。
【0003】
また、多くの超低温流体トランスファー装置では搬送ラインが軽量で可撓性を有することが重要である。これは導入時、操作時、保守時に最大の自由度を提供し、ラインが繰り返し曲がることを防げるようにする。本発明は第二に可撓性材料(重合体素材など)からラインの少なくとも一部分を形成する超低温搬送ラインに関するものである。
【0004】
従来の技術では超低温搬送ラインのこれら双方の重要な問題が解決されていない。
米国特許第3696627号(ロングスワース(Longsworth))の超低温トランスファーシステムは、堅固な同軸パイピングの構成により超低温流の過冷や安定化を開示している。米国特許第4296610号(デービス(Davis))、米国特許第4336689号(デービス(Davis))、米国特許第4715187号(スターンズ(Stearns))及び、米国特許第5477691号(ホワイト(White))でも同様のシステムを開示している。
【0005】
チャン等(Chang et al)が開示した非金属、可撓超低温搬送ラインは超低温を冷凍手術システム内のクリオプローブを冷却する超低温システムに使用している(“高パフォーマンスマルチプルーブ冷凍手術デバイスの開発”バイオメディカル インストゥルメンション アンド テクノロジー(Biomedical Instrumentation and Techology)、 9月/10月 1994年 383−390ページ)。チャンの可撓性を有するライン設計に起因する熱漏れボイルオフのため、本質的に防熱が弱いこともあいまって、これらのラインは短くする必要があり、適切に稼動させるため十分に過冷された(−214℃)超低温液体で充満される必要がある。これは複雑にして高価な超低温の貯蔵装置と、供給装置と制御システムを上流側に必要とする。
【0006】
また超低温搬送ラインが機械加工に使用されることも知られている。機械加工においては、起寒剤は切削工具や被加工物のインターフェースとして使用される。例として、米国特許第2635399号(ウエスト(West))、米国特許第5103701号(ランデン(Lundin))、米国特許第5509335号(エマーソン(Emerson))、米国特許第5592863号(ジャスコウィック(Jaskowiak))、米国特許第5761974号(ワグナー(Wagner))、米国特許第5901623号(ホン(Hong))がある。チャンと同様に、これらのラインは短く、熱漏れボイルオフの防止のために過冷超低温液体を流す必要があり、従って上流に高価な過冷システムを必要とする。
【0007】
米国特許第3433028号(クレー(Klee))は、純単層内において超低温流体を一定の距離にわたって運ぶ同軸システムを開示している。大きさが決定された、超低温搬送内部ライン)入口オリフィスを使用することにより、外部熱漏れの影響を受ける場合、液体は蒸発するために外部ラインへ通過することが許容される。同軸ラインの出口端に設置された温度センサよりなるフロー制御ユニットは必要温度(通常、50−100°F)になると、外部ラインの蒸気の流れを止める。その結果、外部ラインの圧力が超低温ソースの圧力に近づいてくる。また、外部ラインの蒸気は常に内部ラインの液体よりも暖かくなる。さらに、蒸発するために外部ラインへ通過する液体の量は、入口に設けた非可変的に設けられたオリフィスにより常に制限されるため、高い熱漏れは完全に防ぐことができない。これらの操作原理において、ラインの設置工事中に耐高圧材、非可撓性金属管材、や断熱素材の使用を必要とする。
【0008】
日本国特許出願公開06210105号は非超低温のガス抜き用同軸搬送ラインを開示している。このチューブの素材の特性では、超低温にて使用される搬送ラインの使用が困難である。
【0009】
発明の概要
本発明は超低温流体搬送方法及び搬送装置に関する。同軸搬送ラインは内方の導管を超低温流体の第一部分が流れるように使用され、超低温流体の第二部分が内方の導管と外方の導管との間の環体内を流れる。環体内の圧力は内方の導管内の圧力よりも低い。一実施例においては、内方の導管はほぼ非孔質であり、搬送ラインの上流には流れ制御手段が設けられている。流れ制御手段は、超低温流体の第一の部分と第二の部分を内方の導管と環体とに分配をする。手段が第二の実施例では、内方の導管の少なくとも一部分は、超低温流体の第一部分の気体浸透や液体浸透に対応するように浸透性を有し、第一部分の気体部及び液状部が環体に浸透して第二部分の少なくとも一部を構成する。
【0010】
本発明の詳細な説明
本発明の複合的、同軸搬送ラインは、図1に示すように、流れ制御ボックス20の下流側に搬送ライン22が配置されている。搬送ライン22において、内方の管72の周囲に外方の管74が配置されている。外方の管74の周囲には断熱材70が設けられ、同断熱材70の周囲には可撓保護ケース68が設けられている。超低温流体の第一部分は内方の管内を流れ、第二部分は内方の管と外方の管の間の環体内を流れる。第一部分は第二部分より高い圧力を有する。
【0011】
搬送ラインの少なくも一部分は複合素材など、可撓性材料で形成される。ほぼ全ての内方の管と、ほぼ全ての外方の管を可撓性のある複合材料にて形成することも可能である。さらに、ほぼ全ての外方の管を可撓性に富む複合材料で形成し、ほぼ全ての内方の管を、超低温下で脆くならず、かつ可撓性を備えた非複合材料、例えば、(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ製品から形成することも可能である。さらに、ほぼ全ての内方の管と、ほぼ全ての外方の管を(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品などから選択された可撓性非複合素材から形成することも可能である。加えて、ほぼ全ての外方の管を可撓性を有する断熱材料で形成することも可能である。さらに、内方の導管及び外方の導管のうちの少なくとも一方がほぼ四辺形、多辺形、楕円形、他の一般的な幾何学的な断面を有する形状にしてもよい。
【0012】
内方の管はほぼ非孔性を有し、このため環体内における流体の第二部分は内方の管を通じた浸透の結果ではない。又は、内方の管の少なくとも一部分には複数の穴が形成されるか、気体浸透及び液体浸透が可能なように浸透質に形成され、第一の部分の気体状部及び液状部が環体に浸透し、第二の部分の少なくとも一部を形成する。また、内方の管の複数の部分は、より詳細に述べるならば内方の管の長さ方向において等間隔をおいて配置された複数の部分は、それら浸透性が増強され得る。
【0013】
搬送ラインの上流には、超低温流体の第一部分と第二部分の少なくとも所定量を内方の導管と環体に対して分配する流れ制御手段、例えば図1に示す流れ制御ボックス20が有効に配置されている。流れ制御手段は、一般に環体に分配される流体の第二部分の少なくとも一部の圧力を減少する手段(バルブなど)と一体化される。この差圧により、環体内の液体が内方の管の内部の流体を冷却できる。内方の管が少なくとも部分的に浸透質に形成されている場合、内方の管から環体気体内への浸透は流れ制御ボックスによって実行される流体分配の少なくとも一部分を補完する。流れ制御ボックスと内部コンポーネントは3つのオン/オフ(ソレノイド)バルブ61,62,63とマニュアルメタリングバルブ64を備え、これらのバルブは入口を介して流れ制御ボックスに連通し、超低温の流れの受け入れ、圧力を制御する。流れ制御ボックス20内部の主要コンポーネントは3方向連結器66であり、これは内方の管と環体にそれぞれ超低温流体の第一部分と第二部分を導入する。ねじ78は3方向連結器66を外方の管74に連結する。クランプ部材76はねじを挟むようにして外方の管に固定するために使われる。流れ制御ボックス20は断熱ケーシングを有し、断熱フィルターを任意に備える。圧力リリーフ弁84を設けてもよい。オン/オフバルブ62、63はその内壁又はバルブシートに開口が形成され、バイパスオリフィス(86,88)が設けられている。
【0014】
環体内における流体の第二部分の少なくとも一部は内方の管内の液体と共に搬送目的箇所及び/又は冷却対象に搬送される。任意に、環体内の流体の第二部分の少なくとも一部が搬送目的箇所及び/又は冷却対象から発散される。前者の場合、搬送ラインの内方の導管と連通する内方管と、搬送ラインの環体と連通する外方管とからなる同軸ノズルの使用により達成される。後者の場合、環体の流体全てが発散される。環体内の流れの方向が内方の管の流れの方向と同一になることを回避するノズルは搬送ラインのインターフェースとノズル管と間の漏れを防止するための熱収縮コネクターを備える事が望ましい。
【0015】
本発明の搬送ラインに適した複合材料として、炭素系ポリマ、炭素・フッ素系ポリマ、コポリマ及びその混合物、例えばテフロン(E.I.デュポン社の商標名)が挙げられる。
【0016】
本発明における搬送ラインに流される超低温流体の例としては、窒素、アルゴン、これらの混合物が挙げられる。
本発明における超低温流体を搬送する装置と方法は、搬送目的箇所や冷却対象が、比較的流速が低く、液体の高い応答性を必要とする時、特に使用に適している。このような本発明の搬送ラインが使用されるの搬送目的箇所及び/又は冷却対象の例として以下に示すものが挙げられる。
【0017】
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)冷凍手術システムのクリオプローブ
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す概略図
[0001]
BACKGROUND OF THE INVENTION In many cases of transporting cryogenic fluids, it is important to move the fluid in as perfect a liquid state as possible. Conventionally, it has been necessary to first separate the phase of the fluid, to supercool the fluid in a heat exchanger, and to keep the line insulated by vacuum jacketing. Otherwise, heat leaks in the transport line will lead to boil-off and thus cause generally undesirable flows, such as waves, instability, pulsations, etc. in the transport line. On long transport lines, heat leakage is a particular problem.
[0002]
The present invention provides that the first portion of the cryogenic fluid flows in the inner tube, the second portion flows in the annulus between the inner and outer tubes, and the annulus in the outer tube is the inner portion. It relates to a cryogenic transfer line having a lower pressure than a tube and a coaxial or "tube-in-tube" structure. Due to this pressure difference, the liquid in the inner tube (such as boiling) can be easily cooled by the fluid in the annulus, and the liquid is kept in a saturated liquid state. It is desirable to further cool the liquid so that it can respond to heat leaks as a cooling "cushion".
[0003]
It is also important for many cryogenic fluid transfer devices that the transport line be lightweight and flexible. This provides maximum flexibility during installation, operation and maintenance, and prevents repeated bending of the line. The present invention secondly relates to a cryogenic transfer line that forms at least a portion of the line from a flexible material (such as a polymeric material).
[0004]
The prior art does not solve both of these important problems of cryogenic transfer lines.
The cryogenic transfer system of U.S. Pat. No. 3,696,627 (Longsworth) discloses the subcooling and stabilization of cryogenic flow through a rigid coaxial piping configuration. Similarly, US Pat. No. 4,296,610 (Davis), US Pat. No. 4,336,689 (Davis), US Pat. No. 4,715,187 (Stearns), and US Pat. No. 5,477,691 (White). Discloses a system.
[0005]
The non-metallic, flexible cryogenic transfer line disclosed by Chang et al. Uses cryogenic temperatures in cryogenic systems that cool cryoprobes in cryosurgery systems ("Development of high performance multi-probe cryosurgery devices"). Biomedical Instrumentation and Technology, September / October 1994 pp. 383-390. These lines needed to be short and subcooled enough to operate properly due to inherently poor heat insulation due to heat leakage boil-off due to Chang's flexible line design (−214 ° C.) needs to be filled with ultra low temperature liquid. This requires a complicated and expensive ultra-low temperature storage device and a supply and control system upstream.
[0006]
It is also known that cryogenic transfer lines are used for machining. In machining, cryogens are used as interfaces for cutting tools and workpieces. By way of example, US Pat. No. 2,635,399 (West), US Pat. No. 5,103,701 (Lundin), US Pat. No. 5,509,335 (Emerson), US Pat. No. 5,592,863 (Jaskowiak) U.S. Pat. No. 5,761,974 (Wagner) and U.S. Pat. No. 5,901,623 (Hong). Like Chang, these lines are short and require the flow of supercooled cryogenic liquid to prevent heat leak boil-off, and thus require expensive subcooling systems upstream.
[0007]
U.S. Patent No. 3,433,028 (Klee) discloses a coaxial system that carries a cryogenic fluid over a distance in a pure monolayer. The use of a sized, cryogenic conveying inner line) inlet orifice allows the liquid to pass to the outer line to evaporate if affected by external heat leaks. The flow control unit, consisting of a temperature sensor located at the exit end of the coaxial line, stops the flow of steam in the external line when the required temperature (typically 50-100 ° F) is reached. As a result, the pressure of the external line approaches the pressure of the cryogenic source. Also, the vapor in the outer line is always warmer than the liquid in the inner line. Furthermore, high heat leakage cannot be completely prevented, since the amount of liquid passing to the external line for evaporation is always limited by a non-variably provided orifice provided at the inlet. These operating principles require the use of high pressure resistant materials, non-flexible metal tubing, and heat insulating materials during line installation work.
[0008]
Japanese Patent Application Publication No. 06210105 discloses a non-ultra low temperature degassing coaxial transfer line. Due to the characteristics of the material of the tube, it is difficult to use a transfer line used at an extremely low temperature.
[0009]
SUMMARY OF THE INVENTION The present invention relates to an ultra-low temperature fluid transfer method and transfer apparatus. A coaxial transport line is used to allow a first portion of the cryogen to flow through the inner conduit, and a second portion of the cryogen to flow through the annulus between the inner and outer conduits. The pressure in the annulus is lower than the pressure in the inner conduit. In one embodiment, the inner conduit is substantially non-porous and a flow control is provided upstream of the transport line. The flow control means distributes the first portion and the second portion of the cryogenic fluid to an inner conduit and an annulus. In a second embodiment, at least a portion of the inner conduit is permeable to accommodate gas and liquid penetration of the first portion of the cryogenic fluid, and the gas and liquid portions of the first portion are annular. Permeates the body to form at least a portion of the second part.
[0010]
DETAILED DESCRIPTION OF THE INVENTION The composite, coaxial transport line of the present invention has a transport line 22 located downstream of a flow control box 20, as shown in FIG. In the transfer line 22, an outer pipe 74 is arranged around the inner pipe 72. A heat insulator 70 is provided around the outer tube 74, and a flexible protective case 68 is provided around the heat insulator 70. A first portion of the cryogenic fluid flows in the inner tube and a second portion flows in the annulus between the inner and outer tubes. The first part has a higher pressure than the second part.
[0011]
At least a portion of the transport line is formed of a flexible material, such as a composite material. It is also possible to make substantially all the inner tubes and almost all the outer tubes from a flexible composite material. Further, substantially all outer tubes are formed of a flexible composite material, and substantially all inner tubes are non-composite materials that are not brittle and flexible at ultra-low temperatures, such as, for example, (I) copper and its alloys; (ii) aluminum and its alloys; (iii) nickel and its alloys; (iv) austenitic stainless steel; (v) high-concentration graphite; and (vi) ceramic fiber braided products. It is possible. Furthermore, almost all inner tubes and almost all outer tubes are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys (iv) austenitic stainless steel, v) It can also be formed from a flexible non-composite material selected from, for example, high-concentration graphite (vi) ceramic fiber braided tubular products. In addition, it is possible for almost all outer tubes to be formed of a flexible insulating material. Further, at least one of the inner conduit and the outer conduit may be substantially quadrilateral, polygonal, elliptical, or any other shape having a general geometric cross-section.
[0012]
The inner tube is substantially non-porous, so that the second portion of the fluid within the annulus is not a result of penetration through the inner tube. Alternatively, a plurality of holes are formed in at least a portion of the inner tube, or a plurality of holes are formed in the permeate so as to allow gas permeation and liquid permeation, and the gaseous portion and the liquid portion of the first portion are annular. And form at least a portion of the second portion. Also, portions of the inner tube, more specifically, portions that are equally spaced along the length of the inner tube, may have enhanced permeability.
[0013]
Upstream of the transport line, flow control means for distributing at least a predetermined amount of the first and second portions of the cryogenic fluid to the inner conduit and annulus, for example, a flow control box 20 shown in FIG. Have been. The flow control means is generally integrated with a means (such as a valve) for reducing the pressure of at least a portion of the second portion of the fluid distributed to the annulus. This differential pressure allows the liquid in the annulus to cool the fluid inside the inner tube. Where the inner tube is at least partially formed into permeate, penetration from the inner tube into the annulus gas complements at least a portion of the fluid distribution performed by the flow control box. The flow control box and internal components are equipped with three on / off (solenoid) valves 61, 62, 63 and a manual metering valve 64, which communicate with the flow control box via inlets to receive ultra-cold flow. Control the pressure. A key component within flow control box 20 is a three-way coupler 66, which introduces a first portion and a second portion of cryogenic fluid into the inner tube and annulus, respectively. A screw 78 connects the three-way connector 66 to the outer tube 74. The clamp member 76 is used for fixing the screw to the outer tube so as to sandwich the screw. The flow control box 20 has an insulating casing and optionally includes an insulating filter. A pressure relief valve 84 may be provided. The on / off valves 62 and 63 have openings formed in their inner walls or valve seats, and are provided with bypass orifices (86, 88).
[0014]
At least a portion of the second portion of the fluid in the annulus is transported with the liquid in the inner tube to the destination and / or to be cooled. Optionally, at least a portion of the second portion of the fluid in the annulus emanates from the point of transport and / or the object to be cooled. The former case is achieved by the use of a coaxial nozzle consisting of an inner tube communicating with the conduit inside the conveying line and an outer tube communicating with the annulus of the conveying line. In the latter case, all of the fluid in the annulus is vented. Preferably, the nozzle, which prevents the flow direction in the annulus from being the same as the flow direction of the inner tube, is provided with a heat-shrinkable connector to prevent leakage between the interface of the transfer line and the nozzle tube.
[0015]
Composite materials suitable for the transport line of the present invention include carbon-based polymers, carbon-fluorine-based polymers, copolymers and mixtures thereof, such as Teflon (trade name of EI DuPont).
[0016]
Examples of the cryogenic fluid flowing through the transfer line in the present invention include nitrogen, argon, and a mixture thereof.
The apparatus and method for transporting an ultra-low temperature fluid according to the present invention are particularly suitable for use when the transport destination or the object to be cooled has a relatively low flow rate and requires high liquid responsiveness. Examples of the transfer destination and / or cooling object in which the transfer line of the present invention is used include the following.
[0017]
(I) environmental test chambers used for stress screening electronic components (ii) shrink-fitted components (iii) specimen storage containers used for biological preservation (iv) nitrogen droplet dispensers ( v) Cryoprobe of cryosurgery system [Brief description of drawings]
FIG. 1 is a schematic diagram showing an embodiment of the present invention.

Claims (28)

外方の導管によって包囲された内方の導管を備える超低温流体の移動用搬送ラインで、
(a)超低温流体の第一部分が内方の導管を流れ、第二部分が内方の導管と外方の導管との間の環体を流れ、
(b)第一部分が第二部分より圧力が高く、
(c)搬送ラインの少なくとも一部が可撓性材料にて形成され、
(d)環体の内方の流体の第二部分の少なくとも一分画が内方の導管の内部の流体の第一部分を冷却する液体であることからなる搬送ライン。
A cryogenic fluid transfer line comprising an inner conduit surrounded by an outer conduit,
(A) a first portion of the cryogenic fluid flows through the inner conduit, a second portion flows through the annulus between the inner and outer conduits,
(B) the first part has a higher pressure than the second part;
(C) at least a part of the transfer line is formed of a flexible material,
(D) a transport line, wherein at least a fraction of the second portion of fluid inside the annulus is a liquid that cools the first portion of fluid inside the inner conduit.
外方の導管は管であり、内方の導管はほぼ非浸透複合素材にて形成されている管である請求項1に記載の搬送ライン。The transport line according to claim 1, wherein the outer conduit is a tube, and the inner conduit is a tube formed of a substantially non-permeable composite material. 内方の導管の少なくとも一部分は第一部分の気体状の部分と液状の部分のいずれも、第二部分の少なくとも一部を形成する環体内に浸透するように、気体と液体とに対して被浸透性を有する複合素材にて形成されている請求項1に記載の搬送ライン。At least a portion of the inner conduit is impregnated with the gas and liquid such that both the gaseous portion and the liquid portion of the first portion penetrate into the annulus forming at least a portion of the second portion. The transfer line according to claim 1, wherein the transfer line is formed of a composite material having a property. 内方の導管と環体は、それぞれ超低温流体の第一部分と第二部分の少なくとも一部を配分するために流れ制御手段にて先行されている請求項1に記載の搬送ライン。The transport line of claim 1, wherein the inner conduit and annulus are each preceded by flow control means for distributing at least a portion of the first and second portions of the cryogenic fluid. 流れ制御ボックスが
(i)超低温流体の受け入れに適した入口と、
(ii)流体経路内に配置され、入口を有するとともに、超低温流体の流れを受け入れ、圧力調整に適した少なくとも一つのバルブがオン/オフ切換バルブであり、少なくとも一つのバルブが計測バルブからなる複数のバルブと、
(iii )第1の端が流体経路内に配置されるとともに、少なくとも一つバルブにより、第2の端が搬送ラインに対して連通された3方向へ接続されることと、からなる制御ボックスである請求項4に記載の搬送ライン。
A flow control box having (i) an inlet suitable for receiving a cryogenic fluid;
(Ii) a plurality of at least one valve disposed in the fluid path, having an inlet, receiving the flow of the cryogenic fluid and suitable for pressure regulation, being an on / off switching valve, and at least one valve being a measurement valve; And the valve
(Iii) a control box comprising: a first end disposed in a fluid path, and at least one valve connected to a second end in three directions communicating with a transport line. 5. The transport line according to claim 4, wherein:
前記環体内の流体の第2部分の少なくとも少量が、同軸ノズルの作用により内方の導管内の液流とともに搬送目的箇所、又は冷却対象にまで搬送され、前記同軸ノズルは前記内方の導管に連通する内方通路と、前記環体に連通する外方通路とを備える請求項1に記載の搬送ライン。At least a small amount of the second portion of the fluid in the annulus is conveyed to the conveying destination or cooling object together with the liquid flow in the inner conduit by the action of the coaxial nozzle, and the coaxial nozzle is connected to the inner conduit. The transport line according to claim 1, further comprising an inner passage communicating with the outer ring, and an outer passage communicating with the ring. 第二部分の少なくとも少量が搬送目的箇所及び/又は冷却対象から離間した環体から発散される請求項1に記載の搬送ライン。The transport line according to claim 1, wherein at least a small amount of the second portion is emitted from the target body and / or the annulus separated from the object to be cooled. 可撓性材料として、炭素ベースのポリマやカーボンやそれらの混合物から選択される請求項1に記載の搬送ライン。The transport line according to claim 1, wherein the flexible material is selected from carbon-based polymers, carbon and mixtures thereof. 超低温流体が窒素やアルゴンやそれらの混合物から選択される請求項1に記載の搬送ライン。The transport line according to claim 1, wherein the cryogenic fluid is selected from nitrogen, argon and mixtures thereof. 搬送ラインが超低温流体の少なくともある部分を搬送目的箇所及び/又は冷却対象に配送するために使用され、該搬送目的箇所及び/又は冷却対象が
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存用に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)機械加工に使用される切削工具及び/又は被加工物
(vi)冷凍手術システムのクリオプローブ
からなる請求項1に記載の搬送ライン。
An environmental test chamber wherein a transfer line is used to deliver at least a portion of the cryogenic fluid to a transfer destination and / or a cooling target, wherein the transfer destination and / or the cooling target are used for (i) a stress screening electronic component. (Ii) shrink-fitted components after contraction; (iii) specimen storage containers used for biological preservation; (iv) nitrogen droplet dispensers; (v) cutting tools used for machining. The transport line according to claim 1, wherein the workpiece (vi) comprises a cryoprobe of a cryosurgery system.
内方の導管の周囲を外方の導管が覆い、内方の導管を超低温流体の第一部分が流れ、第二部分が内方の導管と外方の導管の間の環体を流れる工程で、
(a)第一部分が第二部分より圧力が高く、
(b)搬送ラインの少なくとも一部が可撓性を有する複合素材から形成される、
(d)環体内部の流体の第二部分の少なくも一つの分画が内方の導管内部の流体の第一部分を冷却する、
ことからなる搬送ラインを使用する超低温流体を移動する方法。
An outer conduit surrounding the inner conduit, a first portion of the cryogenic fluid flowing through the inner conduit, and a second portion flowing through the annulus between the inner conduit and the outer conduit;
(A) the first part has a higher pressure than the second part,
(B) at least a part of the transfer line is formed from a flexible composite material;
(D) at least one fraction of the second portion of fluid inside the annulus cools the first portion of fluid inside the inner conduit;
Moving a cryogenic fluid using a transport line comprising:
外方の導管が管であり、内方の導管が実質的に非浸透性素材で形成された管である請求項11に記載の方法。The method of claim 11, wherein the outer conduit is a tube, and the inner conduit is a tube formed of a substantially impermeable material. 内方の導管の少なくとも一部分は第一部分の気体状の部分と液状の部分のいずれも、第二部分の少なくとも一部を形成する環体内に浸透するように気体と液体とに対して被浸透性を有する複合的な素材で形成されている請求項11に記載の方法。At least a portion of the inner conduit is permeable to gas and liquid so that both the gaseous portion and the liquid portion of the first portion penetrate into the annulus forming at least a portion of the second portion. The method according to claim 11, wherein the method is formed of a composite material having: 内方の導管と環体のそれぞれに超低温流体の第一と第二部分の少なくとも一部を分配する流れ制御手段が先行する搬送ラインである請求項11に記載の方法。12. The method of claim 11, wherein the flow control means for distributing at least a portion of the first and second portions of the cryogenic fluid to each of the inner conduit and the annulus is a preceding transport line. 流れ制御ボックスが
(i)超低温流体の受け入れに適した入口と、
(ii)流体経路内に配置され、入口を有するとともに、超低温流体の流れを受け入れ、圧力調整に適した少なくとも一つのバルブがオン/オフ切換バルブであり、少なくとも一つのバルブが計測バルブからなる複数のバルブと、
(iii )第1の端が流体経路内に配置されるとともに、少なくとも一つバルブによりなり、第2の端が搬送ラインに対して連通された3方向へ接続されることと、
からなる制御ボックスである請求項14に記載の方法。
A flow control box having (i) an inlet suitable for receiving a cryogenic fluid;
(Ii) a plurality of at least one valve disposed in the fluid path, having an inlet, receiving the flow of the cryogenic fluid and suitable for pressure regulation, being an on / off switching valve, and at least one valve being a measurement valve; And the valve
(Iii) a first end disposed in the fluid path, comprising at least one valve, and a second end connected in three directions communicating with the transport line;
15. The method of claim 14, wherein the control box comprises:
第二部分の少なくとも少量が搬送目的箇所及び/又は冷却対象から離間した環体から発散される請求項11に記載の方法。The method according to claim 11, wherein at least a small amount of the second part is emitted from an annulus spaced from the point of transport and / or from the cooling object. 第二部分の少なくとも少量が搬送目的箇所及び/又は冷却対象から離間したアニュラスから発散される請求項環体11に記載の方法。The method according to claim 11, wherein at least a small amount of the second portion is emitted from an annulus spaced from a transfer destination and / or an object to be cooled. 可撓性材料として、炭素ベースのポリマやカーボンやそれらの混合物から選択される請求項11に記載の方法。The method according to claim 11, wherein the flexible material is selected from carbon-based polymers, carbon and mixtures thereof. 超低温流体が窒素やアルゴンやそれらの混合物から選択される請求項11に記載の方法。The method of claim 11, wherein the cryogenic fluid is selected from nitrogen, argon, and mixtures thereof. 搬送ラインが超低温流体の少なくとも一部を搬送目的箇所及び/又は冷却対象に配送するために使用され、該搬送目的箇所と対象が
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存用に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)機械加工に使用されるの切削工具及び/又は被加工物
(vi)冷凍手術システムのクリオプローブ
からなる請求項11に記載の方法。
A transfer line used to deliver at least a portion of the cryogenic fluid to a transfer destination and / or a cooling target, wherein the transfer target and the target are (i) an environmental test chamber used for stress screening electronic components (ii). Shrink-fitted components (iii) Specimen storage containers used for biological preservation (iv) Nitrogen droplet dispensers (v) Cutting tools and / or workpieces used for machining 12. The method according to claim 11, comprising the object (vi) a cryoprobe of a cryosurgery system.
ほぼ全ての内方の導管及びほぼ全ての外方の導管が可撓性を有する複合素材からなる請求項1に記載の搬送ライン。The transport line according to claim 1, wherein substantially all inner conduits and substantially all outer conduits are made of a flexible composite material. ほぼ全ての外方の導管が可撓性を有する複合素材により形成され、ほぼ全ての内方の導管が(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(dense graphite)(vi)セラミックファイバー編みこみ管状製品から選択された可撓性を有する非複合素材により形成された請求項1に記載の搬送ライン。Almost all outer conduits are formed of a flexible composite material, and almost all inner conduits are (i) copper or its alloy, (ii) aluminum or its alloy, (iii) nickel or its alloy. 2. The carrier of claim 1 formed from a flexible non-composite material selected from: (iv) austenitic stainless steel, (v) dense graphite (vi) ceramic fiber braided tubular products. line. ほぼ全ての内方の導管と、ほぼ全ての外方の導管が可撓性を有する複合素材から形成されている請求項11に記載の方法。The method of claim 11, wherein substantially all of the inner conduits and substantially all of the outer conduits are formed from a flexible composite material. ほぼ全ての外方の導管が可撓性を有する複合素材により形成され、ほぼ全ての内方の導管が(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品から選択された可撓性を有する非複合素材にて形成された請求項11に記載の方法。Almost all outer conduits are formed of a flexible composite material, and almost all inner conduits are (i) copper or its alloy, (ii) aluminum or its alloy, (iii) nickel or its alloy. 12. The method of claim 11, formed from a flexible non-composite material selected from: (iv) austenitic stainless steel, (v) a high concentration of graphite, (vi) a ceramic fiber woven tubular product. 内方の導管の長さに沿った内方の導管のある部分の浸透性が強化された請求項3に記載の搬送ライン。4. The transport line of claim 3, wherein the permeability of certain portions of the inner conduit along the length of the inner conduit is enhanced. 内方の導管の長さ方向における所定部分の浸透性が増している請求項13に記載の方法。14. The method of claim 13, wherein a predetermined portion of the inner conduit has increased permeability along its length. ほぼ全ての内方の導管とほぼ全ての外方の導管が(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品から選択された可撓性を有する非複合素材から形成される請求項1に記載の搬送ライン。Almost all inner conduits and almost all outer conduits are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys (iv) austenitic stainless steel, (v) high The transport line of claim 1, wherein the line is formed from a flexible, non-composite material selected from a concentration of graphite (vi) ceramic fiber braided tubular product. ほぼ全ての外方の導管が可撓性を有する断熱素材で形成され、ほぼ全ての内方の導管が(i)銅やその合金、(ii)アルミニウムやその合金、(iii )ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品から選択された可撓性を有する非複合素材から形成される請求項1に記載の搬送ライン。Almost all outer conduits are formed of a flexible insulating material, and almost all inner conduits are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys The transport line of claim 1, wherein the transport line is formed from a flexible, non-composite material selected from: (iv) austenitic stainless steel; (v) a high concentration of graphite; (vi) a ceramic fiber braided tubular product.
JP2002542800A 2000-11-14 2001-11-08 Transport line and transport method for moving cryogenic fluid Expired - Fee Related JP4242645B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71268000A 2000-11-14 2000-11-14
US09/911,027 US6513336B2 (en) 2000-11-14 2001-07-23 Apparatus and method for transferring a cryogenic fluid
PCT/US2001/047516 WO2002040915A2 (en) 2000-11-14 2001-11-08 Apparatus and method for transferring a cryogenic fluid

Publications (3)

Publication Number Publication Date
JP2004514095A true JP2004514095A (en) 2004-05-13
JP2004514095A5 JP2004514095A5 (en) 2008-12-25
JP4242645B2 JP4242645B2 (en) 2009-03-25

Family

ID=27108869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002542800A Expired - Fee Related JP4242645B2 (en) 2000-11-14 2001-11-08 Transport line and transport method for moving cryogenic fluid

Country Status (11)

Country Link
EP (1) EP1334306B1 (en)
JP (1) JP4242645B2 (en)
CN (1) CN1237303C (en)
AT (1) ATE287064T1 (en)
AU (2) AU2892502A (en)
BR (1) BR0115316B1 (en)
CA (1) CA2428777C (en)
DE (1) DE60108415T2 (en)
MX (1) MXPA03004259A (en)
TW (1) TW536601B (en)
WO (1) WO2002040915A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652210B (en) 2017-11-20 2019-03-01 國璽幹細胞應用技術股份有限公司 Smart automation storage device for bio-material
CN112709873A (en) * 2020-12-25 2021-04-27 浙江启尔机电技术有限公司 Double-layer pipe, pipe joint and fluid conveying system
CN112709878B (en) * 2020-12-25 2022-11-15 浙江启尔机电技术有限公司 Double-layer pipe quick joint
CN112709872A (en) * 2020-12-25 2021-04-27 浙江启尔机电技术有限公司 Double-layer pipe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH260393A (en) * 1946-04-10 1949-03-15 Rateau Soc Thermal insulation device for low temperature and low density gas pipelines, in particular for cold and expanded air pipelines of aircraft engine test benches.
US3433028A (en) * 1966-09-02 1969-03-18 Air Prod & Chem Cryogenic fluid conveying system
US3706208A (en) * 1971-01-13 1972-12-19 Air Prod & Chem Flexible cryogenic liquid transfer system and improved support means therefor
US3696627A (en) * 1971-01-18 1972-10-10 Air Prod & Chem Liquid cryogen transfer system
FR2624949B1 (en) * 1987-12-22 1990-06-15 Commissariat Energie Atomique LIQUEFIED GAS TRANSFER LINE COMPRISING AT LEAST ONE BYPASS OF THE VAPORS OF THIS GAS
US5477691A (en) * 1994-09-30 1995-12-26 Praxair Technology, Inc. Liquid cryogen delivery system
GB0004174D0 (en) * 2000-02-22 2000-04-12 Gore & Ass Cryogenic fluid transfer tube

Also Published As

Publication number Publication date
JP4242645B2 (en) 2009-03-25
ATE287064T1 (en) 2005-01-15
EP1334306A2 (en) 2003-08-13
DE60108415D1 (en) 2005-02-17
CA2428777A1 (en) 2002-05-23
CN1474920A (en) 2004-02-11
WO2002040915A3 (en) 2003-05-01
AU2002228925B2 (en) 2005-04-21
TW536601B (en) 2003-06-11
CN1237303C (en) 2006-01-18
MXPA03004259A (en) 2004-12-03
WO2002040915A2 (en) 2002-05-23
BR0115316A (en) 2003-10-21
EP1334306B1 (en) 2005-01-12
DE60108415T2 (en) 2005-12-22
CA2428777C (en) 2006-09-12
AU2002228925B9 (en) 2005-09-08
AU2892502A (en) 2002-05-27
BR0115316B1 (en) 2011-04-05

Similar Documents

Publication Publication Date Title
US6513336B2 (en) Apparatus and method for transferring a cryogenic fluid
CA2917035C (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
US8950194B2 (en) Reduction of cryogen loss during transportation
CN108692187B (en) Cryostat deployment system
US20230360823A1 (en) Apparatus for transmitting electrical energy with a superconducting current carrier
JPS6012541B2 (en) Improved cryostat structure
US9078733B2 (en) Closed-loop system for cryosurgery
JP2004514095A (en) Ultra low temperature liquid transfer device and transfer method
JP2003524135A (en) Cryogenic fluid transport pipe
AU2002228925A1 (en) Apparatus and method for transferring a cryogenic fluid
US9835701B2 (en) Displacer in magnetic resonance imaging system
WO2019132657A1 (en) Sampling device and method for sampling a cryogenic fluid for measuring at least one property
US4048437A (en) Superconducting magnet cooling system
Hosoyama et al. Development of a high performance transfer line system
JP2004514095A5 (en) Cryogenic fluid transfer device and transfer method
GB2458147A (en) Cryostat comprising a heat exchanger to provide cooling for a thermal shield
US6519952B2 (en) Cryostat
Duda et al. Entropy Analysis of Support Systems in Multi-Channel Cryogenic Lines
Smith et al. Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing below 2K
JP2024151309A (en) Mechanical pressure regulator for cryogenic fluids
JP2023089737A (en) piping system
WO2005116514A1 (en) Reduction of cryogen loss during transportation of cryostats
JP2007088146A (en) Cryostat
JPH01123974A (en) Medium feeding device
Rode et al. CEBAF Transfer Line Systems

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060419

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070613

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080812

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080918

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees