Nothing Special   »   [go: up one dir, main page]

JP2004324023A - Fibrous structural material - Google Patents

Fibrous structural material Download PDF

Info

Publication number
JP2004324023A
JP2004324023A JP2003123351A JP2003123351A JP2004324023A JP 2004324023 A JP2004324023 A JP 2004324023A JP 2003123351 A JP2003123351 A JP 2003123351A JP 2003123351 A JP2003123351 A JP 2003123351A JP 2004324023 A JP2004324023 A JP 2004324023A
Authority
JP
Japan
Prior art keywords
heat storage
temperature
phase change
storage agent
moisture absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123351A
Other languages
Japanese (ja)
Inventor
Takeshi Irisa
剛 入佐
Hiroe Yokoi
宏恵 横井
Takaharu Okamoto
敬治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003123351A priority Critical patent/JP2004324023A/en
Publication of JP2004324023A publication Critical patent/JP2004324023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature/humidity-adjusting fibrous structural material having moisture-absorbing/releasing property by being equipped with a thermal barrier for without getting out of a comfortable temperature range in a clothing to both lower and upper sides by using ≥2 kinds of heat accumulating agents having different temperature ranges for causing phase changes jointly, and on wearing the clothing, or the like keeping the temperature/humidity in the clothing within the comfortable range. <P>SOLUTION: This fibrous structural material is constituted with a raw material having ≥2 % and ≤20 % moisture absorbing rate difference (ΔMR) and moisture-absorbing/releasing property, and by also fixing ≥2 kinds of heat-accumulating agents having different temperatures of causing the phase changes on the surface of the fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、衣服内を快適な温湿度範囲に保つ調温湿性繊維構造物に関するものである。
【0002】
【従来の技術】
従来の衣料において、衣服内温度という点では、含気率を上げた素材を用い不動空気層を作ることにより断熱性を向上させ、または、アルミニウム箔膜等を利用して輻射熱を反射させ断熱性を向上させることにより、保温性の向上を図ったり、また、合成繊維にセラミックスを練り込み、セラミックスの遠赤外線効果を利用する方法により、衣服内をある一定温度以上に保つ方法(特許文献1,2参照)が提案されている。
【0003】
しかしながら、上述の含気率を上げた素材を用いた場合はカサ高になり、着用時の運動性が阻害される。また、輻射熱を反射させる素材はアルミニウム箔膜等の金属の色が付き、色展開に制限がある。また、無機材料であるセラミックスの遠赤外線効果を利用しようとする方法では常温では衣服内温度を快適に保つ程の発熱量がでない、などの問題があり不十分である。また、これらの方法は、衣服内の熱を逃がさないということに特化しており、衣服の着用シーンに応じて衣服内温湿度を快適範囲に保つという点では未だ不十分である。たとえば、冬用のブルゾンでいえば、冬の屋外で着用している場合は十分暖かく快適に感じるが、ブルゾンを着用したまま電車などに乗ると、非常に暑く感じ、ムレ感と体の火照りを生じる。
【0004】
これらの課題を解決するものとして、相変化蓄熱剤を用いた衣料(特許文献3,4,5参照)が提案されている。相変化蓄熱剤とは、固体から液体、液体から固体のように、各物質が融解・凝固といった相変化をする際に、各物質固有の温度でが吸熱(融点)・発熱(凝固点)を行うことを利用した蓄熱剤であり、昇温過程もしくは冷却過程において融点温度・凝固点温度付近で相変化蓄熱剤が吸熱もしくは発熱し、熱エネルギーに対する障壁として働くものである。
【0005】
しかしながら、上述の公報においては1種類の相変化蓄熱剤しか用いていないため、その相変化蓄熱剤の凝固点よりも低い温度になった場合、温度コントロール効果を発揮することができず、逆に融点よりも高い温度になった場合も温度コントロール効果を発揮できない。よって衣服内温度をある一定範囲に保つという点では不十分であり、ましてや衣服内湿度を快適範囲に保つことはできない。
【0006】
また従来の衣料において、衣服内湿度という点では、合成繊維原料に吸放湿性を有する無機系微粒子として特定のシリカ粒子を配合して紡糸することにより、シリカ粒子そのものを合成繊維に練り込み、繊維に吸放湿性を付与する方法(特許文献6参照)が提案されている。本発明者らも、原糸製造工程以降の工程で吸放湿性を有する無機微粒子を付与する方法(特許文献7参照)を先に提案した。
【0007】
しかしながら、上述公報の方法では、水分に着目していることもあり、衣服内湿度をムレない状態である快適範囲に保つことはできるが、衣服内温度を快適範囲に保つという点では未だ不十分である。
【0008】
さらに、吸湿性と蓄熱剤を組み合わせた保温衣料(特許文献8参照)が提案されているが、これも前述したように、衣服内湿度をムレない状態である快適範囲に保つことはできるが、1種類の相変化蓄熱剤しか用いていないため、衣服内温湿度をある一定範囲に保つという点では未だ不十分であり、さらなる改善が望まれている。
【0009】
【特許文献1】特開昭63−105105号公報
【0010】
【特許文献2】特開平1−314715号公報
【0011】
【特許文献3】特開平5−156570号公報
【0012】
【特許文献4】特開平7−70943号公報
【0013】
【特許文献5】特表平10−502137号公報
【0014】
【特許文献6】特開平9−241925号公報
【0015】
【特許文献7】特開平14−180375号公報
【0016】
【特許文献8】特開平14−180308号公報
【0017】
【発明が解決しようとする課題】
本発明は、かかる従来技術の背景に鑑み、吸放湿性を有し、かつ衣服内および外環境の急激な温度変化に対する温度コントロール効果を持ち、衣服内を快適な温湿度範囲に保つ調温湿性繊維構造物を提供せんとするものである。
【0018】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の調温湿性繊維構造物は、吸湿率差(ΔMR)が2%以上20%以下で吸放湿性を有する素材で構成された繊維構造物であり、かつ、繊維表面に相変化を起こす温度が異なる2種以上の蓄熱剤を固着してなることを特徴とするものである。
【0019】
【発明の実施の形態】
本発明者らは、前記課題、つまり衣服内を快適な温湿度範囲に保つ調温湿性繊維構造物について鋭意検討し、吸放湿性を有する素材で構成された繊維構造物に、相変化を起こす温度が異なる2種以上の蓄熱剤を固着してみたところ、吸放湿性による調湿効果と、2種の蓄熱剤による2種の温度範囲での温度コントロール効果との組み合わせ効果により、衣服内温湿度を同時に快適な範囲に保つ、快適性に優れた調温湿性繊維構造物を提供することができることを究明したものである。
【0020】
前述したように、吸放湿性による調湿効果だけでは、衣服内湿度をムレない状態である快適範囲に保つことはできるが、衣服内温度を快適範囲に保つという点では未だ不十分である。また、さらに温度コントロール効果も付与するために、単純に従来通り、1種類の相変化蓄熱剤を組み合わせるだけでは、相変化蓄熱剤の融点・凝固点付近では温度コントロールできるが、その温度を少しでも外れると温度コントロール効果は期待できない。
【0021】
しかしながら、本発明者らが、調温湿性繊維構造物について鋭意検討した結果、吸放湿性を有する繊維構造物に、相変化を起こす温度範囲が異なる2種以上の蓄熱剤を繊維表面に固着させることにより、本願課題を解決できることを究明した。相変化を起こす温度範囲が異なる2種以上の蓄熱剤を用いることにより、繊維構造物が快適衣服内温度範囲より温度低くなる場合、快適衣服内温度範囲より温度が高くなる場合の両方について、熱エネルギーに対する障壁として効果的に働き、衣服内を快適温度範囲に保つことができる。
【0022】
安静時、人間が衣服を着用している際、着用している本人が快適と感じる衣服内温度は28〜30℃であり、快適と感じる衣服内湿度は50〜70%RHといわれている。この温湿度範囲を大きく外れると、人体を取り囲む衣服内環境を一定に保つ、ひいては皮膚温を一定に保つため、人体は発汗・ふるえ等を起こす。例えば、マラソン等の運動を行うと、皮膚温、ひいては衣服内温度が上昇する。また人体は自分自身を冷却するために発汗をし、衣服内湿度が上昇する。よって、衣服内温湿度が上昇し、人間は不快と感じる。逆に冷環境にさらされた場合、衣服内温度、ひいては皮膚温が低下し、人体はふるえることにより皮膚温を上昇させようとする。つまり人体は不快と感じている。
【0023】
ここで、一般的に相変化蓄熱剤は、各物質固有の融点・凝固点を有しており、各温度において熱エネルギーを吸収または放出し、温度変化を伴わずに相変化する(潜熱相変化)。よって相変化蓄熱剤は、相変化蓄熱剤が熱を吸収または放出している際、つまり相変化が起こっている際は、衣服を通しての熱エネルギーの流れを抑制または停止させることができる。この効果は、昇温または冷却過程中に相変化蓄熱剤の全潜熱の吸収または放出が終了するまで熱エネルギーに対する障壁として非常に効果的である。また、この時の熱エネルギーは、相変化蓄熱剤に貯蔵もしくは排出され、人体からの吸熱もしくは冷環境への放熱によって可逆的に相変化する。
【0024】
本発明では、相変化を起こす温度が異なる2種以上の蓄熱剤を用いることにより、繊維構造物が上述の快適衣服内温度を上にも下にも外れないための熱的障壁となり、衣服内温度を快適な環境に保つことができる。そのためにも相変化蓄熱剤の相変化の起こる温度は、衣服内快適温度の若干上と若干下に設定し、温度上昇および温度低下の両方に対して熱的障壁を与えたものであることが好ましい。つまり、相変化蓄熱剤の少なくとも1種についての相変化温度が22〜27℃の範囲であり、かつ他の少なくとも1種の蓄熱材の相変化温度が31〜35℃の範囲であることが好ましい。この少なくとも2種類の相変化温度の相変化蓄熱剤を同時に用いることにより、衣服内温度を快適範囲に保つことができる。
【0025】
また上述の2種の相変化温度である相変化蓄熱剤に加えて、ちょうど快適衣服内温度である28〜30℃の範囲で相変化する相変化蓄熱剤を3種目として用いた場合、さらに快適衣服内温度中心での温度コントロール効果が付与できるため、衣服内温度を快適範囲に保つためにはさらに好ましい。
【0026】
本発明で用いる相変化蓄熱剤は、例えば、パラフィン等の炭化水素化合物やポリエチレングリコール等のグリコール化合物等といった有機化合物や、各種金属塩の水和物等といった無機化合物が挙げられるが、上述の相変化温度範囲であるものであればいかなるものを用いてもよい。
【0027】
1種目の相変化温度の相変化蓄熱剤、つまり22〜27℃の範囲での相変化蓄熱剤としては、n−ヘプタデカン(相変化温度:22℃)、塩化カルシウム6水和物(相変化温度:27℃)等が例示できるが、相変化が22〜27℃の範囲で起こるものであればいかなる相変化蓄熱剤を用いてもよい。
【0028】
2種目の相変化温度の相変化蓄熱剤、つまり31〜35℃の範囲での相変化蓄熱剤としては、n−ノナデカン(相変化温度:32℃)等が例示できるが、この場合も相変化が31〜35℃の範囲で起こるものであればいかなる相変化蓄熱剤を用いてもよい。
【0029】
3種目の相変化温度の相変化蓄熱剤、つまり28〜30℃の範囲での相変化蓄熱剤としては、n−オクタデカン(相変化温度:28℃)、平均分子量約1000のポリエチレングリコール(相変化温度:28℃)等が例示できるが、この場合も相変化が28〜30℃の範囲で起こるものであればいかなる相変化蓄熱剤を用いてもよい。
【0030】
蓄熱剤の繊維構造物に対する固着量の合計は、繊維構造物に対し、合計1〜30重量%が好ましく、1〜15重量%がより好ましく、1〜10重量%がさらに好ましい。
【0031】
蓄熱剤の固着量が低すぎると蓄熱剤による温度コントロール効果が低くなってしまう傾向があり、固着量が高すぎると、加工を施した繊維構造物上で白く浮き出た状態に見える場合がある。
【0032】
本発明の蓄熱剤はいかなる形態のものでもよいが、取り扱い性および加工の容易性の点から蓄熱剤がマイクロカプセルに内包されているものが好ましく用いられる。
【0033】
本発明でいうマイクロカプセルとは、上記の蓄熱剤を内包できるものであれば、その殻材は有機系または無機系のどちらでもよい。また蓄熱剤をマイクロカプセルに内包させることにより、その取り扱いが容易になる、例えば、マイクロカプセルの殻材を統一すれば、蓄熱剤が脂溶性または親水性のどちらにかかわらず同様に加工ができ、加工方法を変える必要がないという点で有利である。
【0034】
本発明において、マイクロカプセルの平均粒子径は1μm以上100μm以下であるものが好ましく、1μm以上20μm以下であるものがさらに好ましい。
【0035】
粒子径が大きすぎると、繊維構造物に固着させた場合、風合いが硬くなる傾向がある、加工を施した繊維構造物上で白く浮き出た状態に見え(白ボケ現象という)る場合がある。また、マイクロカプセルを含む加工液を調製するとき、マイクロカプセルの分散性が悪くなる傾向があり、繊維構造物に対して均一に加工を施しにくくなる場合もあるため、マイクロカプセルの平均粒子径は20μm以下が好ましい。逆に該粒子径が小さすぎる場合、マイクロカプセル内に内包できる蓄熱剤量が少なくなるため、蓄熱剤による温度コントロール効果を得られにくくなる傾向があるため、該粒子径は1μm以上が好ましい。
【0036】
本発明においては、マイクロカプセル化したもの等、蓄熱剤を繊維構造物に固着させるためにバインダーが用いられる。バインダーとしては、風合い、接着強度、洗濯耐久性の点で、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂およびメラミン系樹脂などのバインダーが好ましく用いられる。
【0037】
シリコーン系樹脂は、一般的に耐熱性、耐光性および耐薬品性に優れており、かかるシリコーン系樹脂としては、シリコーンレジンもしくはシリコーンワニスという分類に属する縮合架橋型樹脂を使用することができ、かかる縮合架橋型樹脂は、テトラエトキシシランやメチルトリメトキシシランなどの縮合架橋型樹脂を、単独または数種の配合物を縮合して得ることができるものが含まれる。これらは、3次元構造の樹脂を形成し、シリコーン系樹脂の中でも、最も耐熱性や耐薬品性に優れたものである。
【0038】
また、ウレタン系樹脂は、イソシアネート成分とポリオール成分とを反応させて得られる共重合体である。イソシアネート成分としては、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートの単独またはこれらの混合物を用いることができる。また、ポリオール成分としては、ポリエーテルポリオール、ポリエステルポリオールなどを用いることができる。
【0039】
また、アクリル系樹脂としては、メタアクリル酸、メタアクリレート、n−ブチルメタアクリレートなどメタアクリレート系モノマーの1種もしくは2種以上の重合体、もしくはこれらとメタアクリル系モノマーと他の共重合可能なビニル系モノマーとの共重合体が挙げられる。
【0040】
さらに、メラミン系樹脂としては、トリアジン環を含有し、かつ少なくとも2個の重合性官能基を有する化合物が好ましい。かかる重合性官能基としては、アミノ基が好ましく、アミド基がより好ましい。また、このようなメラミン系樹脂の中でも、アミノ基およびアミド基の各窒素に結合している水素がメチロール基、エチロール基およびN−メチロールアミド基のいずれかで置換された化合物がさらに好ましい。重合性官能基以外の基については、水素、水酸基、フェニル基、アルキル基、アルキルエステル基など、どのような基であってもよい。
【0041】
本発明においては、バインダー自体またはバインダーが付与されてなる繊維構造物全体に、吸水性を付与することもできる。吸水性を付与する方法としては、親水性を有する水酸基(−OH)、カルボキシル基(−COOH)、アミノ基(−NH)およびアミド基(−CONH)から選ばれた少なくとも1種をもつ吸水性シリコーン系樹脂や、エチレングリコールを多数付加した吸水性シリコーン系樹脂や、ポリエチレンオキサイド基含有化合物や、セルロース系化合物などの親水化加工剤を、バインダーに混合したり、あるいは繊維構造物全体に後加工で付与する手段を採用することができる。後者の親水化加工剤の中では、好ましくはポリアルキレングリコール−ポリエステルブロック共重合体を主成分とする親水性ポリエステル樹脂が好適である。また、前者の吸水性シリコーン系樹脂は、それ単独をバインダーとして使用することができる。
【0042】
さらに本発明の繊維構造物は吸放湿性を有しているため、衣服内湿度が上昇した場合、繊維構造物が汗等の衣服内の湿気を、積極的に吸収し(吸湿)、衣服外へ放出(放湿)するため、衣服内を快適湿度範囲に保つことができる。
【0043】
本発明においては、吸放湿性を有する素材の吸湿率差(以下、ΔMRと記載)が、2%以上、20%以下であることが好ましい。ここで、吸湿率差とは、下記式で表される数値を指す。
【0044】
ΔMR(%)=MR2−MR1
ここで、MR1とは絶乾状態から摂氏20℃×湿度65%RH雰囲気下に24時間放置したときの吸湿率(%)をいい、例えば、衣服であれば、洋服ダンスの中に入っている状態、すなわち着用前の環境に相当する。またMR2とは絶乾状態から摂氏30℃×湿度90%RH雰囲気下に24時間放置したときの吸湿率(%)をいい、例えば、衣服であれば、衣服着用時における衣服内の環境にほぼ相当する。ここで、吸湿率はJIS L1096「水分率」に準じて測定した。
【0045】
ΔMRは、MR2からMR1の値を差し引いた値で表されるものであり、例えば、衣服であれば、衣服を着用したときに、不感蒸泄や運動時の発汗等による衣服内の湿気をどれだけ吸収するかに相当し、ΔMR値が高いほど快適といえる。一般に、ポリエステル繊維のΔMRは0%、ナイロン繊維で2%、木綿で4%、ウールで6%程度である。ΔMRが2%以上20%以下の範囲において、その吸放湿性による調湿効果が高く、衣服内を快適な湿度範囲に保つことができる。2%より小さい場合は、吸放湿性が低すぎるため、十分な調湿効果が得られず、20%より大きい場合は、逆に吸放湿による湿度低下が大きくなりすぎるため、衣服内を快適な湿度範囲に保ちにくくなる。
【0046】
本発明でいう吸放湿性を有する繊維素材としては、例えば、繊維便覧−原料編−(発行:丸善(株)、第2版)の245ページに記載の素材など、吸放湿性を有するどのような繊維を用いたものでも使用することができ、例えば、前記木綿、ウールなどの天然繊維、ナイロンのような合成繊維の他に改質合成繊維を使用することができる。
【0047】
かかる改質合成繊維としては、たとえば合成繊維に吸湿ポリマー等を分散して練り込むことにより、吸放湿性を向上させた繊維を使用することができる。例えば、ナイロンにポリビニルピロリドン等の吸放湿ポリマーを錬り込み紡糸して得られた吸湿性向上ナイロン糸等や、後加工等により吸放湿性のあるポリマーおよび/または吸湿性のある微粒子を繊維表面に固着させることにより、吸放湿性を増加させ吸放湿性を向上した改質繊維素材を用いることができる。例えば、ナイロンに吸湿ポリマーであるポリビニルピロリドンを5重量%練り込むことにより吸湿率差(ΔMR)が4%程度の改質繊維素材が得られ、ポリエステル100%素材にアクリルアミドメチルプロパンスルホン酸とポリエチレングリコール#1000ジメタクリレートの共重合物を10重量%程度付着させることにより吸湿率差(ΔMR)が3%程度の改質繊維素材が得られる。さらに、合成繊維に吸湿ポリマー等を分散して練り込むことにより、吸湿性を向上させた繊維に、後加工等により吸湿性のあるポリマーおよび/または吸湿性のある微粒子を繊維表面に固着させることにより吸放湿性をさらに増加させた改質繊維素材を用いてもよい。本発明においては、上記の方法にとらわれず、いかなる方法でもポリエステル繊維やポリアミド繊維、アクリル繊維の如き合成繊維に、親水基を1つ以上含む単量体をグラフト共重合や架橋反応により付与させ吸放湿性を付与した改質繊維素材を用いることができる。
【0048】
さらに、ナイロンにポリビニルピロリドン等の吸放湿ポリマーを錬り込み紡糸して得られた吸湿性向上ナイロン糸とポリエチレンテレフタレート繊維との混紡品や、天然セルロース繊維とアクリル系繊維の混織素材のように、吸湿率差(ΔMR)の高い素材と低い素材を混用してもよく、いかなる方法を用いてでも吸湿率差(ΔMR)が2%以上20%以下の範囲とした素材を用いればよい。
【0049】
上記のように、本発明においては吸湿率差(ΔMR)が2%以上20%以下である繊維素材を用いることが重要であり、そのような素材で構成した繊維構造物であれば、繊維の形態として、フィラメント、ステープルまたは紐等の糸条物、あるいは織編物や不織布等の布帛などいかなる形態であってもよい。また、繊維構造/組織としては、混繊、混紡、混織、交織、交編した混用素材も含まれる。
【0050】
本発明の調温湿性繊維構造物の製造方法においては、吸放湿性を有する素材で構成された繊維構造物に蓄熱剤をバインダー等により固着させてもよいし、繊維構造物に蓄熱剤をバインダー等により固着させてから吸放湿性を付与する加工を行ってもよいし、繊維構造物に吸放湿性を付与する加工と蓄熱剤をバインダー等による固着を同時に行ってもよい。吸放湿性を付与する加工薬剤と、蓄熱剤をバインダー等とともに繊維構造物に付与する手段としては、一般公知の各種の手段が適用可能であり、具体的には、パッド−ドライ法、スプレー法およびコーティング法等が挙げられ、繊維材料に対してより均一に付与させるために、パッド−ドライ法が好ましく使用される。吸放湿性を付与する加工薬剤と蓄熱剤をバインダー等が付与された繊維構造物は次いで、付与物を固着させるため熱処理される。熱処理方法は、一般公知の各種の手段が適用可能であり、熱処理温度としては80〜220℃の範囲であることが好ましい。
【0051】
本発明の調温湿性繊維構造物は、吸放湿性を有し、かつ衣服内および外環境の急激な温度変化に対する温度コントロール効果を持ち、衣服内を快適な温湿度範囲に保つ効果を有しているので、特に衣料用素材として、非常に有用であり、例えば、肌着、インナー、スポーツウェア等の衣料に好ましく用いられる。また、ソックス、手袋、タイツ、ストッキング、サポーター、靴のインソール等にもに最適である。
【0052】
【実施例】
以下、実施例により、本発明をさらに詳細に説明する。
【0053】
また、実施例中での品質評価は次の方法を用いた。
<相変化蓄熱剤固着量>
まず下記式により相変化蓄熱剤マイクロカプセル固着量を計算し、その値に相変化蓄熱剤の充填割合を乗じ、相変化蓄熱剤固着量を求めた。
【0054】
相変化蓄熱剤マイクロカプセル固着量(重量%)=[(A−B)/B]×100
ここで、A:加工後の繊維構造物の重量
B:加工前の繊維構造物と、相変化蓄熱剤マイクロカプセル以外の重量との合計重量
ただし、重量とは、摂氏20℃×湿度65%RH雰囲気下に24時間放置したときの重量をいう。
<吸湿率差(ΔMR)>
吸湿率差(ΔMR)(%)=MR2−MR1
ただし、MR1:絶乾状態から摂氏20℃×湿度65%RH雰囲気下に24時間放置したときの吸湿率(%)。
【0055】
MR2:絶乾状態から摂氏30℃×湿度90%RH雰囲気下に24時間放置したときの吸湿率(%)。
<衣服内温湿度>
繊維構造物を用い、ミトン状物を作成した。測定室温20℃、湿度65%RH(標準環境)の環境下で、10人のモニターの右手中指に温湿度センサーをつけ、ミトン状物を着用させ、測定室内で30分間椅子に安静に腰掛けさせた後、右手を握ったり開いたりの運動を10分間行った。次いで、測定室温10℃、湿度50%RHの環境下(冷環境)の測定室内で10分間椅子に安静に腰掛けさせた。温湿度測定は、標準環境30分後、運動10分後および冷環境10分後の手袋内温湿度を衣服内温湿度として測定し、10人の平均値を計算した。
<温冷感>
衣服内温湿度測定時において、運動10分後および冷環境10分後に各モニターに、その時点でどのように感じるを下記の5段階で評価してもらい、その平均値を示した。
【0056】
1:冷たく感じた。
【0057】
2:どちらかといえば冷たく感じた。
【0058】
3:どちらでもない(温度変化を感じない、快適である)。
【0059】
4:どちらかといえば暑く感じた。
【0060】
5:暑く感じた。
(実施例1)
加工する繊維構造物として、マーセライズを行なった45番手のポリエチレンテレフタレート繊維45%、綿55%の混紡糸からなる目付112g/mのユニフォーム用ブロード織物を用いた。
【0061】
ここで用いた素材はそれ自体の吸湿率差(ΔMR)が2%程度であり、適度な吸湿率差を有しているため、吸湿率差(ΔMR)を向上させる必要はなく、そのまま蓄熱剤を繊維表面に固着させた。
【0062】
すなわち、前記ユニフォーム用ブロード織物を下記組成の処理水溶液に浸漬し、マングルロールでピックアップ率100重量%で絞り、100℃で2分間予備乾燥した。その後、150℃で1分間熱処理し、相変化蓄熱剤マイクロカプセルを固着させ、目的の繊維構造物を得た。
【0063】
相変化蓄熱剤マイクロカプセル(商品名 TRS−25(固形分40%)三菱製紙(株)製、相変化温度25℃) 50g/l
相変化蓄熱剤マイクロカプセル(商品名 TRS−32(固形分40%)三菱製紙(株)製、相変化温度32℃) 50g/l
シリコーン系樹脂(商品名 KT7014(固形分40%)高松油脂(株)製) 25g/l
得られた繊維構造物について、相変化蓄熱剤固着量、ΔMR、衣服内温湿度、温冷感の評価をして、結果を表1に示した。この繊維構造物に固着した各相変化蓄熱剤マイクロカプセルの平均粒子径は5μmであり、その内容物である相変化蓄熱剤の充填割合は各々80%のものを用いた。
(実施例2)
加工する繊維構造物として、45番手の6ナイロン45%、ポリアクリロニトリル55%の混紡糸からなる目付210g/mの肌着用編地を用いた。
【0064】
ここで用いた素材は、それ自体の吸湿率差(ΔMR)が1%程度と低いため、吸湿率差(ΔMR)を向上させるため、吸湿モノマーを繊維表面で重合させ、吸湿ポリマーを繊維表面に固着させた。
【0065】
すなわち、前記肌着用編地を下記組成の処理水溶液に浸し、マングルロールでピックアップ率100重量%で絞り、100℃で2分間予備乾燥した。乾燥後直ちに、105℃の加熱スチーマーで10分間処理し、150℃で1分間熱処理し、相変化蓄熱剤マイクロカプセルを固着させた後、湯水洗、乾燥し、目的の繊維構造物を得た。
【0066】
AMPS(吸湿モノマー:2−アクリルアミドメチルプロパンスルホン酸) 40g/l
PEG#1000ジメタクリレート(商品名 グラセットT303(R) 共栄社化学(株)製) 80g/l
過硫酸アンモニウム 4g/l
相変化蓄熱剤マイクロカプセル(商品名 TRS−25(固形分40%)三菱製紙(株)製、相変化温度25℃) 50g/l
相変化蓄熱剤マイクロカプセル(商品名 TRS−32(固形分40%)三菱製紙(株)製、相変化温度32℃) 50g/l
相変化蓄熱剤マイクロカプセル(商品名 TRS−28(固形分40%)三菱製紙(株)製、相変化温度28℃) 50g/l
アクリル系樹脂(商品名 リケンゾールA−263(R)(固形分40%)三木理研工業(株)製)
25g/l
得られた繊維構造物について、相変化蓄熱剤固着量、ΔMR、衣服内温湿度、温冷感の評価をして、結果を表1に示した。この繊維構造物に固着した各相変化蓄熱剤マイクロカプセルの平均粒子径は5μmであり、その内容物である相変化蓄熱剤の充填割合は各々80%のものを用いた。
(比較例1)
実施例1で用いたユニフォーム用ブロード織物の未加工品について、ΔMR、衣服内温湿度、温冷感の評価をして、結果を表1に示した。
【0067】
ここで用いた素材はそれ自体の吸湿率差(ΔMR)が2%程度であり、適度な吸湿率差を有しているが、蓄熱剤を固着させておらず、本願発明の要件を満たしていない。
(比較例2)
実施例1で用いたユニフォーム用ブロード織物を下記組成の処理水溶液に浸す以外は実施例1と同様の条件で加工し、目的の繊維構造物を得た。
【0068】
ここで用いた素材はそれ自体の吸湿率差(ΔMR)が2%程度であり、適度な吸湿率差を有しているが、蓄熱剤を1種類しか固着させておらず、本願発明の要件を満たしていない。
【0069】
相変化蓄熱剤マイクロカプセル(商品名 TRS−28(固形分40%)三菱製紙(株)製、相変化温度28℃) 100g/l
アクリル系樹脂(商品名 リケンゾールA−263(R)(固形分40%)三木理研工業(株)製)
25g/l
得られた繊維構造物について、相変化蓄熱剤固着量、ΔMR、衣服内温湿度、温冷感の評価をして、結果を表1に示した。この繊維構造物に固着した各相変化蓄熱剤マイクロカプセルの平均粒子径は5μmであり、その内容物である相変化蓄熱剤の充填割合は各々80%のものを用いた。
(比較例3)
実施例2で用いた肌着用編地を下記組成の処理水溶液に浸す以外は実施例1と同様の条件で加工し、目的の繊維構造物を得た。
【0070】
ここで用いた素材はそれ自体の吸湿率差(ΔMR)が1%程度であり、吸放湿性が十分でない。
【0071】
相変化蓄熱剤マイクロカプセル(商品名 TRS−25(固形分40%)三菱製紙(株)製、相変化温度25℃) 50g/l
相変化蓄熱剤マイクロカプセル(商品名 TRS−32(固形分40%)三菱製紙(株)製、相変化温度32℃) 50g/l
シリコーン系樹脂(商品名 KT7014(固形分40%)高松油脂(株)製)25g/l
得られた繊維構造物について、相変化蓄熱剤固着量、ΔMR、衣服内温湿度、温冷感の評価をして、結果を表1に示した。この繊維構造物に固着した各相変化蓄熱剤マイクロカプセルの平均粒子径は5μmであり、その内容物である相変化蓄熱剤の充填割合は各々80%のものを用いた。
【0072】
【表1】

Figure 2004324023
【0073】
表1から明らかなように、実施例1、2の吸放湿性を有し、かつ相変化を起こす温度範囲が異なる2種以上の蓄熱剤を繊維表面に固着した繊維構造物は、衣服内温湿度を快適範囲に保ち、モニターの感覚でも快適となっており、優れた調温湿効果を有していることが分かる。しかしながら、比較例1のように吸放湿性だけを有するもの、比較例2のように吸放湿性は有しているが、相変化蓄熱剤を1種類しか用いていないもの、比較例3のように相変化を起こす温度が異なる2種の蓄熱剤を用いているが、吸放湿性が低いものについては、衣服内温湿度を快適範囲に保つことができず、モニターの感覚でも不快となっている。
【0074】
【発明の効果】
本発明によれば、吸湿率差(ΔMR)が2%以上20%以下で吸放湿性を有する素材で構成された繊維構造物であり、かつ相変化を起こす温度が異なる2種以上の蓄熱剤を繊維表面に固着してなることを特徴とする調温湿性繊維構造物は、吸放湿性を有し、かつ衣服内および外環境の急激な温度変化に対する温度コントロール効果を持ち、衣服内を快適な温湿度範囲に保つ効果を有しているので、特に衣料用素材として、非常に有用であり、例えば、肌着、インナー、スポーツウェア等の衣料に好ましく用いられる。また、ソックス、手袋、タイツ、ストッキング、サポーター、靴のインソール等にもに最適である。[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoregulating and fibrous structure for keeping the inside of a garment in a comfortable temperature and humidity range.
[0002]
[Prior art]
In conventional clothing, in terms of the temperature in clothing, the heat insulation is improved by creating a fixed air layer using a material with an increased air content, or by reflecting radiant heat using an aluminum foil film etc. To improve the heat retention, or to knead ceramics into synthetic fibers and use the far-infrared effect of ceramics to maintain the inside of clothing at a certain temperature or higher (Patent Document 1, 2) has been proposed.
[0003]
However, when the above-described material having an increased air content is used, the material becomes bulky, and the motility when worn is hindered. In addition, the material that reflects radiant heat is colored with a metal such as an aluminum foil film, and the color development is limited. In addition, the method of using the far-infrared effect of ceramics, which is an inorganic material, is not sufficient because there is a problem that the amount of heat generated at room temperature is not enough to keep the temperature inside the clothes comfortable. Further, these methods specialize in not releasing heat in clothes, and are still insufficient in keeping the temperature and humidity in clothes within a comfortable range according to the scene in which clothes are worn. For example, speaking of a winter blouson, if you wear it outdoors in winter, you will feel warm enough and comfortable, but if you wear a blouson and take a train, you will feel very hot, stuffiness and body burning Occurs.
[0004]
As a solution to these problems, clothing using a phase change heat storage agent (see Patent Documents 3, 4, and 5) has been proposed. A phase change heat storage agent, when a substance undergoes a phase change such as melting and solidification, such as a solid to a liquid and a liquid to a solid, undergoes endothermic (melting point) and exothermic (freezing point) at a temperature unique to each substance. The phase change heat storage agent absorbs heat or generates heat near the melting point temperature and the freezing point temperature in the temperature raising process or the cooling process, thereby acting as a barrier against thermal energy.
[0005]
However, in the above-mentioned publication, only one kind of phase change heat storage agent is used. Therefore, when the temperature becomes lower than the freezing point of the phase change heat storage agent, the temperature control effect cannot be exerted, and conversely, Even when the temperature becomes higher than that, the temperature control effect cannot be exhibited. Therefore, it is insufficient to keep the temperature inside the clothes within a certain range, and even more, the humidity inside the clothes cannot be kept within a comfortable range.
[0006]
Also, in conventional clothing, in terms of humidity in clothes, by mixing and spinning specific silica particles as inorganic fine particles having hygroscopicity in the synthetic fiber raw material, the silica particles themselves are kneaded into the synthetic fibers, (See Patent Document 6) has been proposed for imparting moisture absorption and desorption properties to water. The present inventors have also previously proposed a method (see Patent Document 7) of providing inorganic fine particles having moisture absorption / release properties in a process after a raw yarn manufacturing process.
[0007]
However, the method of the above publication may focus on moisture, and can keep the humidity in the clothes in a comfortable range in which there is no stuffiness, but is still insufficient in keeping the temperature in the clothes in a comfortable range. It is.
[0008]
Furthermore, a warming garment combining a hygroscopic property and a heat storage agent has been proposed (see Patent Literature 8). As described above, it is also possible to keep the humidity in the garment in a comfortable range that does not cause stuffiness, Since only one kind of phase change heat storage agent is used, it is still insufficient to keep the temperature and humidity in clothes within a certain range, and further improvement is desired.
[0009]
[Patent Document 1] JP-A-63-105105
[0010]
[Patent Document 2] JP-A-1-314715
[0011]
[Patent Document 3] JP-A-5-156570
[0012]
[Patent Document 4] JP-A-7-70943
[0013]
[Patent Document 5] Japanese Patent Publication No. 10-502137
[0014]
[Patent Document 6] JP-A-9-241925
[0015]
[Patent Document 7] Japanese Patent Application Laid-Open No. 14-180375
[0016]
[Patent Document 8] JP-A-14-180308
[0017]
[Problems to be solved by the invention]
In view of the background of the prior art, the present invention has a moisture absorption / desorption property, and has a temperature control effect against a rapid temperature change in the inside and outside of the clothes, and a temperature and humidity control property for keeping the inside of the clothes in a comfortable temperature and humidity range. It is intended to provide a fiber structure.
[0018]
[Means for Solving the Problems]
The present invention employs the following means in order to solve such a problem. That is, the thermoregulated fibrous structure of the present invention is a fibrous structure composed of a material having a hygroscopicity difference of 2% or more and 20% or less and a phase change on the fiber surface. Characterized in that two or more kinds of heat storage agents having different temperatures at which the heat storage occurs are fixed.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have intensively studied the above-mentioned problem, that is, a thermo- and humidity-controlling fiber structure that maintains the inside of a garment in a comfortable temperature and humidity range, and cause a phase change in a fiber structure formed of a material having moisture absorption and release properties. When two or more types of heat storage agents having different temperatures were fixed, the temperature inside the clothes was determined by the combined effect of the humidity control effect by moisture absorption and desorption and the temperature control effect by the two types of heat storage agents in two temperature ranges. It has been found that it is possible to provide a thermoregulated fiber structure having excellent comfort and keeping humidity in a comfortable range at the same time.
[0020]
As described above, the humidity control effect by the moisture absorption / release properties alone can keep the humidity in the clothes in a comfortable range where the clothes are not stuffy, but it is still insufficient in keeping the temperature in the clothes in the comfortable range. In addition, simply by combining one type of phase change thermal storage agent as in the past, the temperature can be controlled near the melting point and freezing point of the phase change thermal storage agent, but the temperature can be deviated even slightly. And the temperature control effect cannot be expected.
[0021]
However, the present inventors have conducted intensive studies on the thermoregulated and fibrous structure, and found that two or more types of heat storage agents having different temperature ranges in which a phase change occurs are fixed to the fiber surface in the fibrous structure having moisture absorption and desorption properties. Thus, it has been found that the problem of the present application can be solved. By using two or more kinds of heat storage agents having different temperature ranges in which a phase change occurs, the heat of the fiber structure becomes lower than the temperature range within the comfortable garment and the temperature becomes higher than the temperature range within the comfortable garment. It effectively acts as a barrier to energy and can keep the inside of the garment in a comfortable temperature range.
[0022]
At rest, when a person wears clothes, the temperature in the clothes that the person wearing the clothes feels comfortable is 28 to 30 ° C., and the humidity in the clothes that the user feels comfortable is 50 to 70% RH. If the temperature and humidity are largely out of this range, the human body sweats, shakes, etc. in order to maintain a constant environment in clothes surrounding the human body, and thus to maintain a constant skin temperature. For example, when an exercise such as a marathon is performed, the skin temperature and, consequently, the temperature inside the clothes rise. In addition, the human body sweats to cool itself, and the humidity in clothes increases. Therefore, the temperature and humidity in the clothes rise, and humans feel uncomfortable. Conversely, when exposed to a cold environment, the temperature inside the clothes, and thus the skin temperature, decreases, and the human body tries to increase the skin temperature by shaking. In other words, the human body feels uncomfortable.
[0023]
Here, the phase change heat storage agent generally has a melting point and a freezing point unique to each substance, absorbs or releases heat energy at each temperature, and changes phase without changing temperature (latent heat phase change). . Thus, the phase change thermal storage agent can suppress or stop the flow of thermal energy through the garment when the phase change thermal storage agent is absorbing or releasing heat, ie, when a phase change is occurring. This effect is very effective as a barrier to thermal energy until the absorption or release of all latent heat of the phase change thermal storage agent during the heating or cooling process. Further, the heat energy at this time is stored or discharged in the phase change heat storage agent, and reversibly changes its phase by absorbing heat from the human body or releasing heat to the cold environment.
[0024]
In the present invention, by using two or more kinds of heat storage agents having different temperatures at which a phase change occurs, the fibrous structure serves as a thermal barrier for preventing the above-mentioned temperature in the comfortable garment from falling above and below the garment. The temperature can be kept in a comfortable environment. Therefore, the temperature at which the phase change of the phase change thermal storage agent occurs should be set slightly above and below the comfortable temperature in the clothing, providing a thermal barrier to both temperature rise and temperature decrease. preferable. That is, the phase change temperature of at least one of the phase change heat storage agents is preferably in the range of 22 to 27 ° C, and the phase change temperature of at least one other heat storage material is preferably in the range of 31 to 35 ° C. . The simultaneous use of the at least two phase-change heat storage agents having the phase-change temperature enables the temperature in the garment to be maintained in a comfortable range.
[0025]
Further, in addition to the above-mentioned two kinds of phase change heat storage agents which are phase change temperatures, when a phase change heat storage agent which changes phase within the range of 28 to 30 ° C. which is just a comfortable garment is used as a third kind, it is more comfortable. Since a temperature control effect at the temperature of the inside of the garment can be provided, it is more preferable to keep the temperature inside the garment in a comfortable range.
[0026]
Examples of the phase change heat storage agent used in the present invention include organic compounds such as hydrocarbon compounds such as paraffin and glycol compounds such as polyethylene glycol, and inorganic compounds such as hydrates of various metal salts. Any material may be used as long as it is within the changing temperature range.
[0027]
The first type of phase change heat storage agent having a phase change temperature, that is, n-heptadecane (phase change temperature: 22 ° C.), calcium chloride hexahydrate (phase change temperature) : 27 ° C) and the like, but any phase change heat storage agent may be used as long as the phase change occurs in the range of 22 to 27 ° C.
[0028]
The second type of phase change heat storage agent having a phase change temperature, that is, n-nonadecane (phase change temperature: 32 ° C.) can be exemplified as the phase change heat storage agent in the range of 31 to 35 ° C. Any phase change heat storage agent may be used as long as it occurs in the range of 31 to 35 ° C.
[0029]
The third kind of phase change heat storage agent having a phase change temperature, ie, a phase change heat storage agent in the range of 28 to 30 ° C., is n-octadecane (phase change temperature: 28 ° C.), polyethylene glycol having an average molecular weight of about 1000 (phase change (Temperature: 28 ° C.) and the like. In this case, any phase change heat storage agent may be used as long as the phase change occurs in the range of 28 to 30 ° C.
[0030]
The total amount of the heat storage agent fixed to the fiber structure is preferably 1 to 30% by weight, more preferably 1 to 15% by weight, and still more preferably 1 to 10% by weight, based on the fiber structure.
[0031]
If the amount of the heat storage agent fixed is too low, the temperature control effect of the heat storage agent tends to be low. If the amount of the heat storage agent is too high, it may appear white on the processed fiber structure.
[0032]
The heat storage agent of the present invention may be in any form, but those in which the heat storage agent is encapsulated in microcapsules are preferably used from the viewpoint of ease of handling and processing.
[0033]
The microcapsules referred to in the present invention may be either organic or inorganic, as long as they can contain the above-mentioned heat storage agent. In addition, by encapsulating the heat storage agent in the microcapsule, the handling becomes easy, for example, if the shell material of the microcapsule is unified, the heat storage agent can be processed in the same manner regardless of whether it is fat-soluble or hydrophilic, This is advantageous in that there is no need to change the processing method.
[0034]
In the present invention, the average particle diameter of the microcapsules is preferably from 1 μm to 100 μm, more preferably from 1 μm to 20 μm.
[0035]
If the particle diameter is too large, the texture tends to be hard when it is fixed to the fiber structure, and it may appear to appear white on the processed fiber structure (white blur phenomenon). In addition, when preparing a processing liquid containing microcapsules, the dispersibility of the microcapsules tends to be poor, and it may be difficult to uniformly process the fiber structure. It is preferably 20 μm or less. Conversely, if the particle size is too small, the amount of heat storage agent that can be encapsulated in the microcapsules will be small, and it will be difficult to obtain the temperature control effect of the heat storage agent. Therefore, the particle size is preferably 1 μm or more.
[0036]
In the present invention, a binder is used to fix the heat storage agent, such as microencapsulated one, to the fibrous structure. As the binder, a binder such as a silicone-based resin, an acrylic-based resin, a urethane-based resin, and a melamine-based resin is preferably used in terms of texture, adhesive strength, and washing durability.
[0037]
Silicone resins are generally excellent in heat resistance, light resistance and chemical resistance. As such silicone resins, condensation-crosslinking resins belonging to the class of silicone resins or silicone varnishes can be used. The condensation-crosslinkable resin includes those that can be obtained by condensing a condensation-crosslinkable resin such as tetraethoxysilane or methyltrimethoxysilane, alone or by blending several kinds of compounds. These form a three-dimensional structure resin and are the most excellent in heat resistance and chemical resistance among silicone resins.
[0038]
The urethane-based resin is a copolymer obtained by reacting an isocyanate component and a polyol component. As the isocyanate component, an aromatic diisocyanate, an aliphatic diisocyanate, an alicyclic diisocyanate alone or a mixture thereof can be used. Further, as the polyol component, polyether polyol, polyester polyol and the like can be used.
[0039]
Further, as the acrylic resin, methacrylic acid, methacrylate, one or two or more polymers of methacrylate monomers such as n-butyl methacrylate, or methacrylic monomers and other copolymerizable with them Copolymers with vinyl monomers are exemplified.
[0040]
Further, as the melamine-based resin, a compound containing a triazine ring and having at least two polymerizable functional groups is preferable. As such a polymerizable functional group, an amino group is preferable, and an amide group is more preferable. Further, among such melamine-based resins, a compound in which hydrogen bonded to each nitrogen of an amino group and an amide group is substituted with any one of a methylol group, an ethylol group, and an N-methylolamide group is more preferable. The group other than the polymerizable functional group may be any group such as hydrogen, a hydroxyl group, a phenyl group, an alkyl group, and an alkyl ester group.
[0041]
In the present invention, it is also possible to impart water absorption to the binder itself or to the entire fiber structure to which the binder is applied. As a method for imparting water absorption, a hydroxyl group (—OH), a carboxyl group (—COOH), an amino group (—NH 2 ) And an amide group (—CONH 2 A) a water-absorbing silicone resin having at least one member selected from the group consisting of: a water-absorbing silicone resin to which a large number of ethylene glycols are added; a hydrophilic compound such as a polyethylene oxide group-containing compound; and a cellulose compound. A means for mixing or imparting the whole fiber structure by post-processing can be employed. Among the latter hydrophilizing agents, a hydrophilic polyester resin containing a polyalkylene glycol-polyester block copolymer as a main component is preferred. In addition, the former water-absorbing silicone resin can be used alone as a binder.
[0042]
Further, since the fiber structure of the present invention has a moisture absorbing / releasing property, when the humidity in clothes increases, the fiber structure actively absorbs moisture (such as moisture absorption) in the clothes such as sweat, and the outside of the clothes. Because it is released (moisture release), the inside of the clothes can be kept in a comfortable humidity range.
[0043]
In the present invention, the difference in moisture absorption rate (hereinafter, referred to as ΔMR) of the material having moisture absorption / release properties is preferably 2% or more and 20% or less. Here, the difference in moisture absorption refers to a numerical value represented by the following equation.
[0044]
ΔMR (%) = MR2-MR1
Here, MR1 refers to a moisture absorption rate (%) when left in an atmosphere of 20 ° C. × 65% RH from a completely dry state for 24 hours. For example, clothes are included in clothes dance. It corresponds to the state, that is, the environment before wearing. MR2 refers to a moisture absorption rate (%) when left in an atmosphere of 30 ° C. × 90% RH from an absolutely dry state for 24 hours. Equivalent to. Here, the moisture absorption was measured according to JIS L1096 "Moisture Retention".
[0045]
ΔMR is represented by a value obtained by subtracting the value of MR1 from MR2. For example, in the case of clothes, when the clothes are worn, the amount of moisture in the clothes due to insensitive diarrhea or sweating during exercise, etc. It can be said that the higher the ΔMR value, the more comfortable. Generally, ΔMR of polyester fiber is about 0%, nylon fiber is about 2%, cotton is about 4%, and wool is about 6%. When ΔMR is in the range of 2% or more and 20% or less, the humidity control effect by the moisture absorption / release properties is high, and the inside of the clothes can be kept in a comfortable humidity range. If it is less than 2%, the moisture absorption / desorption property is too low, so that a sufficient humidity control effect cannot be obtained. If it is more than 20%, on the contrary, the humidity drop due to moisture absorption / desorption becomes too large, so that the clothes are comfortable. It is difficult to maintain the humidity in an appropriate range.
[0046]
Examples of the moisture-absorbing and desorbing fiber material used in the present invention include materials having moisture-absorbing and desorbing properties, such as the materials described on page 245 of Textile Handbook-Raw Materials-(Published by Maruzen Co., Ltd., 2nd edition). Fibers using natural fibers can also be used. For example, modified synthetic fibers can be used in addition to the above-mentioned natural fibers such as cotton and wool, and synthetic fibers such as nylon.
[0047]
As such modified synthetic fibers, for example, fibers having improved moisture absorption / release properties can be used by dispersing and kneading a hygroscopic polymer or the like into the synthetic fibers. For example, a nylon yarn or the like having improved hygroscopicity obtained by kneading and spinning a hygroscopic polymer such as polyvinylpyrrolidone into nylon, a polymer having hygroscopicity and / or fine particles having hygroscopicity by post-processing, etc. By adhering to the surface, it is possible to use a modified fiber material having increased moisture absorption / release properties and improved moisture absorption / release properties. For example, a modified fiber material having a difference in moisture absorption (ΔMR) of about 4% can be obtained by kneading 5% by weight of polyvinylpyrrolidone, which is a moisture-absorbing polymer, into nylon, and acrylamidomethylpropanesulfonic acid and polyethylene glycol are added to a 100% polyester material. By adhering about 10% by weight of a # 1000 dimethacrylate copolymer, a modified fiber material having a moisture absorption difference (ΔMR) of about 3% can be obtained. Further, by dispersing and kneading a hygroscopic polymer or the like into the synthetic fiber, the hygroscopic polymer and / or the hygroscopic fine particles are fixed to the fiber surface by post-processing or the like on the fiber having improved hygroscopicity. A modified fiber material whose moisture absorption / desorption property is further increased may be used. In the present invention, a monomer containing at least one hydrophilic group is imparted to a synthetic fiber such as a polyester fiber, a polyamide fiber, or an acrylic fiber by a graft copolymerization or a cross-linking reaction by any method without being limited to the above method. A modified fiber material having a moisture release property can be used.
[0048]
Furthermore, a blended product of a moisture-absorbing nylon yarn and a polyethylene terephthalate fiber obtained by kneading and spinning a moisture-absorbing / desorbing polymer such as polyvinylpyrrolidone in nylon, or a mixed woven material of natural cellulose fiber and acrylic fiber. In addition, a material having a high difference in moisture absorption (ΔMR) may be mixed with a material having a low difference in moisture absorption (ΔMR), and a material having a difference in moisture absorption (ΔMR) in the range of 2% to 20% may be used by any method.
[0049]
As described above, in the present invention, it is important to use a fiber material having a moisture absorption difference (ΔMR) of 2% or more and 20% or less. The form may be any form such as a filament such as a filament, staple or string, or a fabric such as a woven or knitted fabric or a nonwoven fabric. Further, the fiber structure / texture also includes a mixed material obtained by blending, blending, blending, weaving, and weaving.
[0050]
In the method for producing a thermoregulated fibrous structure of the present invention, a heat storage agent may be fixed to a fibrous structure composed of a material having hygroscopicity by a binder or the like. The process of imparting moisture absorption / desorption properties may be performed after fixing by the method described above, or the process of imparting moisture absorption / desorption properties to the fibrous structure and the fixation of the heat storage agent with a binder or the like may be performed simultaneously. As a processing agent for imparting moisture absorption and release properties and a means for imparting a heat storage agent to a fibrous structure together with a binder or the like, various generally known means can be applied, and specifically, a pad-dry method, a spray method, and the like. And a coating method, and the like, and a pad-dry method is preferably used in order to give the fiber material more uniformly. The fibrous structure to which a processing agent for imparting moisture absorption and release properties and a heat storage agent to which a binder or the like is applied is then subjected to a heat treatment to fix the applied substance. As the heat treatment method, various generally known means can be applied, and the heat treatment temperature is preferably in the range of 80 to 220 ° C.
[0051]
The thermo-humidifying fibrous structure of the present invention has a moisture absorbing and releasing property, and has a temperature control effect for a rapid temperature change in the inside and outside of the clothes, and has an effect of keeping the inside of the clothes in a comfortable temperature and humidity range. Therefore, it is very useful especially as a material for clothing, and is preferably used for clothing such as underwear, innerwear, and sportswear. It is also ideal for socks, gloves, tights, stockings, supporters, shoe insoles, and the like.
[0052]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0053]
The following methods were used for the quality evaluation in the examples.
<Phase change heat storage agent sticking amount>
First, the adhered amount of the phase change thermal storage agent microcapsules was calculated by the following equation, and the value was multiplied by the filling ratio of the phase change thermal storage agent to obtain the amount of the adhered phase change thermal storage agent.
[0054]
Phase change heat storage agent microcapsule fixation amount (% by weight) = [(AB) / B] × 100
Here, A: weight of the fiber structure after processing
B: Total weight of the fiber structure before processing and the weight other than the phase change heat storage agent microcapsules
Here, the weight refers to the weight when left in an atmosphere of 20 ° C. × 65% RH for 24 hours.
<Moisture absorption difference (ΔMR)>
Moisture absorption difference (ΔMR) (%) = MR2-MR1
Here, MR1: moisture absorption rate (%) when left in an atmosphere of 20 ° C. × 65% RH for 24 hours from a completely dry state.
[0055]
MR2: Moisture absorption (%) when left in an atmosphere of 30 ° C. × 90% RH from a completely dry state for 24 hours.
<Temperature and humidity inside clothes>
Mittens were produced using the fibrous structure. In a measurement room temperature of 20 ° C. and a humidity of 65% RH (standard environment), a temperature and humidity sensor was attached to the right middle finger of 10 monitors, a mitten-like object was worn, and the subject was allowed to sit on a chair for 30 minutes in the measurement room. After that, the right hand was held and opened for 10 minutes. Next, the patient was allowed to sit on a chair for 10 minutes in a measurement room under a measurement room temperature of 10 ° C. and a humidity of 50% RH (cool environment). In the temperature and humidity measurement, the temperature and humidity in the gloves after 30 minutes in the standard environment, 10 minutes after the exercise, and 10 minutes after the cold environment were measured as the temperature and humidity in the clothes, and the average value of 10 persons was calculated.
<Warmth>
At the time of measuring the temperature and humidity in the clothes, each monitor was asked to evaluate how it felt at that time on the following five scales 10 minutes after the exercise and 10 minutes after the cold environment, and the average value was shown.
[0056]
1: I felt cold.
[0057]
2: I felt rather cold.
[0058]
3: Neither (no temperature change, comfortable).
[0059]
4: It felt rather hot.
[0060]
5: I felt hot.
(Example 1)
The fiber structure to be processed is a blended yarn of 45% polyethylene terephthalate fiber 45% mercerized and 55% cotton, and has a basis weight of 112 g / m2. 2 Was used.
[0061]
The material used here has a proper difference in moisture absorption rate (ΔMR) of about 2% itself, so that it is not necessary to improve the difference in moisture absorption rate (ΔMR). Was fixed to the fiber surface.
[0062]
That is, the broad woven fabric for uniforms was immersed in a treatment aqueous solution having the following composition, squeezed with a mangle roll at a pickup rate of 100% by weight, and preliminarily dried at 100 ° C. for 2 minutes. Thereafter, heat treatment was performed at 150 ° C. for 1 minute to fix the phase change heat storage agent microcapsules, thereby obtaining a target fiber structure.
[0063]
Phase change heat storage agent microcapsules (trade name: TRS-25 (solid content: 40%), manufactured by Mitsubishi Paper Mills, Ltd., phase change temperature: 25 ° C.) 50 g / l
Phase change heat storage agent microcapsules (trade name: TRS-32 (solid content: 40%), manufactured by Mitsubishi Paper Mills, phase change temperature: 32 ° C) 50 g / l
Silicone resin (trade name: KT7014 (solid content: 40%) manufactured by Takamatsu Yushi Co., Ltd.) 25 g / l
The obtained fiber structure was evaluated for the fixed amount of phase change heat storage agent, ΔMR, temperature and humidity in clothes, and thermal sensation, and the results are shown in Table 1. The average particle diameter of each phase-change heat storage agent microcapsule fixed to the fiber structure was 5 μm, and the filling ratio of the phase-change heat storage agent as its contents was 80%.
(Example 2)
The fiber structure to be processed is a blended yarn of 45% 6-nylon 45% and polyacrylonitrile 55%, having a basis weight of 210 g / m2. 2 The knitted fabric worn on the skin was used.
[0064]
Since the material used here has a low difference in moisture absorption (ΔMR) of about 1% itself, in order to improve the difference in moisture absorption (ΔMR), a moisture-absorbing monomer is polymerized on the fiber surface, and a moisture-absorbing polymer is applied on the fiber surface. It was fixed.
[0065]
That is, the underwear knitted fabric was immersed in a treatment aqueous solution having the following composition, squeezed with a mangle roll at a pickup ratio of 100% by weight, and preliminarily dried at 100 ° C. for 2 minutes. Immediately after drying, the mixture was treated with a heating steamer at 105 ° C. for 10 minutes, and then heat-treated at 150 ° C. for 1 minute to fix the phase-change heat storage agent microcapsules.
[0066]
AMPS (moisture-absorbing monomer: 2-acrylamidomethylpropanesulfonic acid) 40 g / l
PEG # 1000 dimethacrylate (trade name: Glasset T303 (R) manufactured by Kyoeisha Chemical Co., Ltd.) 80 g / l
Ammonium persulfate 4g / l
Phase change heat storage agent microcapsules (trade name: TRS-25 (solid content: 40%), manufactured by Mitsubishi Paper Mills, Ltd., phase change temperature: 25 ° C.) 50 g / l
Phase change heat storage agent microcapsules (trade name: TRS-32 (solid content: 40%), manufactured by Mitsubishi Paper Mills, phase change temperature: 32 ° C) 50 g / l
Phase change heat storage agent microcapsule (trade name: TRS-28 (solid content: 40%), manufactured by Mitsubishi Paper Mills, phase change temperature: 28 ° C.) 50 g / l
Acrylic resin (trade name: RIKENSOL A-263 (R) (solid content: 40%) manufactured by Miki Riken Kogyo Co., Ltd.)
25g / l
The obtained fiber structure was evaluated for the fixed amount of phase change heat storage agent, ΔMR, temperature and humidity in clothes, and thermal sensation, and the results are shown in Table 1. The average particle diameter of each phase-change heat storage agent microcapsule fixed to the fiber structure was 5 μm, and the filling ratio of the phase-change heat storage agent as its contents was 80%.
(Comparative Example 1)
The untreated broad woven fabric for a uniform used in Example 1 was evaluated for ΔMR, temperature and humidity in clothes, and thermal sensation, and the results are shown in Table 1.
[0067]
The material used here has a moisture absorption rate difference (ΔMR) of about 2% itself and has an appropriate moisture absorption rate difference, but does not fix the heat storage agent and satisfies the requirements of the present invention. Absent.
(Comparative Example 2)
Processing was carried out under the same conditions as in Example 1 except that the broad woven fabric for uniform used in Example 1 was immersed in a treatment aqueous solution having the following composition, to obtain a target fiber structure.
[0068]
The material used here has a proper difference in moisture absorption rate (ΔMR) of about 2% itself, but has only one kind of heat storage agent adhered thereto. Does not meet.
[0069]
Phase change heat storage agent microcapsule (trade name: TRS-28 (solid content: 40%), manufactured by Mitsubishi Paper Mills, Inc., phase change temperature: 28 ° C.) 100 g / l
Acrylic resin (trade name: RIKENSOL A-263 (R) (solid content: 40%) manufactured by Miki Riken Kogyo Co., Ltd.)
25g / l
The obtained fiber structure was evaluated for the fixed amount of phase change heat storage agent, ΔMR, temperature and humidity in clothes, and thermal sensation, and the results are shown in Table 1. The average particle diameter of each phase-change heat storage agent microcapsule fixed to the fiber structure was 5 μm, and the filling ratio of the phase-change heat storage agent as its contents was 80%.
(Comparative Example 3)
Processing was carried out under the same conditions as in Example 1 except that the underwear knitted fabric used in Example 2 was immersed in a treatment aqueous solution having the following composition, to obtain a target fiber structure.
[0070]
The material used here has a moisture absorption rate difference (ΔMR) of about 1%, and does not have sufficient moisture absorption / release properties.
[0071]
Phase change heat storage agent microcapsules (trade name: TRS-25 (solid content: 40%), manufactured by Mitsubishi Paper Mills, Ltd., phase change temperature: 25 ° C.) 50 g / l
Phase change heat storage agent microcapsules (trade name: TRS-32 (solid content: 40%), manufactured by Mitsubishi Paper Mills, phase change temperature: 32 ° C) 50 g / l
Silicone resin (trade name: KT7014 (solid content: 40%) manufactured by Takamatsu Oil & Fat Co., Ltd.) 25 g / l
The obtained fiber structure was evaluated for the fixed amount of phase change heat storage agent, ΔMR, temperature and humidity in clothes, and thermal sensation, and the results are shown in Table 1. The average particle diameter of each phase-change heat storage agent microcapsule fixed to the fiber structure was 5 μm, and the filling ratio of the phase-change heat storage agent as its contents was 80%.
[0072]
[Table 1]
Figure 2004324023
[0073]
As is clear from Table 1, the fiber structure obtained by fixing two or more kinds of heat storage agents having the moisture absorption and desorption properties of Examples 1 and 2 and having different temperature ranges at which a phase change occurs to the fiber surface is the same as the inner temperature of clothing. It can be seen that the humidity is kept in a comfortable range, and the monitor feels comfortable, and has an excellent temperature and humidity control effect. However, as in Comparative Example 1, one having only moisture absorption / release properties, as in Comparative Example 2, having moisture absorption / release properties, but using only one type of phase change heat storage agent, as in Comparative Example 3 Uses two types of heat storage agents that have different temperatures that cause a phase change, but those with low moisture absorption / desorption properties cannot keep the temperature and humidity inside the clothes in a comfortable range, and the monitor feels uncomfortable. I have.
[0074]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is a fiber structure comprised by the material which has a moisture absorption difference ((DELTA) MR) 2% or more and 20% or less and has a moisture absorption / release property, and two or more types of heat storage agents from which the temperature which changes phase changes differ The thermo-humidifying fiber structure, which is characterized in that it is adhered to the fiber surface, has moisture absorption and desorption properties, and has a temperature control effect against sudden temperature changes in the inside and outside of clothes, making it comfortable in clothes. Since it has an effect of keeping the temperature and humidity within a suitable range, it is very useful especially as a material for clothing, and is preferably used for clothing such as underwear, innerwear, and sportswear. It is also ideal for socks, gloves, tights, stockings, supporters, shoe insoles, and the like.

Claims (12)

吸湿率差(ΔMR)が2%以上20%以下で吸放湿性を有する素材で構成された繊維構造物であり、かつ、繊維表面に相変化を起こす温度が異なる2種以上の蓄熱剤を固着してなることを特徴とする繊維構造物。A fibrous structure composed of a material having a moisture absorption / desorption property with a difference in moisture absorption (ΔMR) of 2% or more and 20% or less, and two or more kinds of heat storage agents having different temperatures at which a phase change occurs on the fiber surface are fixed. A fibrous structure characterized by comprising: 該蓄熱材の少なくとも1種目の相変化温度が22〜27℃であり、他の蓄熱材の相変化温度が31〜35℃であることを特徴とする請求項1記載の繊維構造物。The fiber structure according to claim 1, wherein the phase change temperature of at least the first kind of the heat storage material is 22 to 27C, and the phase change temperature of the other heat storage material is 31 to 35C. 相変化温度が28〜30℃の蓄熱材が含有されていることを特徴とする請求項1または2に記載の繊維構造物。The fibrous structure according to claim 1, further comprising a heat storage material having a phase change temperature of 28 to 30 ° C. 4. 該蓄熱剤が、繊維構造物に対し、計1〜30重量%の割合で固着されていることを特徴とする請求項1から3のいずれかに記載の繊維構造物。The fiber structure according to any one of claims 1 to 3, wherein the heat storage agent is fixed to the fiber structure in a total amount of 1 to 30% by weight. 該蓄熱剤が、バインダーを介して、繊維表面に固着してなることを特徴とする請求項1から4のいずれかに記載の繊維構造物。The fiber structure according to any one of claims 1 to 4, wherein the heat storage agent is fixed to a fiber surface via a binder. 該バインダーが、シリコーン系樹脂、アクリル系樹脂、ウレタン系樹脂およびメラミン系樹脂から選ばれた少なくとも1種であることを特徴とする請求項1から5のいずれかに記載の繊維構造物。The fiber structure according to any one of claims 1 to 5, wherein the binder is at least one selected from a silicone resin, an acrylic resin, a urethane resin, and a melamine resin. 該蓄熱剤が、マイクロカプセルに内包されてなることを特徴とする請求項1から6のいずれかに記載の繊維構造物。The fibrous structure according to any one of claims 1 to 6, wherein the heat storage agent is encapsulated in microcapsules. 該マイクロカプセルの平均粒子径が1μm以上100μm以下であることを特徴とする請求項7記載の繊維構造物。The fiber structure according to claim 7, wherein the average particle size of the microcapsules is 1 µm or more and 100 µm or less. 該吸放湿性を有する素材が、天然繊維、合成繊維および改質合成繊維から選ばれた少なくとも1種であることを特徴とする請求項1から8のいずれかに記載の繊維構造物。The fibrous structure according to any one of claims 1 to 8, wherein the material having moisture absorption / release properties is at least one selected from natural fibers, synthetic fibers, and modified synthetic fibers. 該吸放湿性を有する素材が、ナイロン、木綿およびウールから選ばれた少なくとも1種であることを特徴とする請求項1から8のいずれかに記載の繊維構造物。The fibrous structure according to any one of claims 1 to 8, wherein the material having moisture absorption / release properties is at least one selected from nylon, cotton, and wool. 該吸放湿性を有する素材が、繊維表面に吸湿性ポリマーを固着させてなる素材であることを特徴とする請求項1から10のいずれかに記載の繊維構造物。The fibrous structure according to any one of claims 1 to 10, wherein the material having hygroscopicity is a material having a hygroscopic polymer fixed to a fiber surface. 請求項1から11のいずれかに記載の繊維構造物を用いてなることを特徴とする衣料。Clothing comprising the fibrous structure according to any one of claims 1 to 11.
JP2003123351A 2003-04-28 2003-04-28 Fibrous structural material Pending JP2004324023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123351A JP2004324023A (en) 2003-04-28 2003-04-28 Fibrous structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123351A JP2004324023A (en) 2003-04-28 2003-04-28 Fibrous structural material

Publications (1)

Publication Number Publication Date
JP2004324023A true JP2004324023A (en) 2004-11-18

Family

ID=33501271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123351A Pending JP2004324023A (en) 2003-04-28 2003-04-28 Fibrous structural material

Country Status (1)

Country Link
JP (1) JP2004324023A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321949A (en) * 2005-05-20 2006-11-30 Japan Energy Corp Paraffin-based latent heat-storing material composition
JP2006342450A (en) * 2005-06-08 2006-12-21 Teijin Fibers Ltd Fiber having thermal emittance changed by temperature, fiber structure and fiber product
JP2008007872A (en) * 2006-06-28 2008-01-17 Lion Corp Liquid finishing agent composition for textile product
JP2008285803A (en) * 2007-04-20 2008-11-27 Suminoe Textile Co Ltd Carpet with cool feeling
JP2009501032A (en) * 2005-07-14 2009-01-15 アウトラスト テクノロジーズ,インコーポレイティド Hygiene products
JP2009524542A (en) * 2006-01-26 2009-07-02 アウトラスト テクノロジーズ,インコーポレイティド Coated article formed from microcapsules having reactive functional groups
JP2012102445A (en) * 2010-11-15 2012-05-31 Toyobo Co Ltd Long and short-compounded spun yarn woven fabric and product
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9371400B2 (en) 2010-04-16 2016-06-21 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
JP2017504698A (en) * 2014-01-13 2017-02-09 ハネウェル・インターナショナル・インコーポレーテッド COMPOSITE PHASE CHANGE MATERIAL (PCM), METHOD FOR PRODUCING COMPOSITE PCM, AND CLOTHING ARTICLE CONTAINING COMPOSITE PCM
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP2020147721A (en) * 2019-03-15 2020-09-17 アキレス株式会社 Urethane foam having latent heat storage function
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container
JP2021050458A (en) * 2019-09-26 2021-04-01 東レ株式会社 Garment
JP2021066995A (en) * 2019-10-24 2021-04-30 アクトインテリア株式会社 Cold-texture fabric, textile product having the same, and production method of cold-texture fabric
JP2021066977A (en) * 2019-10-24 2021-04-30 アクトインテリア株式会社 Cold-texture fabric, textile product having the same, and production method of cold-texture fabric
FR3112560A1 (en) * 2020-07-17 2022-01-21 Faurecia Interieur Industrie Textile for a vehicle interior trim part, vehicle interior trim part and associated method of manufacture

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321949A (en) * 2005-05-20 2006-11-30 Japan Energy Corp Paraffin-based latent heat-storing material composition
JP2006342450A (en) * 2005-06-08 2006-12-21 Teijin Fibers Ltd Fiber having thermal emittance changed by temperature, fiber structure and fiber product
JP2009501032A (en) * 2005-07-14 2009-01-15 アウトラスト テクノロジーズ,インコーポレイティド Hygiene products
KR101402408B1 (en) * 2006-01-26 2014-06-03 아웃래스트 테크날러지스 인코포레이티드 Coated articles formed of microcapsules with reactive functional groups
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
JP2009524542A (en) * 2006-01-26 2009-07-02 アウトラスト テクノロジーズ,インコーポレイティド Coated article formed from microcapsules having reactive functional groups
JP4740801B2 (en) * 2006-06-28 2011-08-03 ライオン株式会社 Liquid finish composition for textile products
JP2008007872A (en) * 2006-06-28 2008-01-17 Lion Corp Liquid finishing agent composition for textile product
JP2008285803A (en) * 2007-04-20 2008-11-27 Suminoe Textile Co Ltd Carpet with cool feeling
US10377936B2 (en) 2008-07-16 2019-08-13 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9371400B2 (en) 2010-04-16 2016-06-21 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
JP2012102445A (en) * 2010-11-15 2012-05-31 Toyobo Co Ltd Long and short-compounded spun yarn woven fabric and product
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
JP2017504698A (en) * 2014-01-13 2017-02-09 ハネウェル・インターナショナル・インコーポレーテッド COMPOSITE PHASE CHANGE MATERIAL (PCM), METHOD FOR PRODUCING COMPOSITE PCM, AND CLOTHING ARTICLE CONTAINING COMPOSITE PCM
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US11411262B2 (en) 2015-02-04 2022-08-09 Latent Heat Solutions, Llc Systems, structures and materials for electrochemical device thermal management
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container
JP2020147721A (en) * 2019-03-15 2020-09-17 アキレス株式会社 Urethane foam having latent heat storage function
JP2021050458A (en) * 2019-09-26 2021-04-01 東レ株式会社 Garment
JP2021066995A (en) * 2019-10-24 2021-04-30 アクトインテリア株式会社 Cold-texture fabric, textile product having the same, and production method of cold-texture fabric
JP2021066977A (en) * 2019-10-24 2021-04-30 アクトインテリア株式会社 Cold-texture fabric, textile product having the same, and production method of cold-texture fabric
JP7505711B2 (en) 2019-10-24 2024-06-25 アクトインテリア株式会社 Cooling fabric, textile product having same, and method for manufacturing cooling fabric
FR3112560A1 (en) * 2020-07-17 2022-01-21 Faurecia Interieur Industrie Textile for a vehicle interior trim part, vehicle interior trim part and associated method of manufacture

Similar Documents

Publication Publication Date Title
JP2004324023A (en) Fibrous structural material
KR101292882B1 (en) Fiber highly cool to touch
JP2013511628A (en) Fibers and articles having a combination of fire resistance and enhanced reversible thermal properties
Zhang Heat-storage and thermo-regulated textiles and clothing
TW200404109A (en) Elastic fiber and its use
JP3976504B2 (en) Hygroscopic exothermic middle and hygroscopic exothermic heat retaining product
JP2004169240A (en) Fiber structure
JP4258259B2 (en) Fiber structure
JP3925178B2 (en) Windbreaker
JP2002180308A (en) Thermal insulating wear
JP3657253B2 (en) Moisture-absorbing / releasing fiber, method for producing the same, and fiber product using the same
JP2003147680A (en) Hygroscopic/water-absorbing heat-generation structure
JP2004300584A (en) Heat insulating article
TWM565705U (en) Cooling fabric
JP2004300598A (en) Fiber structure
JP2005307381A (en) Heat storage material for clothing material and microcapsule for clothing material
JPS609974A (en) Hygroscopic fiber structure
JPWO2005005699A1 (en) Fabric with temperature control function
EP4101324B1 (en) Tights
EP4101326B1 (en) Thermal management shirt
JP3786798B2 (en) clothes
JP2002146677A (en) High hygroscopic warmth-keeping cloth
JP2004124343A (en) Stocking excellent in comfortability
JP2003155609A (en) Emergency human body warming garment for prevention from death by drowning
JP2004316028A (en) Fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125