Nothing Special   »   [go: up one dir, main page]

JP2004352669A - Lactoferrin composition - Google Patents

Lactoferrin composition Download PDF

Info

Publication number
JP2004352669A
JP2004352669A JP2003153317A JP2003153317A JP2004352669A JP 2004352669 A JP2004352669 A JP 2004352669A JP 2003153317 A JP2003153317 A JP 2003153317A JP 2003153317 A JP2003153317 A JP 2003153317A JP 2004352669 A JP2004352669 A JP 2004352669A
Authority
JP
Japan
Prior art keywords
composition
lfs
sds
solution
page
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003153317A
Other languages
Japanese (ja)
Other versions
JP4592260B2 (en
Inventor
Noriko Ueda
典子 上田
Yuji Kakehi
裕司 筧
Miyako Tanaka
都 田中
Takeshi Kato
健 加藤
Kaoru Sato
薫 佐藤
Toshimitsu Yoshioka
俊満 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2003153317A priority Critical patent/JP4592260B2/en
Publication of JP2004352669A publication Critical patent/JP2004352669A/en
Application granted granted Critical
Publication of JP4592260B2 publication Critical patent/JP4592260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Fodder In General (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactoferrin composition having high heat resistance in a broad pH range even in high temperature heating treatment of ≥90°C and in retort sterilization treatment of ≥120°C and to provide a lactoferrin composition in which a raw materials, etc., usually used for various foods and beverages, feed and medicines without deactivating LEs. <P>SOLUTION: The lactoferrin composition comprises lactoferrins and a stabilizer such as soybeans polysaccharides or xanthan gum. Heat resistance of lactoferrins is remarkably improved by the constitution of the composition. The present invention enables heat treatment of the lactoferrin composition and foods and beverages, feed and medicines each comprising the composition at ≥90°C without deactivating lactoferrins. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラクトフェリン類と安定剤を含有させることで、高い耐熱性を有するラクトフェリン組成物に関する。
【0002】
【従来の技術】
ラクトフェリン(以下LFという)は、鉄吸収促進作用、抗炎症作用、過酸化脂質生成抑制作用、免疫系の制御作用等様々な生理機能を有していることが報告されている。また、これらの生理機能を有効に利用するためにLFを含む様々な飲食品や飼料、医薬が開発されている。しかし、LFは中性域において加熱に対して不安定であり、62.5℃、30分の加熱によりほぼ失活し、70℃、15分の加熱により完全に失活することが知られている(例えば、非特許文献1参照)。このことから、LFを酸性領域において加熱処理する方法が一般的に行われている。この方法を用いれば天然のLF は、加熱処理しても抗菌活性や鉄結合性等が殆ど変化しないことが報告されている(例えば、特許文献1参照)。また、イオン強度が低い状態でLF を加熱した場合に、その生理活性を維持することも知られている。しかし、実際には、イオン強度が低い状態でLF が利用されることは少ないため、イオン強度とpHを最適化して加熱安定性を付与する方法(例えば、特許文献2参照)や、LF に鉄を十分結合吸着させることで耐熱性を付与する方法(例えば、特許文献3参照)が開発された。
【0003】
しかし、これらの方法でも、90℃を超える殺菌、特にレトルト殺菌処理に対して、ラクトフェリン類(以下LF類という)の熱安定性は低く、下記に示す欠点を有していた。
(1)加熱耐性が十分でないため、90℃以上の加熱殺菌ではLF類が凝集・沈殿しやすい。
(2)特に、中性域(pH7程度)以上の環境下で加熱殺菌するとLF類は失活しやすい。
従ってLF類含有液を加熱処理する場合(特に90℃以上)には、LF類が失活する可能性があり、レトルト殺菌処理等の超高温加熱処理を採用できないのが実状であり、LF類を失活させずに飲食品や飼料、医薬に配合する場合には制限があった。
【0004】
【先行技術文献】
【特許文献1】
特許第2688098号公報
【特許文献2】
特開平4−8269号公報
【特許文献3】
特開平6−239900号公報
【非特許文献1】
ジェー・イー・フォードら(Ford, J. E. et al)、「ザ・ジャーナル・オブ・ペディアトリクス( The Journal of Pediatrics)、90巻、1号、 29−35ページ、 1977年
【0005】
【発明が解決しようとする課題】
本発明はLF類の持つ上記のような欠点を解決するべく、さらにLF類の熱安定化について鋭意検討を重ねた結果、LF類と大豆多糖類やキサンタンガム等の安定剤を含有させたラクトフェリン組成物(以下LF組成物という)にすると、LF類の耐熱性が格段に向上することを見出し、本発明を完成するに至った。すなわち、本発明は酸性から中性、アルカリ性の広いpH範囲で、90℃以上の高温加熱処理及び120℃以上のレトルト殺菌処理においても高い耐熱性を有するLF組成物を提供することを課題とする。また、本発明は、LF類を失活させずに、飲食品や飼料、医薬に通常用いられる原材料等を混合してなるLF組成物や、様々な飲食品や飼料、医薬へ配合するためのLF組成物を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明はLF類と安定剤を含有する高い耐熱性を有するLF組成物に関する。本発明においては、LF類を失活させることなく、LF組成物を90℃以上で加熱することが可能である。
【0007】
【発明の実施の形態】
本発明のLF組成物には、ウシ、山羊、羊、ヒト等の哺乳類の初乳、移行乳、常乳、末期乳、または、これらの乳の処理物である脱脂乳、乳清等からイオン交換クロマトグラフィー等により分離されたままのラクトフェリン、ラクトフェリンを塩酸、クエン酸等により脱鉄したアポラクトフェリン、ラクトフェリンを鉄、銅、亜鉛、マンガン、セレン等の金属で飽和した金属飽和ラクトフェリン(特許第2884045号公報、特許第3223958号公報)等を用いる。また、これらのLF類 の2つ以上を任意の割合で配合した混合物であってもよく、その他の物質との混合物であることを妨げない。
【0008】
本発明のLF組成物を構成する安定剤に特に制限はないが、次の性質を有する成分を主成分とする安定剤がより望ましい。
(1)大豆多糖類等のように分子量が大きく、被膜性のある安定剤。
(2)キサンタンガム等のようにグルコース主鎖にマンノースとグルクロン酸が結合しているような、直鎖に対して側鎖の割合が大きい安定剤。
(3)ショ糖のヒドロキシル基に脂肪酸が反応してできるショ糖脂肪酸エステル等のように疎水基と親水基を持ち、多分子層吸着性を有する安定剤。
これらの性質を有する安定剤は、加熱時のLF類の凝集・沈澱による失活を防ぎ、LF類の耐熱性を高める。
一方、本発明のLF組成物に好ましくない安定剤としては次の性質を有するものがあげられる。
(1)ジェランガムのように直鎖状の構造をなす安定剤又はグアガムのように直鎖に対して側鎖の割合が大きくない安定剤。
これらの安定剤を使用すると加熱時のLF類の耐熱性はそれほど向上しない。しかし、これらの安定剤を一部含む物はその限りでは無い。
【0009】
したがって、本発明でLF類と混合してLF組成物を構成する安定剤としては、大豆多糖類、キサンタンガム、ローカストビーンガム、カラギナン、タマリンドガム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、カゼインナトリウム、レシチン、ペクチン、カルボキシメチルセルロースが好ましく、これらの安定剤の少なくとも1種をLF類と混合してLF組成物を構成する。ここでいう安定剤とはLF類の加熱安定性を高めるために使用される。また、これらの安定剤の中には乳化剤としての機能等、その他様々な機能を有している場合もあるが、全く問題なく使用できる。
【0010】
また、本発明のLF組成物中のLF類と安定剤の含有量比に関しては、特に制限はないが、安定剤をLF類に対して0.5〜100(重量/重量)、好ましくは1〜40(重量/重量)含有していることが好ましい。
【0011】
本発明のLF類と安定剤を混合してなるLF組成物を調製する方法に特に制限はないが、例えば、溶液中で調製するには、LF類と安定剤を脱イオン水にそれぞれ懸濁あるいは溶解し、撹拌混合した後、飲食品や飼料、医薬の形態に調製して使用する。撹拌混合の条件としては、LF類と安定剤が十分に混合されればよく、必要に応じて40〜80℃程度に加熱しながら、ウルトラディスパーサー等を使用して撹拌混合することも可能である。また、このLF組成物の溶液は、飲食品、飼料及び医薬に使用しやすいように、必要に応じて、UF膜等で濃縮したり、凍結乾燥等により乾燥して使用することができる。
【0012】
本発明のLF組成物は、酸性域から、中性、アルカリ性域の幅広い範囲で加熱安定性が高く、飲食品、飼料及び医薬の製造に通常使用される高温加熱処理やレトルト殺菌処理が可能であり、粉末状であっても乾熱殺菌も可能である。従って、本発明のLF組成物からなる、LF類を含有する液状、ゲル状、粉末状、顆粒状等様々な形態の飲食品や飼料、医薬を調製することができる。
【0013】
本発明のLF組成物においては、塩酸やリン酸等の無機酸およびクエン酸や酢酸等の有機酸、あるいは苛性ソーダや重曹等のアルカリ剤を使用し、pHを調整する。また、LF組成物を取り巻く環境が当該LF組成物の加熱安定性を維持するpHであれば、特にpHを調整することなく高温加熱処理やレトルト殺菌処理が可能であるが、LF組成物からなる飲食品や飼料、医薬が求められる品質に応じて、加熱殺菌条件とpHを選択することができる。
【0014】
本発明のLF組成物からなる飲食品や飼料、医薬とは、このLF類と安定剤のみを含むLF組成物からなる飲食品、飼料及び、医薬や、LF類と安定剤の他に糖類や脂質、フレーバー等、他の飲食品、飼料及び医薬に通常含まれる原材料等を含有するLF組成物からなる飲食品、飼料及び医薬である。
【0015】
LF類の熱安定性は低く、90℃を超える殺菌、特にレトルト殺菌処理をするとLF類は凝集・沈殿し、また、中性域(pH7程度)以上の環境下で加熱殺菌するとLF類は失活しやすいという従来の欠点を、本発明のLF組成物を使用することにより解消することができるという予測出来ない程の格別の効果があった。
以下に、実施例及び試験例を示して本発明を詳細に説明するが、これらは単に本発明の実施態様を例示するのみであり、本発明はこれらによって何ら限定されるものではない。
【0016】
【試験例1】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液)。安定剤として大豆多糖類0.4重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。比較として安定剤を含まない鉄飽和ラクトフェリンのみの溶液を上記と同様の方法で、pHを調整して110℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0017】
この試験の結果を表1に示した。表1から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、120℃で10分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。一方、鉄飽和ラクトフェリンのみを含む溶液は、pH 2〜9においてLF類のバンドを全く確認することができなかった。
【0018】
【表1】

Figure 2004352669
【0019】
【試験例2】
LFを16mg%濃度で脱イオン水に溶解した(A液)。安定剤としてキサンタンガムを0.08%(重量%)を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、9500rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0020】
この試験の結果を表2に示した。表2から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、130℃で10分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0021】
【表2】
Figure 2004352669
【0022】
【試験例3】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてショ糖脂肪酸エステル0.2重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0023】
この試験の結果を表3に示した。表3から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、120℃で8分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0024】
【表3】
Figure 2004352669
【0025】
【試験例4】
塩酸で脱鉄したアポラクトフェリンを12mg%濃度で脱イオン水に溶解した(A液)。安定剤としてローカストビーンガム0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで4分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0026】
この試験の結果、LF組成物を含有する溶液は、pH3〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜8では、120℃で7分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0027】
【試験例5】
鉄飽和ラクトフェリンを18mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカラギナン0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0028】
この試験の結果、LF組成物を含有する溶液は、pH4〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH4〜8では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0029】
【試験例6】
LFを20mg%濃度で脱イオン水に溶解した(A液)。安定剤としてタマリンドガム0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0030】
この試験の結果、LF組成物を含有する溶液は、pH4〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH4〜7では、120℃で5分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0031】
【試験例7】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてグリセリン脂肪酸エステル0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いて〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0032】
この試験の結果、LF組成物を含有する溶液は、pH3〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜7では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0033】
【試験例8】
鉄飽和ラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカゼインナトリウム 0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、9500rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0034】
この試験の結果、LF組成物を含有する溶液は、pH5〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH5〜9では、120℃で5分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0035】
【試験例9】
LFを16mg%濃度で脱イオン水に溶解した(A液)。安定剤としてレシチン0.25重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いて〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0036】
この試験の結果、LF組成物を含有する溶液は、pH3〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜8では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0037】
【試験例10】
鉄飽和ラクトフェリンを15mg%濃度で脱イオン水に溶解した(A液)。安定剤としてペクチン0.6重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0038】
この試験の結果、LF組成物を含有する溶液は、pH3〜5において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜5では、120℃で7分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0039】
【試験例11】
LFを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカルボキシメチルセルロース0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0040】
この試験の結果、LF組成物を含有する溶液は、pH3〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜7では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0041】
【試験例12】
試験例1で調製した試料を用いて、その抗原性を競合ELISA法により測定した。未加熱のLF組成物の抗体との反応性に対する加熱処理したLF組成物の抗体との反応性を百分率(%)で算出した。
【0042】
その結果を表4に示した。表4から、未加熱のLF組成物の抗体との反応性に対する加熱処理したLF組成物の抗体との反応性は、130℃までであれば50%以上を維持していることが判明した。従って、本発明におけるLF組成物はpH2〜9の範囲であれば、130℃という超高温加熱処理に対して安定である。
【0043】
【表4】
Figure 2004352669
【0044】
【試験例13】
試験例2と同様の方法で調製したLF組成物(LF8mg%、キサンタンガム0.04重量%)を含有する溶液をpH 2〜9に調整し、150mlずつレトルトパウチに充填し、密封した。対照としてLFのみを含む溶液をpH2〜9に調整したものを150mlずつレトルトパウチに充填し、密封した。これらの溶液を レトルト殺菌機(第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)により120℃、4分間加熱した。加熱後のそれぞれの試料を25℃で保存して、経時的に凝集・沈殿の有無を目視により観察し、また、ポリアクリルアミドゲル電気泳動(SDS−PAGE)によりLF類のバンドパターンの解析を行った。
その結果、対照としたLFのみを含む溶液をpH2〜9に調整したものは、1日目で凝集・沈澱が確認できたが、LF組成物を含有する溶液をpH 2〜9に調整したものは、保存後1ヶ月経っても凝集・沈澱は認められなかった。また、SDS−PAGEにてLF類のバンドパターンを解析したところ、LF組成物を含む溶液をpH 2〜9に調整したものは保存開始時から保存後1ヶ月においてもLF類のバンドが確認でき、他の変化は認められなかった。この試験結果により、本発明によるLF組成物はレトルト殺菌処理の場合に大変有効であることが判明した。
【0045】
【試験例14】
試験例2と同様の方法で調製したLF組成物200g(LF8mg%、キサンタンガム0.04重量%)に還元脱脂粉乳溶液(脱脂粉乳3重量%)800gを混合し、LF組成物を含有する溶液(▲1▼)を調製した。対照としてLF溶液(LF8mg%溶液)200gに還元脱脂粉乳溶液(脱脂粉乳3重量%)800gを混合した溶液(▲2▼)、及び還元脱脂粉乳溶液(脱脂粉乳3重量%)1000gのみの溶液(▲3▼)を調製した。各溶液を150mlずつレトルトパウチに充填し、密封した。これらの溶液をレトルト殺菌機 (第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)により120℃、20分加熱した。その結果、溶液▲1▼、▲3▼においては凝集・沈殿は認められず、風味も良好であったが、▲2▼の溶液では凝集・沈殿が認められた。この試験結果により、本発明によるLF組成物はレトルト殺菌処理の場合に大変有効であることが判明した。
【0046】
【比較例1】
安定剤として大豆多糖類、キサンタンガム、ジェランガム及びグアガムを選択し、試験例1と同様の方法でLF組成物を調製した。なお、各安定剤は大豆多糖類0.4重量%、キサンタンガム0.04重量%、ジェランガム0.05重量%及びグアガム0.05重量%にて試験を行った。これらのLF組成物をpH6.5に調整し、120℃で4分間加熱した。加熱された各試料の凝集・沈澱状態を目視により判定し、また、ポリアクリルアミドゲル電気泳動(SDS−PAGE)によりLF類のバンドパターンの解析を行った。
【0047】
試験結果を表5に示した。加熱前のLF組成物はいずれも凝集・沈殿せず、透明であり、LF類のバンドも確認できた。加熱後は大豆多糖類及びキサンタンガム含有LF組成物は透明であり、また、LF類のバンドも確認できたが、ジェランガム及びグアガム含有LF組成物は、いずれも半透明か、あるいは凝集・沈殿し、SDS−PAGEにてLF類のバンドも確認できなかった。
【0048】
【表5】
Figure 2004352669
【0049】
【実施例1】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液、300g)。安定剤として大豆多糖類0.8重量%を脱イオン水に溶解した(B液、300g)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、9500rpmで3分間撹拌混合して本発明のLF組成物600gを調製した。
【0050】
【実施例2】
LFを16mg%濃度で脱イオン水に溶解した(A液、10kg)。安定剤としてキサンタンガムを0.16重量%で脱イオン水に溶解した(B液、10kg)。A液とB液を混合し、TKホモミクサー(MARK II 160型、特殊機化工業製)にて、3600rpmで30分間撹拌混合し、さらに分画分子量10kDaのUF膜にて濃縮して、本発明のLF組成物10kgを調製した。
【0051】
【実施例3】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液、1000kg)。安定剤としてショ糖脂肪酸エステル0.4重量%を脱イオン水に溶解した(B液、1000kg)。A液とB液を混合し、TKホモミクサー(MARK II 2500型、特殊機化工業製)にて、40℃、3600rpmで40分間撹拌混合し、さらに凍結乾燥して本発明のLF組成物3.9kgを調製した。
【0052】
【実施例4】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液、500g)。安定剤として大豆多糖類0.4重量%を脱イオン水に溶解した(B液、500g)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、9500rpmで3分間撹拌混合した。その後、上記の溶液に、ソルビトール80g、酸味料4g、香料4g、ペクチン10g、乳清タンパク質濃縮物10g、乳酸カルシウム2g、水890gを添加して、撹拌混合し、本発明のLF組成物を調製した。200mlのチアパックに充填し、85℃、20分間殺菌後、密栓し、本発明のLF組成物からなるゲル状食品10袋を調製した。調製したゲル状食品は、すべて沈殿等は認められず、風味に異常は感じられなかった。
【0053】
【実施例5】
鉄飽和ラクトフェリンを100mg%濃度で脱イオン水に溶解した(A液、200g)。安定剤として大豆多糖類4重量%を脱イオン水に溶解した(B液、200g)。マルチトール100g、還元水飴20g、酸味料2g、香料2g、前記A液200g、前記B液200g、及び水476gを混合し、本発明のLF組成物を調製した。このLF組成物を50mlのガラス瓶に充填し、90℃、15分間殺菌後、密栓し、本発明LF組成物を含有する飲料20本を調製した。調製した飲料は、すべて沈殿は認められず、風味に異常は感じられなかった。
【0054】
【実施例6】
実施例2で調製したLF組成物0.2kg(ラクトフェリン8mg%、キサンタンガム0.08重量%)に大豆粕12kg、脱脂粉乳14kg、大豆油4kg、コーン油2kg、パーム油28kg、トウモロコシ澱粉15kg、小麦粉9kg、ふすま2kg、ビタミン混合物9kg、セルロース2.8kg、ミネラル混合物2kgを配合し、120℃、4分間殺菌して、イヌ飼育用飼料100kgを調製した。
【0055】
【実施例7】
実施例3で調製したLF組成物3kg(アポラクトフェリン5mg%、ショ糖脂肪酸エステル0.2重量%)に、カゼイン5kg、大豆タンパク質5kg、魚油1kg、シソ油3kg、デキストリン19kg、ミネラル混合物6kg、ビタミン混合物1.95kg、乳化剤2kg、安定剤4kg、香料0.05kgを配合し、200mlのレトルトパウチに充填し、レトルト殺菌機 (第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)で121℃、20分間殺菌して、経腸栄養剤50kgを調製した。
【0056】
【発明の効果】
本発明のLF組成物は、酸性域から中性、アルカリ性域の幅広い範囲で加熱安定性が高く、飲食品、飼料及び医薬の製造に通常使用される高温加熱処理やレトルト殺菌処理が可能であり、粉末状であっても乾熱殺菌も可能である。従って、本発明のLF組成物からなるLF類を含有する液状、ゲル状、粉末状、顆粒状等様々な形態の飲食品や飼料、医薬を調製することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lactoferrin composition having high heat resistance by containing a lactoferrin and a stabilizer.
[0002]
[Prior art]
It has been reported that lactoferrin (hereinafter referred to as LF) has various physiological functions such as an iron absorption promoting action, an anti-inflammatory action, a lipid peroxide production suppressing action, and an immune system controlling action. Further, in order to effectively use these physiological functions, various foods and drinks, feeds, and medicines including LF have been developed. However, it is known that LF is unstable to heating in a neutral region, is almost inactivated by heating at 62.5 ° C. for 30 minutes, and completely inactivated by heating at 70 ° C. for 15 minutes. (For example, see Non-Patent Document 1). For this reason, a method of heat-treating LF in an acidic region is generally performed. It has been reported that when this method is used, natural LF 2 hardly changes in antibacterial activity, iron binding property, and the like even by heat treatment (for example, see Patent Document 1). It is also known that when LF is heated with a low ionic strength, its physiological activity is maintained. However, in practice, LF is rarely used in a state where the ionic strength is low. Therefore, a method of optimizing the ionic strength and pH to impart heating stability (for example, see Patent Literature 2) or using LF with iron A method of imparting heat resistance by sufficiently bonding and adsorbing (for example, see Patent Document 3) has been developed.
[0003]
However, even with these methods, the heat stability of lactoferrins (hereinafter referred to as LFs) is low with respect to sterilization exceeding 90 ° C., particularly retort sterilization, and has the following disadvantages.
(1) Due to insufficient heat resistance, LFs are liable to aggregate and precipitate in heat sterilization at 90 ° C. or higher.
(2) In particular, LFs are liable to be inactivated when sterilized by heating under an environment of a neutral region (about pH 7) or higher.
Therefore, when the LFs-containing liquid is subjected to heat treatment (especially at 90 ° C. or higher), the LFs may be deactivated, and in fact, it is not possible to employ an ultra-high temperature heat treatment such as a retort sterilization treatment. There is a limit in the case where it is incorporated into foods and drinks, feeds, and medicines without inactivating it.
[0004]
[Prior art documents]
[Patent Document 1]
Japanese Patent No. 2688098
[Patent Document 2]
JP-A-4-8269
[Patent Document 3]
JP-A-6-239900
[Non-patent document 1]
JE Ford et al. (Ford, JE et al.), "The Journal of Pediatrics, 90, No. 1, pp. 29-35, 1977.
[0005]
[Problems to be solved by the invention]
In order to solve the above-mentioned drawbacks of LFs, the present invention has conducted intensive studies on the thermal stabilization of LFs. As a result, a lactoferrin composition containing LFs and stabilizers such as soybean polysaccharides and xanthan gum was obtained. It has been found that the heat resistance of LFs is remarkably improved when the product (hereinafter referred to as LF composition) is used, and the present invention has been completed. That is, an object of the present invention is to provide an LF composition having a high heat resistance even in a high-temperature heat treatment at 90 ° C. or more and a retort sterilization treatment at 120 ° C. or more in a wide pH range from acidic to neutral and alkaline. . Further, the present invention provides a LF composition obtained by mixing raw materials and the like usually used in foods and drinks, feeds, and medicines, and various foods and drinks, feeds, and pharmaceuticals without inactivating LFs. It is an object to provide an LF composition.
[0006]
[Means for Solving the Problems]
TECHNICAL FIELD The present invention relates to an LF composition having high heat resistance containing LFs and a stabilizer. In the present invention, the LF composition can be heated at 90 ° C. or higher without deactivating the LFs.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The LF composition of the present invention includes colostrum, transitional milk, normal milk, end-stage milk of mammals such as cows, goats, sheep, and humans, or ions obtained from skim milk, whey, etc., which are processed products of these milks. Lactoferrin as separated by exchange chromatography or the like, apolactoferrin in which lactoferrin has been deferred with hydrochloric acid, citric acid, or the like; And Japanese Patent No. 3223958). In addition, a mixture of two or more of these LFs in an arbitrary ratio may be used, and it does not prevent a mixture with other substances.
[0008]
There is no particular limitation on the stabilizer constituting the LF composition of the present invention, but a stabilizer containing components having the following properties as main components is more preferable.
(1) A stabilizer having a large molecular weight and a coating property such as soybean polysaccharide.
(2) Stabilizers such as xanthan gum in which mannose and glucuronic acid are bonded to the glucose main chain and have a large ratio of side chains to straight chains.
(3) A stabilizer having a hydrophobic group and a hydrophilic group, such as a sucrose fatty acid ester formed by the reaction of a fatty acid with a hydroxyl group of sucrose, and having a multi-layer adsorption property.
Stabilizers having these properties prevent LFs from deactivating due to aggregation and precipitation during heating, and enhance the heat resistance of LFs.
On the other hand, stabilizers which are not preferred for the LF composition of the present invention include those having the following properties.
(1) A stabilizer having a linear structure, such as gellan gum, or a stabilizer, such as guar gum, having a small proportion of side chains relative to the straight chain.
When these stabilizers are used, the heat resistance of LFs during heating is not so improved. However, those containing some of these stabilizers are not limited thereto.
[0009]
Therefore, in the present invention, stabilizers which are mixed with LFs to form an LF composition include soybean polysaccharides, xanthan gum, locust bean gum, carrageenan, tamarind gum, sucrose fatty acid ester, glycerin fatty acid ester, sodium caseinate, lecithin , Pectin and carboxymethylcellulose are preferred, and at least one of these stabilizers is mixed with LFs to form an LF composition. The term "stabilizer" used herein is used to enhance the heat stability of LFs. Some of these stabilizers may have various other functions such as a function as an emulsifier, but they can be used without any problem.
[0010]
Further, the content ratio of LFs to the stabilizer in the LF composition of the present invention is not particularly limited, but the stabilizer is used in an amount of 0.5 to 100 (weight / weight), preferably 1 to LFs. It is preferable that the content is in the range of 40 to 40 (weight / weight).
[0011]
There is no particular limitation on the method of preparing an LF composition obtained by mixing the LFs and the stabilizer of the present invention. For example, to prepare the LF composition in a solution, the LFs and the stabilizer are each suspended in deionized water. Alternatively, after dissolving and stirring and mixing, the mixture is prepared and used in the form of food and drink, feed, and medicine. The stirring and mixing conditions may be such that the LFs and the stabilizer are sufficiently mixed. If necessary, the mixture can be stirred and mixed using an ultra disperser while heating to about 40 to 80 ° C. is there. The LF composition solution can be concentrated by a UF membrane or the like, or dried by freeze-drying or the like, if necessary, so that it can be easily used for food and drink, feed and medicine.
[0012]
The LF composition of the present invention has high heat stability in a wide range from an acidic range to a neutral range and an alkaline range, and can be subjected to a high-temperature heat treatment and a retort sterilization treatment usually used for the production of foods and drinks, feeds and medicaments. Yes, dry heat sterilization is possible even in powder form. Therefore, it is possible to prepare various forms of foods and drinks, feeds, and medicaments, including liquids, gels, powders, and granules, comprising the LF composition of the present invention.
[0013]
In the LF composition of the present invention, the pH is adjusted using an inorganic acid such as hydrochloric acid or phosphoric acid, an organic acid such as citric acid or acetic acid, or an alkali agent such as caustic soda or sodium bicarbonate. In addition, if the environment surrounding the LF composition is a pH that maintains the heating stability of the LF composition, high-temperature heating and retort sterilization can be performed without adjusting the pH, but the LF composition is used. Heat sterilization conditions and pH can be selected according to the quality required for food and drink, feed, and medicine.
[0014]
Foods and drinks, feeds and medicines comprising the LF composition of the present invention include foods and drinks, feeds and medicines comprising the LF composition containing only LFs and stabilizers, sugars and LFs and stabilizers in addition to LFs and stabilizers. It is a food and drink, feed and medicine comprising an LF composition containing a raw material and the like usually contained in other food and drink, feed and medicine such as lipids and flavors.
[0015]
The heat stability of LFs is low, and LFs aggregate and precipitate when sterilized at over 90 ° C, especially when subjected to retort sterilization, and lost when heat sterilized in an environment above a neutral region (about pH 7). The conventional drawback that it is easy to use has an unpredictable and remarkable effect that can be solved by using the LF composition of the present invention.
Hereinafter, the present invention will be described in detail with reference to Examples and Test Examples, but these are merely illustrative of embodiments of the present invention, and the present invention is not limited thereto.
[0016]
[Test Example 1]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (Solution A). 0.4% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed, and stirred and mixed at 50 ° C and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes. As a comparison, a solution containing only iron-saturated lactoferrin containing no stabilizer was adjusted in pH and heated at 110 ° C. for 4 minutes in the same manner as above.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0017]
Table 1 shows the results of this test. As can be seen from Table 1, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 10 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment. On the other hand, in the solution containing only iron-saturated lactoferrin, no LF bands could be confirmed at pH 2 to 9.
[0018]
[Table 1]
Figure 2004352669
[0019]
[Test Example 2]
LF was dissolved in deionized water at a concentration of 16 mg% (Solution A). As a stabilizer, 0.08% (% by weight) of xanthan gum was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 50 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes. The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0020]
The results of this test are shown in Table 2. As can be seen from Table 2, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Further, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 130 ° C. for 10 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0021]
[Table 2]
Figure 2004352669
[0022]
[Test Example 3]
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A). 0.2% by weight of a sucrose fatty acid ester as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0023]
The results of this test are shown in Table 3. As can be seen from Table 3, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Further, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 8 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0024]
[Table 3]
Figure 2004352669
[0025]
[Test Example 4]
Apolactoferrin deironated with hydrochloric acid was dissolved in deionized water at a concentration of 12 mg% (solution A). 0.15% by weight of locust bean gum as a stabilizer was dissolved in deionized water (Solution B). The liquid A and the liquid B were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 4 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0026]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 3 to 8, no aggregation / precipitation was observed even after heating at 120 ° C. for 7 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0027]
[Test Example 5]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 18 mg% (Solution A). 0.15% by weight of carrageenan was dissolved in deionized water as a stabilizer (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0028]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 4 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 4 to 8, no aggregation / precipitation occurred even after heating at 120 ° C. for 6 minutes, and a band of LFs could be confirmed. . From the test results, it has been clarified that the LF composition can be sufficiently subjected to a retort sterilization treatment.
[0029]
[Test Example 6]
LF was dissolved in deionized water at a concentration of 20 mg% (Solution A). 0.15% by weight of tamarind gum as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules at a rate of 2 ml and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0030]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 4 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 4 to 7, no aggregation / precipitation occurred even after heating at 120 ° C. for 5 minutes, and a band of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0031]
[Test Example 7]
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A). 0.15% by weight of a glycerin fatty acid ester as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples of 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules at a rate of 2 ml and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0032]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 3 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 3 to 7, aggregation and precipitation did not occur even after heating at 120 ° C. for 6 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0033]
[Test Example 8]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 10 mg% (Solution A). 0.15% by weight of sodium caseinate as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0034]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 5 to 9, and a band of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 5 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 5 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0035]
[Test Example 9]
LF was dissolved in deionized water at a concentration of 16 mg% (Solution A). 0.25% by weight of lecithin as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples of 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0036]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended to check whether LFs could be confirmed, at pH 3 to 8, no aggregation / precipitation was observed even after heating at 120 ° C. for 6 minutes, and a band of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0037]
[Test Example 10]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 15 mg% (solution A). 0.6% by weight of pectin was dissolved in deionized water as a stabilizer (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0038]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 5, and a band of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition had extremely high heat stability on the acidic side. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 3 to 5, no aggregation / precipitation was observed even after heating at 120 ° C. for 7 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0039]
[Test Example 11]
LF was dissolved in deionized water at a concentration of 10 mg% (Solution A). 0.15% by weight of carboxymethyl cellulose as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0040]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 3 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 3 to 7, aggregation and precipitation did not occur even after heating at 120 ° C. for 6 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0041]
[Test Example 12]
The antigenicity of the sample prepared in Test Example 1 was measured by competitive ELISA. The reactivity of the unheated LF composition with the antibody relative to the reactivity of the untreated LF composition with the antibody was calculated as a percentage (%).
[0042]
Table 4 shows the results. From Table 4, it was found that the reactivity of the unheated LF composition with the antibody relative to the reactivity of the unheated LF composition with the antibody maintained 50% or more up to 130 ° C. Therefore, the LF composition of the present invention is stable to an ultra-high temperature heat treatment of 130 ° C. when the pH is in the range of 2 to 9.
[0043]
[Table 4]
Figure 2004352669
[0044]
[Test Example 13]
A solution containing the LF composition (LF 8 mg%, xanthan gum 0.04 wt%) prepared in the same manner as in Test Example 2 was adjusted to pH 2 to 9, and 150 ml each was filled in a retort pouch and sealed. As a control, a solution containing only LF adjusted to pH 2 to 9 was filled into a retort pouch by 150 ml and sealed. These solutions were heated at 120 ° C. for 4 minutes by a retort sterilizer (first-class pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Works). Each sample after heating was stored at 25 ° C., and the presence or absence of aggregation / precipitation was visually observed with time, and the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE). Was.
As a result, when the solution containing only LF as a control was adjusted to pH 2 to 9, aggregation and precipitation were confirmed on the first day, but the solution containing the LF composition was adjusted to pH 2 to 9. No aggregation / precipitation was observed even one month after storage. Further, when the band pattern of LFs was analyzed by SDS-PAGE, the solution containing the LF composition adjusted to pH 2 to 9 showed a band of LFs even one month after the start of storage and one month after storage. No other changes were noted. The test results showed that the LF composition according to the present invention was very effective in the case of retort sterilization.
[0045]
[Test Example 14]
200 g of the LF composition (LF 8 mg%, xanthan gum 0.04 wt%) prepared in the same manner as in Test Example 2 was mixed with 800 g of reduced skim milk solution (3 wt% of skim milk powder), and a solution containing the LF composition ( (1)) was prepared. As a control, a solution (200) mixed with 200 g of an LF solution (8 mg% LF solution) and 800 g of a reduced skim milk solution (3% by weight of skim milk), and a solution containing only 1000 g of a reduced skim milk solution (3% by weight of skim milk) ( (3)) was prepared. 150 ml of each solution was filled in a retort pouch and sealed. These solutions were heated at 120 ° C. for 20 minutes using a retort sterilizer (Type 1 pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Seisakusho). As a result, in the solutions (1) and (3), no aggregation / precipitation was observed and the flavor was good, but in the solution (2), aggregation / precipitation was observed. The test results showed that the LF composition according to the present invention was very effective in the case of retort sterilization.
[0046]
[Comparative Example 1]
Soy polysaccharide, xanthan gum, gellan gum and guar gum were selected as stabilizers, and an LF composition was prepared in the same manner as in Test Example 1. Each stabilizer was tested with 0.4% by weight of soybean polysaccharide, 0.04% by weight of xanthan gum, 0.05% by weight of gellan gum and 0.05% by weight of guar gum. These LF compositions were adjusted to pH 6.5 and heated at 120 ° C. for 4 minutes. The aggregated / precipitated state of each heated sample was visually determined, and the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE).
[0047]
The test results are shown in Table 5. All of the LF compositions before heating did not aggregate or precipitate, were transparent, and bands of LFs could be confirmed. After heating, the soy polysaccharide and xanthan gum-containing LF composition were transparent, and bands of LFs were also confirmed, but the gellan gum and guar gum-containing LF composition were all translucent or aggregated and precipitated, No LF bands could be confirmed by SDS-PAGE.
[0048]
[Table 5]
Figure 2004352669
[0049]
Embodiment 1
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (solution A, 300 g). 0.8% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (solution B, 300 g). The liquid A and the liquid B were mixed and stirred and mixed with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) at 9500 rpm for 3 minutes to prepare 600 g of the LF composition of the present invention.
[0050]
Embodiment 2
LF was dissolved in deionized water at a concentration of 16 mg% (solution A, 10 kg). Xanthan gum as a stabilizer was dissolved in deionized water at 0.16% by weight (solution B, 10 kg). Solution A and solution B are mixed, stirred and mixed at 3600 rpm for 30 minutes with a TK homomixer (MARK II 160, manufactured by Tokushu Kika Kogyo Co.), and further concentrated on a UF membrane having a molecular weight cutoff of 10 kDa to obtain the present invention. 10 kg of LF composition was prepared.
[0051]
Embodiment 3
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A, 1000 kg). 0.4% by weight of a sucrose fatty acid ester was dissolved in deionized water as a stabilizer (solution B, 1000 kg). Solution A and solution B are mixed, stirred and mixed with a TK homomixer (MARK II 2500, manufactured by Tokushu Kika Kogyo) at 40 ° C. and 3600 rpm for 40 minutes, and further freeze-dried to obtain the LF composition of the present invention. 9 kg were prepared.
[0052]
Embodiment 4
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (solution A, 500 g). 0.4% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (Solution B, 500 g). The solution A and the solution B were mixed and stirred and mixed at 40 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan). Thereafter, 80 g of sorbitol, 4 g of acidulant, 4 g of flavoring agent, 10 g of pectin, 10 g of whey protein concentrate, 2 g of calcium lactate, and 890 g of water are added to the above solution, followed by stirring and mixing to prepare the LF composition of the present invention. did. The mixture was filled in a 200 ml chia pack, sterilized at 85 ° C. for 20 minutes, sealed and sealed to prepare 10 bags of gel food comprising the LF composition of the present invention. In the prepared gel foods, no precipitate or the like was observed, and no abnormal flavor was felt.
[0053]
Embodiment 5
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 100 mg% (solution A, 200 g). As a stabilizer, 4% by weight of soybean polysaccharide was dissolved in deionized water (solution B, 200 g). 100 g of maltitol, 20 g of reduced starch syrup, 2 g of acidulant, 2 g of flavor, 200 g of solution A, 200 g of solution B, and 476 g of water were mixed to prepare an LF composition of the present invention. This LF composition was filled in a 50 ml glass bottle, sterilized at 90 ° C. for 15 minutes, sealed and sealed to prepare 20 drinks containing the LF composition of the present invention. No precipitation was observed in any of the prepared beverages, and no abnormal flavor was felt.
[0054]
Embodiment 6
0.2 kg of LF composition prepared in Example 2 (lactoferrin 8 mg%, xanthan gum 0.08 wt%), 12 kg of soybean meal, 14 kg of skim milk powder, 4 kg of soybean oil, 2 kg of corn oil, 28 kg of palm oil, 15 kg of corn starch, 15 kg of flour 9 kg, 2 kg of bran, 9 kg of a vitamin mixture, 2.8 kg of cellulose, and 2 kg of a mineral mixture were blended and sterilized at 120 ° C. for 4 minutes to prepare 100 kg of a dog breeding feed.
[0055]
Embodiment 7
To 3 kg of the LF composition prepared in Example 3 (5 mg% of apolactoferrin, 0.2% by weight of sucrose fatty acid ester), 5 kg of casein, 5 kg of soybean protein, 1 kg of fish oil, 3 kg of perilla oil, 19 kg of dextrin, 6 kg of mineral mixture, vitamin 1.95 kg of the mixture, 2 kg of emulsifier, 4 kg of stabilizer, and 0.05 kg of fragrance were blended, filled in a 200 ml retort pouch, and then charged with a retort sterilizer (Type 1 pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Seisakusho). The solution was sterilized at 121 ° C. for 20 minutes to prepare 50 kg of an enteral nutrition.
[0056]
【The invention's effect】
The LF composition of the present invention has a high heat stability in a wide range from an acidic region to a neutral region and an alkaline region, and can be subjected to a high-temperature heat treatment and a retort sterilization treatment usually used for the production of foods and drinks, feeds and medicaments. Dry heat sterilization is possible even in powder form. Therefore, it is possible to prepare various forms of foods and drinks, feeds, and medicaments, such as liquid, gel, powder, and granules, containing LFs comprising the LF composition of the present invention.

Claims (5)

ラクトフェリン類と安定剤からなる加熱安定性のあるラクトフェリン組成物。A heat-stable lactoferrin composition comprising a lactoferrin and a stabilizer. ラクトフェリン類がアポラクトフェリン、ラクトフェリン、金属飽和ラクトフェリンの少なくとも1種である請求項1記載の組成物。The composition according to claim 1, wherein the lactoferrin is at least one of apolactoferrin, lactoferrin, and metal-saturated lactoferrin. 安定剤が、大豆多糖類、キサンタンガム、ローカストビーンガム、カラギナン、タマリンドガム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、カゼインナトリウム、レシチン、ペクチン、カルボキシメチルセルロースの少なくとも1種である請求項1乃至2記載の組成物。3. The stabilizer according to claim 1, wherein the stabilizer is at least one of soybean polysaccharide, xanthan gum, locust bean gum, carrageenan, tamarind gum, sucrose fatty acid ester, glycerin fatty acid ester, sodium caseinate, lecithin, pectin, and carboxymethyl cellulose. Composition. 飲食品や飼料、医薬に通常用いられる原材料等を混合してなる請求項1〜3のいずれかに記載の組成物The composition according to any one of claims 1 to 3, which is obtained by mixing raw materials and the like usually used for food and drink, feed, and medicine. 請求項1〜4のいずれかに記載の組成物を配合した飲食品、飼料及び医薬。A food and drink, a feed, and a medicine containing the composition according to any one of claims 1 to 4.
JP2003153317A 2003-05-29 2003-05-29 Lactoferrin composition Expired - Fee Related JP4592260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153317A JP4592260B2 (en) 2003-05-29 2003-05-29 Lactoferrin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153317A JP4592260B2 (en) 2003-05-29 2003-05-29 Lactoferrin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010047608A Division JP2010180219A (en) 2010-03-04 2010-03-04 Lactoferrin composition

Publications (2)

Publication Number Publication Date
JP2004352669A true JP2004352669A (en) 2004-12-16
JP4592260B2 JP4592260B2 (en) 2010-12-01

Family

ID=34048306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153317A Expired - Fee Related JP4592260B2 (en) 2003-05-29 2003-05-29 Lactoferrin composition

Country Status (1)

Country Link
JP (1) JP4592260B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016595A1 (en) * 2004-08-10 2006-02-16 Nrl Pharma, Inc. Lactoferrin complex and method of producing the same
WO2006082824A1 (en) * 2005-02-03 2006-08-10 Nrl Pharma, Inc. Matrix-type enteric coated sustained release composition
WO2009122719A1 (en) 2008-03-31 2009-10-08 森永乳業株式会社 Substance and composition both capable of imparting heat resistance
EP2121002A1 (en) * 2006-12-22 2009-11-25 Fontera Co-Operative Group Limited Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer
WO2012161112A1 (en) * 2011-05-20 2012-11-29 学校法人慶應義塾 Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein
JP2012240970A (en) * 2011-05-20 2012-12-10 Keio Gijuku Novel metalloprotein and process for producing the same
WO2013024663A1 (en) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 Composition containing s-adenosyl-l-methionine with excellent storage stability
CN105072920A (en) * 2013-03-28 2015-11-18 雪印惠乳业株式会社 Protein composition and method for producing the same
CN113475655A (en) * 2021-05-31 2021-10-08 仙乐健康科技股份有限公司 Milk-containing beverage and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220130A (en) * 1990-01-25 1991-09-27 Snow Brand Milk Prod Co Ltd Agent inhibitory against implantation of pathogenic microorganism and food and drink or the like containing the same inhibitory agent
JPH07300425A (en) * 1994-12-09 1995-11-14 Snow Brand Milk Prod Co Ltd Agent for preventing adhesion of pathogenic fungus and beverage or the like containing the same
JPH0840824A (en) * 1995-06-21 1996-02-13 Nonogawa Shoji Kk Cosmetic
JPH11315014A (en) * 1998-04-30 1999-11-16 Snow Brand Milk Prod Co Ltd Preventive and remedy for periodontal disease
JP2000119155A (en) * 1998-10-14 2000-04-25 Kose Corp Skin lotion
JP2001089339A (en) * 1999-09-14 2001-04-03 Lion Corp Oral composition
JP2001181160A (en) * 1999-12-27 2001-07-03 Morinaga Milk Ind Co Ltd Swallowable oral cavity cleaning composition
JP2001247474A (en) * 2000-03-07 2001-09-11 Snow Brand Milk Prod Co Ltd Medicine for preventing and/or treating liver disease
WO2002043752A1 (en) * 2000-11-29 2002-06-06 Morinaga Milk Industry Co., Ltd. Interferon therapeutic effect-potentiating agents

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220130A (en) * 1990-01-25 1991-09-27 Snow Brand Milk Prod Co Ltd Agent inhibitory against implantation of pathogenic microorganism and food and drink or the like containing the same inhibitory agent
JPH07300425A (en) * 1994-12-09 1995-11-14 Snow Brand Milk Prod Co Ltd Agent for preventing adhesion of pathogenic fungus and beverage or the like containing the same
JPH0840824A (en) * 1995-06-21 1996-02-13 Nonogawa Shoji Kk Cosmetic
JPH11315014A (en) * 1998-04-30 1999-11-16 Snow Brand Milk Prod Co Ltd Preventive and remedy for periodontal disease
JP2000119155A (en) * 1998-10-14 2000-04-25 Kose Corp Skin lotion
JP2001089339A (en) * 1999-09-14 2001-04-03 Lion Corp Oral composition
JP2001181160A (en) * 1999-12-27 2001-07-03 Morinaga Milk Ind Co Ltd Swallowable oral cavity cleaning composition
JP2001247474A (en) * 2000-03-07 2001-09-11 Snow Brand Milk Prod Co Ltd Medicine for preventing and/or treating liver disease
WO2002043752A1 (en) * 2000-11-29 2002-06-06 Morinaga Milk Industry Co., Ltd. Interferon therapeutic effect-potentiating agents

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016595A1 (en) * 2004-08-10 2006-02-16 Nrl Pharma, Inc. Lactoferrin complex and method of producing the same
WO2006082824A1 (en) * 2005-02-03 2006-08-10 Nrl Pharma, Inc. Matrix-type enteric coated sustained release composition
EP2121002A4 (en) * 2006-12-22 2011-10-05 Fonterra Co Operative Group Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer
EP2121002A1 (en) * 2006-12-22 2009-11-25 Fontera Co-Operative Group Limited Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer
US8420128B2 (en) 2008-03-31 2013-04-16 Morinaga Milk Industry Co., Ltd. Method of imparting heat resistance to lactoferrin
WO2009122719A1 (en) 2008-03-31 2009-10-08 森永乳業株式会社 Substance and composition both capable of imparting heat resistance
WO2012161112A1 (en) * 2011-05-20 2012-11-29 学校法人慶應義塾 Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein
JP2012240970A (en) * 2011-05-20 2012-12-10 Keio Gijuku Novel metalloprotein and process for producing the same
CN103998464A (en) * 2011-05-20 2014-08-20 学校法人庆应义塾 Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein
WO2013024663A1 (en) * 2011-08-12 2013-02-21 三菱瓦斯化学株式会社 Composition containing s-adenosyl-l-methionine with excellent storage stability
JPWO2013024663A1 (en) * 2011-08-12 2015-03-05 三菱瓦斯化学株式会社 S-adenosyl-L-methionine-containing composition having excellent storage stability
US9700629B2 (en) 2011-08-12 2017-07-11 Mitsubishi Gas Chemical Company, Inc. Composition containing S-adenosyl-L-methionine with excellent storage stability
CN105072920A (en) * 2013-03-28 2015-11-18 雪印惠乳业株式会社 Protein composition and method for producing the same
EP2984935A4 (en) * 2013-03-28 2016-11-30 Megmilk Snow Brand Co Ltd Protein composition and production process therefor
US9861121B2 (en) 2013-03-28 2018-01-09 Megmilk Snow Brand Co., Ltd. Milk basic protein composition and production process therefor
TWI675621B (en) * 2013-03-28 2019-11-01 日商雪印惠乳業股份有限公司 Protein composition and method of manufacturing same
CN113475655A (en) * 2021-05-31 2021-10-08 仙乐健康科技股份有限公司 Milk-containing beverage and preparation method thereof

Also Published As

Publication number Publication date
JP4592260B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP6918188B2 (en) High protein beverage containing whey protein
EP2651249B1 (en) Method for making whey protein composition with a reduced astringency
TWI675621B (en) Protein composition and method of manufacturing same
US9386791B2 (en) Dairy product and process
JP5562536B2 (en) Method for producing acidic gel food
TWI635805B (en) Acidic protein drink
US20100178361A1 (en) Method of stabilizing iron compositions with milk protein
JP4592260B2 (en) Lactoferrin composition
JP2006212006A (en) Gel-like food distributable at normal temperature
JP2010180219A (en) Lactoferrin composition
JP2007126379A (en) Method for producing acidic liquid enteral nutritive preparation
JP2015195749A (en) Vegetable jelly and vegetable jelly raw material
JP4410074B2 (en) Acid gel food
JP2004298047A (en) Acidic gel-like food
JP5955615B2 (en) Weakly acidic protein-containing gel food and drink
JP6753255B2 (en) Liquid nutritional composition
JP2005110636A (en) Iron composition containing milk protein
JP2003070424A (en) Protein stabilizer
Mehra et al. β-Lactoglobulin: A Whey Protein Fraction with Enhanced Functionality
NZ562043A (en) Iron composition containing milk protein
JP2014168436A (en) Stabilization of low acidic milk-containing beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees