JP2004352669A - Lactoferrin composition - Google Patents
Lactoferrin composition Download PDFInfo
- Publication number
- JP2004352669A JP2004352669A JP2003153317A JP2003153317A JP2004352669A JP 2004352669 A JP2004352669 A JP 2004352669A JP 2003153317 A JP2003153317 A JP 2003153317A JP 2003153317 A JP2003153317 A JP 2003153317A JP 2004352669 A JP2004352669 A JP 2004352669A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- lfs
- sds
- solution
- page
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 132
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 title claims abstract description 26
- 235000021242 lactoferrin Nutrition 0.000 title claims abstract description 20
- 108010063045 Lactoferrin Proteins 0.000 title claims abstract description 16
- 102000010445 Lactoferrin Human genes 0.000 title claims abstract description 16
- 229940078795 lactoferrin Drugs 0.000 title claims abstract description 16
- 239000003381 stabilizer Substances 0.000 claims abstract description 50
- 235000013305 food Nutrition 0.000 claims abstract description 21
- 239000003814 drug Substances 0.000 claims abstract description 19
- 150000004676 glycans Chemical class 0.000 claims abstract description 13
- 229920001285 xanthan gum Polymers 0.000 claims abstract description 13
- 235000010493 xanthan gum Nutrition 0.000 claims abstract description 13
- 239000000230 xanthan gum Substances 0.000 claims abstract description 13
- 229940082509 xanthan gum Drugs 0.000 claims abstract description 13
- 235000010469 Glycine max Nutrition 0.000 claims abstract description 12
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 12
- 239000005017 polysaccharide Substances 0.000 claims abstract description 12
- 244000068988 Glycine max Species 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 36
- 235000011187 glycerol Nutrition 0.000 claims description 14
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 10
- 239000000194 fatty acid Substances 0.000 claims description 10
- 229930195729 fatty acid Natural products 0.000 claims description 10
- -1 sucrose fatty acid ester Chemical class 0.000 claims description 10
- 229930006000 Sucrose Natural products 0.000 claims description 7
- 108010038047 apolactoferrin Proteins 0.000 claims description 7
- 239000005720 sucrose Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 6
- 102000011632 Caseins Human genes 0.000 claims description 4
- 108010076119 Caseins Proteins 0.000 claims description 4
- 239000001814 pectin Substances 0.000 claims description 4
- 235000010987 pectin Nutrition 0.000 claims description 4
- 229920001277 pectin Polymers 0.000 claims description 4
- 229960000292 pectin Drugs 0.000 claims description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 229920000161 Locust bean gum Polymers 0.000 claims description 3
- 240000004584 Tamarindus indica Species 0.000 claims description 3
- 235000004298 Tamarindus indica Nutrition 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 229940105329 carboxymethylcellulose Drugs 0.000 claims description 3
- 235000010418 carrageenan Nutrition 0.000 claims description 3
- 239000000679 carrageenan Substances 0.000 claims description 3
- 229920001525 carrageenan Polymers 0.000 claims description 3
- 229940113118 carrageenan Drugs 0.000 claims description 3
- 239000000787 lecithin Substances 0.000 claims description 3
- 235000010445 lecithin Nutrition 0.000 claims description 3
- 229940067606 lecithin Drugs 0.000 claims description 3
- 235000010420 locust bean gum Nutrition 0.000 claims description 3
- 239000000711 locust bean gum Substances 0.000 claims description 3
- 229940080237 sodium caseinate Drugs 0.000 claims description 3
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 66
- 230000001954 sterilising effect Effects 0.000 abstract description 26
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 26
- 229940079593 drug Drugs 0.000 abstract description 7
- 235000013361 beverage Nutrition 0.000 abstract description 3
- 238000001556 precipitation Methods 0.000 description 40
- 230000002776 aggregation Effects 0.000 description 39
- 238000004220 aggregation Methods 0.000 description 39
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 36
- 239000000523 sample Substances 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 239000008367 deionised water Substances 0.000 description 33
- 229910021641 deionized water Inorganic materials 0.000 description 33
- 239000007788 liquid Substances 0.000 description 27
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 22
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 22
- 230000007935 neutral effect Effects 0.000 description 16
- 230000002378 acidificating effect Effects 0.000 description 15
- 239000000499 gel Substances 0.000 description 15
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 235000011121 sodium hydroxide Nutrition 0.000 description 12
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 11
- 239000004310 lactic acid Substances 0.000 description 11
- 235000014655 lactic acid Nutrition 0.000 description 11
- 239000003550 marker Substances 0.000 description 11
- 229920002401 polyacrylamide Polymers 0.000 description 11
- 239000012723 sample buffer Substances 0.000 description 11
- 230000000007 visual effect Effects 0.000 description 11
- 235000020183 skimmed milk Nutrition 0.000 description 8
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000796 flavoring agent Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 235000019634 flavors Nutrition 0.000 description 5
- 229920002148 Gellan gum Polymers 0.000 description 4
- 229920002907 Guar gum Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 235000010492 gellan gum Nutrition 0.000 description 4
- 239000000216 gellan gum Substances 0.000 description 4
- 235000010417 guar gum Nutrition 0.000 description 4
- 239000000665 guar gum Substances 0.000 description 4
- 229960002154 guar gum Drugs 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 102000007544 Whey Proteins Human genes 0.000 description 2
- 108010046377 Whey Proteins Proteins 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000008133 Iron-Binding Proteins Human genes 0.000 description 1
- 108010035210 Iron-Binding Proteins Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 235000004347 Perilla Nutrition 0.000 description 1
- 244000124853 Perilla frutescens Species 0.000 description 1
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 1
- 240000005481 Salvia hispanica Species 0.000 description 1
- 235000001498 Salvia hispanica Nutrition 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000014167 chia Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000003022 colostrum Anatomy 0.000 description 1
- 235000021277 colostrum Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Fodder In General (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ラクトフェリン類と安定剤を含有させることで、高い耐熱性を有するラクトフェリン組成物に関する。
【0002】
【従来の技術】
ラクトフェリン(以下LFという)は、鉄吸収促進作用、抗炎症作用、過酸化脂質生成抑制作用、免疫系の制御作用等様々な生理機能を有していることが報告されている。また、これらの生理機能を有効に利用するためにLFを含む様々な飲食品や飼料、医薬が開発されている。しかし、LFは中性域において加熱に対して不安定であり、62.5℃、30分の加熱によりほぼ失活し、70℃、15分の加熱により完全に失活することが知られている(例えば、非特許文献1参照)。このことから、LFを酸性領域において加熱処理する方法が一般的に行われている。この方法を用いれば天然のLF は、加熱処理しても抗菌活性や鉄結合性等が殆ど変化しないことが報告されている(例えば、特許文献1参照)。また、イオン強度が低い状態でLF を加熱した場合に、その生理活性を維持することも知られている。しかし、実際には、イオン強度が低い状態でLF が利用されることは少ないため、イオン強度とpHを最適化して加熱安定性を付与する方法(例えば、特許文献2参照)や、LF に鉄を十分結合吸着させることで耐熱性を付与する方法(例えば、特許文献3参照)が開発された。
【0003】
しかし、これらの方法でも、90℃を超える殺菌、特にレトルト殺菌処理に対して、ラクトフェリン類(以下LF類という)の熱安定性は低く、下記に示す欠点を有していた。
(1)加熱耐性が十分でないため、90℃以上の加熱殺菌ではLF類が凝集・沈殿しやすい。
(2)特に、中性域(pH7程度)以上の環境下で加熱殺菌するとLF類は失活しやすい。
従ってLF類含有液を加熱処理する場合(特に90℃以上)には、LF類が失活する可能性があり、レトルト殺菌処理等の超高温加熱処理を採用できないのが実状であり、LF類を失活させずに飲食品や飼料、医薬に配合する場合には制限があった。
【0004】
【先行技術文献】
【特許文献1】
特許第2688098号公報
【特許文献2】
特開平4−8269号公報
【特許文献3】
特開平6−239900号公報
【非特許文献1】
ジェー・イー・フォードら(Ford, J. E. et al)、「ザ・ジャーナル・オブ・ペディアトリクス( The Journal of Pediatrics)、90巻、1号、 29−35ページ、 1977年
【0005】
【発明が解決しようとする課題】
本発明はLF類の持つ上記のような欠点を解決するべく、さらにLF類の熱安定化について鋭意検討を重ねた結果、LF類と大豆多糖類やキサンタンガム等の安定剤を含有させたラクトフェリン組成物(以下LF組成物という)にすると、LF類の耐熱性が格段に向上することを見出し、本発明を完成するに至った。すなわち、本発明は酸性から中性、アルカリ性の広いpH範囲で、90℃以上の高温加熱処理及び120℃以上のレトルト殺菌処理においても高い耐熱性を有するLF組成物を提供することを課題とする。また、本発明は、LF類を失活させずに、飲食品や飼料、医薬に通常用いられる原材料等を混合してなるLF組成物や、様々な飲食品や飼料、医薬へ配合するためのLF組成物を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明はLF類と安定剤を含有する高い耐熱性を有するLF組成物に関する。本発明においては、LF類を失活させることなく、LF組成物を90℃以上で加熱することが可能である。
【0007】
【発明の実施の形態】
本発明のLF組成物には、ウシ、山羊、羊、ヒト等の哺乳類の初乳、移行乳、常乳、末期乳、または、これらの乳の処理物である脱脂乳、乳清等からイオン交換クロマトグラフィー等により分離されたままのラクトフェリン、ラクトフェリンを塩酸、クエン酸等により脱鉄したアポラクトフェリン、ラクトフェリンを鉄、銅、亜鉛、マンガン、セレン等の金属で飽和した金属飽和ラクトフェリン(特許第2884045号公報、特許第3223958号公報)等を用いる。また、これらのLF類 の2つ以上を任意の割合で配合した混合物であってもよく、その他の物質との混合物であることを妨げない。
【0008】
本発明のLF組成物を構成する安定剤に特に制限はないが、次の性質を有する成分を主成分とする安定剤がより望ましい。
(1)大豆多糖類等のように分子量が大きく、被膜性のある安定剤。
(2)キサンタンガム等のようにグルコース主鎖にマンノースとグルクロン酸が結合しているような、直鎖に対して側鎖の割合が大きい安定剤。
(3)ショ糖のヒドロキシル基に脂肪酸が反応してできるショ糖脂肪酸エステル等のように疎水基と親水基を持ち、多分子層吸着性を有する安定剤。
これらの性質を有する安定剤は、加熱時のLF類の凝集・沈澱による失活を防ぎ、LF類の耐熱性を高める。
一方、本発明のLF組成物に好ましくない安定剤としては次の性質を有するものがあげられる。
(1)ジェランガムのように直鎖状の構造をなす安定剤又はグアガムのように直鎖に対して側鎖の割合が大きくない安定剤。
これらの安定剤を使用すると加熱時のLF類の耐熱性はそれほど向上しない。しかし、これらの安定剤を一部含む物はその限りでは無い。
【0009】
したがって、本発明でLF類と混合してLF組成物を構成する安定剤としては、大豆多糖類、キサンタンガム、ローカストビーンガム、カラギナン、タマリンドガム、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、カゼインナトリウム、レシチン、ペクチン、カルボキシメチルセルロースが好ましく、これらの安定剤の少なくとも1種をLF類と混合してLF組成物を構成する。ここでいう安定剤とはLF類の加熱安定性を高めるために使用される。また、これらの安定剤の中には乳化剤としての機能等、その他様々な機能を有している場合もあるが、全く問題なく使用できる。
【0010】
また、本発明のLF組成物中のLF類と安定剤の含有量比に関しては、特に制限はないが、安定剤をLF類に対して0.5〜100(重量/重量)、好ましくは1〜40(重量/重量)含有していることが好ましい。
【0011】
本発明のLF類と安定剤を混合してなるLF組成物を調製する方法に特に制限はないが、例えば、溶液中で調製するには、LF類と安定剤を脱イオン水にそれぞれ懸濁あるいは溶解し、撹拌混合した後、飲食品や飼料、医薬の形態に調製して使用する。撹拌混合の条件としては、LF類と安定剤が十分に混合されればよく、必要に応じて40〜80℃程度に加熱しながら、ウルトラディスパーサー等を使用して撹拌混合することも可能である。また、このLF組成物の溶液は、飲食品、飼料及び医薬に使用しやすいように、必要に応じて、UF膜等で濃縮したり、凍結乾燥等により乾燥して使用することができる。
【0012】
本発明のLF組成物は、酸性域から、中性、アルカリ性域の幅広い範囲で加熱安定性が高く、飲食品、飼料及び医薬の製造に通常使用される高温加熱処理やレトルト殺菌処理が可能であり、粉末状であっても乾熱殺菌も可能である。従って、本発明のLF組成物からなる、LF類を含有する液状、ゲル状、粉末状、顆粒状等様々な形態の飲食品や飼料、医薬を調製することができる。
【0013】
本発明のLF組成物においては、塩酸やリン酸等の無機酸およびクエン酸や酢酸等の有機酸、あるいは苛性ソーダや重曹等のアルカリ剤を使用し、pHを調整する。また、LF組成物を取り巻く環境が当該LF組成物の加熱安定性を維持するpHであれば、特にpHを調整することなく高温加熱処理やレトルト殺菌処理が可能であるが、LF組成物からなる飲食品や飼料、医薬が求められる品質に応じて、加熱殺菌条件とpHを選択することができる。
【0014】
本発明のLF組成物からなる飲食品や飼料、医薬とは、このLF類と安定剤のみを含むLF組成物からなる飲食品、飼料及び、医薬や、LF類と安定剤の他に糖類や脂質、フレーバー等、他の飲食品、飼料及び医薬に通常含まれる原材料等を含有するLF組成物からなる飲食品、飼料及び医薬である。
【0015】
LF類の熱安定性は低く、90℃を超える殺菌、特にレトルト殺菌処理をするとLF類は凝集・沈殿し、また、中性域(pH7程度)以上の環境下で加熱殺菌するとLF類は失活しやすいという従来の欠点を、本発明のLF組成物を使用することにより解消することができるという予測出来ない程の格別の効果があった。
以下に、実施例及び試験例を示して本発明を詳細に説明するが、これらは単に本発明の実施態様を例示するのみであり、本発明はこれらによって何ら限定されるものではない。
【0016】
【試験例1】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液)。安定剤として大豆多糖類0.4重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。比較として安定剤を含まない鉄飽和ラクトフェリンのみの溶液を上記と同様の方法で、pHを調整して110℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0017】
この試験の結果を表1に示した。表1から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、120℃で10分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。一方、鉄飽和ラクトフェリンのみを含む溶液は、pH 2〜9においてLF類のバンドを全く確認することができなかった。
【0018】
【表1】
【0019】
【試験例2】
LFを16mg%濃度で脱イオン水に溶解した(A液)。安定剤としてキサンタンガムを0.08%(重量%)を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、9500rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0020】
この試験の結果を表2に示した。表2から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、130℃で10分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0021】
【表2】
【0022】
【試験例3】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてショ糖脂肪酸エステル0.2重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0023】
この試験の結果を表3に示した。表3から分かるようにLF組成物を含有する溶液は、pH 2〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH 2〜9では、120℃で8分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0024】
【表3】
【0025】
【試験例4】
塩酸で脱鉄したアポラクトフェリンを12mg%濃度で脱イオン水に溶解した(A液)。安定剤としてローカストビーンガム0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで4分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0026】
この試験の結果、LF組成物を含有する溶液は、pH3〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜8では、120℃で7分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0027】
【試験例5】
鉄飽和ラクトフェリンを18mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカラギナン0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0028】
この試験の結果、LF組成物を含有する溶液は、pH4〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH4〜8では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0029】
【試験例6】
LFを20mg%濃度で脱イオン水に溶解した(A液)。安定剤としてタマリンドガム0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0030】
この試験の結果、LF組成物を含有する溶液は、pH4〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH4〜7では、120℃で5分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0031】
【試験例7】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてグリセリン脂肪酸エステル0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いて〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0032】
この試験の結果、LF組成物を含有する溶液は、pH3〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜7では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0033】
【試験例8】
鉄飽和ラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカゼインナトリウム 0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、9500rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0034】
この試験の結果、LF組成物を含有する溶液は、pH5〜9において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH5〜9では、120℃で5分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0035】
【試験例9】
LFを16mg%濃度で脱イオン水に溶解した(A液)。安定剤としてレシチン0.25重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いて〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0036】
この試験の結果、LF組成物を含有する溶液は、pH3〜8において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性及びアルカリ性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜8では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0037】
【試験例10】
鉄飽和ラクトフェリンを15mg%濃度で脱イオン水に溶解した(A液)。安定剤としてペクチン0.6重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0038】
この試験の結果、LF組成物を含有する溶液は、pH3〜5において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜5では、120℃で7分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0039】
【試験例11】
LFを10mg%濃度で脱イオン水に溶解した(A液)。安定剤としてカルボキシメチルセルロース0.15重量%を脱イオン水に溶解した(B液)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、8000rpmで3分間撹拌混合してLF組成物を調製した。次いで、このLF組成物を乳酸または水酸化ナトリウム溶液を用いてpH 1〜10の10試料に調整した。これをアンプル管に2mlずつ分注し、90℃、100℃、110℃、120℃、130℃にて4分間加熱した。
加熱処理後の各試料の凝集・沈殿状態を目視により判定し、その後、以下に示したポリアクリルアミドゲル電気泳動(SDS−PAGE)により、LF類のバンドパターンの解析を行った。SDS−PAGEによる解析は、これにより加熱処理後のLF類の分解を確認するためである。
SDS−PAGE:各試料15μlをサンプルバッファー15μl(0.5M Tris−HCl(pH6.8) 1.25ml、グリセロール1.0ml、10%SDS 2.0ml、2−メルカプトエタノール0.5ml、0.1%BPB 0.25ml)にて希釈し、100℃で5分間加熱した。その後各試料を15μlずつ14%ポリアクリルアミドゲル(TEFCO SDS−PAGE mini)にて電気泳動した。分子量マーカーとしてはKaleidoscope Prestained Standardsを用いた。
【0040】
この試験の結果、LF組成物を含有する溶液は、pH3〜7において目視による凝集・沈殿を生じず、また、SDS−PAGEによりLF類のバンドを確認することができた。従って、このLF組成物は、酸性側で安定なだけでなく、中性側でも加熱安定性が極めて高いことが分かった。さらに、加熱時間を延長して、LF類が確認できるかを検査したところ、pH3〜7では、120℃で6分間加熱しても凝集・沈殿せず、また、LF類のバンドが確認できた。この試験結果からみて、このLF組成物は、レトルト殺菌処理することが十分に可能であることが明らかとなった。
【0041】
【試験例12】
試験例1で調製した試料を用いて、その抗原性を競合ELISA法により測定した。未加熱のLF組成物の抗体との反応性に対する加熱処理したLF組成物の抗体との反応性を百分率(%)で算出した。
【0042】
その結果を表4に示した。表4から、未加熱のLF組成物の抗体との反応性に対する加熱処理したLF組成物の抗体との反応性は、130℃までであれば50%以上を維持していることが判明した。従って、本発明におけるLF組成物はpH2〜9の範囲であれば、130℃という超高温加熱処理に対して安定である。
【0043】
【表4】
【0044】
【試験例13】
試験例2と同様の方法で調製したLF組成物(LF8mg%、キサンタンガム0.04重量%)を含有する溶液をpH 2〜9に調整し、150mlずつレトルトパウチに充填し、密封した。対照としてLFのみを含む溶液をpH2〜9に調整したものを150mlずつレトルトパウチに充填し、密封した。これらの溶液を レトルト殺菌機(第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)により120℃、4分間加熱した。加熱後のそれぞれの試料を25℃で保存して、経時的に凝集・沈殿の有無を目視により観察し、また、ポリアクリルアミドゲル電気泳動(SDS−PAGE)によりLF類のバンドパターンの解析を行った。
その結果、対照としたLFのみを含む溶液をpH2〜9に調整したものは、1日目で凝集・沈澱が確認できたが、LF組成物を含有する溶液をpH 2〜9に調整したものは、保存後1ヶ月経っても凝集・沈澱は認められなかった。また、SDS−PAGEにてLF類のバンドパターンを解析したところ、LF組成物を含む溶液をpH 2〜9に調整したものは保存開始時から保存後1ヶ月においてもLF類のバンドが確認でき、他の変化は認められなかった。この試験結果により、本発明によるLF組成物はレトルト殺菌処理の場合に大変有効であることが判明した。
【0045】
【試験例14】
試験例2と同様の方法で調製したLF組成物200g(LF8mg%、キサンタンガム0.04重量%)に還元脱脂粉乳溶液(脱脂粉乳3重量%)800gを混合し、LF組成物を含有する溶液(▲1▼)を調製した。対照としてLF溶液(LF8mg%溶液)200gに還元脱脂粉乳溶液(脱脂粉乳3重量%)800gを混合した溶液(▲2▼)、及び還元脱脂粉乳溶液(脱脂粉乳3重量%)1000gのみの溶液(▲3▼)を調製した。各溶液を150mlずつレトルトパウチに充填し、密封した。これらの溶液をレトルト殺菌機 (第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)により120℃、20分加熱した。その結果、溶液▲1▼、▲3▼においては凝集・沈殿は認められず、風味も良好であったが、▲2▼の溶液では凝集・沈殿が認められた。この試験結果により、本発明によるLF組成物はレトルト殺菌処理の場合に大変有効であることが判明した。
【0046】
【比較例1】
安定剤として大豆多糖類、キサンタンガム、ジェランガム及びグアガムを選択し、試験例1と同様の方法でLF組成物を調製した。なお、各安定剤は大豆多糖類0.4重量%、キサンタンガム0.04重量%、ジェランガム0.05重量%及びグアガム0.05重量%にて試験を行った。これらのLF組成物をpH6.5に調整し、120℃で4分間加熱した。加熱された各試料の凝集・沈澱状態を目視により判定し、また、ポリアクリルアミドゲル電気泳動(SDS−PAGE)によりLF類のバンドパターンの解析を行った。
【0047】
試験結果を表5に示した。加熱前のLF組成物はいずれも凝集・沈殿せず、透明であり、LF類のバンドも確認できた。加熱後は大豆多糖類及びキサンタンガム含有LF組成物は透明であり、また、LF類のバンドも確認できたが、ジェランガム及びグアガム含有LF組成物は、いずれも半透明か、あるいは凝集・沈殿し、SDS−PAGEにてLF類のバンドも確認できなかった。
【0048】
【表5】
【0049】
【実施例1】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液、300g)。安定剤として大豆多糖類0.8重量%を脱イオン水に溶解した(B液、300g)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、50℃、9500rpmで3分間撹拌混合して本発明のLF組成物600gを調製した。
【0050】
【実施例2】
LFを16mg%濃度で脱イオン水に溶解した(A液、10kg)。安定剤としてキサンタンガムを0.16重量%で脱イオン水に溶解した(B液、10kg)。A液とB液を混合し、TKホモミクサー(MARK II 160型、特殊機化工業製)にて、3600rpmで30分間撹拌混合し、さらに分画分子量10kDaのUF膜にて濃縮して、本発明のLF組成物10kgを調製した。
【0051】
【実施例3】
塩酸で脱鉄したアポラクトフェリンを10mg%濃度で脱イオン水に溶解した(A液、1000kg)。安定剤としてショ糖脂肪酸エステル0.4重量%を脱イオン水に溶解した(B液、1000kg)。A液とB液を混合し、TKホモミクサー(MARK II 2500型、特殊機化工業製)にて、40℃、3600rpmで40分間撹拌混合し、さらに凍結乾燥して本発明のLF組成物3.9kgを調製した。
【0052】
【実施例4】
鉄飽和ラクトフェリンを20mg%濃度で脱イオン水に溶解した(A液、500g)。安定剤として大豆多糖類0.4重量%を脱イオン水に溶解した(B液、500g)。A液とB液を混合し、ウルトラディスパーサー(ULTRA−TURRAX T−25;IKAジャパン社製)にて、40℃、9500rpmで3分間撹拌混合した。その後、上記の溶液に、ソルビトール80g、酸味料4g、香料4g、ペクチン10g、乳清タンパク質濃縮物10g、乳酸カルシウム2g、水890gを添加して、撹拌混合し、本発明のLF組成物を調製した。200mlのチアパックに充填し、85℃、20分間殺菌後、密栓し、本発明のLF組成物からなるゲル状食品10袋を調製した。調製したゲル状食品は、すべて沈殿等は認められず、風味に異常は感じられなかった。
【0053】
【実施例5】
鉄飽和ラクトフェリンを100mg%濃度で脱イオン水に溶解した(A液、200g)。安定剤として大豆多糖類4重量%を脱イオン水に溶解した(B液、200g)。マルチトール100g、還元水飴20g、酸味料2g、香料2g、前記A液200g、前記B液200g、及び水476gを混合し、本発明のLF組成物を調製した。このLF組成物を50mlのガラス瓶に充填し、90℃、15分間殺菌後、密栓し、本発明LF組成物を含有する飲料20本を調製した。調製した飲料は、すべて沈殿は認められず、風味に異常は感じられなかった。
【0054】
【実施例6】
実施例2で調製したLF組成物0.2kg(ラクトフェリン8mg%、キサンタンガム0.08重量%)に大豆粕12kg、脱脂粉乳14kg、大豆油4kg、コーン油2kg、パーム油28kg、トウモロコシ澱粉15kg、小麦粉9kg、ふすま2kg、ビタミン混合物9kg、セルロース2.8kg、ミネラル混合物2kgを配合し、120℃、4分間殺菌して、イヌ飼育用飼料100kgを調製した。
【0055】
【実施例7】
実施例3で調製したLF組成物3kg(アポラクトフェリン5mg%、ショ糖脂肪酸エステル0.2重量%)に、カゼイン5kg、大豆タンパク質5kg、魚油1kg、シソ油3kg、デキストリン19kg、ミネラル混合物6kg、ビタミン混合物1.95kg、乳化剤2kg、安定剤4kg、香料0.05kgを配合し、200mlのレトルトパウチに充填し、レトルト殺菌機 (第1種圧力容器、TYPE: RCS−4CRTGN、日阪製作所製)で121℃、20分間殺菌して、経腸栄養剤50kgを調製した。
【0056】
【発明の効果】
本発明のLF組成物は、酸性域から中性、アルカリ性域の幅広い範囲で加熱安定性が高く、飲食品、飼料及び医薬の製造に通常使用される高温加熱処理やレトルト殺菌処理が可能であり、粉末状であっても乾熱殺菌も可能である。従って、本発明のLF組成物からなるLF類を含有する液状、ゲル状、粉末状、顆粒状等様々な形態の飲食品や飼料、医薬を調製することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lactoferrin composition having high heat resistance by containing a lactoferrin and a stabilizer.
[0002]
[Prior art]
It has been reported that lactoferrin (hereinafter referred to as LF) has various physiological functions such as an iron absorption promoting action, an anti-inflammatory action, a lipid peroxide production suppressing action, and an immune system controlling action. Further, in order to effectively use these physiological functions, various foods and drinks, feeds, and medicines including LF have been developed. However, it is known that LF is unstable to heating in a neutral region, is almost inactivated by heating at 62.5 ° C. for 30 minutes, and completely inactivated by heating at 70 ° C. for 15 minutes. (For example, see Non-Patent Document 1). For this reason, a method of heat-treating LF in an acidic region is generally performed. It has been reported that when this method is used, natural LF 2 hardly changes in antibacterial activity, iron binding property, and the like even by heat treatment (for example, see Patent Document 1). It is also known that when LF is heated with a low ionic strength, its physiological activity is maintained. However, in practice, LF is rarely used in a state where the ionic strength is low. Therefore, a method of optimizing the ionic strength and pH to impart heating stability (for example, see Patent Literature 2) or using LF with iron A method of imparting heat resistance by sufficiently bonding and adsorbing (for example, see Patent Document 3) has been developed.
[0003]
However, even with these methods, the heat stability of lactoferrins (hereinafter referred to as LFs) is low with respect to sterilization exceeding 90 ° C., particularly retort sterilization, and has the following disadvantages.
(1) Due to insufficient heat resistance, LFs are liable to aggregate and precipitate in heat sterilization at 90 ° C. or higher.
(2) In particular, LFs are liable to be inactivated when sterilized by heating under an environment of a neutral region (about pH 7) or higher.
Therefore, when the LFs-containing liquid is subjected to heat treatment (especially at 90 ° C. or higher), the LFs may be deactivated, and in fact, it is not possible to employ an ultra-high temperature heat treatment such as a retort sterilization treatment. There is a limit in the case where it is incorporated into foods and drinks, feeds, and medicines without inactivating it.
[0004]
[Prior art documents]
[Patent Document 1]
Japanese Patent No. 2688098
[Patent Document 2]
JP-A-4-8269
[Patent Document 3]
JP-A-6-239900
[Non-patent document 1]
JE Ford et al. (Ford, JE et al.), "The Journal of Pediatrics, 90, No. 1, pp. 29-35, 1977.
[0005]
[Problems to be solved by the invention]
In order to solve the above-mentioned drawbacks of LFs, the present invention has conducted intensive studies on the thermal stabilization of LFs. As a result, a lactoferrin composition containing LFs and stabilizers such as soybean polysaccharides and xanthan gum was obtained. It has been found that the heat resistance of LFs is remarkably improved when the product (hereinafter referred to as LF composition) is used, and the present invention has been completed. That is, an object of the present invention is to provide an LF composition having a high heat resistance even in a high-temperature heat treatment at 90 ° C. or more and a retort sterilization treatment at 120 ° C. or more in a wide pH range from acidic to neutral and alkaline. . Further, the present invention provides a LF composition obtained by mixing raw materials and the like usually used in foods and drinks, feeds, and medicines, and various foods and drinks, feeds, and pharmaceuticals without inactivating LFs. It is an object to provide an LF composition.
[0006]
[Means for Solving the Problems]
TECHNICAL FIELD The present invention relates to an LF composition having high heat resistance containing LFs and a stabilizer. In the present invention, the LF composition can be heated at 90 ° C. or higher without deactivating the LFs.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The LF composition of the present invention includes colostrum, transitional milk, normal milk, end-stage milk of mammals such as cows, goats, sheep, and humans, or ions obtained from skim milk, whey, etc., which are processed products of these milks. Lactoferrin as separated by exchange chromatography or the like, apolactoferrin in which lactoferrin has been deferred with hydrochloric acid, citric acid, or the like; And Japanese Patent No. 3223958). In addition, a mixture of two or more of these LFs in an arbitrary ratio may be used, and it does not prevent a mixture with other substances.
[0008]
There is no particular limitation on the stabilizer constituting the LF composition of the present invention, but a stabilizer containing components having the following properties as main components is more preferable.
(1) A stabilizer having a large molecular weight and a coating property such as soybean polysaccharide.
(2) Stabilizers such as xanthan gum in which mannose and glucuronic acid are bonded to the glucose main chain and have a large ratio of side chains to straight chains.
(3) A stabilizer having a hydrophobic group and a hydrophilic group, such as a sucrose fatty acid ester formed by the reaction of a fatty acid with a hydroxyl group of sucrose, and having a multi-layer adsorption property.
Stabilizers having these properties prevent LFs from deactivating due to aggregation and precipitation during heating, and enhance the heat resistance of LFs.
On the other hand, stabilizers which are not preferred for the LF composition of the present invention include those having the following properties.
(1) A stabilizer having a linear structure, such as gellan gum, or a stabilizer, such as guar gum, having a small proportion of side chains relative to the straight chain.
When these stabilizers are used, the heat resistance of LFs during heating is not so improved. However, those containing some of these stabilizers are not limited thereto.
[0009]
Therefore, in the present invention, stabilizers which are mixed with LFs to form an LF composition include soybean polysaccharides, xanthan gum, locust bean gum, carrageenan, tamarind gum, sucrose fatty acid ester, glycerin fatty acid ester, sodium caseinate, lecithin , Pectin and carboxymethylcellulose are preferred, and at least one of these stabilizers is mixed with LFs to form an LF composition. The term "stabilizer" used herein is used to enhance the heat stability of LFs. Some of these stabilizers may have various other functions such as a function as an emulsifier, but they can be used without any problem.
[0010]
Further, the content ratio of LFs to the stabilizer in the LF composition of the present invention is not particularly limited, but the stabilizer is used in an amount of 0.5 to 100 (weight / weight), preferably 1 to LFs. It is preferable that the content is in the range of 40 to 40 (weight / weight).
[0011]
There is no particular limitation on the method of preparing an LF composition obtained by mixing the LFs and the stabilizer of the present invention. For example, to prepare the LF composition in a solution, the LFs and the stabilizer are each suspended in deionized water. Alternatively, after dissolving and stirring and mixing, the mixture is prepared and used in the form of food and drink, feed, and medicine. The stirring and mixing conditions may be such that the LFs and the stabilizer are sufficiently mixed. If necessary, the mixture can be stirred and mixed using an ultra disperser while heating to about 40 to 80 ° C. is there. The LF composition solution can be concentrated by a UF membrane or the like, or dried by freeze-drying or the like, if necessary, so that it can be easily used for food and drink, feed and medicine.
[0012]
The LF composition of the present invention has high heat stability in a wide range from an acidic range to a neutral range and an alkaline range, and can be subjected to a high-temperature heat treatment and a retort sterilization treatment usually used for the production of foods and drinks, feeds and medicaments. Yes, dry heat sterilization is possible even in powder form. Therefore, it is possible to prepare various forms of foods and drinks, feeds, and medicaments, including liquids, gels, powders, and granules, comprising the LF composition of the present invention.
[0013]
In the LF composition of the present invention, the pH is adjusted using an inorganic acid such as hydrochloric acid or phosphoric acid, an organic acid such as citric acid or acetic acid, or an alkali agent such as caustic soda or sodium bicarbonate. In addition, if the environment surrounding the LF composition is a pH that maintains the heating stability of the LF composition, high-temperature heating and retort sterilization can be performed without adjusting the pH, but the LF composition is used. Heat sterilization conditions and pH can be selected according to the quality required for food and drink, feed, and medicine.
[0014]
Foods and drinks, feeds and medicines comprising the LF composition of the present invention include foods and drinks, feeds and medicines comprising the LF composition containing only LFs and stabilizers, sugars and LFs and stabilizers in addition to LFs and stabilizers. It is a food and drink, feed and medicine comprising an LF composition containing a raw material and the like usually contained in other food and drink, feed and medicine such as lipids and flavors.
[0015]
The heat stability of LFs is low, and LFs aggregate and precipitate when sterilized at over 90 ° C, especially when subjected to retort sterilization, and lost when heat sterilized in an environment above a neutral region (about pH 7). The conventional drawback that it is easy to use has an unpredictable and remarkable effect that can be solved by using the LF composition of the present invention.
Hereinafter, the present invention will be described in detail with reference to Examples and Test Examples, but these are merely illustrative of embodiments of the present invention, and the present invention is not limited thereto.
[0016]
[Test Example 1]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (Solution A). 0.4% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed, and stirred and mixed at 50 ° C and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes. As a comparison, a solution containing only iron-saturated lactoferrin containing no stabilizer was adjusted in pH and heated at 110 ° C. for 4 minutes in the same manner as above.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0017]
Table 1 shows the results of this test. As can be seen from Table 1, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 10 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment. On the other hand, in the solution containing only iron-saturated lactoferrin, no LF bands could be confirmed at pH 2 to 9.
[0018]
[Table 1]
[0019]
[Test Example 2]
LF was dissolved in deionized water at a concentration of 16 mg% (Solution A). As a stabilizer, 0.08% (% by weight) of xanthan gum was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 50 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes. The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0020]
The results of this test are shown in Table 2. As can be seen from Table 2, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Further, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 130 ° C. for 10 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0021]
[Table 2]
[0022]
[Test Example 3]
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A). 0.2% by weight of a sucrose fatty acid ester as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0023]
The results of this test are shown in Table 3. As can be seen from Table 3, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 2 to 9, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Further, when the heating time was extended to check whether LFs could be confirmed, at pH 2 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 8 minutes, and the band of LFs could be confirmed. Was. From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0024]
[Table 3]
[0025]
[Test Example 4]
Apolactoferrin deironated with hydrochloric acid was dissolved in deionized water at a concentration of 12 mg% (solution A). 0.15% by weight of locust bean gum as a stabilizer was dissolved in deionized water (Solution B). The liquid A and the liquid B were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 4 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0026]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 3 to 8, no aggregation / precipitation was observed even after heating at 120 ° C. for 7 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0027]
[Test Example 5]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 18 mg% (Solution A). 0.15% by weight of carrageenan was dissolved in deionized water as a stabilizer (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0028]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 4 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 4 to 8, no aggregation / precipitation occurred even after heating at 120 ° C. for 6 minutes, and a band of LFs could be confirmed. . From the test results, it has been clarified that the LF composition can be sufficiently subjected to a retort sterilization treatment.
[0029]
[Test Example 6]
LF was dissolved in deionized water at a concentration of 20 mg% (Solution A). 0.15% by weight of tamarind gum as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules at a rate of 2 ml and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0030]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 4 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 4 to 7, no aggregation / precipitation occurred even after heating at 120 ° C. for 5 minutes, and a band of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0031]
[Test Example 7]
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A). 0.15% by weight of a glycerin fatty acid ester as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples of 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules at a rate of 2 ml and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0032]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 3 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 3 to 7, aggregation and precipitation did not occur even after heating at 120 ° C. for 6 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0033]
[Test Example 8]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 10 mg% (Solution A). 0.15% by weight of sodium caseinate as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0034]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 5 to 9, and a band of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side, but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 5 to 9, no aggregation / precipitation occurred even after heating at 120 ° C. for 5 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0035]
[Test Example 9]
LF was dissolved in deionized water at a concentration of 16 mg% (Solution A). 0.25% by weight of lecithin as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples of 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0036]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 8, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral and alkaline sides. Furthermore, when the heating time was extended to check whether LFs could be confirmed, at pH 3 to 8, no aggregation / precipitation was observed even after heating at 120 ° C. for 6 minutes, and a band of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0037]
[Test Example 10]
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 15 mg% (solution A). 0.6% by weight of pectin was dissolved in deionized water as a stabilizer (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0038]
As a result of this test, the solution containing the LF composition did not cause visual aggregation / precipitation at pH 3 to 5, and a band of LFs could be confirmed by SDS-PAGE. Therefore, it was found that this LF composition had extremely high heat stability on the acidic side. Furthermore, when the heating time was extended and it was examined whether LFs could be confirmed, at pH 3 to 5, no aggregation / precipitation was observed even after heating at 120 ° C. for 7 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0039]
[Test Example 11]
LF was dissolved in deionized water at a concentration of 10 mg% (Solution A). 0.15% by weight of carboxymethyl cellulose as a stabilizer was dissolved in deionized water (Solution B). The A liquid and the B liquid were mixed and stirred and mixed at 40 ° C. and 8000 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) to prepare an LF composition. Next, this LF composition was adjusted to 10 samples having a pH of 1 to 10 using a lactic acid or sodium hydroxide solution. This was dispensed into ampoules in a volume of 2 ml each, and heated at 90 ° C, 100 ° C, 110 ° C, 120 ° C, and 130 ° C for 4 minutes.
The aggregation / precipitation state of each sample after the heat treatment was visually judged, and then the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE) shown below. The analysis by SDS-PAGE is for confirming the decomposition of LFs after the heat treatment.
SDS-PAGE: 15 μl of each sample was added to 15 μl of sample buffer (1.25 ml of 0.5 M Tris-HCl (pH 6.8), 1.0 ml of glycerol, 2.0 ml of 10% SDS, 0.5 ml of 2-mercaptoethanol, 0.1 ml) % BPB (0.25 ml) and heated at 100 ° C. for 5 minutes. Thereafter, 15 μl of each sample was electrophoresed on a 14% polyacrylamide gel (TEFCO SDS-PAGE mini). Kaleidoscope Prestained Standards was used as a molecular weight marker.
[0040]
As a result of this test, the solution containing the LF composition did not cause visual aggregation and precipitation at pH 3 to 7, and the bands of LFs could be confirmed by SDS-PAGE. Therefore, it was found that the LF composition was not only stable on the acidic side but also extremely high in heat stability on the neutral side. Furthermore, when the heating time was extended and it was examined whether or not LFs could be confirmed, at pH 3 to 7, aggregation and precipitation did not occur even after heating at 120 ° C. for 6 minutes, and bands of LFs could be confirmed. . From the test results, it became clear that this LF composition can be sufficiently subjected to a retort sterilization treatment.
[0041]
[Test Example 12]
The antigenicity of the sample prepared in Test Example 1 was measured by competitive ELISA. The reactivity of the unheated LF composition with the antibody relative to the reactivity of the untreated LF composition with the antibody was calculated as a percentage (%).
[0042]
Table 4 shows the results. From Table 4, it was found that the reactivity of the unheated LF composition with the antibody relative to the reactivity of the unheated LF composition with the antibody maintained 50% or more up to 130 ° C. Therefore, the LF composition of the present invention is stable to an ultra-high temperature heat treatment of 130 ° C. when the pH is in the range of 2 to 9.
[0043]
[Table 4]
[0044]
[Test Example 13]
A solution containing the LF composition (LF 8 mg%, xanthan gum 0.04 wt%) prepared in the same manner as in Test Example 2 was adjusted to pH 2 to 9, and 150 ml each was filled in a retort pouch and sealed. As a control, a solution containing only LF adjusted to pH 2 to 9 was filled into a retort pouch by 150 ml and sealed. These solutions were heated at 120 ° C. for 4 minutes by a retort sterilizer (first-class pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Works). Each sample after heating was stored at 25 ° C., and the presence or absence of aggregation / precipitation was visually observed with time, and the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE). Was.
As a result, when the solution containing only LF as a control was adjusted to pH 2 to 9, aggregation and precipitation were confirmed on the first day, but the solution containing the LF composition was adjusted to pH 2 to 9. No aggregation / precipitation was observed even one month after storage. Further, when the band pattern of LFs was analyzed by SDS-PAGE, the solution containing the LF composition adjusted to pH 2 to 9 showed a band of LFs even one month after the start of storage and one month after storage. No other changes were noted. The test results showed that the LF composition according to the present invention was very effective in the case of retort sterilization.
[0045]
[Test Example 14]
200 g of the LF composition (LF 8 mg%, xanthan gum 0.04 wt%) prepared in the same manner as in Test Example 2 was mixed with 800 g of reduced skim milk solution (3 wt% of skim milk powder), and a solution containing the LF composition ( (1)) was prepared. As a control, a solution (200) mixed with 200 g of an LF solution (8 mg% LF solution) and 800 g of a reduced skim milk solution (3% by weight of skim milk), and a solution containing only 1000 g of a reduced skim milk solution (3% by weight of skim milk) ( (3)) was prepared. 150 ml of each solution was filled in a retort pouch and sealed. These solutions were heated at 120 ° C. for 20 minutes using a retort sterilizer (Type 1 pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Seisakusho). As a result, in the solutions (1) and (3), no aggregation / precipitation was observed and the flavor was good, but in the solution (2), aggregation / precipitation was observed. The test results showed that the LF composition according to the present invention was very effective in the case of retort sterilization.
[0046]
[Comparative Example 1]
Soy polysaccharide, xanthan gum, gellan gum and guar gum were selected as stabilizers, and an LF composition was prepared in the same manner as in Test Example 1. Each stabilizer was tested with 0.4% by weight of soybean polysaccharide, 0.04% by weight of xanthan gum, 0.05% by weight of gellan gum and 0.05% by weight of guar gum. These LF compositions were adjusted to pH 6.5 and heated at 120 ° C. for 4 minutes. The aggregated / precipitated state of each heated sample was visually determined, and the band pattern of LFs was analyzed by polyacrylamide gel electrophoresis (SDS-PAGE).
[0047]
The test results are shown in Table 5. All of the LF compositions before heating did not aggregate or precipitate, were transparent, and bands of LFs could be confirmed. After heating, the soy polysaccharide and xanthan gum-containing LF composition were transparent, and bands of LFs were also confirmed, but the gellan gum and guar gum-containing LF composition were all translucent or aggregated and precipitated, No LF bands could be confirmed by SDS-PAGE.
[0048]
[Table 5]
[0049]
Embodiment 1
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (solution A, 300 g). 0.8% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (solution B, 300 g). The liquid A and the liquid B were mixed and stirred and mixed with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan) at 9500 rpm for 3 minutes to prepare 600 g of the LF composition of the present invention.
[0050]
Embodiment 2
LF was dissolved in deionized water at a concentration of 16 mg% (solution A, 10 kg). Xanthan gum as a stabilizer was dissolved in deionized water at 0.16% by weight (solution B, 10 kg). Solution A and solution B are mixed, stirred and mixed at 3600 rpm for 30 minutes with a TK homomixer (MARK II 160, manufactured by Tokushu Kika Kogyo Co.), and further concentrated on a UF membrane having a molecular weight cutoff of 10 kDa to obtain the present invention. 10 kg of LF composition was prepared.
[0051]
Embodiment 3
Apolactoferrin deferred with hydrochloric acid was dissolved in deionized water at a concentration of 10 mg% (solution A, 1000 kg). 0.4% by weight of a sucrose fatty acid ester was dissolved in deionized water as a stabilizer (solution B, 1000 kg). Solution A and solution B are mixed, stirred and mixed with a TK homomixer (MARK II 2500, manufactured by Tokushu Kika Kogyo) at 40 ° C. and 3600 rpm for 40 minutes, and further freeze-dried to obtain the LF composition of the present invention. 9 kg were prepared.
[0052]
Embodiment 4
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 20 mg% (solution A, 500 g). 0.4% by weight of soybean polysaccharide as a stabilizer was dissolved in deionized water (Solution B, 500 g). The solution A and the solution B were mixed and stirred and mixed at 40 ° C. and 9500 rpm for 3 minutes with an ultra disperser (ULTRA-TURRAX T-25; manufactured by IKA Japan). Thereafter, 80 g of sorbitol, 4 g of acidulant, 4 g of flavoring agent, 10 g of pectin, 10 g of whey protein concentrate, 2 g of calcium lactate, and 890 g of water are added to the above solution, followed by stirring and mixing to prepare the LF composition of the present invention. did. The mixture was filled in a 200 ml chia pack, sterilized at 85 ° C. for 20 minutes, sealed and sealed to prepare 10 bags of gel food comprising the LF composition of the present invention. In the prepared gel foods, no precipitate or the like was observed, and no abnormal flavor was felt.
[0053]
Embodiment 5
Iron-saturated lactoferrin was dissolved in deionized water at a concentration of 100 mg% (solution A, 200 g). As a stabilizer, 4% by weight of soybean polysaccharide was dissolved in deionized water (solution B, 200 g). 100 g of maltitol, 20 g of reduced starch syrup, 2 g of acidulant, 2 g of flavor, 200 g of solution A, 200 g of solution B, and 476 g of water were mixed to prepare an LF composition of the present invention. This LF composition was filled in a 50 ml glass bottle, sterilized at 90 ° C. for 15 minutes, sealed and sealed to prepare 20 drinks containing the LF composition of the present invention. No precipitation was observed in any of the prepared beverages, and no abnormal flavor was felt.
[0054]
Embodiment 6
0.2 kg of LF composition prepared in Example 2 (lactoferrin 8 mg%, xanthan gum 0.08 wt%), 12 kg of soybean meal, 14 kg of skim milk powder, 4 kg of soybean oil, 2 kg of corn oil, 28 kg of palm oil, 15 kg of corn starch, 15 kg of flour 9 kg, 2 kg of bran, 9 kg of a vitamin mixture, 2.8 kg of cellulose, and 2 kg of a mineral mixture were blended and sterilized at 120 ° C. for 4 minutes to prepare 100 kg of a dog breeding feed.
[0055]
Embodiment 7
To 3 kg of the LF composition prepared in Example 3 (5 mg% of apolactoferrin, 0.2% by weight of sucrose fatty acid ester), 5 kg of casein, 5 kg of soybean protein, 1 kg of fish oil, 3 kg of perilla oil, 19 kg of dextrin, 6 kg of mineral mixture, vitamin 1.95 kg of the mixture, 2 kg of emulsifier, 4 kg of stabilizer, and 0.05 kg of fragrance were blended, filled in a 200 ml retort pouch, and then charged with a retort sterilizer (Type 1 pressure vessel, TYPE: RCS-4CRTGN, manufactured by Hisaka Seisakusho). The solution was sterilized at 121 ° C. for 20 minutes to prepare 50 kg of an enteral nutrition.
[0056]
【The invention's effect】
The LF composition of the present invention has a high heat stability in a wide range from an acidic region to a neutral region and an alkaline region, and can be subjected to a high-temperature heat treatment and a retort sterilization treatment usually used for the production of foods and drinks, feeds and medicaments. Dry heat sterilization is possible even in powder form. Therefore, it is possible to prepare various forms of foods and drinks, feeds, and medicaments, such as liquid, gel, powder, and granules, containing LFs comprising the LF composition of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003153317A JP4592260B2 (en) | 2003-05-29 | 2003-05-29 | Lactoferrin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003153317A JP4592260B2 (en) | 2003-05-29 | 2003-05-29 | Lactoferrin composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010047608A Division JP2010180219A (en) | 2010-03-04 | 2010-03-04 | Lactoferrin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004352669A true JP2004352669A (en) | 2004-12-16 |
JP4592260B2 JP4592260B2 (en) | 2010-12-01 |
Family
ID=34048306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003153317A Expired - Fee Related JP4592260B2 (en) | 2003-05-29 | 2003-05-29 | Lactoferrin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4592260B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006016595A1 (en) * | 2004-08-10 | 2006-02-16 | Nrl Pharma, Inc. | Lactoferrin complex and method of producing the same |
WO2006082824A1 (en) * | 2005-02-03 | 2006-08-10 | Nrl Pharma, Inc. | Matrix-type enteric coated sustained release composition |
WO2009122719A1 (en) | 2008-03-31 | 2009-10-08 | 森永乳業株式会社 | Substance and composition both capable of imparting heat resistance |
EP2121002A1 (en) * | 2006-12-22 | 2009-11-25 | Fontera Co-Operative Group Limited | Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer |
WO2012161112A1 (en) * | 2011-05-20 | 2012-11-29 | 学校法人慶應義塾 | Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein |
JP2012240970A (en) * | 2011-05-20 | 2012-12-10 | Keio Gijuku | Novel metalloprotein and process for producing the same |
WO2013024663A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Composition containing s-adenosyl-l-methionine with excellent storage stability |
CN105072920A (en) * | 2013-03-28 | 2015-11-18 | 雪印惠乳业株式会社 | Protein composition and method for producing the same |
CN113475655A (en) * | 2021-05-31 | 2021-10-08 | 仙乐健康科技股份有限公司 | Milk-containing beverage and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220130A (en) * | 1990-01-25 | 1991-09-27 | Snow Brand Milk Prod Co Ltd | Agent inhibitory against implantation of pathogenic microorganism and food and drink or the like containing the same inhibitory agent |
JPH07300425A (en) * | 1994-12-09 | 1995-11-14 | Snow Brand Milk Prod Co Ltd | Agent for preventing adhesion of pathogenic fungus and beverage or the like containing the same |
JPH0840824A (en) * | 1995-06-21 | 1996-02-13 | Nonogawa Shoji Kk | Cosmetic |
JPH11315014A (en) * | 1998-04-30 | 1999-11-16 | Snow Brand Milk Prod Co Ltd | Preventive and remedy for periodontal disease |
JP2000119155A (en) * | 1998-10-14 | 2000-04-25 | Kose Corp | Skin lotion |
JP2001089339A (en) * | 1999-09-14 | 2001-04-03 | Lion Corp | Oral composition |
JP2001181160A (en) * | 1999-12-27 | 2001-07-03 | Morinaga Milk Ind Co Ltd | Swallowable oral cavity cleaning composition |
JP2001247474A (en) * | 2000-03-07 | 2001-09-11 | Snow Brand Milk Prod Co Ltd | Medicine for preventing and/or treating liver disease |
WO2002043752A1 (en) * | 2000-11-29 | 2002-06-06 | Morinaga Milk Industry Co., Ltd. | Interferon therapeutic effect-potentiating agents |
-
2003
- 2003-05-29 JP JP2003153317A patent/JP4592260B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03220130A (en) * | 1990-01-25 | 1991-09-27 | Snow Brand Milk Prod Co Ltd | Agent inhibitory against implantation of pathogenic microorganism and food and drink or the like containing the same inhibitory agent |
JPH07300425A (en) * | 1994-12-09 | 1995-11-14 | Snow Brand Milk Prod Co Ltd | Agent for preventing adhesion of pathogenic fungus and beverage or the like containing the same |
JPH0840824A (en) * | 1995-06-21 | 1996-02-13 | Nonogawa Shoji Kk | Cosmetic |
JPH11315014A (en) * | 1998-04-30 | 1999-11-16 | Snow Brand Milk Prod Co Ltd | Preventive and remedy for periodontal disease |
JP2000119155A (en) * | 1998-10-14 | 2000-04-25 | Kose Corp | Skin lotion |
JP2001089339A (en) * | 1999-09-14 | 2001-04-03 | Lion Corp | Oral composition |
JP2001181160A (en) * | 1999-12-27 | 2001-07-03 | Morinaga Milk Ind Co Ltd | Swallowable oral cavity cleaning composition |
JP2001247474A (en) * | 2000-03-07 | 2001-09-11 | Snow Brand Milk Prod Co Ltd | Medicine for preventing and/or treating liver disease |
WO2002043752A1 (en) * | 2000-11-29 | 2002-06-06 | Morinaga Milk Industry Co., Ltd. | Interferon therapeutic effect-potentiating agents |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006016595A1 (en) * | 2004-08-10 | 2006-02-16 | Nrl Pharma, Inc. | Lactoferrin complex and method of producing the same |
WO2006082824A1 (en) * | 2005-02-03 | 2006-08-10 | Nrl Pharma, Inc. | Matrix-type enteric coated sustained release composition |
EP2121002A4 (en) * | 2006-12-22 | 2011-10-05 | Fonterra Co Operative Group | Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer |
EP2121002A1 (en) * | 2006-12-22 | 2009-11-25 | Fontera Co-Operative Group Limited | Methods of immune or haematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer |
US8420128B2 (en) | 2008-03-31 | 2013-04-16 | Morinaga Milk Industry Co., Ltd. | Method of imparting heat resistance to lactoferrin |
WO2009122719A1 (en) | 2008-03-31 | 2009-10-08 | 森永乳業株式会社 | Substance and composition both capable of imparting heat resistance |
WO2012161112A1 (en) * | 2011-05-20 | 2012-11-29 | 学校法人慶應義塾 | Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein |
JP2012240970A (en) * | 2011-05-20 | 2012-12-10 | Keio Gijuku | Novel metalloprotein and process for producing the same |
CN103998464A (en) * | 2011-05-20 | 2014-08-20 | 学校法人庆应义塾 | Novel metalloprotein and process for producing same, and prophylactic or therapeutic agent for corneal and conjunctival diseases comprising said metalloprotein |
WO2013024663A1 (en) * | 2011-08-12 | 2013-02-21 | 三菱瓦斯化学株式会社 | Composition containing s-adenosyl-l-methionine with excellent storage stability |
JPWO2013024663A1 (en) * | 2011-08-12 | 2015-03-05 | 三菱瓦斯化学株式会社 | S-adenosyl-L-methionine-containing composition having excellent storage stability |
US9700629B2 (en) | 2011-08-12 | 2017-07-11 | Mitsubishi Gas Chemical Company, Inc. | Composition containing S-adenosyl-L-methionine with excellent storage stability |
CN105072920A (en) * | 2013-03-28 | 2015-11-18 | 雪印惠乳业株式会社 | Protein composition and method for producing the same |
EP2984935A4 (en) * | 2013-03-28 | 2016-11-30 | Megmilk Snow Brand Co Ltd | Protein composition and production process therefor |
US9861121B2 (en) | 2013-03-28 | 2018-01-09 | Megmilk Snow Brand Co., Ltd. | Milk basic protein composition and production process therefor |
TWI675621B (en) * | 2013-03-28 | 2019-11-01 | 日商雪印惠乳業股份有限公司 | Protein composition and method of manufacturing same |
CN113475655A (en) * | 2021-05-31 | 2021-10-08 | 仙乐健康科技股份有限公司 | Milk-containing beverage and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4592260B2 (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6918188B2 (en) | High protein beverage containing whey protein | |
EP2651249B1 (en) | Method for making whey protein composition with a reduced astringency | |
TWI675621B (en) | Protein composition and method of manufacturing same | |
US9386791B2 (en) | Dairy product and process | |
JP5562536B2 (en) | Method for producing acidic gel food | |
TWI635805B (en) | Acidic protein drink | |
US20100178361A1 (en) | Method of stabilizing iron compositions with milk protein | |
JP4592260B2 (en) | Lactoferrin composition | |
JP2006212006A (en) | Gel-like food distributable at normal temperature | |
JP2010180219A (en) | Lactoferrin composition | |
JP2007126379A (en) | Method for producing acidic liquid enteral nutritive preparation | |
JP2015195749A (en) | Vegetable jelly and vegetable jelly raw material | |
JP4410074B2 (en) | Acid gel food | |
JP2004298047A (en) | Acidic gel-like food | |
JP5955615B2 (en) | Weakly acidic protein-containing gel food and drink | |
JP6753255B2 (en) | Liquid nutritional composition | |
JP2005110636A (en) | Iron composition containing milk protein | |
JP2003070424A (en) | Protein stabilizer | |
Mehra et al. | β-Lactoglobulin: A Whey Protein Fraction with Enhanced Functionality | |
NZ562043A (en) | Iron composition containing milk protein | |
JP2014168436A (en) | Stabilization of low acidic milk-containing beverage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100302 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100302 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100422 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100820 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100914 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4592260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |