【0001】
【発明の属する技術分野】
この発明は、物体の角度と位置を検出する角度・位置検出装置及びそれを内蔵した自在継手に関するものである。
【0002】
【従来の技術】
【特許文献1】特開2000−2565号公報
【特許文献2】特開平10−25095号公報
【特許文献3】特開平8−159757号公報
2軸を、位置関係が連結によって拘束されずに自由自在に変り得るように連結する自在継手の回転角度や、自在継手と組み合わされた伸縮機構の伸縮検知は、一般に、自在継手や伸縮機構の外部に角度センサや変位センサなど複数のセンサを設けて行っている。
【0003】
例えば特許文献1に示された変位検出装置は、第1の軸と第2の軸を連結した自在継手に、直交した2つの角度センサを設け、第2の軸に、ストロークセンサを有する伸縮機構を介して第3の軸を伸縮自在に取り付け、第1の軸に対する第2の軸と第3の軸の回転角度を2つの角度センサで検出し、第2の軸に対する第3の軸の伸縮量をストロークセンサで検出して第3の軸の端部の変位を検出するようにしている。また、特許文献2に示された操舵入力装置は、3軸のジョイスティックの回転と捩れを複数の傾斜センサで検出するようにしている。
【0004】
特許文献3に示された地中を掘進したトンネル穴の円弧形状を計測する計測装置は、2本の計測管を自在継手で回転自在に連結し、この連結部にプリズムを配置し、一方の計測管の端部にはレーザ発振器を設け、他方の計測管の端部には受光位置検出器を設け、このレーザ発振器とプリズム及び受光位置検出木で角度検知センサを構成し、レーザ発振装置から出射したレーザビームを連結部に設けたプリズムで適宜照射角度を変えて他方の計測管に入射させ、受光位置検出器で検知したレーザビームの受光位置から2本の計測管の曲がり角度を検知するようにしている。また、特許文献3に示された操舵入力装置は、3軸のジョイスティックの回転と捩れを複数の傾斜センサで検出するようにしている。
【0005】
【発明が解決しようとする課題】
特許文献1,2に示すように、移動する物体の角度や位置を検出するために複数のセンサを設けると、コストが上昇するとともにセンサの数に応じてセンサ部のサイズが大きくなってしまう。また、2軸を回転自在に連結した自在継手にセンサ部を組み込もうとしても、センサ部のサイズが大きくなるため、組み込むことは困難である。また、特許文献3に示すように、1軸の角度を検出するために専用のセンサを設けると、汎用性がなくコスト高になってしまう。
【0006】
この発明は係る短所を改善し、簡単な構成で小型化した多自由度の角度・位置検出装置及びそれを内蔵した自在継手を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
この発明の角度・位置検出装置は、基準点に対して自由運動する測定物体と連動して動き、個別に判別可能であり、一直線状にない少なくとも3個のマーカと、基準点に対する各マーカの角度を光学的に測定する測定装置と、測定した各マーカの角度から基準点に対する測定物体の角度と位置を算出する演算処理装置を有することを特徴とする。
【0008】
基準点に対して自由運動する測定物体は、角度に関して3つの自由度を持ち、並進に関して3つの自由度を持つ。この測定物体に個別に判別可能な一直線状にない3個のマーカを設け、測定物体とマーカが連動して動くようにしておくと、基準点に対してマーカの空間位置が分かれば、3個のマーカの張る平面に対して測定物体の位置が一意に決まるので、測定物体の基準点に対する角度と位置を決定でき、6軸センサとして作用することができる。
【0009】
また、演算処理装置は、1つ前に測定された各マーカの角度又は角度と位置を初期値として測定物体の現在の角度と位置を算出し、算出する測定物体の現在の角度と位置の安定度を高める。
【0010】
また、演算処理装置は、各マーカの位置をマーカ部分の光量で重みをつけた重心として決定し、測定物体の移動によりマーカの観察角度が変わっても安定して各マーカの位置を特定する。
【0011】
また、マーカは光を散乱させる表面状態に形成し、測定装置はマーカを照明する照明手段と、マーカで散乱された散乱光を撮像する撮像装置とで構成したり、マーカを発光光源で構成し、測定装置はマーカの発光を撮像する撮像装置で構成して、移動している各マーカを安定して検出する。
【0012】
この発明の自在継手は、前記角度・位置検出装置を有し、角度・位置検出装置の少なくとも3個のマーカを、回転自在に連結された軸継手の一方の軸継手の内部に設け、角度・位置検出装置の測定装置を他方の軸継手に設け、3軸の回転角度を検出することを特徴とする。
【0013】
この自在継手の回転自在に連結された軸継手の一方の軸継手に伸縮機構を有し、3軸の回転と並進を検出する。
【0014】
【発明の実施の形態】
まず、この発明の動作原理について説明する。例えば図1に示すように、基準点Aに対して自由運動する測定物体1は、角度に関して3つの自由度と並進に関して3つの自由度を持つ。この測定物体1に個別に判別可能な一直線上にない3個のマーカ2a,2b,2cを設け、測定物体1とマーカ2a,2b,2cが連動して動くようにしておく。この測定物体1の位置は、基準点Aに対するマーカ2a,2b,2cの空間位置が分かれば、3個のマーカ2a,2b,2cで特定される平面により測定物体1の位置が一意に決まり、測定物体1の基準点Aに対する角度と位置が決定できる。
【0015】
ここでマーカ2a,2b,2cの座標をP1,P2,P3とし、基準点Aに対するマーカ2a,2b,2cの方向ベクトルをt1,t2,t3とし、基準点Aからマーカ2a,2b,2cまでの距離をd1,d2,d3とすると、下記(1)式が成り立つ。
P1=d1・t1
P2=d2・t2 (1)
P3=d3・t3
また、マーカ2aとマーカ2bの距離をL12、マーカ2bとマーカ2cの距離をL23、マーカ2cとマーカ2aの距離をL31とすると、下記(2)式が成り立つ。
L12=|P1−P2|
L23=|P2−P3| (2)
L31=|P3−P1|
この(1)式と(2)式から、未知の基準点Aからマーカ2a,2b,2cまでの距離d1,d2,d3を決めることができる。
【0016】
一般に上記(1),(2)式を満たすマーカ2の位置として取り得る解は複数あるが、マーカ数を3以上にすることにより全マーカ2の位置に関する拘束条件を増やしてマーカ位置を一意に求めることができる。すなわちマーカ点数がn個の場合、i番目のマーカ2iの座標をPi、基準点Aに対するマーカ2iの方向ベクトルをti、基準点Aからマーカ2iまでの距離をdi、i番目のマーカ2iとj番目のマーカ2jの距離をLijとすると、下記(3),(4)式が成り立つ。
Pi=di・ti (3)
Lij=|Pi−Pj| (4)
n個の未知数di(i=1〜n)に対して、(3)式はn個成り立ち、(4)式はn(n−1)/2個成り立つので、全マーカの位置に対する拘束条件となる方程式数は、{n・n(n−1)/2}個となり、マーカ点数を増やすと指数関数的に拘束条件を増やすことができる。
【0017】
この原理を使用して測定物体1の基準点Aに対する角度と位置を検出する角度・位置検出装置の構成を図2に示す。角度・位置検出装置3は、測定物体1に、一直線上にないように設けられ、反射率がそれぞれ異なる3個のマーカ2a,2b,2cと、例えばLEDからなり、測定物体1に光を照射してマーカ2a,2b,2cを照明する光源4と、撮像装置5と、光源4を駆動する駆動手段6と、例えばパソコン等からなり、撮像装置5からの信号により測定物体1の角度と位置を演算するとともに駆動手段6の動作を制御する演算処理装置7を有する。撮像装置5は、基準点Aに結像レンズ8が設けられ、例えばCCDからなる撮像面9が主点に設けられている。
【0018】
この角度・位置検出装置3で、自由運動をしている測定物体1の基準点Aに対する変化する角度と位置を検出するときの動作を図3のフローチャートを参照して説明する。
【0019】
まず、基準点Aに対する測定物体1の角度と位置の初期値を演算処理装置7に設定する(ステップS1)。その後、光源4から測定物体1に光を照射し、マーカ2a,2b,2cで反射した光を撮像装置5の結像レンズ8で集光して撮像面9に入射し、マーカ2a,2b,2cの像を撮像する。演算処理装置7は撮像装置5で撮像したマーカ2a,2b,2cの像の出力信号と撮像装置5の焦点距離fによりマーカ2a,2b,2cの基準点Aに対する角度を演算し(ステップS2)、演算した角度から基準点Aに対するマーカ2a,2b,2cの方向ベクトルt1,t2,t3を算出する(ステップS3)。
【0020】
このマーカ2a,2b,2cの角度を演算するとき、図4のフローチャートに示すように、撮像装置5で撮像した画像の明暗によりマーカ2a,2b,2cの像を切り出し(ステップS11)、マーカ2a,2b,2cの反射率により異なる像の濃度からマーカ2a,2b,2cをそれぞれ判別する(ステップS12)。このマーカ2a,2b,2cを個別に判別するとき、マーカ2a,2b,2cの反射率を異ならせる代わりに、マーカ2a,2b,2cの色や形状を外径を異ならせても良い。また、マーカ2a,2b,2cが基準点Aを中心にする球面に沿って動く場合は、各マーカ2a,2b,2cの距離が常に一定なので、各マーカ2a,2b,2cの大きさやマーカ間の距離を個別に変えておいて、マーカ2a,2b,2cを個別に判別するようにしても良い。
【0021】
この判別したマーカ2a,2b,2cの各像の光量で重みを付けて重心をそれぞれ計算する(ステップS13)。このようにマーカ2a,2b,2cの重心をマーカ部分の光量で重みを付けて算出することにより、マーカ2a,2b,2cの観察角度が変わっても重心位置は変わらず、マーカ2a,2b,2cの位置を特定することができる。
【0022】
この計算した重心の位置と撮像装置5の焦点距離fによりマーカ2a,2b,2cの角度を演算する。例えば撮像装置5をピンホールカメラで近似してピンホール位置を基準点Aとすると、撮像面9とピンホールとの距離が焦点距離fとなる。ピンホールから撮像面9におろした垂線との交点において撮像面9内で直交するx方向とy方向をとり、ピンホールから撮像面9におろした垂線との交点からマーカ2の結像位置との距離のx方向の成分をxとし、y方向の成分をyとすると、撮像面の垂線方向に対するマーカ方向の角度φ,θは下記式で得られる(ステップS14)。
φ=arctan(x/f) (5)
θ=arctan(y/f) (6)
この角度φ,θによりマーカ2a,2b,2cの方向ベクトルt1,t2,t3を求めることができる。
【0023】
演算処理装置7はマーカ2a,2b,2cの方向ベクトルt1,t2,t3を演算した後、演算した方向ベクトルt1,t2,t3と(1)式と(2)式によりマーカ2a,2b,2cの基準点Aからの距離d1,d2,d3を算出し(ステップS4)、マーカ2a,2b,2cの角度と距離から測定物体1の角度と位置を算出して出力する(ステップS5)。その後所定時間経過して終了信号がない場合は(ステップS6,S7)、測定物体1の角度と位置の初期値に、今回の測定結果を設定し(ステップS8)、演算処理装置7でマーカ2a,2b,2cの基準点Aに対する角度を演算して(ステップS2)、前記測定物体1のそのときの角度と位置の算出処理を行う(ステップS3〜S8)。この処理を繰り返して終了信号があったら測定物体1の角度と位置の算出処理を終了する(ステップS7)。
【0024】
この測定物体1の角度と位置の算出処理において、(1)式と(2)式によりマーカ2a,2b,2cの基準点Aからの距離d1,d2,d3を算出するとき、(2)式は変数d1,d2,d3に対する非線形方程式なので、例えばニュートン法などで解を求める場合、初期値が解が真の値に近ければ解が得られるが、初期値が真の値から遠いと別の解に収束したり、発散したりする場合がある。これに対して、十分真の値に近い1つ前に測定された角度と位置を初期値に設定することにより真の値を安定して得ることができる。
【0025】
このようにして基準点Aに対して自由運動している測定物体1の角度と位置を、簡単な構成で精度良く測定することができる。
【0026】
また、測定物体1の角度と位置を測定するため、マーカ2a,2b,2cの角度と位置を検出するときの分解能は、撮像面9を構成するCCDの撮像する視野と画素数で決まり、この精度を向上させるにはCCDの画素数を増やせば良い。CCDは100万画素でも対角1cm以下の製品が容易に入手可能になっており、CCDと結像レンズ8を含めた撮像装置5の容積は1cm3を十分下回るようにすることができる。また、結像レンズ8とマーカ2a,2b,2cの距離は結像レンズ8の視野とマーカ2a,2b,2cの移動範囲に依存するが、最短で数mm程度となり、マーカ2a,2b,2cを含めても数cm3程度の小容量で角度・位置検出装置を構成することができる。また、マーカ2a,2b,2cには電源を必要としないので測定物体1の選択の範囲が広がる利点がある。
【0027】
前記説明では測定物体1に光源4から散乱光を照射し、マーカ2a,2b,2cからの反射光を利用してマーカ2a,2b,2cの角度と位置を検出する場合について説明したが、図5の構成図に示すように、マーカ2a,2b,2cとしてLEDやEL素子等の発光素子を使用しても良い。このようにマーカ2a,2b,2cとして発光素子を使用することにより、各マーカ2a,2b,2cを判別するとき、各マーカ2a,2b,2cを逐次点灯させたり、各マーカ2a,2b,2c毎に光量や発光色を変えることにより、各マーカ2a,2b,2cを容易に判別することができる。
【0028】
この場合、撮像装置5の撮像面9として2次元PSD(Position Sensitive Device)を用いることにより、CCD等の2次元撮像素子を使用する場合と比べて応答速度を早くすることができる。
【0029】
この角度・位置検出装置を自在継手に適用して自在継手の回転角度を検出する場合について説明する。
【0030】
図6は自在継手の構成図である。自在継手10は、例えば球面部11と、球面部11が嵌合するソケット部12を有するボールジョイントからなり、球面部11を基準にしてソケット部12が任意に回転する。球面部11は少なくとも上部の半球部13は透明又は半透明の材料で形成され、下部の半球部14と上部の半球部13の境界面に一直線上にない複数例えば3個のLEDからなるマーカ2a,2b,2cを有する。マーカ2a,2b,2cのLEDは駆動手段6により発光が制御される。ソケット部12には結像レンズ8と例えばCCDからなる撮像面9を有する撮像装置5が設けられている。
【0031】
この自在継手10の球面部11を基準にしてソケット部12を回転するとき、マーカ2a,2b,2cを発光させて撮像装置5でマーカ2a,2b,2cからの光を受光し、撮像面9でマーカ2a,2b,2cの動きを検知し、球面部11とソケット部12の回転角度や捩れ角度を演算処理装置7で算出する。このようにして自在継手10の外部に角度センサを設けずに自在継手10の回転角度や捩れ角度を検知することができ、自在継手10を配置するための空間さえあれば良くなり、他の角度センサを3個設ける場合に比べてコンパクトにすることができる。
【0032】
前記説明では球面部11にLEDからなるマーカ2a,2b,2cを設けた場合について説明したが、LEDの代わりに反射部材でマーカ2a,2b,2cを構成し、ソケット部12に光源を設けても良い。また、図7の構成図に示すように、球面部11に撮像装置5を設け、ソケット部12を不透明部材で形成し、3個の直径が異なる孔によりマーカ2a,2b,2cを構成し、外部からマーカ2a,2b,2cを通る光を撮像装置5で撮像して自在継手10の回転角度や捩れ角度を検出するようにしても良い。
【0033】
さらに、図8の構成図に示すように、自在継手10と例えばベローズ等を使用した伸縮機構15を組み合わせて回転と並進を行う場合も、マーカ2a,2b,2cと撮像装置5を内部に設け、自在継手10の動きと伸縮機構15の動きと共に移動するマーカ2a,2b,2cを撮像装置5で撮像し、移動するマーカ2a,2b,2cの空間座標から自在継手10と伸縮機構15の動きを決定して3軸の回転と1軸の並進を検出することができる。また、伸縮機構15の代わりに3軸の並進機構を設けても、同様にして3軸の回転と3軸の並進を検出することもできる。
【0034】
【発明の効果】
この発明は以上説明したように、基準点に対して自由運動する測定物体に、個別に判別可能であり、一直線状にない少なくとも3個のマーカを設け、基準点に対する各マーカの角度を光学的に測定し、測定した各マーカの角度から基準点に対する測定物体の角度と位置を算出することにより、簡単な構成で、かつ小型で6軸センサとして機能することができる。
【0035】
また、1つ前に測定された各マーカの角度又は角度と位置を初期値として測定物体の現在の角度と位置を算出することにより、算出する測定物体の現在の角度と位置の安定度を高め、測定精度を向上することができる。
【0036】
さらに、各マーカの位置をマーカ部分の光量で重みをつけた重心として決定することにより、測定物体の移動によりマーカの観察角度が変わっても安定して各マーカの位置を特定することができ、角度や位置の測定精度を向上することができる。
【0037】
また、マーカは光を散乱させる表面状態に形成し、測定装置はマーカを照明する照明手段と、マーカで散乱された散乱光を撮像する撮像装置とで構成したり、マーカを発光光源で構成し、測定装置はマーカの発光を撮像する撮像装置で構成知ることにより、移動している各マーカを安定して検出することができる。
【0038】
また、角度・位置検出装置の少なくとも3個のマーカを、回転自在に連結された軸継手の一方の軸継手の内部に設け、角度・位置検出装置の測定装置を他方の軸継手に設けることにより、自在継手の外部に角度センサを設けずに、3軸の回転角度を容易に検出することができる。
【0039】
この自在継手の回転自在に連結された軸継手の一方の軸継手に伸縮機構を設け、自在継手の動きと伸縮機構の動きと共に移動するマーカの空間座標から自在継手と伸縮機構の動きを決定することにより、簡単な構成で3軸の回転と並進を検出することができる。
【図面の簡単な説明】
【図1】この発明の動作原理を示す配置図である。
【図2】この発明の角度・位置検出装置の構成を示す配置図である。
【図3】角度・位置検出装置の動作を示すフローチャートである。
【図4】マーカの基準点に対する角度の算出処理を示すフローチャートである。
【図5】第2の角度・位置検出装置の構成を示す配置図である。
【図6】角度・位置検出装置を有する自在継手の構成図である。
【図7】角度・位置検出装置を有する第2の自在継手の構成図である。
【図8】角度・位置検出装置を有する第3の自在継手の構成図である。
【符号の説明】
1;測定物体、2;マーカ、3;角度・位置検出装置、4;光源、
5;撮像装置、6;駆動手段、7;演算処理装置、8;結像レンズ、
9;撮像面、10;自在継手、11;球面部、12;ソケット部、
15;伸縮機構。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an angle / position detecting device for detecting an angle and a position of an object, and a universal joint incorporating the same.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-2565 [Patent Document 2] Japanese Patent Application Laid-Open No. 10-25095 [Patent Document 3] Japanese Patent Application Laid-Open No. 8-159957 The two axes can be freely moved without being restricted by the connection. The rotation angle of the universal joint that can be freely changed and the expansion and contraction detection of the expansion and contraction mechanism combined with the universal joint are generally performed by providing a plurality of sensors such as an angle sensor and a displacement sensor outside the universal joint and the expansion and contraction mechanism. Is going.
[0003]
For example, in a displacement detection device disclosed in Patent Document 1, a universal joint that connects a first shaft and a second shaft is provided with two orthogonal angle sensors, and a telescopic mechanism having a stroke sensor on the second shaft. The third axis is attached to the first axis so as to be extendable and contractible, the rotation angles of the second axis and the third axis with respect to the first axis are detected by two angle sensors, and the third axis is extended and contracted with respect to the second axis. The displacement is detected by the stroke sensor to detect the displacement of the end of the third shaft. Further, the steering input device disclosed in Patent Document 2 detects rotation and twist of a three-axis joystick with a plurality of tilt sensors.
[0004]
The measuring device disclosed in Patent Document 3 for measuring the arc shape of a tunnel hole dug in the ground is rotatably connected to two measuring tubes by a universal joint, and a prism is arranged at the connecting portion. A laser oscillator is provided at the end of the measuring tube, and a light receiving position detector is provided at the end of the other measuring tube.The laser oscillator, a prism and a light receiving position detecting tree constitute an angle detection sensor. The emitted laser beam is incident on the other measuring tube at an appropriately changed irradiation angle by a prism provided at the connecting portion, and the bending angles of the two measuring tubes are detected from the light receiving position of the laser beam detected by the light receiving position detector. Like that. Further, the steering input device disclosed in Patent Document 3 detects rotation and twist of a three-axis joystick with a plurality of inclination sensors.
[0005]
[Problems to be solved by the invention]
As described in Patent Documents 1 and 2, when a plurality of sensors are provided to detect the angle and position of a moving object, the cost increases and the size of the sensor unit increases according to the number of sensors. Further, even if an attempt is made to incorporate the sensor unit into a universal joint in which two axes are rotatably connected, it is difficult to incorporate the sensor unit because the size of the sensor unit increases. Further, as shown in Patent Literature 3, if a dedicated sensor is provided to detect the angle of one axis, there is no versatility and the cost increases.
[0006]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multi-degree-of-freedom angle / position detecting device which is improved in such disadvantages and has a simple structure and is miniaturized, and a universal joint incorporating the same.
[0007]
[Means for Solving the Problems]
The angle / position detection device according to the present invention moves in conjunction with a measurement object that freely moves with respect to a reference point, can be individually distinguished, and has at least three markers that are not linear and each marker with respect to the reference point. It is characterized by having a measuring device for optically measuring the angle and an arithmetic processing device for calculating the angle and the position of the measured object with respect to the reference point from the measured angle of each marker.
[0008]
A measurement object that moves freely with respect to a reference point has three degrees of freedom in terms of angles and three degrees of freedom in terms of translation. If three markers that are not linear and can be individually distinguished are provided on this measurement object and the measurement object and the marker move in conjunction with each other, if the spatial position of the marker with respect to the reference point is known, three markers can be obtained. Since the position of the measurement object is uniquely determined with respect to the plane on which the marker is placed, the angle and position of the measurement object with respect to the reference point can be determined, and can function as a six-axis sensor.
[0009]
Further, the arithmetic processing device calculates the current angle and position of the measurement object using the angle or the angle and position of each marker measured immediately before as an initial value, and stabilizes the current angle and position of the calculated measurement object. Increase the degree.
[0010]
Further, the arithmetic processing device determines the position of each marker as a center of gravity weighted by the light amount of the marker portion, and stably specifies the position of each marker even when the observation angle of the marker changes due to the movement of the measurement object.
[0011]
Further, the marker is formed in a surface state that scatters light, and the measuring device is configured by an illuminating unit that illuminates the marker and an imaging device that captures the scattered light scattered by the marker, or the marker is configured by a light source. The measuring device is constituted by an image pickup device for picking up the light emission of the marker, and stably detects each moving marker.
[0012]
A universal joint according to the present invention includes the angle / position detecting device, wherein at least three markers of the angle / position detecting device are provided inside one of the rotatable shaft couplings, The measuring device of the position detecting device is provided on the other shaft joint, and the rotation angle of three axes is detected.
[0013]
One of the shaft joints rotatably connected to the universal joint has a telescopic mechanism, and detects rotation and translation of three axes.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the operation principle of the present invention will be described. For example, as shown in FIG. 1, a measurement object 1 that freely moves with respect to a reference point A has three degrees of freedom in terms of angles and three degrees of freedom in terms of translation. The measurement object 1 is provided with three markers 2a, 2b, 2c that are not on a straight line that can be individually distinguished, and the measurement object 1 and the markers 2a, 2b, 2c are moved in conjunction with each other. If the spatial position of the markers 2a, 2b, 2c with respect to the reference point A is known, the position of the measuring object 1 is uniquely determined by the plane specified by the three markers 2a, 2b, 2c, The angle and the position of the measurement object 1 with respect to the reference point A can be determined.
[0015]
Here, the coordinates of the markers 2a, 2b, and 2c are P1, P2, and P3, and the direction vectors of the markers 2a, 2b, and 2c with respect to the reference point A are t1, t2, and t3, from the reference point A to the markers 2a, 2b, and 2c. Is defined as d1, d2, and d3, the following equation (1) holds.
P1 = d1 · t1
P2 = d2 · t2 (1)
P3 = d3 · t3
When the distance between the marker 2a and the marker 2b is L12, the distance between the marker 2b and the marker 2c is L23, and the distance between the marker 2c and the marker 2a is L31, the following equation (2) is established.
L12 = | P1-P2 |
L23 = | P2-P3 | (2)
L31 = | P3-P1 |
From the equations (1) and (2), the distances d1, d2, and d3 from the unknown reference point A to the markers 2a, 2b, and 2c can be determined.
[0016]
In general, there are a plurality of solutions that can be taken as the positions of the markers 2 satisfying the above equations (1) and (2). However, by setting the number of markers to 3 or more, the constraint condition on the positions of all the markers 2 is increased to uniquely determine the marker positions. You can ask. That is, when the number of marker points is n, the coordinates of the i-th marker 2i are Pi, the direction vector of the marker 2i with respect to the reference point A is ti, the distance from the reference point A to the marker 2i is di, and the i-th markers 2i and j Assuming that the distance of the second marker 2j is Lij, the following equations (3) and (4) hold.
Pi = di · ti (3)
Lij = | Pi-Pj | (4)
For n unknowns di (i = 1 to n), equation (3) holds n, and equation (4) holds n (n-1) / 2. The number of equations becomes {n · n (n−1) / 2}. When the number of marker points is increased, the constraint condition can be exponentially increased.
[0017]
FIG. 2 shows the configuration of an angle / position detecting device that detects the angle and the position of the measurement object 1 with respect to the reference point A using this principle. The angle / position detecting device 3 is provided on the measurement object 1 so as not to be on a straight line, and includes three markers 2a, 2b, and 2c having different reflectances, for example, LEDs, and irradiates the measurement object 1 with light. A light source 4 for illuminating the markers 2a, 2b, and 2c, an imaging device 5, a driving unit 6 for driving the light source 4, and a personal computer, for example, and the angle and the position of the measurement object 1 based on a signal from the imaging device 5. And an arithmetic processing unit 7 for controlling the operation of the driving means 6. The imaging device 5 is provided with an imaging lens 8 at a reference point A, and an imaging surface 9 formed of, for example, a CCD at a principal point.
[0018]
The operation of the angle / position detection device 3 when detecting the changing angle and position of the measurement object 1 in a free motion with respect to the reference point A will be described with reference to the flowchart of FIG.
[0019]
First, initial values of the angle and the position of the measurement object 1 with respect to the reference point A are set in the arithmetic processing device 7 (step S1). Thereafter, light is emitted from the light source 4 to the measurement object 1, and the light reflected by the markers 2a, 2b, 2c is condensed by the imaging lens 8 of the imaging device 5 and is incident on the imaging surface 9, where the markers 2a, 2b, The image of 2c is captured. The arithmetic processing device 7 calculates the angles of the markers 2a, 2b, 2c with respect to the reference point A based on the output signals of the images of the markers 2a, 2b, 2c captured by the imaging device 5 and the focal length f of the imaging device 5 (step S2). Then, the direction vectors t1, t2, t3 of the markers 2a, 2b, 2c with respect to the reference point A are calculated from the calculated angles (step S3).
[0020]
When calculating the angles of the markers 2a, 2b, 2c, as shown in the flowchart of FIG. 4, the images of the markers 2a, 2b, 2c are cut out based on the brightness of the image captured by the imaging device 5 (step S11), and the marker 2a , 2b, and 2c, the markers 2a, 2b, and 2c are determined from the densities of the images that differ depending on the reflectances (step S12). When the markers 2a, 2b, 2c are individually determined, the colors and shapes of the markers 2a, 2b, 2c may have different outer diameters instead of different reflectances of the markers 2a, 2b, 2c. Further, when the markers 2a, 2b, 2c move along a spherical surface centered on the reference point A, the distance between the markers 2a, 2b, 2c is always constant. May be individually changed, and the markers 2a, 2b, and 2c may be individually determined.
[0021]
Weights are assigned based on the amounts of light of the images of the determined markers 2a, 2b, and 2c, and the centers of gravity are calculated (step S13). In this way, by calculating the center of gravity of the markers 2a, 2b, 2c by weighting them with the light quantity of the marker portion, the position of the center of gravity does not change even if the observation angle of the markers 2a, 2b, 2c changes, and the markers 2a, 2b, 2c The position of 2c can be specified.
[0022]
The angles of the markers 2a, 2b, 2c are calculated based on the calculated position of the center of gravity and the focal length f of the imaging device 5. For example, when the imaging device 5 is approximated by a pinhole camera and the pinhole position is set as the reference point A, the distance between the imaging surface 9 and the pinhole becomes the focal length f. At the intersection with the perpendicular drawn from the pinhole to the imaging surface 9, the x direction and the y direction orthogonal to each other within the imaging surface 9 are taken. From the intersection with the perpendicular drawn from the pinhole to the imaging surface 9, the imaging position of the marker 2 is determined. Assuming that the component of the distance in the x direction is x and the component in the y direction is y, the angles φ and θ in the marker direction with respect to the direction perpendicular to the imaging surface are obtained by the following equations (step S14).
φ = arctan (x / f) (5)
θ = arctan (y / f) (6)
The direction vectors t1, t2, and t3 of the markers 2a, 2b, and 2c can be obtained from the angles φ and θ.
[0023]
After calculating the direction vectors t1, t2, and t3 of the markers 2a, 2b, and 2c, the arithmetic processing unit 7 calculates the markers 2a, 2b, and 2c according to the calculated direction vectors t1, t2, and t3, and the expressions (1) and (2). The distances d1, d2, and d3 from the reference point A are calculated (step S4), and the angle and position of the measurement object 1 are calculated and output from the angles and distances of the markers 2a, 2b, and 2c (step S5). If the end signal does not exist after a lapse of a predetermined time (steps S6 and S7), the current measurement result is set to the initial value of the angle and position of the measurement object 1 (step S8), and the arithmetic processing unit 7 sets the marker 2a. , 2b, 2c with respect to the reference point A are calculated (step S2), and the angle and position of the measuring object 1 at that time are calculated (steps S3 to S8). This process is repeated, and when there is an end signal, the calculation process of the angle and the position of the measurement object 1 is ended (step S7).
[0024]
In the calculation processing of the angle and the position of the measurement object 1, when calculating the distances d1, d2, and d3 of the markers 2a, 2b, and 2c from the reference point A by the equations (1) and (2), the equation (2) is used. Is a nonlinear equation for variables d1, d2, and d3. For example, when a solution is obtained by the Newton method or the like, a solution can be obtained if the initial value is close to the true value, but if the initial value is far from the true value, another solution is obtained. The solution may converge or diverge. On the other hand, a true value can be stably obtained by setting an angle and a position measured immediately before the value sufficiently close to the true value to the initial values.
[0025]
In this way, the angle and position of the measurement object 1 that is freely moving with respect to the reference point A can be accurately measured with a simple configuration.
[0026]
In addition, since the angle and position of the measurement object 1 are measured, the resolution for detecting the angles and positions of the markers 2a, 2b, and 2c is determined by the field of view and the number of pixels of the CCD constituting the imaging surface 9. In order to improve the accuracy, the number of pixels of the CCD may be increased. A CCD having a diagonal of 1 cm or less even with 1 million pixels is easily available, and the volume of the imaging device 5 including the CCD and the imaging lens 8 can be made sufficiently smaller than 1 cm 3 . The distance between the imaging lens 8 and the markers 2a, 2b, 2c depends on the visual field of the imaging lens 8 and the moving range of the markers 2a, 2b, 2c. , The angle / position detecting device can be configured with a small capacity of about several cm 3 . Further, since no power supply is required for the markers 2a, 2b and 2c, there is an advantage that the range of selection of the measurement object 1 is widened.
[0027]
In the above description, a case where the measurement object 1 is irradiated with scattered light from the light source 4 and the angles and positions of the markers 2a, 2b, 2c are detected using the reflected light from the markers 2a, 2b, 2c has been described. As shown in FIG. 5, a light emitting element such as an LED or an EL element may be used as the markers 2a, 2b, and 2c. By using the light emitting elements as the markers 2a, 2b, 2c in this manner, when the markers 2a, 2b, 2c are determined, the markers 2a, 2b, 2c are sequentially turned on, or the markers 2a, 2b, 2c are turned on. The markers 2a, 2b, and 2c can be easily determined by changing the light amount and the emission color for each.
[0028]
In this case, by using a two-dimensional PSD (Position Sensitive Device) as the imaging surface 9 of the imaging device 5, the response speed can be increased as compared with the case of using a two-dimensional imaging device such as a CCD.
[0029]
A case where the angle / position detecting device is applied to a universal joint to detect the rotation angle of the universal joint will be described.
[0030]
FIG. 6 is a configuration diagram of the universal joint. The universal joint 10 includes, for example, a ball joint having a spherical portion 11 and a socket portion 12 in which the spherical portion 11 is fitted. The socket portion 12 rotates arbitrarily with respect to the spherical portion 11. The spherical portion 11 has at least an upper hemispherical portion 13 formed of a transparent or translucent material, and a marker 2a composed of a plurality of, for example, three LEDs that are not in a straight line on a boundary surface between the lower hemispherical portion 14 and the upper hemispherical portion 13 , 2b, 2c. Light emission of the LEDs of the markers 2a, 2b, 2c is controlled by the driving means 6. The socket unit 12 is provided with an imaging device 5 having an imaging lens 8 and an imaging surface 9 formed of, for example, a CCD.
[0031]
When the socket portion 12 is rotated with reference to the spherical portion 11 of the universal joint 10, the markers 2 a, 2 b, and 2 c are emitted, and the imaging device 5 receives light from the markers 2 a, 2 b, and 2 c, and Then, the movements of the markers 2a, 2b, 2c are detected, and the rotation angle and the twist angle of the spherical portion 11 and the socket portion 12 are calculated by the arithmetic processing device 7. In this way, the rotation angle and the torsion angle of the universal joint 10 can be detected without providing an angle sensor outside the universal joint 10, and only a space for arranging the universal joint 10 is sufficient. It can be more compact than when three sensors are provided.
[0032]
In the above description, the case where the markers 2a, 2b, 2c made of LEDs are provided on the spherical portion 11 has been described. However, instead of the LEDs, the markers 2a, 2b, 2c are configured by reflecting members, and the light source is provided on the socket portion 12. Is also good. As shown in the configuration diagram of FIG. 7, the imaging device 5 is provided on the spherical portion 11, the socket portion 12 is formed of an opaque member, and the markers 2a, 2b, and 2c are formed by three holes having different diameters. Light passing through the markers 2a, 2b, 2c from outside may be imaged by the imaging device 5 to detect the rotation angle and the twist angle of the universal joint 10.
[0033]
Further, as shown in the configuration diagram of FIG. 8, also in the case where rotation and translation are performed by combining the universal joint 10 and the expansion and contraction mechanism 15 using, for example, a bellows, the markers 2a, 2b, 2c and the imaging device 5 are provided inside. The marker 2a, 2b, 2c that moves with the movement of the universal joint 10 and the movement of the telescopic mechanism 15 is imaged by the imaging device 5, and the movement of the universal joint 10 and the telescopic mechanism 15 is determined based on the spatial coordinates of the moving markers 2a, 2b, 2c. And rotation of three axes and translation of one axis can be detected. Further, even if a three-axis translation mechanism is provided instead of the expansion and contraction mechanism 15, the rotation of the three axes and the translation of the three axes can be similarly detected.
[0034]
【The invention's effect】
As described above, according to the present invention, at least three markers that are individually identifiable and that are not linear are provided on a measurement object that freely moves with respect to a reference point, and the angle of each marker with respect to the reference point is optically determined. By calculating the angle and the position of the measurement object with respect to the reference point from the measured angles of the markers, it is possible to function as a simple, compact, and six-axis sensor.
[0035]
Also, by calculating the current angle and position of the measurement object using the angle or angle and position of each marker measured immediately before as an initial value, the stability of the current angle and position of the measurement object to be calculated is increased. The measurement accuracy can be improved.
[0036]
Furthermore, by determining the position of each marker as the center of gravity weighted by the light amount of the marker portion, the position of each marker can be specified stably even if the observation angle of the marker changes due to movement of the measurement object, Measurement accuracy of angles and positions can be improved.
[0037]
In addition, the marker is formed in a surface state that scatters light, and the measuring device is configured by an illuminating unit that illuminates the marker and an imaging device that captures the scattered light scattered by the marker, or the marker is configured by a light source. By knowing that the measuring device is constituted by an image pickup device for picking up the light emission of the marker, each moving marker can be detected stably.
[0038]
Also, by providing at least three markers of the angle / position detecting device inside one of the rotatably connected shaft couplings and providing the measuring device of the angle / position detecting device on the other shaft coupling, In addition, the rotation angle of three axes can be easily detected without providing an angle sensor outside the universal joint.
[0039]
An expansion mechanism is provided on one of the shaft joints rotatably connected to the universal joint, and the movement of the universal joint and the expansion mechanism is determined from the spatial coordinates of the marker that moves with the movement of the universal joint and the movement of the expansion mechanism. Thus, rotation and translation of three axes can be detected with a simple configuration.
[Brief description of the drawings]
FIG. 1 is a layout diagram showing the operation principle of the present invention.
FIG. 2 is a layout diagram showing a configuration of an angle / position detecting device of the present invention.
FIG. 3 is a flowchart showing the operation of the angle / position detection device.
FIG. 4 is a flowchart illustrating a process of calculating an angle of a marker with respect to a reference point.
FIG. 5 is a layout diagram showing a configuration of a second angle / position detecting device.
FIG. 6 is a configuration diagram of a universal joint having an angle / position detecting device.
FIG. 7 is a configuration diagram of a second universal joint having an angle / position detecting device.
FIG. 8 is a configuration diagram of a third universal joint having an angle / position detecting device.
[Explanation of symbols]
1; measuring object; 2; marker; 3; angle / position detecting device; 4; light source;
5; imaging device; 6; driving means; 7; arithmetic processing device; 8; imaging lens;
9: imaging surface, 10: universal joint, 11: spherical part, 12: socket part,
15; telescopic mechanism.