Nothing Special   »   [go: up one dir, main page]

JP2004259665A - Induction heating method and device - Google Patents

Induction heating method and device Download PDF

Info

Publication number
JP2004259665A
JP2004259665A JP2003051485A JP2003051485A JP2004259665A JP 2004259665 A JP2004259665 A JP 2004259665A JP 2003051485 A JP2003051485 A JP 2003051485A JP 2003051485 A JP2003051485 A JP 2003051485A JP 2004259665 A JP2004259665 A JP 2004259665A
Authority
JP
Japan
Prior art keywords
induction heating
induction
mutual
coil
mutual induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051485A
Other languages
Japanese (ja)
Other versions
JP4005931B2 (en
Inventor
Naoki Uchida
直喜 内田
Kazuhiro Ozaki
一博 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003051485A priority Critical patent/JP4005931B2/en
Publication of JP2004259665A publication Critical patent/JP2004259665A/en
Application granted granted Critical
Publication of JP4005931B2 publication Critical patent/JP4005931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the input power of each induction heating coil by suppressing the inverter output even when the mutual induction voltage increases with the increase of input power to the induction heating coil. <P>SOLUTION: The basic structure of an induction heating device 10 comprises a plurality of induction heating coils 56 (56m, 56s) and resonance type inverters 52 (52m, 52s) for zone controlling each of these. A component for generating induced electromotive force of reverse polarity is provided at the circuit equipped with the induction heating coil 56 for generating mutual induction. The component for generating induced electromotive force of reverse polarity may be, for example, a reverse connection transformer 64 or the like that is constructed of a tuning coil 63 provided facing each other so that each polarity may become inverse due to reversed direction or the like of the winding direction of the coil. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、誘導加熱方法及び装置に係り、特に複数の誘導加熱コイルを要する制御回路における相互誘導電圧の影響を抑制するのに好適な誘導加熱方法及び装置に関する。
【0002】
【従来の技術】
近年、加熱昇温性・熱効率の良い誘導加熱コイルは、様々な分野で使用されている。しかし、複数箇所の温度を任意に調整しようとする場合、誘導加熱コイルを複数配置し、かつ個別に制御する必要が生じる。隣接配置された複数の誘導加熱コイルを同時に起動する場合、各誘導加熱コイル間には相互誘導電圧の影響による干渉が生じる。この干渉により各誘導加熱コイルに投入する電力の制御が不能となり、被加熱物の温度制御を行うことができなくなってしまうことがある。
【0003】
このような相互誘導電圧の影響を抑制・回避する手段として、例えば特許文献1の発明を挙げることができる。特許文献1の発明は、複数の加熱ユニットのうち一つをメイン加熱ユニットとして、他をそれに従属させるように制御するものである。詳しくは、複数の加熱ユニットを稼動させる際に各々の電流の位相差を検出し、各々の加熱ユニットに設けられたインバータを制御し、前記メイン加熱ユニットに従属させるようにして相互誘導電圧の影響を回避するというものである。
【0004】
【特許文献1】
特開2002−260833号公報
【0005】
【発明が解決しようとする課題】
特許文献1のような構成の回路によれば、確かに相互誘導電圧の影響を回避し、各誘導加熱コイルの投入電力を個別に制御し、被加熱物を任意に温度制御することが可能である。しかしながら、特許文献1の構成の回路においては、投入電力の増大等に伴って相互誘導電圧が増大した場合、インバータ出力電圧を増大させるため、容量の大きいインバータが必要とされる。
【0006】
本発明では、相互誘導電圧が増大した場合であってもインバータ出力を抑えて各誘導加熱コイルの投入電力を制御することができる相互誘導電圧抑制方法及び装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明の誘導加熱方法は、隣接して配置した複数の誘導加熱コイルに電流を供給した時に生じる相互誘導電圧を抑制する誘導加熱方法において、相互誘導を生ずる誘導加熱コイルの回路間の相互誘導電圧の影響を、前記相互誘導を生ずる誘導加熱コイルの回路に逆極性の起電力を発生させて相殺、又は一部相殺し、かつ各誘導加熱コイルに投入する電力をインバータによりフィードバック制御し、前記相互誘導電圧の影響を回避することを特徴とする。
【0008】
また、誘導加熱装置については、複数の誘導加熱コイルのそれぞれをゾーンコントロールする共振型インバータを備え、かつ相互誘導を生ずる誘導加熱コイルを備える回路には逆極性の誘導起電力を発生させる構成要素を備えることを特徴とする。
【0009】
【作用】
上記のような誘導加熱方法において、相互誘導電圧を生ずる誘導加熱コイルの回路間の相互誘導電圧の影響を、前記相互誘導電圧を生ずる誘導加熱コイルの回路に逆極性の起電力を発生させて相殺、又は一部相殺し、かつ各誘導加熱コイルに投入する電力をインバータによりフィードバック制御し、前記相互誘導電圧の影響を回避することにより、影響の大きい相互誘導電圧を相殺するようにした後、インバータ制御により、相殺されなかった相互誘導電圧を回避するようにしているため、相互誘導電圧の増大に伴うインバータ容量の増大を避けることができる。
【0010】
上記方法を実現するための回路として、複数の誘導加熱コイルのそれぞれをゾーンコントロールする共振型インバータを備え、かつ相互誘導を生ずる誘導加熱コイルを備える回路には逆極性の誘導起電力を発生させる構成要素を備えるようにすることにより、大きな影響を奏する相互誘導電圧を逆極性の誘導起電力を発生させる構成要素により相殺、又は一部相殺した後、さらにインバータ制御により相互誘導電圧の影響を回避するため、相互誘導の影響の略全てを回避することができ、かつ上記方法の効果を奏することができる。また、相互誘導電圧の回避手段を2通りとしたことにより、1通りの手段とする場合に比べ、装置にかかる負担又は装置自体を軽減することができる。例えば、インバータ制御のみの場合は、前記した通り相互誘導電圧の増大に伴う容量の増大が否めない。また、逆極性の誘導起電力を発生させる構成要素のみで相互誘導電圧の回避を完全に行おうとする場合は、誘導加熱コイルが増えるに従い、当該構成要素を相互誘導電圧の影響が及ぶコイルの数に従って増やさなければならない。このため、設置コスト、メンテナンス、制御・調整等の面から考えると現実的でなくなる。
【0011】
【発明の実施の形態】
以下に本発明に係る誘導加熱装置の実施の形態を図面を参照して説明する。図1は本発明の実施形態を示す概要構成図である。この誘導加熱装置10は、電力を供給する電源部30と、供給電流を整流する順変換部40及び、駆動制御回路20(20m、20s)と負荷コイル部22(22m、22s)とから構成される複数の加熱ユニットとから成る。
【0012】
本実施形態では、複数の誘導加熱コイル56の相互誘導電圧の影響(干渉)により生じる干渉起電力(誘導起電力)を後述する逆極性の誘導起電力を発生させる構成要素である逆接続トランス64により相殺しつつ、複数の誘導加熱コイル56をそれぞれ制御することが可能なインバータ52により個別に電力制御することにより回避するようにしている。これにより、隣接配置された個々の誘導加熱コイル56への投入電力を個別に制御しても相互誘導の影響を回避することができ、被加熱物をその要求温度分布となるようにゾーンコントロールすることができる。
【0013】
前記逆接続トランス64は、隣り合う誘導加熱コイル56を有する負荷コイル部22等に、例えばコイルの巻き方向が逆向きである等により各々の極性が逆になるように向かい合わせに備えられる調整コイル63により構成される。つまり、トランスの1次コイルと2次コイルの双方に、対向する方向の電流を流すようにすれば、互いのコイルに逆極性の磁場が発生し相互誘導電圧(磁場による起電力)を相殺し合うという原理である。前記逆接続トランス64によれば、相互誘導電圧の影響(干渉)が最も大きい隣り合う回路中に発生する干渉起電力(誘導起電力)を相殺して、または影響を及ぼしている相互誘導電圧全体の内の一部を相殺して、インバータ52の負荷を軽減する役割を果たす。
【0014】
よって本実施形態における各加熱ユニットの負荷コイル部22には、相互誘導電圧を発生する回路のそれぞれに、逆接続トランス64を構成するように調整コイル63が設けられている。また、任意の誘導加熱コイル56mとその駆動制御回路20mとをメインユニットとし、その他の誘導加熱コイル56s1、56s2・・・56sxと駆動制御回路20s1、20s2・・・20sxとをサブユニットとしている。
【0015】
この実施形態では、メインユニット並びにサブユニットの各々は、共通の電源部30から順変換部40を介して電源供給を受けて駆動されるようになっており、メインチョッパ50m、サブチョッパ50s(s1〜sx以下同じ)を備えて電力調整ができるようになっている。チョッパ50の出力側にはインバータ52(52m、52s)が接続されている。各インバータ52の出力側の誘導加熱コイル56を含む負荷コイル部22(22m、22s)には、コンデンサ54(54m、54s)が誘導加熱コイル56と直列に接続して直列共振回路を構成している。さらに、前記負荷コイル部22(22m、22s)には、前記誘導加熱コイル56と直列に1個または2個の逆接続トランス64が構成されている。逆接続トランス64を構成する調整コイル63は、対向するコイルと極性を逆とするため、相互誘導電圧の影響が最も大きい隣り合う回路間の相互誘導電圧を相殺させるようにすることが望ましい。これらの構成により、各誘導加熱コイル56を制御しつつ、被加熱物の加熱制御をすることができる。
【0016】
ところで、本実施形態では、複数の誘導加熱コイル56を作動させることによって生じる相互誘導電圧の影響を回避するために、隣り合う誘導加熱コイル56間に生じる干渉起電力(誘導起電力)を相殺し、かつ複数の加熱ユニットにおける誘導加熱コイル56への投入電力をインバータ52の制御をすることにより調整するようにしている。このため、各サブユニットには、投入電力検出制御器62を付帯させており、メインユニットの負荷コイル部22mに投入される電力と、サブユニットの負荷コイル部22sに投入される電力とを入力し、両者に発生する相互誘導電圧の影響を回避するようにインバータ52sを駆動制御するようにしている。これにより、メインユニットとサブユニットの各チョッパ50にて誘導加熱コイル56が必要とする投入電力を調整しても、隣接する誘導加熱コイル56間で相互誘導による影響を完全に又は、最小限に抑制することができるので、電力調整を安定して行わせることができ、各誘導加熱コイル56で加熱される被加熱物の温度を任意に設定することができ、昇温を高速に行わせつつ、ゾーンコントロールをすることが可能となるのである。また、相互誘導電圧が生ずる各負荷コイル部22に逆接続トランス64を構成するようにしたことにより、最も大きい相互誘導電圧の影響を相殺することができる。このため、誘導加熱コイル56への入力電力が増大し、それに伴い相互誘導電圧が増大した場合であっても投入電力を制御するインバータ52の出力及び容量を低減させることが可能となる。さらに、負荷コイル部22(22m、22s)には、誘導加熱コイル56と直列に変流器58(58m、58s)が設けられており、その出力電流を投入電力検出制御器62にフィードバックするようになっている。このフィードバック値を基にインバータ52に電力制御信号が送られる。
【0017】
上記のような実施形態において、誘導加熱コイル56を有する複数の加熱ユニットの負荷コイル部22の各々に、逆接続トランス64を構成するようにしたことにより、大きな影響を奏する相互誘導電圧を相殺、又は一部相殺した後、さらにインバータ制御により相互誘導電圧の影響を回避することとなるため、相互誘導の影響の略全てを回避することができ、かつインバータ52の容量を低減させることができる。また、相互誘導電圧の回避手段を逆接続トランス64と、インバータ52との2通りとしたことにより、どちらか片方の手段で相互誘導電圧の回避を行おうとする場合に比べ、装置にかかる負担又は装置自体を軽減することができる。例えば、インバータ制御のみの場合は、相互誘導電圧の増大に伴う容量の増大が否めない。また、逆接続トランス64のみで相互誘導電圧の回避を完全に行おうとする場合は、誘導加熱コイル56の数が増えるに従い、当該逆接続トランス64の数を、相互誘導電圧の影響が及ぶコイルの数に従って増やさなければならない。このため、設置コスト、メンテナンス、制御・調整等の面から考えると現実的でなくなる。
【0018】
また、上記実施形態において、逆接続トランス64の調整コイル63に図示しない鉄心を入れて逆誘導の効率を上げるようにしても良い。
また、実施形態では、逆極性の誘導起電力を発生させる構成要素を逆接続トランス64としたが、これに限定せず、ブスバー等によって逆極性の誘導起電力を発生させるようにしてもよい。
【0019】
【発明の効果】
上記実施形態において、隣接して配置した複数の誘導加熱コイルに電流を供給した時に生じる相互誘導電圧を抑制する誘導加熱方法において、相互誘導を生ずる誘導加熱コイルの回路間の相互誘導電圧の影響を、前記相互誘導を生ずる誘導加熱コイルの回路に逆極性の起電力を発生させて相殺、又は一部相殺し、かつ各誘導加熱コイルに投入する電力をインバータによりフィードバック制御し、前記相互誘導電圧の影響を回避するようにしたことにより、影響の大きい相互誘導電圧を相殺するようにした後、インバータ制御により、相殺されなかった相互誘導電圧を回避するようにしているため、相互誘導電圧の増大に伴うインバータ容量の増大を避けることができる。
【図面の簡単な説明】
【図1】本発明の実施形態の概案を示す図である。
【符号の説明】
10………誘導加熱装置、20………駆動制御回路、22………負荷コイル部、30………電源部、40………順変換部、50………チョッパ、52………インバータ、54………コンデンサ、56………誘導加熱コイル、58………変流器、62………投入電力検出制御器、63………調整コイル、64………逆接続トランス。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an induction heating method and apparatus, and more particularly to an induction heating method and apparatus suitable for suppressing the influence of mutual induction voltage in a control circuit requiring a plurality of induction heating coils.
[0002]
[Prior art]
2. Description of the Related Art In recent years, induction heating coils that have good heating efficiency and high thermal efficiency have been used in various fields. However, when trying to arbitrarily adjust the temperature at a plurality of locations, it is necessary to arrange a plurality of induction heating coils and control them individually. When a plurality of induction heating coils arranged adjacently are activated simultaneously, interference occurs between the induction heating coils due to the influence of the mutual induction voltage. This interference makes it impossible to control the power supplied to each induction heating coil, and may make it impossible to control the temperature of the object to be heated.
[0003]
As means for suppressing or avoiding the influence of such mutual induction voltage, for example, the invention of Patent Document 1 can be mentioned. The invention of Patent Literature 1 controls one of a plurality of heating units as a main heating unit and controls the other subordinate units. Specifically, when operating a plurality of heating units, the phase difference of each current is detected, the inverter provided in each heating unit is controlled, and the influence of the mutual induction voltage is made to depend on the main heating unit. It is to avoid.
[0004]
[Patent Document 1]
JP-A-2002-260833
[Problems to be solved by the invention]
According to the circuit having the configuration as in Patent Literature 1, it is possible to avoid the influence of the mutual induction voltage, control the input power of each induction heating coil individually, and arbitrarily control the temperature of the object to be heated. is there. However, in the circuit having the configuration of Patent Literature 1, when the mutual induction voltage increases due to an increase in input power or the like, an inverter having a large capacity is required to increase the inverter output voltage.
[0006]
An object of the present invention is to provide a method and an apparatus for suppressing mutual induction voltage that can control the output power of each induction heating coil while suppressing the inverter output even when the mutual induction voltage increases.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an induction heating method according to the present invention is directed to an induction heating method that suppresses a mutual induction voltage generated when a current is supplied to a plurality of induction heating coils arranged adjacent to each other. The influence of the mutual induction voltage between the circuits is canceled or partially canceled by generating an electromotive force of the opposite polarity in the circuit of the induction heating coil causing the mutual induction, and the power supplied to each induction heating coil is converted to an inverter. , To avoid the influence of the mutual induction voltage.
[0008]
In addition, the induction heating device includes a resonance type inverter that performs zone control of each of the plurality of induction heating coils, and a circuit that includes an induction heating coil that generates mutual induction includes a component that generates an induced electromotive force of opposite polarity. It is characterized by having.
[0009]
[Action]
In the induction heating method as described above, the influence of the mutual induction voltage between the circuits of the induction heating coil generating the mutual induction voltage is offset by generating the electromotive force of the opposite polarity in the circuit of the induction heating coil generating the mutual induction voltage. After partially canceling out, and controlling the power supplied to each induction heating coil by feedback control with an inverter to avoid the influence of the mutual induction voltage, the mutual induction voltage having a large influence is canceled out. Since the mutual induced voltage which has not been canceled is avoided by the control, it is possible to avoid an increase in the inverter capacity due to an increase in the mutual induced voltage.
[0010]
As a circuit for realizing the above method, a circuit including a resonance type inverter for zone-controlling each of a plurality of induction heating coils, and a circuit including an induction heating coil for generating mutual induction generates an induced electromotive force of opposite polarity. By providing an element, the mutual induction voltage exerting a large effect is canceled out or partially canceled out by the component generating the induced electromotive force of the opposite polarity, and then the influence of the mutual induction voltage is avoided by further inverter control. Therefore, substantially all of the effects of the mutual guidance can be avoided, and the effect of the above method can be obtained. Further, by providing two means for avoiding the mutual induction voltage, the load on the device or the device itself can be reduced as compared with the case where only one means is used. For example, in the case of only inverter control, an increase in capacity due to an increase in mutual induction voltage cannot be denied as described above. If it is intended to completely avoid the mutual induction voltage only by the components generating the induced electromotive force of the opposite polarity, as the number of induction heating coils increases, the number of coils affected by the mutual induction voltage increases as the number of induction heating coils increases. Must be increased in accordance with Therefore, it is not realistic in terms of installation cost, maintenance, control / adjustment, and the like.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of an induction heating device according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. The induction heating device 10 includes a power supply unit 30 for supplying electric power, a forward conversion unit 40 for rectifying a supply current, a drive control circuit 20 (20 m, 20 s), and a load coil unit 22 (22 m, 22 s). And a plurality of heating units.
[0012]
In the present embodiment, a reverse connection transformer 64 is a component that generates an interference electromotive force (induction electromotive force) generated by the influence (interference) of the mutual induction voltage of the plurality of induction heating coils 56, which will be described later. , And the power is individually controlled by the inverter 52 which can control the plurality of induction heating coils 56 respectively. Thus, the influence of mutual induction can be avoided even if the input power to each of the adjacent induction heating coils 56 is individually controlled, and the object to be heated is zone-controlled to have the required temperature distribution. be able to.
[0013]
The reverse connection transformer 64 is provided with an adjustment coil provided in the load coil portion 22 having the adjacent induction heating coil 56 so that the polarity thereof is reversed, for example, when the winding direction of the coil is reversed. 63. In other words, if currents in opposite directions are applied to both the primary coil and the secondary coil of the transformer, magnetic fields of opposite polarities are generated in the mutual coils and cancel out the mutual induced voltage (electromotive force due to the magnetic field). The principle is that they fit. According to the reverse connection transformer 64, the interference electromotive force (induced electromotive force) generated in the adjacent circuit where the influence (interference) of the mutual induction voltage is the largest is canceled or the entire mutual induction voltage exerting the influence is canceled out. Are partly canceled to reduce the load on the inverter 52.
[0014]
Therefore, in the load coil section 22 of each heating unit in the present embodiment, the adjustment coil 63 is provided in each of the circuits that generate the mutual induction voltage so as to configure the reverse connection transformer 64. Further, an arbitrary induction heating coil 56m and its drive control circuit 20m are used as a main unit, and the other induction heating coils 56s1, 56s2... 56sx and drive control circuits 20s1, 20s2.
[0015]
In this embodiment, each of the main unit and the sub-unit is driven by receiving power supply from the common power supply unit 30 via the forward conversion unit 40, and is driven by the main chopper 50m and the sub-choppers 50s (s1 to 50s). sx). An inverter 52 (52m, 52s) is connected to the output side of the chopper 50. In the load coil section 22 (22 m, 22 s) including the induction heating coil 56 on the output side of each inverter 52, a capacitor 54 (54 m, 54 s) is connected in series with the induction heating coil 56 to form a series resonance circuit. I have. Further, one or two reverse connection transformers 64 are configured in series with the induction heating coil 56 in the load coil section 22 (22m, 22s). Since the polarity of the adjustment coil 63 constituting the reverse connection transformer 64 is opposite to that of the opposing coil, it is desirable that the mutual induction voltage between the adjacent circuits having the largest influence of the mutual induction voltage be offset. With these configurations, it is possible to control the heating of the object to be heated while controlling each of the induction heating coils 56.
[0016]
By the way, in this embodiment, in order to avoid the influence of the mutual induction voltage generated by operating the plurality of induction heating coils 56, the interference electromotive force (induction electromotive force) generated between the adjacent induction heating coils 56 is canceled. In addition, the power supplied to the induction heating coil 56 in the plurality of heating units is adjusted by controlling the inverter 52. For this reason, each sub-unit is provided with an input power detection controller 62 for inputting the power input to the load coil 22m of the main unit and the power input to the load coil 22s of the sub-unit. Then, the drive of the inverter 52s is controlled so as to avoid the influence of the mutual induction voltage generated in both. Thereby, even if the input power required by the induction heating coil 56 is adjusted in each of the choppers 50 of the main unit and the subunit, the influence of the mutual induction between the adjacent induction heating coils 56 is completely or minimized. Since the power can be suppressed, the power adjustment can be performed stably, the temperature of the object to be heated heated by each induction heating coil 56 can be set arbitrarily, and the temperature can be raised at a high speed. , It is possible to control the zone. In addition, by configuring the reverse connection transformer 64 in each load coil section 22 where a mutual induction voltage is generated, the influence of the largest mutual induction voltage can be canceled. Therefore, even if the input power to the induction heating coil 56 increases and the mutual induction voltage increases accordingly, the output and capacity of the inverter 52 that controls the input power can be reduced. Further, a current transformer 58 (58 m, 58 s) is provided in the load coil section 22 (22 m, 22 s) in series with the induction heating coil 56 so that the output current is fed back to the input power detection controller 62. It has become. A power control signal is sent to the inverter 52 based on the feedback value.
[0017]
In the embodiment as described above, each of the load coil units 22 of the plurality of heating units having the induction heating coil 56 is configured with the reverse connection transformer 64, thereby canceling the mutual induction voltage having a great effect. Alternatively, after partially canceling, the influence of the mutual induction voltage is further avoided by the inverter control, so that substantially all of the influence of the mutual induction can be avoided, and the capacity of the inverter 52 can be reduced. Further, by using two types of means for avoiding the mutual induction voltage, ie, the reverse connection transformer 64 and the inverter 52, the burden on the device or the load on the device is reduced as compared with the case where one of the means is used to avoid the mutual induction voltage. The device itself can be reduced. For example, in the case of only the inverter control, an increase in capacity due to an increase in the mutual induction voltage cannot be denied. When it is intended to completely avoid the mutual induction voltage using only the reverse connection transformer 64, as the number of the induction heating coils 56 increases, the number of the reverse connection transformers 64 is changed to the number of coils affected by the mutual induction voltage. Must increase according to the number. Therefore, it is not realistic in terms of installation cost, maintenance, control / adjustment, and the like.
[0018]
In the above embodiment, an iron core (not shown) may be inserted into the adjustment coil 63 of the reverse connection transformer 64 to increase the efficiency of the reverse induction.
Further, in the embodiment, the component for generating the induced electromotive force of the opposite polarity is the reverse connection transformer 64, but is not limited thereto, and the induced electromotive force of the opposite polarity may be generated by a bus bar or the like.
[0019]
【The invention's effect】
In the above embodiment, in the induction heating method for suppressing a mutual induction voltage generated when a current is supplied to a plurality of induction heating coils arranged adjacent to each other, the influence of the mutual induction voltage between the circuits of the induction heating coil causing the mutual induction is reduced. Generating an electromotive force of the opposite polarity in the circuit of the induction heating coil that causes the mutual induction to cancel or partially cancel the power, and feedback-control the power supplied to each induction heating coil by an inverter to control the mutual induction voltage. By avoiding the influence, the mutual induced voltage that has a large influence is canceled out, and then the mutual induced voltage that is not canceled out is controlled by the inverter control. The accompanying increase in inverter capacity can be avoided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an embodiment of the present invention.
[Explanation of symbols]
Reference numeral 10: induction heating device, 20: drive control circuit, 22: load coil unit, 30: power supply unit, 40: forward conversion unit, 50: chopper, 52: inverter 54, a condenser, 56, an induction heating coil, 58, a current transformer, 62, a supplied power detection controller, 63, an adjustment coil, 64, a reverse connection transformer.

Claims (2)

隣接して配置した複数の誘導加熱コイルに電流を供給した時に生じる相互誘導電圧を抑制する誘導加熱方法において、相互誘導を生ずる誘導加熱コイルの回路間の相互誘導電圧の影響を、前記相互誘導を生ずる誘導加熱コイルの回路に逆極性の起電力を発生させて相殺、又は一部相殺し、かつ各誘導加熱コイルに投入する電力をインバータによりフィードバック制御し、前記相互誘導電圧の影響を回避することを特徴とする誘導加熱方法。In an induction heating method for suppressing a mutual induction voltage generated when a current is supplied to a plurality of induction heating coils arranged adjacent to each other, the influence of the mutual induction voltage between the circuits of the induction heating coil that causes the mutual induction is reduced. To generate or cancel the electromotive force of the opposite polarity in the generated induction heating coil circuit, and to feedback-control the power supplied to each induction heating coil by an inverter to avoid the influence of the mutual induction voltage. An induction heating method characterized in that: 複数の誘導加熱コイルのそれぞれをゾーンコントロールする共振型インバータを備え、かつ相互誘導を生ずる誘導加熱コイルを備える回路には逆極性の誘導起電力を発生させる構成要素を備えることを特徴とする誘導加熱装置。A circuit comprising a resonance type inverter for zone-controlling each of a plurality of induction heating coils, and a circuit comprising an induction heating coil for generating mutual induction includes a component for generating an induced electromotive force of opposite polarity. apparatus.
JP2003051485A 2003-02-27 2003-02-27 Induction heating method and apparatus Expired - Lifetime JP4005931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051485A JP4005931B2 (en) 2003-02-27 2003-02-27 Induction heating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051485A JP4005931B2 (en) 2003-02-27 2003-02-27 Induction heating method and apparatus

Publications (2)

Publication Number Publication Date
JP2004259665A true JP2004259665A (en) 2004-09-16
JP4005931B2 JP4005931B2 (en) 2007-11-14

Family

ID=33116616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051485A Expired - Lifetime JP4005931B2 (en) 2003-02-27 2003-02-27 Induction heating method and apparatus

Country Status (1)

Country Link
JP (1) JP4005931B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041642A1 (en) * 2007-09-28 2009-04-02 Mitsui Engineering & Shipbuilding Co., Ltd. Induction heating device
WO2009125645A1 (en) * 2008-04-09 2009-10-15 新日本製鐵株式会社 Induction heating apparatus and induction heating method
JP2012048962A (en) * 2010-08-26 2012-03-08 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus and induction heating method
JP5296949B1 (en) * 2012-06-01 2013-09-25 三井造船株式会社 Induction heating method
WO2013179683A1 (en) * 2012-06-01 2013-12-05 三井造船株式会社 Induction-heating method
WO2014069526A1 (en) * 2012-10-30 2014-05-08 三井造船株式会社 Inductive heating device, method for controlling inductive heating device, and program

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041642A1 (en) * 2007-09-28 2009-04-02 Mitsui Engineering & Shipbuilding Co., Ltd. Induction heating device
WO2009125645A1 (en) * 2008-04-09 2009-10-15 新日本製鐵株式会社 Induction heating apparatus and induction heating method
JP2009252643A (en) * 2008-04-09 2009-10-29 Nippon Steel Corp Induction heating apparatus and method
US8420990B2 (en) 2008-04-09 2013-04-16 Nippon Steel & Sumitomo Metal Corporation Induction heating apparatus and induction heating method
JP2012048962A (en) * 2010-08-26 2012-03-08 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus and induction heating method
KR20140054411A (en) 2012-06-01 2014-05-08 미쯔이 죠센 가부시키가이샤 Induction-heating method
WO2013179683A1 (en) * 2012-06-01 2013-12-05 三井造船株式会社 Induction-heating method
JP5296949B1 (en) * 2012-06-01 2013-09-25 三井造船株式会社 Induction heating method
CN103959901A (en) * 2012-06-01 2014-07-30 三井造船株式会社 Induction-heating method
CN103959901B (en) * 2012-06-01 2016-03-16 三井造船株式会社 Induction heating method
KR101655380B1 (en) 2012-06-01 2016-09-07 미쯔이 죠센 가부시키가이샤 Induction-heating method
US9591696B2 (en) 2012-06-01 2017-03-07 Mitsui Engineering & Shipbuilding Co., Ltd. Induction heating method
DE112013000253B4 (en) 2012-06-01 2023-02-09 Mitsui E&S Machinery Co., Ltd. induction heating process
WO2014069526A1 (en) * 2012-10-30 2014-05-08 三井造船株式会社 Inductive heating device, method for controlling inductive heating device, and program
JP5559944B1 (en) * 2012-10-30 2014-07-23 三井造船株式会社 Induction heating apparatus, control method for induction heating apparatus, and program
US10136476B2 (en) 2012-10-30 2018-11-20 Mitsui E&S Machinery Co., Ltd. Inductive heating device, method for controlling inductive heating device, and program
DE112013005197B4 (en) 2012-10-30 2023-02-09 Mitsui E&S Machinery Co., Ltd. Induction heating device, method for controlling the induction heating device and program

Also Published As

Publication number Publication date
JP4005931B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US8638074B2 (en) Controllable universal supply with reactive power management
US6630651B2 (en) Induction heating device with a switching power source and image processing apparatus using the same
US9433037B2 (en) Induction heating cooker
JP6844716B2 (en) Inverter control board
JP6191478B2 (en) Power converter
KR20170029800A (en) A induction coil driving circuit for high frequency inverter
JP2004259665A (en) Induction heating method and device
JP2005102484A (en) Power-feeding device and induction heating device
US9439246B2 (en) Dynamic power balancing among multiple induction heater power units
JP2011087377A (en) Circuit for correcting charge balance in multiserial accumulating cell
JP4162367B2 (en) Image processing device
JP2011243405A (en) Induction heating cooking device
KR101604748B1 (en) Indution Heating Cooktop with a single inverter and Control Method thereof
US9098029B2 (en) Fixing device including a plurality of coils, coil drivers, and a drive circuit
JP5612396B2 (en) Induction heating apparatus and induction heating method
JP2013236537A (en) Power supply device
JP2010257922A (en) Induction heating method
JP4948388B2 (en) Induction heating cooker
JP2007220396A (en) Induction heating device
JP2003259642A (en) Contactless power supply unit
JP7566639B2 (en) Converter
JP2016092747A (en) Switching element drive circuit, heater device and image formation device
JP4889535B2 (en) Heating equipment
JP2014044867A (en) Method of controlling induction heating apparatus and induction heating apparatus
JP2008293725A (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Ref document number: 4005931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term