JP2004242936A - 穿刺針 - Google Patents
穿刺針 Download PDFInfo
- Publication number
- JP2004242936A JP2004242936A JP2003036990A JP2003036990A JP2004242936A JP 2004242936 A JP2004242936 A JP 2004242936A JP 2003036990 A JP2003036990 A JP 2003036990A JP 2003036990 A JP2003036990 A JP 2003036990A JP 2004242936 A JP2004242936 A JP 2004242936A
- Authority
- JP
- Japan
- Prior art keywords
- needle
- tissue
- puncture needle
- epidural
- impedance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 4
- 210000001519 tissue Anatomy 0.000 description 76
- 210000003041 ligament Anatomy 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 11
- 210000003205 muscle Anatomy 0.000 description 10
- 206010033675 panniculitis Diseases 0.000 description 9
- 210000004304 subcutaneous tissue Anatomy 0.000 description 9
- 239000007924 injection Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 210000002330 subarachnoid space Anatomy 0.000 description 5
- 241001269524 Dura Species 0.000 description 4
- 238000002692 epidural anesthesia Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012835 hanging drop method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003387 muscular Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 210000003722 extracellular fluid Anatomy 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 210000002977 intracellular fluid Anatomy 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 208000004550 Postoperative Pain Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 210000001951 dura mater Anatomy 0.000 description 1
- 210000005224 forefinger Anatomy 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000002693 spinal anesthesia Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3401—Puncturing needles for the peridural or subarachnoid space or the plexus, e.g. for anaesthesia
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Anesthesiology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
【課題】穿刺針の先端部分が生体内のどの位置に刺入されているのかが容易に把握できるようにする。
【解決手段】生体内組織の電気的特性を測定できるようにするため、穿刺針(50)に複数の電極(22a,22b)を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分(24)で露出し、それぞれの電極に電気信号を取り出すためのリード線(30a,30b)を接続する。
【選択図】 図3
【解決手段】生体内組織の電気的特性を測定できるようにするため、穿刺針(50)に複数の電極(22a,22b)を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分(24)で露出し、それぞれの電極に電気信号を取り出すためのリード線(30a,30b)を接続する。
【選択図】 図3
Description
【0001】
【発明の属する技術分野】
本発明は、穿刺針の先端部分が生体内のどの位置に刺入されているのかが特定できる穿刺針に関する。
【0002】
【従来の技術】
硬膜外麻酔手術は、術中の全身麻酔量が少なくて済み、術後痛も緩和できるといった特徴を有し、運動神経系や消化器官系の機能を阻害することが少なく、患者の早期リハビリ、早期回復、早期退院を促進する効果がある。そのため、現在では硬膜外麻酔手術は一般的に広く用いられている。
【0003】
硬膜外麻酔手術は次のような手順で行われる。なお、硬膜外麻酔手術では内針と外針を備えた下記の特許文献1に示したような医療用針が用いられる。
【0004】
まず患者の背中を消毒し、局所浸透麻酔を施す。そして、内針を挿入した硬膜外針を体内に穿刺させて行き、棘間靭帯に達したら内針を抜く。次に、生理食塩水を入れた注射針を内針が抜かれた硬膜外針に接続し、注射器の押し子を親指で軽く押し注入抵抗を確かめながら硬膜外針を体内に推し進める。硬膜外針の先端部分が黄靭帯を通過して硬膜外腔に到達すると、急に注入抵抗が消失し注射器の押し子の抵抗が軽くなる。このことによって、術者は硬膜外針の先端部分が硬膜外腔に達したことがわかる。なお、このように注入抵抗の消失によって硬膜外腔に達したことを知る硬膜外腔確認方法は、LOR(Loss Of Resistance)法と称される方法であり、一般的に用いられている方法である。
【0005】
硬膜外腔確認方法として用いられている別の方法として、ハンギングドロップ法と称される方法がある。この方法は、硬膜外腔の内圧が陰圧であるという特質を利用した方法である。この方法では、硬膜外針の内針を抜いた後、ハブの先に生理食塩水の水滴をつけ、両手の親指と人差し指で硬膜外針を推し進めて行き、硬膜外針の先端部分が硬膜外腔に入ると陰圧により生理食塩水の水滴が吸い込まれる。このことによって、術者は硬膜外針の先端部分が硬膜外腔に達したことがわかる。
【0006】
さらに、硬膜外腔確認方法として用いられている別の方法としては、圧力モニターを使用することによって、硬膜外腔中の陰圧を検出する方法がある。
【0007】
【特許文献1】
登録実用新案第2597672号公報
【0008】
【発明が解決しようとする課題】
しかしながら、LOR法では、術者は注射器の押し子の抵抗感覚を確かめながら硬膜外針を推し進めなければならないので、その手技には非常な熟練を要し、術者には多大なストレスを感じさせる。押し子の抵抗感覚は術者の指の感覚に左右されてしまうため、非常に狭い硬膜外腔(約2〜6mm)に達した瞬間に硬膜外針の先端部分をそこにとどめておくことにも熟練を要する。万が一、硬膜外針を推し進めすぎて硬膜を穿刺してしまうと、くも膜下腔に薬液を注入することになってしまい、呼吸困難などの重篤な麻酔事故を引き起こす。
【0009】
また、ハンギングドロップ法または圧力モニターを用いる方法は、硬膜外腔内に陰圧があることを前提に成り立っている方法であるが、硬膜外腔内に陰圧が発生しない場合も報告されており、実際にハンギングドロップ法での硬膜外腔確認不備の麻酔失敗例が多く報告されている。また、圧力モニターを用いた場合でも、硬膜外腔内における陰圧発生率の個人差が大きいことから、硬膜外針の穿刺部位の確認精度はまだまだ不十分である。
【0010】
したがって、上記のいずれの方法を用いたとしても、安全かつ確実に硬膜外腔確認を行えるとは言い難く、これらの方法が安全かつ確実な手技として確立されるためには解決すべき課題がたくさんある。
【0011】
本発明は、このような従来の問題点を解消するために成されたものであり、穿刺針の先端部分が生体内のどの位置に刺入されているのかが容易に把握できるように構成された穿刺針の提供を目的とする。
【0012】
【課題を解決するための手段】
上記した課題を解決し、目的を達成するため、本発明の発明者は、生体内の組織によってその電気的特性が異なるのではないかとの予測のもとに、種々の被検体に対してそれぞれの組織のインピーダンスなどの電気的特性を測定してみた。測定の結果、組織の種類に応じて電気的特性が大きく異なることがわかった。
【0013】
この電気的特性を測定できるようにするため、本発明にかかる穿刺針は、複数の電極を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分で実質的に露出させてある。
【0014】
したがって、この穿刺針を生体に刺入し、穿刺針を生体内に推し進めながら電極間のインピーダンスなどの電気的特性を測定すると、生体内の組織によってそのインピーダンスなどが大きく変化することから、その変化の状態に基づいて穿刺針の先端部分が現在生体内のどの部分に達しているのかが正確にわかる。
【0015】
【発明の実施の形態】
以下に添付図面を参照して、本発明にかかる穿刺針の好適な実施の形態を詳細に説明する。図1は、本発明にかかる穿刺針を構成する細長い円筒状の硬膜外針10の断面図、図2は、本発明にかかる穿刺針を構成する硬膜外針10の中空部に挿入される内針20の断面図、図3は、本発明にかかる穿刺針50の断面図、図4は、図3に示した穿刺針50の先端部分の上面図である。
【0016】
本発明にかかる穿刺針50は、図1に示すような硬膜外針10と図2に示すような内針20とから構成される。
【0017】
硬膜外針10は、細長い円筒形状を呈しその先端部分12が外向きに屈曲する針部14を有し、その手元部分16には、針部14を生体内に推し進めるときに用いる外針ハブ18が取り付けられている。硬膜外針10の中空部19には図2に示す内針20が挿入される。なお、硬膜外針10の針部14は金属で形成され、外針ハブ18はプラスチックで形成されている。
【0018】
内針20は、硬膜外針10の中空部19の形状と合致する外形形状を呈し、その内部には、陰極または陽極となる2つの電極22a、22bが、中心間隔0.23mmで配置され埋め込まれている。2つの電極22a、22bは、内針20の先端部分24で露出されている。内針20の手元部分26には、硬膜外針10の外針ハブ18に挿入される内針ハブ28が形成されている。なお、本実施の形態では電極22はプラチナで形成され、それらの電極22を保持する他の部分はプラスチックで形成されている。
プラチナを用いているのは、生体適合性が良好で経時変化が少ないからである。
【0019】
電極22は、金、白金、銀、銅などの金属で形成してもよいし、導電性高分子、カーボン、金属粉末を混錬した樹脂、セラミックで形成しても良い。電極22a、22bには、電気信号を取り出すためのリード線30a、30bが接続されている。これらのリード線30には、生体組織の抵抗値に応じた表示をするモニター装置が接続される。
【0020】
内針20は硬膜外針10と組み合わせられ、図3に示すような穿刺針50として用いる。内針20を硬膜外針10に取り付けるときには、内針20の先端部分24を外針ハブ18の中空部19から挿入し、先端部分24を、内針ハブ28の外周面が外針ハブ18の内周面と当接するまで硬膜外針10の先端部分12に向けて進める。
【0021】
この状態では硬膜外針10の先端部分12と内針20の先端部分24が図4に示すように揃うことになる。電極22a、22bは、先端部分24から露出し、生体の組織と直接接触できるようになっている。なお、電極の表面に導電性の材料を覆って測定可能な場合は、実質的に露出するものとする。
【0022】
図5は、モニター装置40で生体組織のインピーダンスを測定する場合の穿刺針50の接続状態を示す図であり、図6は、人体を背中から腹部にかけて横に切断した時の組織別配置状況を示す図であり、図7は、組織別周波数−インピーダンス特性を示す図である。
【0023】
穿刺針50を生体内に刺入する前に、図5に示すように、穿刺針50に接続されているリード線30をモニター装置40に接続する。モニター装置40には、生体内に位置する電極22a、22b間に1mA以下の微弱電流を流すため、5V、500Hz程度の周波数の交流電圧を電極22a、22b間に印加する電源が設けられている。また、モニター装置40には、電極22a、22b間に流れる電流(電気信号)の大きさを検出する電流検出回路と、その電流の大きさに対応したインピーダンス値の表示をする表示器42が設けられている。
【0024】
図5に示されている表示器42はインピーダンスの大きさに応じて針の振れが変化するメーター式の表示器である。術者は、このメーターの振れの大きさの変化に基づいて、穿刺針50の先端部分が生体内のどこに位置しているのかがわかる。
【0025】
本実施の形態では、メーター式の表示器を例示したが、インピーダンスの大きさに応じて、LEDの発光色を変化させる表示器を用いても良いし、数値を変化させるディジタル式の表示器を用いても良いし、出力される音量や音質が変化する聴覚型の表示器を用いても良い。また、電流の大きさに応じて上記の手段を用いた表示器であっても良い。
【0026】
また、本実施の形態では、電源の周波数として500Hzを選定したが、検出感度が著しく低下しないのであれば、これ以外の周波数を選定しても良い。
【0027】
人体などの生体の電気的特性は、細胞膜、細胞内液、細胞外液の3つの要素によって決まると言われている。特に、細胞内液および細胞外液は組織によって異なり、その電気的特性は、細胞内の水分量に依存することがわかっている。細胞膜は、外側が親水性であり、内側が疎水性である。このため、細胞膜では、導体間に絶縁材を挟んだコンデンサと同じような構造であると考えられる。発明者は、この点に着目し、図5に示したモニター装置40で豚の各組織の電気的特性を測定してみた。
【0028】
その結果、皮下組織、筋肉、靭帯、硬膜外腔、血液のインピーダンスと電流の位相差は、下記の表1のようになった。
【0029】
【表1】
【0030】
この表に示すように、組織によってインピーダンスの大きさが大幅に異なっており、インピーダンスの大きさによって組織の判別が可能である。したがって、本発明にかかる穿刺針50を生体内に刺入し、インピーダンスの変化状態をモニター装置40で観察することによって、穿刺針の先端部分に位置する組織の種類が特定できる。
【0031】
人体の場合、図6に示すように、組織は、背中100側から皮下組織110、筋肉組織120、棘間靭帯組織130、硬膜外腔組織(脂肪組織)140、くも膜下腔組織(血液)150、背骨160の順に配置されている。本発明にかかる穿刺針50を背中100から背骨160に向けて刺入れ、モニター装置40の電源の周波数を変えながら、インピーダンスを測定した結果は図7に示した通りである。インピーダンスは、筋肉組織120が最も小さく38.9KΩ、次が棘間靭帯組織130で50.6KΩ、その次が皮下組織110で177.5KΩ、最後に最も大きい硬膜外腔組織140の257.6KΩである。この図には記載されていないが、くも膜下腔組織150は30.0KΩであった。
【0032】
図8から図12は、穿刺針を背中100側から硬膜外腔組織140に刺入れする場合のインピーダンスの変化状態の説明に供する図である。図11を除くこれらの図では、人体を硬膜外腔まで縦方向に切断した断面を示し、図11は、人体を横方向に切断した断面を示している。
【0033】
人体の組織は、図8に示すように、背中100側から背中外皮105、皮下組織110、皮下靭帯組織115、筋肉組織120、棘間靭帯組織130、棘骨135、黄靭帯組織137、硬膜外腔組織140、硬膜145の順に存在している。穿刺針50を背中100側から硬膜外腔組織140に刺入するときには、図9および図10に示すように、穿刺針50が棘骨135に触れないように刺入される。
【0034】
図5に示したように、モニター装置40に穿刺針50を取り付け、穿刺針50の先端部分を図8および図9に示すように背中外皮105から刺入して棘間靭帯組織130まで推し進めると、穿刺針50の先端部分は、背中外皮105、皮下組織110、皮下靭帯組織115、筋肉組織120、棘間靭帯組織130の順に生体内を通過する。穿刺針50が生体内を推し進められるにつれて、穿刺針50の先端部分に露出する電極30には、上記の順番に組織が接触する。電極間にはモニター装置40から5V、500Hzの交流電圧が印加されているので、一方の電極からそのときに接触している組織を介して他方の電極に微弱な電流が流れる。この電流の大きさは、接触している組織のインピーダンスの大きさに応じて変化する。モニター装置40の表示器42は、そのインピーダンスを針の振れとして表示する。
【0035】
前述のように、皮下組織110のインピーダンスは、筋肉組織120のインピーダンスの何倍も大きいので、穿刺針50の先端部分が皮下組織110から筋肉組織120に移行すると、表示器42の針の振れが急に小さくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が筋肉組織120に入ったことを知ることができる。穿刺針50を図9に示すように棘間靭帯組織130までさらに推し進めると、前述のように、棘間靭帯組織130のインピーダンスは筋肉組織120のインピーダンスよりも若干大きいので、穿刺針50の先端部分が筋肉組織120から棘間靭帯組織130に移るときに表示器42の針の振れが若干大きくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が棘間靭帯組織130に入ったことを知ることができる。穿刺針50を図10、図11に示すように硬膜外腔組織140までさらに推し進めると、前述のように、硬膜外腔組織140のインピーダンスは棘間靭帯組織130のインピーダンスの何倍も大きいので、穿刺針50の先端部分が棘間靭帯組織130から硬膜外腔組織140に移行すると、表示器42の針の振れが急に大きくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が硬膜外腔組織140に入ったことを知ることができる。
【0036】
穿刺針50の先端部分が硬膜外腔組織140に達したことを確認したら、図12に示すように内針20を取り除いて、生体内に硬膜外針10を残し、薬剤を入れた注射針を硬膜外針10に接続し、薬剤を注入するためにその内部よりカテーテルを挿入する。
【0037】
ここで、万が一穿刺針50を推し進めすぎて、穿刺針50の先端部分が硬膜145やくも膜下腔組織150にまで達してしまったときには、前述のように、膜下腔組織150のインピーダンスが硬膜外腔組織140のインピーダンスの10分の1程度と極端に小さいので、表示器42の針の振れが急激に跳ね上がり、術者は穿刺針50の先端部分が膜下腔組織150に達していることを知ることができる。
【0038】
前述のように、生体内の組織のインピーダンスは組織の種類に応じて大きく異なる。そして、その組織の配列は生体の表面から内部に向けてインピーダンスが徐々に増加あるいは減少するような配列ではなく、インピーダンスの大きい組織と小さい組織がランダムになるような配列である。このため、穿刺針50を進めるにつれて、表示器42の針の振れが組織の変わり目で大きく変化する。術者はこの変化の状況を観察することによって、穿刺針50の先端部分が今どの組織を通過中であるのかを極めて正確に把握することができるようになる。
【0039】
次に、外針自体を電極となし、もう一方の電極は内針の先端部に設ける実施の形態について説明する。この形態は、前述した外針10と基本的に同じ構造を備えている。電極を形成する外針は導電性を有し、たとえば金属で構成されている。外針の基端部には、電気信号を取り出すためのリード線が接続されている。内針は前述した内針20と基本的な構造は同じであるが、先端部の表面に実質的に露出する1つの電極を有している。内針は前記実施形態と同様にプラスチックなどの絶縁性材料で形成するのが好ましいが、金属で構成される場合は、外針の内表面もしくは内針の外表面に絶縁性材料をコーティングすることによって短絡が防止できる。また内針の電極は、内針と短絡防止の絶縁性材料で隔てられている。外針の外表面には、先端部を除いて絶縁性を有するコーティングを施しても良い。このように構成することによって電気的特性の測定精度が向上する。内針の先端部の電極と外針の電極との間で前記した実施の形態と同様にインピーダンスなどの電気的特性を測定することができる。
【0040】
以上のように、本発明にかかる穿刺針によれば、生体内組織のインピーダンスを穿刺針の内針に設けた電極で検出できるようにしたので、皮下組織から筋肉組織内で行う筋肉注射、皮下組織から血管組織内で行われる血管留置、血管や皮下組織から筋組織で行われる細胞や遺伝子デリバリなどについても応用できる。
【0041】
以上の実施の形態では、2極の電極を備えた穿刺針を例示して説明したが、3極以上の電極を備えていても良い。3極以上の電極を設けたときには、2つ以上の電極間インピーダンスが測定可能であるが、測定されたインピーダンスの平均値を表示器に表示させる。また、電極の間隔は、検出対象となる組織の厚みよりも十分に小さくする。組織の厚みよりも電極の配置間隔が大きいと、組織の境界部分を捉えることが困難になるからである。また、電極は、本実施の形態のように内針側に設けるのではなく、可能であれば外針側に設けても良い。また、内針側と外針側の両方に設けても良い。
【0042】
本実施の形態では本発明にかかる穿刺針を硬膜外針として用いた場合について説明したが、本発明にかかる穿刺針は、脊椎麻酔針、神経ブロック針、血管穿刺針、留置針、脊硬膜外針、細胞注入針や遺伝子注入針として用いることができる。
【0043】
本実施の形態においては、電極から取り出す電気信号によって得られる電気特性としてインピーダンスの例をもとに説明したが、他の電気的特性としては電流の位相差が挙げられる。たとえば、硬膜外腔における位相差は、表1に示すように、その表面側の筋肉や靭帯の位相差よりも明らかに大きいので、組織の判別が可能であり、位相差を測定することによって穿刺針の先端部分の位置が確認できる。また、インピーダンスと位相差というように、2つの電気的特性の情報を組み合わせて穿刺針の先端部分の位置確認に供することによって、位置確認の精度がさらに高くなる。
【0044】
【発明の効果】
以上説明したように、本発明の穿刺針によれば、複数の電極を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分で実質的に露出させているので、電極間の電気的特性やその変化の状態を観察することによって、穿刺針の先端部分が現在生体内のどの組織にあるのかが正確に把握できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかる穿刺針を構成する細長い円筒状の硬膜外針の断面図である。
【図2】本発明にかかる穿刺針を構成する硬膜外針の中空部に挿入される内針の断面図である。
【図3】本発明にかかる穿刺針の断面図である。
【図4】図3に示した穿刺針の先端部分の上面図である。
【図5】モニター装置で生体組織のインピーダンスを測定する場合の穿刺針の接続状態を示す図である。
【図6】人体を背中から腹部にかけて横に切断した時の組織別配置状況を示す図である。
【図7】組織別の周波数−インピーダンス特性を示す図である。
【図8】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図9】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図10】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図11】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図12】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【符号の説明】
10…硬膜外針、
12…先端部分、
14…針部、
16…手元部分、
18…外針ハブ、
19…中空部、
20…内針、
22、22a、22b…電極、
24…先端部分、
26…手元部分、
28…内針ハブ、
30、30a、30b…リード線、
40…モニター装置、
42…表示器、
50…穿刺針、
100…背中、
105…背中外皮、
110…皮下組織、
115…皮下靭帯組織、
120…筋肉組織、
130…棘間靭帯組織、
135…棘骨、
137…黄靭帯組織、
140…硬膜外腔組織、
145…硬膜、
150…くも膜下腔組織、
160…背骨。
【発明の属する技術分野】
本発明は、穿刺針の先端部分が生体内のどの位置に刺入されているのかが特定できる穿刺針に関する。
【0002】
【従来の技術】
硬膜外麻酔手術は、術中の全身麻酔量が少なくて済み、術後痛も緩和できるといった特徴を有し、運動神経系や消化器官系の機能を阻害することが少なく、患者の早期リハビリ、早期回復、早期退院を促進する効果がある。そのため、現在では硬膜外麻酔手術は一般的に広く用いられている。
【0003】
硬膜外麻酔手術は次のような手順で行われる。なお、硬膜外麻酔手術では内針と外針を備えた下記の特許文献1に示したような医療用針が用いられる。
【0004】
まず患者の背中を消毒し、局所浸透麻酔を施す。そして、内針を挿入した硬膜外針を体内に穿刺させて行き、棘間靭帯に達したら内針を抜く。次に、生理食塩水を入れた注射針を内針が抜かれた硬膜外針に接続し、注射器の押し子を親指で軽く押し注入抵抗を確かめながら硬膜外針を体内に推し進める。硬膜外針の先端部分が黄靭帯を通過して硬膜外腔に到達すると、急に注入抵抗が消失し注射器の押し子の抵抗が軽くなる。このことによって、術者は硬膜外針の先端部分が硬膜外腔に達したことがわかる。なお、このように注入抵抗の消失によって硬膜外腔に達したことを知る硬膜外腔確認方法は、LOR(Loss Of Resistance)法と称される方法であり、一般的に用いられている方法である。
【0005】
硬膜外腔確認方法として用いられている別の方法として、ハンギングドロップ法と称される方法がある。この方法は、硬膜外腔の内圧が陰圧であるという特質を利用した方法である。この方法では、硬膜外針の内針を抜いた後、ハブの先に生理食塩水の水滴をつけ、両手の親指と人差し指で硬膜外針を推し進めて行き、硬膜外針の先端部分が硬膜外腔に入ると陰圧により生理食塩水の水滴が吸い込まれる。このことによって、術者は硬膜外針の先端部分が硬膜外腔に達したことがわかる。
【0006】
さらに、硬膜外腔確認方法として用いられている別の方法としては、圧力モニターを使用することによって、硬膜外腔中の陰圧を検出する方法がある。
【0007】
【特許文献1】
登録実用新案第2597672号公報
【0008】
【発明が解決しようとする課題】
しかしながら、LOR法では、術者は注射器の押し子の抵抗感覚を確かめながら硬膜外針を推し進めなければならないので、その手技には非常な熟練を要し、術者には多大なストレスを感じさせる。押し子の抵抗感覚は術者の指の感覚に左右されてしまうため、非常に狭い硬膜外腔(約2〜6mm)に達した瞬間に硬膜外針の先端部分をそこにとどめておくことにも熟練を要する。万が一、硬膜外針を推し進めすぎて硬膜を穿刺してしまうと、くも膜下腔に薬液を注入することになってしまい、呼吸困難などの重篤な麻酔事故を引き起こす。
【0009】
また、ハンギングドロップ法または圧力モニターを用いる方法は、硬膜外腔内に陰圧があることを前提に成り立っている方法であるが、硬膜外腔内に陰圧が発生しない場合も報告されており、実際にハンギングドロップ法での硬膜外腔確認不備の麻酔失敗例が多く報告されている。また、圧力モニターを用いた場合でも、硬膜外腔内における陰圧発生率の個人差が大きいことから、硬膜外針の穿刺部位の確認精度はまだまだ不十分である。
【0010】
したがって、上記のいずれの方法を用いたとしても、安全かつ確実に硬膜外腔確認を行えるとは言い難く、これらの方法が安全かつ確実な手技として確立されるためには解決すべき課題がたくさんある。
【0011】
本発明は、このような従来の問題点を解消するために成されたものであり、穿刺針の先端部分が生体内のどの位置に刺入されているのかが容易に把握できるように構成された穿刺針の提供を目的とする。
【0012】
【課題を解決するための手段】
上記した課題を解決し、目的を達成するため、本発明の発明者は、生体内の組織によってその電気的特性が異なるのではないかとの予測のもとに、種々の被検体に対してそれぞれの組織のインピーダンスなどの電気的特性を測定してみた。測定の結果、組織の種類に応じて電気的特性が大きく異なることがわかった。
【0013】
この電気的特性を測定できるようにするため、本発明にかかる穿刺針は、複数の電極を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分で実質的に露出させてある。
【0014】
したがって、この穿刺針を生体に刺入し、穿刺針を生体内に推し進めながら電極間のインピーダンスなどの電気的特性を測定すると、生体内の組織によってそのインピーダンスなどが大きく変化することから、その変化の状態に基づいて穿刺針の先端部分が現在生体内のどの部分に達しているのかが正確にわかる。
【0015】
【発明の実施の形態】
以下に添付図面を参照して、本発明にかかる穿刺針の好適な実施の形態を詳細に説明する。図1は、本発明にかかる穿刺針を構成する細長い円筒状の硬膜外針10の断面図、図2は、本発明にかかる穿刺針を構成する硬膜外針10の中空部に挿入される内針20の断面図、図3は、本発明にかかる穿刺針50の断面図、図4は、図3に示した穿刺針50の先端部分の上面図である。
【0016】
本発明にかかる穿刺針50は、図1に示すような硬膜外針10と図2に示すような内針20とから構成される。
【0017】
硬膜外針10は、細長い円筒形状を呈しその先端部分12が外向きに屈曲する針部14を有し、その手元部分16には、針部14を生体内に推し進めるときに用いる外針ハブ18が取り付けられている。硬膜外針10の中空部19には図2に示す内針20が挿入される。なお、硬膜外針10の針部14は金属で形成され、外針ハブ18はプラスチックで形成されている。
【0018】
内針20は、硬膜外針10の中空部19の形状と合致する外形形状を呈し、その内部には、陰極または陽極となる2つの電極22a、22bが、中心間隔0.23mmで配置され埋め込まれている。2つの電極22a、22bは、内針20の先端部分24で露出されている。内針20の手元部分26には、硬膜外針10の外針ハブ18に挿入される内針ハブ28が形成されている。なお、本実施の形態では電極22はプラチナで形成され、それらの電極22を保持する他の部分はプラスチックで形成されている。
プラチナを用いているのは、生体適合性が良好で経時変化が少ないからである。
【0019】
電極22は、金、白金、銀、銅などの金属で形成してもよいし、導電性高分子、カーボン、金属粉末を混錬した樹脂、セラミックで形成しても良い。電極22a、22bには、電気信号を取り出すためのリード線30a、30bが接続されている。これらのリード線30には、生体組織の抵抗値に応じた表示をするモニター装置が接続される。
【0020】
内針20は硬膜外針10と組み合わせられ、図3に示すような穿刺針50として用いる。内針20を硬膜外針10に取り付けるときには、内針20の先端部分24を外針ハブ18の中空部19から挿入し、先端部分24を、内針ハブ28の外周面が外針ハブ18の内周面と当接するまで硬膜外針10の先端部分12に向けて進める。
【0021】
この状態では硬膜外針10の先端部分12と内針20の先端部分24が図4に示すように揃うことになる。電極22a、22bは、先端部分24から露出し、生体の組織と直接接触できるようになっている。なお、電極の表面に導電性の材料を覆って測定可能な場合は、実質的に露出するものとする。
【0022】
図5は、モニター装置40で生体組織のインピーダンスを測定する場合の穿刺針50の接続状態を示す図であり、図6は、人体を背中から腹部にかけて横に切断した時の組織別配置状況を示す図であり、図7は、組織別周波数−インピーダンス特性を示す図である。
【0023】
穿刺針50を生体内に刺入する前に、図5に示すように、穿刺針50に接続されているリード線30をモニター装置40に接続する。モニター装置40には、生体内に位置する電極22a、22b間に1mA以下の微弱電流を流すため、5V、500Hz程度の周波数の交流電圧を電極22a、22b間に印加する電源が設けられている。また、モニター装置40には、電極22a、22b間に流れる電流(電気信号)の大きさを検出する電流検出回路と、その電流の大きさに対応したインピーダンス値の表示をする表示器42が設けられている。
【0024】
図5に示されている表示器42はインピーダンスの大きさに応じて針の振れが変化するメーター式の表示器である。術者は、このメーターの振れの大きさの変化に基づいて、穿刺針50の先端部分が生体内のどこに位置しているのかがわかる。
【0025】
本実施の形態では、メーター式の表示器を例示したが、インピーダンスの大きさに応じて、LEDの発光色を変化させる表示器を用いても良いし、数値を変化させるディジタル式の表示器を用いても良いし、出力される音量や音質が変化する聴覚型の表示器を用いても良い。また、電流の大きさに応じて上記の手段を用いた表示器であっても良い。
【0026】
また、本実施の形態では、電源の周波数として500Hzを選定したが、検出感度が著しく低下しないのであれば、これ以外の周波数を選定しても良い。
【0027】
人体などの生体の電気的特性は、細胞膜、細胞内液、細胞外液の3つの要素によって決まると言われている。特に、細胞内液および細胞外液は組織によって異なり、その電気的特性は、細胞内の水分量に依存することがわかっている。細胞膜は、外側が親水性であり、内側が疎水性である。このため、細胞膜では、導体間に絶縁材を挟んだコンデンサと同じような構造であると考えられる。発明者は、この点に着目し、図5に示したモニター装置40で豚の各組織の電気的特性を測定してみた。
【0028】
その結果、皮下組織、筋肉、靭帯、硬膜外腔、血液のインピーダンスと電流の位相差は、下記の表1のようになった。
【0029】
【表1】
【0030】
この表に示すように、組織によってインピーダンスの大きさが大幅に異なっており、インピーダンスの大きさによって組織の判別が可能である。したがって、本発明にかかる穿刺針50を生体内に刺入し、インピーダンスの変化状態をモニター装置40で観察することによって、穿刺針の先端部分に位置する組織の種類が特定できる。
【0031】
人体の場合、図6に示すように、組織は、背中100側から皮下組織110、筋肉組織120、棘間靭帯組織130、硬膜外腔組織(脂肪組織)140、くも膜下腔組織(血液)150、背骨160の順に配置されている。本発明にかかる穿刺針50を背中100から背骨160に向けて刺入れ、モニター装置40の電源の周波数を変えながら、インピーダンスを測定した結果は図7に示した通りである。インピーダンスは、筋肉組織120が最も小さく38.9KΩ、次が棘間靭帯組織130で50.6KΩ、その次が皮下組織110で177.5KΩ、最後に最も大きい硬膜外腔組織140の257.6KΩである。この図には記載されていないが、くも膜下腔組織150は30.0KΩであった。
【0032】
図8から図12は、穿刺針を背中100側から硬膜外腔組織140に刺入れする場合のインピーダンスの変化状態の説明に供する図である。図11を除くこれらの図では、人体を硬膜外腔まで縦方向に切断した断面を示し、図11は、人体を横方向に切断した断面を示している。
【0033】
人体の組織は、図8に示すように、背中100側から背中外皮105、皮下組織110、皮下靭帯組織115、筋肉組織120、棘間靭帯組織130、棘骨135、黄靭帯組織137、硬膜外腔組織140、硬膜145の順に存在している。穿刺針50を背中100側から硬膜外腔組織140に刺入するときには、図9および図10に示すように、穿刺針50が棘骨135に触れないように刺入される。
【0034】
図5に示したように、モニター装置40に穿刺針50を取り付け、穿刺針50の先端部分を図8および図9に示すように背中外皮105から刺入して棘間靭帯組織130まで推し進めると、穿刺針50の先端部分は、背中外皮105、皮下組織110、皮下靭帯組織115、筋肉組織120、棘間靭帯組織130の順に生体内を通過する。穿刺針50が生体内を推し進められるにつれて、穿刺針50の先端部分に露出する電極30には、上記の順番に組織が接触する。電極間にはモニター装置40から5V、500Hzの交流電圧が印加されているので、一方の電極からそのときに接触している組織を介して他方の電極に微弱な電流が流れる。この電流の大きさは、接触している組織のインピーダンスの大きさに応じて変化する。モニター装置40の表示器42は、そのインピーダンスを針の振れとして表示する。
【0035】
前述のように、皮下組織110のインピーダンスは、筋肉組織120のインピーダンスの何倍も大きいので、穿刺針50の先端部分が皮下組織110から筋肉組織120に移行すると、表示器42の針の振れが急に小さくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が筋肉組織120に入ったことを知ることができる。穿刺針50を図9に示すように棘間靭帯組織130までさらに推し進めると、前述のように、棘間靭帯組織130のインピーダンスは筋肉組織120のインピーダンスよりも若干大きいので、穿刺針50の先端部分が筋肉組織120から棘間靭帯組織130に移るときに表示器42の針の振れが若干大きくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が棘間靭帯組織130に入ったことを知ることができる。穿刺針50を図10、図11に示すように硬膜外腔組織140までさらに推し進めると、前述のように、硬膜外腔組織140のインピーダンスは棘間靭帯組織130のインピーダンスの何倍も大きいので、穿刺針50の先端部分が棘間靭帯組織130から硬膜外腔組織140に移行すると、表示器42の針の振れが急に大きくなる。この針の振れの変化によって、術者は穿刺針50の先端部分が硬膜外腔組織140に入ったことを知ることができる。
【0036】
穿刺針50の先端部分が硬膜外腔組織140に達したことを確認したら、図12に示すように内針20を取り除いて、生体内に硬膜外針10を残し、薬剤を入れた注射針を硬膜外針10に接続し、薬剤を注入するためにその内部よりカテーテルを挿入する。
【0037】
ここで、万が一穿刺針50を推し進めすぎて、穿刺針50の先端部分が硬膜145やくも膜下腔組織150にまで達してしまったときには、前述のように、膜下腔組織150のインピーダンスが硬膜外腔組織140のインピーダンスの10分の1程度と極端に小さいので、表示器42の針の振れが急激に跳ね上がり、術者は穿刺針50の先端部分が膜下腔組織150に達していることを知ることができる。
【0038】
前述のように、生体内の組織のインピーダンスは組織の種類に応じて大きく異なる。そして、その組織の配列は生体の表面から内部に向けてインピーダンスが徐々に増加あるいは減少するような配列ではなく、インピーダンスの大きい組織と小さい組織がランダムになるような配列である。このため、穿刺針50を進めるにつれて、表示器42の針の振れが組織の変わり目で大きく変化する。術者はこの変化の状況を観察することによって、穿刺針50の先端部分が今どの組織を通過中であるのかを極めて正確に把握することができるようになる。
【0039】
次に、外針自体を電極となし、もう一方の電極は内針の先端部に設ける実施の形態について説明する。この形態は、前述した外針10と基本的に同じ構造を備えている。電極を形成する外針は導電性を有し、たとえば金属で構成されている。外針の基端部には、電気信号を取り出すためのリード線が接続されている。内針は前述した内針20と基本的な構造は同じであるが、先端部の表面に実質的に露出する1つの電極を有している。内針は前記実施形態と同様にプラスチックなどの絶縁性材料で形成するのが好ましいが、金属で構成される場合は、外針の内表面もしくは内針の外表面に絶縁性材料をコーティングすることによって短絡が防止できる。また内針の電極は、内針と短絡防止の絶縁性材料で隔てられている。外針の外表面には、先端部を除いて絶縁性を有するコーティングを施しても良い。このように構成することによって電気的特性の測定精度が向上する。内針の先端部の電極と外針の電極との間で前記した実施の形態と同様にインピーダンスなどの電気的特性を測定することができる。
【0040】
以上のように、本発明にかかる穿刺針によれば、生体内組織のインピーダンスを穿刺針の内針に設けた電極で検出できるようにしたので、皮下組織から筋肉組織内で行う筋肉注射、皮下組織から血管組織内で行われる血管留置、血管や皮下組織から筋組織で行われる細胞や遺伝子デリバリなどについても応用できる。
【0041】
以上の実施の形態では、2極の電極を備えた穿刺針を例示して説明したが、3極以上の電極を備えていても良い。3極以上の電極を設けたときには、2つ以上の電極間インピーダンスが測定可能であるが、測定されたインピーダンスの平均値を表示器に表示させる。また、電極の間隔は、検出対象となる組織の厚みよりも十分に小さくする。組織の厚みよりも電極の配置間隔が大きいと、組織の境界部分を捉えることが困難になるからである。また、電極は、本実施の形態のように内針側に設けるのではなく、可能であれば外針側に設けても良い。また、内針側と外針側の両方に設けても良い。
【0042】
本実施の形態では本発明にかかる穿刺針を硬膜外針として用いた場合について説明したが、本発明にかかる穿刺針は、脊椎麻酔針、神経ブロック針、血管穿刺針、留置針、脊硬膜外針、細胞注入針や遺伝子注入針として用いることができる。
【0043】
本実施の形態においては、電極から取り出す電気信号によって得られる電気特性としてインピーダンスの例をもとに説明したが、他の電気的特性としては電流の位相差が挙げられる。たとえば、硬膜外腔における位相差は、表1に示すように、その表面側の筋肉や靭帯の位相差よりも明らかに大きいので、組織の判別が可能であり、位相差を測定することによって穿刺針の先端部分の位置が確認できる。また、インピーダンスと位相差というように、2つの電気的特性の情報を組み合わせて穿刺針の先端部分の位置確認に供することによって、位置確認の精度がさらに高くなる。
【0044】
【発明の効果】
以上説明したように、本発明の穿刺針によれば、複数の電極を所定の間隔を置いて配置し、それぞれの電極を穿刺針の先端部分で実質的に露出させているので、電極間の電気的特性やその変化の状態を観察することによって、穿刺針の先端部分が現在生体内のどの組織にあるのかが正確に把握できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明にかかる穿刺針を構成する細長い円筒状の硬膜外針の断面図である。
【図2】本発明にかかる穿刺針を構成する硬膜外針の中空部に挿入される内針の断面図である。
【図3】本発明にかかる穿刺針の断面図である。
【図4】図3に示した穿刺針の先端部分の上面図である。
【図5】モニター装置で生体組織のインピーダンスを測定する場合の穿刺針の接続状態を示す図である。
【図6】人体を背中から腹部にかけて横に切断した時の組織別配置状況を示す図である。
【図7】組織別の周波数−インピーダンス特性を示す図である。
【図8】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図9】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図10】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図11】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【図12】穿刺針を硬膜外腔に刺入れするときのインピーダンスの変化状態の説明に供する図である。
【符号の説明】
10…硬膜外針、
12…先端部分、
14…針部、
16…手元部分、
18…外針ハブ、
19…中空部、
20…内針、
22、22a、22b…電極、
24…先端部分、
26…手元部分、
28…内針ハブ、
30、30a、30b…リード線、
40…モニター装置、
42…表示器、
50…穿刺針、
100…背中、
105…背中外皮、
110…皮下組織、
115…皮下靭帯組織、
120…筋肉組織、
130…棘間靭帯組織、
135…棘骨、
137…黄靭帯組織、
140…硬膜外腔組織、
145…硬膜、
150…くも膜下腔組織、
160…背骨。
Claims (4)
- 生体に刺入される穿刺針であって、
当該穿刺針には複数の電極が所定の間隔を置いて配置され、
それぞれの電極は前記穿刺針の先端部分で実質的に露出されていることを特徴とする穿刺針。 - 生体に刺入される穿刺針であって、
当該穿刺針は細長い円筒状の外針と当該外針の中空部に挿入される内針とからなり、
当該外針または当該内針には複数の電極が所定の間隔を置いて配置され、
それぞれの電極は前記外針または内針の先端部分で実質的に露出されていることを特徴とする穿刺針。 - 生体に刺入される穿刺針であって、
当該穿刺針は細長い筒状であり、導電性を有し、電極を形成する外針と、当該外針の中空部に挿入され、先端部に実質的に露出された電極を有する内針とからなることを特徴とする穿刺針。 - 前記それぞれの電極には電気信号を取り出すためのリード線が接続されていることを特徴とする請求項1乃至3のいずれかに記載の穿刺針。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003036990A JP2004242936A (ja) | 2003-02-14 | 2003-02-14 | 穿刺針 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003036990A JP2004242936A (ja) | 2003-02-14 | 2003-02-14 | 穿刺針 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004242936A true JP2004242936A (ja) | 2004-09-02 |
Family
ID=33021931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003036990A Withdrawn JP2004242936A (ja) | 2003-02-14 | 2003-02-14 | 穿刺針 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004242936A (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007203039A (ja) * | 2006-02-04 | 2007-08-16 | F Hoffmann-La Roche Ag | インピーダンス測定機構を有する穿刺装置 |
JP2007260113A (ja) * | 2006-03-28 | 2007-10-11 | Terumo Corp | 穿刺具 |
JP2012504432A (ja) * | 2008-09-30 | 2012-02-23 | ディファイン, インコーポレイテッド | 椎骨骨折の治療に使用するシステム |
US8758349B2 (en) | 2008-10-13 | 2014-06-24 | Dfine, Inc. | Systems for treating a vertebral body |
US8864760B2 (en) | 2012-03-27 | 2014-10-21 | Dfine, Inc. | Methods and systems for use in controlling tissue ablation volume by temperature monitoring |
US9125671B2 (en) | 2010-04-29 | 2015-09-08 | Dfine, Inc. | System for use in treatment of vertebral fractures |
KR20160118625A (ko) * | 2015-04-02 | 2016-10-12 | 한국과학기술원 | 전극 배열을 갖는 조직 생검술용 바늘 및 이의 제조 방법 |
US9526507B2 (en) | 2010-04-29 | 2016-12-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9610117B2 (en) | 2010-04-29 | 2017-04-04 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9649116B2 (en) | 2010-11-22 | 2017-05-16 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9901392B2 (en) | 2015-05-11 | 2018-02-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9918766B2 (en) | 2012-12-12 | 2018-03-20 | Dfine, Inc. | Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement |
US10058336B2 (en) | 2010-04-08 | 2018-08-28 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US10463380B2 (en) | 2016-12-09 | 2019-11-05 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
US10478241B2 (en) | 2016-10-27 | 2019-11-19 | Merit Medical Systems, Inc. | Articulating osteotome with cement delivery channel |
US10660656B2 (en) | 2017-01-06 | 2020-05-26 | Dfine, Inc. | Osteotome with a distal portion for simultaneous advancement and articulation |
WO2021045029A1 (ja) * | 2019-09-02 | 2021-03-11 | 国立大学法人大阪大学 | 穿刺支援システム、穿刺支援方法およびプログラム |
US11026744B2 (en) | 2016-11-28 | 2021-06-08 | Dfine, Inc. | Tumor ablation devices and related methods |
US11052237B2 (en) | 2016-11-22 | 2021-07-06 | Dfine, Inc. | Swivel hub |
WO2021181869A1 (ja) * | 2020-03-11 | 2021-09-16 | 古河電気工業株式会社 | 中空針 |
JP2021154087A (ja) * | 2020-03-30 | 2021-10-07 | テルモ株式会社 | 医療デバイスおよび医療システム |
US11197681B2 (en) | 2009-05-20 | 2021-12-14 | Merit Medical Systems, Inc. | Steerable curvable vertebroplasty drill |
US11510723B2 (en) | 2018-11-08 | 2022-11-29 | Dfine, Inc. | Tumor ablation device and related systems and methods |
JP2022554025A (ja) * | 2019-11-27 | 2022-12-27 | ブロッサム イノベーションズ エルエルシー | 組織分析、位置決定及び組織切除のためのデバイス、システム及び方法 |
US11986229B2 (en) | 2019-09-18 | 2024-05-21 | Merit Medical Systems, Inc. | Osteotome with inflatable portion and multiwire articulation |
-
2003
- 2003-02-14 JP JP2003036990A patent/JP2004242936A/ja not_active Withdrawn
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007203039A (ja) * | 2006-02-04 | 2007-08-16 | F Hoffmann-La Roche Ag | インピーダンス測定機構を有する穿刺装置 |
JP2007260113A (ja) * | 2006-03-28 | 2007-10-11 | Terumo Corp | 穿刺具 |
US10299805B2 (en) | 2008-09-30 | 2019-05-28 | Dfine, Inc. | Systems for treating a vertebral body |
US10245092B2 (en) | 2008-09-30 | 2019-04-02 | Dfine, Inc. | System for use in treatment of vertebral fractures |
JP2014064954A (ja) * | 2008-09-30 | 2014-04-17 | Dfine Inc | 椎骨骨折の治療に使用するシステム |
US9913675B2 (en) | 2008-09-30 | 2018-03-13 | Dfine, Inc. | System for use in treatment of vertebral fractures |
JP2012504432A (ja) * | 2008-09-30 | 2012-02-23 | ディファイン, インコーポレイテッド | 椎骨骨折の治療に使用するシステム |
US9113974B2 (en) | 2008-09-30 | 2015-08-25 | Dfine, Inc. | System for use in treatment of vertebral fractures |
JP2017074397A (ja) * | 2008-09-30 | 2017-04-20 | ディファイン, インコーポレイテッド | 椎骨骨折の治療に使用するシステム |
US8663226B2 (en) | 2008-09-30 | 2014-03-04 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9421057B2 (en) | 2008-09-30 | 2016-08-23 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9504481B2 (en) | 2008-10-13 | 2016-11-29 | Dfine, Inc. | Systems for treating a vertebral body |
US9161809B2 (en) | 2008-10-13 | 2015-10-20 | Dfine, Inc. | Systems for treating a vertebral body |
US8758349B2 (en) | 2008-10-13 | 2014-06-24 | Dfine, Inc. | Systems for treating a vertebral body |
US11197681B2 (en) | 2009-05-20 | 2021-12-14 | Merit Medical Systems, Inc. | Steerable curvable vertebroplasty drill |
US10058336B2 (en) | 2010-04-08 | 2018-08-28 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9526507B2 (en) | 2010-04-29 | 2016-12-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9125671B2 (en) | 2010-04-29 | 2015-09-08 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9743938B2 (en) | 2010-04-29 | 2017-08-29 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US10624652B2 (en) | 2010-04-29 | 2020-04-21 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9610117B2 (en) | 2010-04-29 | 2017-04-04 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US10123809B2 (en) | 2010-04-29 | 2018-11-13 | Merit Medical Systems, Inc. | System for use in treatment of vertebral fractures |
US10327841B2 (en) | 2010-04-29 | 2019-06-25 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US9649116B2 (en) | 2010-11-22 | 2017-05-16 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US10028784B2 (en) | 2012-03-27 | 2018-07-24 | Dfine, Inc. | Methods and systems for use in controlling tissue ablation volume by temperature monitoring |
US8864760B2 (en) | 2012-03-27 | 2014-10-21 | Dfine, Inc. | Methods and systems for use in controlling tissue ablation volume by temperature monitoring |
US9918766B2 (en) | 2012-12-12 | 2018-03-20 | Dfine, Inc. | Devices, methods and systems for affixing an access device to a vertebral body for the insertion of bone cement |
KR20160118625A (ko) * | 2015-04-02 | 2016-10-12 | 한국과학기술원 | 전극 배열을 갖는 조직 생검술용 바늘 및 이의 제조 방법 |
KR101707564B1 (ko) | 2015-04-02 | 2017-02-16 | 한국과학기술원 | 전극 배열을 갖는 조직 생검술용 바늘 및 이의 제조 방법 |
US9901392B2 (en) | 2015-05-11 | 2018-02-27 | Dfine, Inc. | System for use in treatment of vertebral fractures |
US11344350B2 (en) | 2016-10-27 | 2022-05-31 | Dfine, Inc. | Articulating osteotome with cement delivery channel and method of use |
US10478241B2 (en) | 2016-10-27 | 2019-11-19 | Merit Medical Systems, Inc. | Articulating osteotome with cement delivery channel |
US11052237B2 (en) | 2016-11-22 | 2021-07-06 | Dfine, Inc. | Swivel hub |
US11026744B2 (en) | 2016-11-28 | 2021-06-08 | Dfine, Inc. | Tumor ablation devices and related methods |
US11116570B2 (en) | 2016-11-28 | 2021-09-14 | Dfine, Inc. | Tumor ablation devices and related methods |
US12011215B2 (en) | 2016-11-28 | 2024-06-18 | Dfine, Inc. | Tumor ablation devices and related methods |
US11540842B2 (en) | 2016-12-09 | 2023-01-03 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
US10470781B2 (en) | 2016-12-09 | 2019-11-12 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
US10463380B2 (en) | 2016-12-09 | 2019-11-05 | Dfine, Inc. | Medical devices for treating hard tissues and related methods |
US10660656B2 (en) | 2017-01-06 | 2020-05-26 | Dfine, Inc. | Osteotome with a distal portion for simultaneous advancement and articulation |
US11607230B2 (en) | 2017-01-06 | 2023-03-21 | Dfine, Inc. | Osteotome with a distal portion for simultaneous advancement and articulation |
US11937864B2 (en) | 2018-11-08 | 2024-03-26 | Dfine, Inc. | Ablation systems with parameter-based modulation and related devices and methods |
US11510723B2 (en) | 2018-11-08 | 2022-11-29 | Dfine, Inc. | Tumor ablation device and related systems and methods |
JPWO2021045029A1 (ja) * | 2019-09-02 | 2021-03-11 | ||
JP7199761B2 (ja) | 2019-09-02 | 2023-01-06 | 国立大学法人大阪大学 | 穿刺支援システム、穿刺支援システムの作動方法およびプログラム |
WO2021045029A1 (ja) * | 2019-09-02 | 2021-03-11 | 国立大学法人大阪大学 | 穿刺支援システム、穿刺支援方法およびプログラム |
US11986229B2 (en) | 2019-09-18 | 2024-05-21 | Merit Medical Systems, Inc. | Osteotome with inflatable portion and multiwire articulation |
JP2022554025A (ja) * | 2019-11-27 | 2022-12-27 | ブロッサム イノベーションズ エルエルシー | 組織分析、位置決定及び組織切除のためのデバイス、システム及び方法 |
CN114828917A (zh) * | 2020-03-11 | 2022-07-29 | 古河电气工业株式会社 | 中空针 |
JP2021142051A (ja) * | 2020-03-11 | 2021-09-24 | 古河電気工業株式会社 | 中空針 |
WO2021181869A1 (ja) * | 2020-03-11 | 2021-09-16 | 古河電気工業株式会社 | 中空針 |
CN114828917B (zh) * | 2020-03-11 | 2024-10-15 | 古河电气工业株式会社 | 中空针 |
JP2021154087A (ja) * | 2020-03-30 | 2021-10-07 | テルモ株式会社 | 医療デバイスおよび医療システム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004242936A (ja) | 穿刺針 | |
US5335668A (en) | Diagnostic impedance measuring system for an insufflation needle | |
EP2223662A1 (en) | Electronic syringe with safety system for spinal injections | |
EP2370148B1 (en) | Impedance guided tunneling tool | |
CN107548310B (zh) | 硬膜外空间识别探测装置 | |
US6190370B1 (en) | Devices, systems and methods for determining proper placement of epidural catheters | |
US20090036794A1 (en) | Method and apparatus for determining local tissue impedance for positioning of a needle | |
US20100286507A1 (en) | Determining the position of a needle | |
WO1993009725A1 (en) | Method and apparatus for guiding a catheter | |
US20120130269A1 (en) | Integrated nerve stimulation and skin marking device and methods of using same | |
WO2013142551A1 (en) | Filling Methods and Apparatus for Implanted Medical Therapy Delivery Devices | |
CN105232093B (zh) | 使用压力侦测医疗用针定位的方法及其装置和穿刺针套组 | |
JP2004016333A (ja) | 硬膜外麻酔用カテーテルおよび該硬膜外麻酔用カテーテルを用いる電気刺激装置 | |
WO2014120114A1 (en) | Microneedle-based natremia sensor and methods of use | |
KR20190059135A (ko) | 생체신호 측정 및 약물 전달이 동시에 가능한 바이오센서 및 그 제조방법 | |
US20210259573A1 (en) | Tissue detection devices, systems and methods | |
KR101559740B1 (ko) | 에피 체크 포인트 | |
CN114073569A (zh) | 一种穿刺深度反馈及实时脑脊液压力监测的腰椎穿刺针 | |
CN105611964B (zh) | 静脉电刺激装置和方法 | |
JP2003159331A (ja) | 注射針及び注射補助装置 | |
US20090221894A1 (en) | Minimally invasive vessel location | |
EP0959761A1 (en) | Multi-electrode and needle injection device for diagnosis and treatment of muscle injury and pain | |
JP2002028247A (ja) | 穿刺針による静脈刺入の感知方法及び装置 | |
US20190321072A1 (en) | Apparatuses and methods to guide placement of needles within the body | |
JP2004534564A (ja) | 利用可能な針のサイズを決定する装置並びに方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060509 |