Nothing Special   »   [go: up one dir, main page]

JP2004197190A - High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method - Google Patents

High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method Download PDF

Info

Publication number
JP2004197190A
JP2004197190A JP2002369551A JP2002369551A JP2004197190A JP 2004197190 A JP2004197190 A JP 2004197190A JP 2002369551 A JP2002369551 A JP 2002369551A JP 2002369551 A JP2002369551 A JP 2002369551A JP 2004197190 A JP2004197190 A JP 2004197190A
Authority
JP
Japan
Prior art keywords
steel
phase
chemical composition
temperature
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369551A
Other languages
Japanese (ja)
Inventor
Ryunosuke Kawashima
竜之介 川嶋
Mitsuhiro Okatsu
光浩 岡津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002369551A priority Critical patent/JP2004197190A/en
Publication of JP2004197190A publication Critical patent/JP2004197190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile steel excellent in non-heat treated high extension-breaking propagation-stopping characteristic with which under consideration of using circumference of actual pipeline construction this steel is suitable to use therefor, and the necessary preheating temperature at a welding is ≤ 20°C, and its production method. <P>SOLUTION: This high tensile steel has the chemical composition composed by mass ratio of 0.005-0.020% C, 0.10-0.30% Si, 1.0-2.0% Mn, 0.05-0.10% Al, 0.5-1.5% Mo, 0.01-0.07% Nb and the balance Fe with inevitable impurities and is the non-heat treated steel composed of bainite phase dispersing M-A phase at 2-4% volume ratio in the structure. In this way, this steel can be satisfied as ≥620 MPa tensile strength and ≥300 J charpy impact absorbing energy at -40°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高強度かつ低温での高速延性破壊伝播停止特性が優れた高張力鋼、特にラインパイプ用に適した高張力鋼に関する。
【0002】
【従来の技術】
近年の天然ガス等を輸送するラインパイプ用鋼材は高張力化されており、それにより天然ガス等を輸送能率の高い高圧輸送で輸送することが可能になっている。また、ラインパイプの薄肉化及び小径化が達成され、鋼材使用量の節減と施工負荷の低減が可能になっている。
【0003】
このようなラインパイプのパイプは一般に熱延鋼板を溶接して製造され、またパイプラインの建設はパイプライン建設サイトでパイプを順次溶接・接合することによって行われる。そのため、ラインパイプ用鋼材には、上記高張力のほか、溶接性のよいこと、すなわち溶接前の予熱温度が低くても溶接割れの発生しないことが要求される。また、溶接部に生じた亀裂が高速でパイプ母材を伝播する高速延性破壊現象を防止するために、使用環境温度でのシャルピー衝撃吸収エネルギーが高いことが必要である。
【0004】
特に、近年、油田(ガス田)の開発の進んだシベリアやアラスカなど寒冷地から天然ガス等を輸送するパイプラインの建設に用いるラインパイプ用鋼材では、使用環境温度が極めて低いことが想定されるため、低温の使用環境温度でのシャルピー衝撃吸収エネルギーが高い鋼材が要求され、それに応えて種々の鋼材及びその製造方法が提案されている。
【0005】
たとえば、特許文献1には、合金元素の含有量を低減した組成を有し、ベイナイト主体の組織に島状マルテンサイトを分散させた組織を有する非調質鋼により溶接予熱温度を大幅に低下させるとともに引張強度590MPa以上、破面遷移温度-50℃以下を満足する鋼板が提案されている。また、特許文献2には、組織をベイナイト相を主体とし、ベイナイト相の平均ラス長さとM-A相及びフェライト体積率を制御することにより、590MPa以上の引張強度と-80℃でのシャルピー衝撃エネルギー215J以上の低温靭性を両立させた鋼材及びその製造方法が提案されている。
【0006】
【特許文献1】
特開2000-219934号公報
【特許文献2】
特開平9-3591号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1による提案では、破面遷移温度(vTrs)では-50℃が達成されているが、吸収エネルギー値に十分な配慮が払われていない。低温での高速延性破壊伝播特性を良好に保つためには、破面遷移温度よりむしろ、使用環境温度で高いシャルピー衝撃吸収エネルギー値を満足することが必要である。
【0008】
後者の特許文献2による提案では、590MPa以上の引張強度と-80℃でのシャルピー衝撃エネルギー215J以上の低温靭性の両立が図られている。しかし、その対象は厚さ50mm以上の極厚鋼板であり、製造工程において焼き戻し処理を伴なう場合が多く、コスト及び省エネルギーの観点からみてラインパイプ用鋼に適用し難い。また、パイプラインの建設・使用環境等を考慮すると、-80℃でのシャルピー衝撃吸収エネルギーの保証は必ずしも必要でない場合が多い。現実の寒冷地での使用環境温度を考慮すると-40℃でのシャルピー衝撃吸収エネルギーを高くするとともに強度を向上させることが、パイプラインの建設・稼動にとって有用である。
【0009】
本発明は、このような現実のパイプライン建設・使用環境を考慮して、そこに使用するのに適した鋼材及びその製造方法を提案することを目的とし、比較的コストがかからない非調質鋼によって高速延性破壊伝播停止特性に優れた高張力鋼を製造することを可能にするものである。具体的には引張強度620Mpa以上、-40℃でのシャルピー衝撃吸収エネルギー300J以上を満足するとともに溶接時の必要予熱温度が20℃以下である非調質の高延性破壊伝播停止特性に優れた高張力鋼を及びその製造方法を提案するものである。
【0010】
【課題を解決するための手段】
本発明に係る高速延性破壊伝播停止特性に優れた高張力鋼は、化学組成が質量比でC:0.005〜0.020%、Si:0.10〜0.30%、Mn:1.0〜2.0%、Al:0.05〜O.10%、Mo:0.5〜1.5%、Nb:0.01〜0.07%、残部Feおよび不可避不純物からなり、組織が体積率で2〜4%のM-A相が分散しているベイナイト相からなる非調質鋼である。
【0011】
上記鋼の化学組成には、さらにCu:0.5〜1.0%、Ni:0.5〜1.5%のいずれか1又は2Cr:0.5〜1.0%、V:0.1〜0.5%,B:0.0004〜0.0030%のいずれか1以上、およびTi:0.005〜0.030%のいずれか1種以上を併せて含有させることが好適である。
【0012】
上記高速延性破壊伝播停止特性に優れた高張力鋼は上記化学組成を有する鋼片を1100〜1250℃の温度に加熱し、オーステナイト再結晶領域において30%以上、オーステナイト未再結晶領域において60%以上の圧下を与え、かつフェライト変態開始温度より高温領域にて終了する熱間圧延を行い、該熱間圧延終了後、直ちに体積率で2〜4%のM-A相が分散しているベイナイト相が得られるように加速冷却することことによって製造することができる。その際、上記加速冷却は、熱間圧延終了後、直ちに冷却速度10〜30℃/sの冷却速度でを少なくとも100℃まで行うものとするのが好適である。
【0013】
【発明の実施の形態】
以下、本発明をその組織、化学組成及びその製造方法について具体的に説明する。
【0014】
本発明に係る鋼は、組織的にベイナイト相を主相とし、その中に体積率で2〜4%のM-A相が分散しているものである。ここにベイナイト相とは、上部ベイナイト変態温度域で生成するものをいい、M-A相とは、マルテンサイトとオーステナイトの混合した相であって、変態過程においてCが過飽和に濃縮した部分で変態温度が低下し、オーステナイトの一部がマルテンサイトに変態した混合相をいう。その特定はナイタール腐食後、炭化物を溶解させる二段エッチング処理を行い、炭化物が溶解しないものをM-A相と同定することによって行う。
【0015】
本発明者は表1に示す組成の鋼スラブを1150℃に加熱後、オーステナイト再結晶領域において約30%、オーステナイト未再結晶領域において約60%の圧下を与え、かつフェライト変態開始温度よりも高温領域である800℃で終了する熱間圧延を行い、該熱間圧延終了後、直ちに冷却速度10〜30℃/sの加速冷却を100℃まで行ってベイナイト相を主相とする鋼を得、その鋼におけるM-A相の占める体積率(以下、「M-A相体積率」という)が機械的性質に及ぼす影響を正確に調査した。
【0016】
【表1】

Figure 2004197190
【0017】
その結果、以下の結論を得た。
(1)図1に示すように、M-A相の体積率の増加に伴い、引張強度は増加する。
(2)図2に示すように、M-A相の体積率が4%を超えると靭性の一つの指標である破面遷移温度が上がり、靭性が劣化する。
(3)また、図3に示すように-40℃でのシャルピー吸収エネルギー値が低下する。これらの実験データから、ベイナイト鋼においてM-A相体積率を2%以上とすれば引張強度620MPa以上を確保できること、およびベイナイト相中におけるM-A相体積率を4%以下の範囲にすれば、破面遷移温度-40℃以下及び-40℃でのシャルピー吸収エネルギー300J以上を確保できることが分かる。本発明はこのことに基礎をおいている。
【0018】
上記組織を有せしめることにより、高速延性破壊伝播停止特性に優れた高張力鋼を得ることができるが、この鋼の溶接性、特に溶接時の予熱温度を20℃以下とし、また、非調質の状態で上記組織を得て必要な機械的性質を確保するため、化学組成を以下のように定める。
【0019】
C:0.005〜0.02%
Cは強度向上に有効な元素であるが、0.02%を超えるとM-A相体積率が4%を超えて増加し、引張強度は高くなるが破面遷移温度を上昇させ、また-40℃での吸収エネルギー値を低下させる。一方、Cを0.005%未満では組織をベイナイト化することが困難になり、他の強度向上元素を添加しても目標とする強度を得ることができなくなる。
【0020】
Si:0.10〜0.30%
Siはマトリックスを強化して鋼の強度を向上させるために0.1%以上含有させる。しかし、Siはベイナイト相中のM-A相形成能を減少させ、0.30%を超えると、必要とするM-A相体積率が得られなくなる。したがってSiは0.10〜0.30%の範囲で含有させる。
【0021】
Mn:1.0〜2.0%
Mnもマトリックスを強化して鋼の強度を向上させるのに有効な元素であり、高強度を保つためには1.0%以上の添加が必要である。しかし、2.0%を超える添加は、靭性を害するため上限を2.0%とする。
【0022】
Al:0.05〜0.10%
Alは製鋼工程における脱酸元素として、製品中に0.05%以上含有するよう添加する必要がある。しかし、0.10%を超えると、粗大な酸化物が残留し、破壊の起点となるため上限を0.1%とする。
【0023】
Mo:0.5〜1.5%
Moは、ベイナイト変態を促進する元素である。その効果は0.5%以上で現われるが、1.5%を超えると靭性を害する。
【0024】
Nb:0.01〜0.07%
Nbは0.01%以上含有させるとオーステナイト中においてNbCとして析出して、高温におけるオーステナイト粒の粗大化を抑制する。しかし、0.07%を超えると過剰の炭化物の存在のためにかえって製品の靭性を害する。したがって0.01〜0.07%の範囲で含有させる。
【0025】
本発明の鋼組成は上記成分以外はFe及び不可避不純物とすることができる。しかし、鋼の強度レベルを上げるために以下の元素を適宜配合することができる。なお、不可避不純物としては、P,S,Oなどがあるが、これらはそれぞれ0.015%以下、0.0015%以下、0.0060%以下とするのがよい。
【0026】
Cu:0.5〜1.0%、Ni:0.5〜1.5%
Cu、Niは、0.5%以上の添加でマトリックス強化を通じて鋼の高張力化に寄与する。しかし過剰に添加してもその効果は飽和し、経済的でない。その限度はCuの場合1.0%、Niの場合1.5%、Crの場合1.0%である。
【0027】
Cr:0.5〜1.0%、V:0.1〜0.5%、B:0.0004〜0.0030%
Cr、V、Bはマトリックスの強化を通じて鋼の高張力化に寄与する。しかし、その添加が過剰に過ぎると靭性が劣化する。これら元素の有効添加範囲は上記観点から定められ、それぞれCr:0.5〜1.0%、V:0.1〜0.5%、B:0.0004〜0.0030%とするのが好適である。
【0028】
Ti:0.005〜0.030%
Tiは0.005%以上含有させると鋼片加熱工程において、析出物として存在し、オーステナイト粒の粗大化を防ぎ、靭性を向上させる効果がある。しかし、0.030%を超えると溶接熱影響部(HAZ)の靭性劣化をもたらすのでこれを超えないようにする。
【0029】
上記の組織及び化学組成を有する鋼は、非調質、すなわち圧延ままで引張強度620Mpa以上、-40℃でのシャルピー衝撃吸収エネルギー300J以上を満足するとともに溶接時の必要予熱温度が20℃以下の性質を有し、高延性破壊伝播停止特性に優れた鋼である。かかる鋼を製造するためには以下に示す工程をとるのが望ましい。
【0030】
まず、上記範囲の所定の組成を有する鋼片を製造し、これを1100〜1250℃の温度で加熱する。本発明に係る鋼はC含有量が0.02%以下の極低炭素鋼であり、1250℃以上温度で鋼片を加熱すると、オーステナイト粒の異常粗大化が起こり、靭性の劣化を招く可能性があるのでスラブ加熱温度は1250℃以下とする。しかし、加熱温度が低すぎると、圧延設備能力等の面から問題が生ずるので、1100℃以上とする。
【0031】
上記範囲で加熱されたスラブは熱間圧延に供される。熱間圧延に当たっては、組織微細化のためオーステナイト再結晶領域において30%以上、オーステナイト未再結晶領域において60%の圧下を与える。いずれも組織微細化のためである。
【0032】
上記熱間圧延の圧延終了温度は、フェライト変態開始温度より高温領域とし、直ちに加速冷却を行う。熱間圧延の圧延終了温度をフェライト変態開始温度より高温領域とするのは、熱間圧延過程において強度低下の原因となるフェライトが生成し始めるのを防止するためである。
【0033】
加速冷却は、該熱間圧延終了後ただちに開始するものとし、その際の冷却速度を体積率で2〜4%のM-A相が分散しているベイナイト相が得られるように選定する。そのためには、たとえば公知のCCTダイヤグラムを利用することができる。このCCTダイヤグラムは計算と実サンプルの組織観察を併用して作ることができる。図4は、表1の鋼No.3についての計算および組織観察の結果によるCCTダイヤグラムである。この図から、900℃からの冷却速度を10〜30℃/sとしたとき、2〜4%のM-A相が分散しているベイナイト相が得られることが分かる。
【0034】
このように計算および組織観察を利用して得たCCTダイヤグラムによって、2〜4%のM-A相が分散しているベイナイト相が得られる冷却条件を求めることができるが、本発明の鋼組成を有するものでは、熱間圧延終了後の冷却速度を10〜30℃/sとすれば、本発明の目的に適った組織と機械的性質を有する鋼を得ることができる。
【0035】
加速冷却は少なくとも100℃まで継続する。冷却停止温度を100℃以下とするのは、100℃以上の温度域で冷却停止した場合、ベイナイトの形態が焼戻されてしまって強度、靭性が低下するためである。
【0036】
【実施例】
(実施例1)
質量比でC:0.11%、Si:0.22%、Mn:1.2%、Al:0.052%、Cr:0.55%、Mo:0.61%、V:0.14%、Nb:0.02%、Ti:0.005%、B:0.009%の組成をもつ鋼片を表2に示す条件で処理し、板厚20〜50mmの厚鋼板を製造した。得られた厚鋼板の組織及び特性値は、表3に示すとおりであり、本発明の条件によってより製造されたものは、体積率で2〜4%のM-A相が分散しているベイナイト相からなる組織を有し、vE-40が300J以上、引張強度が620MPa以上であった。
【0037】
なお、引張試験はJIS Z 2201にしたがってJIS4号試験片により、シヤルピー衝撃試験はJIS Z 2202にしたがい鋼板1/2t部より採取したVノッチ試験片により行った。また、M-A相体積率は走査型電子顕微鏡観察によりを求めた。溶接割れ評価試験はJIS Z 3158に準ずるy形溶接割れ試験方法に従って行い、溶接性を割れの出ない溶接部予熱温度によって評価した。
【0038】
【表2】
Figure 2004197190
【0039】
【表3】
Figure 2004197190
【0040】
(実施例2)
表4〜6に示す各種組成を有する鋼片を、約1200℃で加熱した後、オーステナイト再結晶領域である1000℃において累積圧下率40%、オーステナイト未再結晶領域である925℃以下において累積圧下率80%となるように圧延を行い、圧延終了温度をフェライト変態開始温度より高温領域である825℃で終了した。熱間圧延終了後、直ちに冷却速度10〜20℃/sの加速冷却を行い、冷却停止温度は100℃とした。
【0041】
得られた厚鋼板の組織及び特性値は表4〜6の組成に対応させてそれぞれ表7〜9に示す。本発明の組成を有するものは、体積率で2〜4%のM-A相が分散しているベイナイト相からなる組織を有し、vE-40が300J以上、引張強度が620MPa以上であった。なお、試験方法は実施例1と同様である。
【0042】
【表4】
Figure 2004197190
【0043】
【表5】
Figure 2004197190
【0044】
【表6】
Figure 2004197190
【0045】
【表7】
Figure 2004197190
【0046】
【表8】
Figure 2004197190
【0047】
【表9】
Figure 2004197190
【0048】
上記実施例2によって得られた各厚鋼板について引張強度を横軸にとり、シャルピー吸収エネルギー値を縦軸にとってプロットすると図5の分布図に示すようなる。本発明に係る鋼は、比較例に示した鋼に比べ引張強度に対しシャルピー吸収エネルギーが高い。
【0049】
【発明の効果】
本発明により、引張強度620Mpa以上、-40℃でのシャルピー衝撃吸収エネルギー300J以上を満足するとともに溶接時の必要予熱温度が20℃以下である非調質の高延性破壊伝播停止特性に優れた高張力鋼を利用することが可能になり、パイプラインの建設がより経済的に行えるようになる。
【図面の簡単な説明】
【図1】表1に示す成分の鋼についてのM-A相体積率と引張強度の関係を示すグラフである。
【図2】表1に示す成分の鋼についてのM-A相体積率と破面遷移温度の関係を示すグラフである。
【図3】表1に示す鋼記号3の鋼のCCTダイヤグラムである。
【図4】本発明に係る鋼及び比較例に係る鋼の引張強度−シャルピー吸収エネルギー値分布図である。
【図5】実施例2によって得られた厚鋼板についての引張強度(横軸)とシャルピー吸収エネルギー値(縦軸)との分布図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel excellent in high-strength and high-speed ductile fracture propagation stopping characteristics at low temperatures, particularly a high-tensile steel suitable for line pipes.
[0002]
[Prior art]
BACKGROUND ART In recent years, steel materials for line pipes for transporting natural gas and the like have been made to have a high tensile strength, which makes it possible to transport natural gas and the like by high-pressure transport with high transport efficiency. In addition, the thickness and diameter of the line pipe have been reduced, and it has become possible to reduce the amount of steel used and the construction load.
[0003]
The pipe of such a line pipe is generally manufactured by welding hot-rolled steel sheets, and the construction of the pipeline is performed by sequentially welding and joining the pipes at a pipeline construction site. Therefore, in addition to the high tensile strength, the line pipe steel material is required to have good weldability, that is, not to cause weld cracking even if the preheating temperature before welding is low. Further, in order to prevent a high-speed ductile fracture phenomenon in which a crack generated in a weld propagates at a high speed in a pipe base material, it is necessary to have a high Charpy impact absorption energy at a use environment temperature.
[0004]
In particular, in the case of steel pipes used for the construction of pipelines for transporting natural gas and the like from cold regions such as Siberia and Alaska, where oil fields (gas fields) have been developed in recent years, it is assumed that the use environment temperature is extremely low. For this reason, steel materials having high Charpy impact absorption energy at a low use environment temperature are required, and various steel materials and methods for manufacturing the same have been proposed.
[0005]
For example, Patent Document 1 discloses a non-heat-treated steel having a composition in which the content of an alloying element is reduced and having a structure in which island martensite is dispersed in a structure mainly composed of bainite, thereby greatly reducing the welding preheating temperature. In addition, a steel plate satisfying a tensile strength of 590 MPa or more and a fracture surface transition temperature of -50 ° C or less has been proposed. Patent Document 2 discloses that the structure is mainly composed of a bainite phase, and by controlling the average lath length of the bainite phase and the volume ratio of the MA phase and ferrite, a tensile strength of 590 MPa or more and a Charpy impact energy at −80 ° C. of 215 J A steel material having both the above low-temperature toughness and a method for producing the same have been proposed.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-219934 [Patent Document 2]
JP-A-9-3591
[Problems to be solved by the invention]
However, in the proposal of Patent Document 1, although a fracture surface transition temperature (vTrs) of -50 ° C. is achieved, sufficient consideration is not given to the absorbed energy value. In order to maintain good high-speed ductile fracture propagation characteristics at low temperatures, it is necessary to satisfy a high Charpy impact absorption energy value at a use environment temperature rather than a fracture surface transition temperature.
[0008]
In the latter proposal of Patent Document 2, both tensile strength of 590 MPa or more and low-temperature toughness of Charpy impact energy at −80 ° C. of 215 J or more are achieved. However, the object is an extremely thick steel plate having a thickness of 50 mm or more, which often involves a tempering treatment in a manufacturing process, and is difficult to apply to line pipe steel from the viewpoint of cost and energy saving. Also, in consideration of the construction and use environment of the pipeline, it is often not always necessary to guarantee the Charpy impact absorption energy at -80 ° C. Considering the actual use environment temperature in cold regions, it is useful for the construction and operation of pipelines to increase the Charpy impact absorption energy at -40 ° C and improve the strength.
[0009]
The present invention has been made in view of such an actual pipeline construction and use environment, and aims to propose a steel material suitable for use therein and a method of manufacturing the same. Accordingly, it is possible to produce a high-tensile steel excellent in high-speed ductile fracture propagation stopping characteristics. More specifically, it has a tensile strength of 620 MPa or more, a Charpy impact absorption energy of 300 J or more at -40 ° C and a preheating temperature required for welding of 20 ° C or less. The present invention proposes a tensile steel and a method for producing the same.
[0010]
[Means for Solving the Problems]
The high-tensile steel excellent in high-speed ductile fracture propagation arrestability according to the present invention has a chemical composition of C: 0.005 to 0.020%, Si: 0.10 to 0.30%, Mn: 1.0 to 2.0%, Al: 0.05 to O by mass ratio. .10%, Mo: 0.5-1.5%, Nb: 0.01-0.07%, balance: Fe and inevitable impurities, non-refined temper consisting of bainite phase with 2-4% MA phase dispersed by volume It is steel.
[0011]
In the chemical composition of the steel, one of Cu: 0.5 to 1.0%, Ni: 0.5 to 1.5%, or 2Cr: 0.5 to 1.0%, V: 0.1 to 0.5%, B: 0.0004 to 0.0030% It is preferable to contain 1 or more and any one or more of Ti: 0.005 to 0.030%.
[0012]
The high-strength steel excellent in the above-mentioned high-speed ductile fracture propagation arresting property heats a slab having the above chemical composition to a temperature of 1100 to 1250 ° C, 30% or more in an austenite recrystallization region, and 60% or more in an austenite non-recrystallization region. Hot rolling is performed at a temperature higher than the ferrite transformation start temperature, and immediately after the completion of the hot rolling, a bainite phase in which 2 to 4% by volume of a MA phase is dispersed is obtained. It can be manufactured by accelerated cooling as described. In this case, it is preferable that the accelerated cooling be performed at a cooling rate of 10 to 30 ° C./s at least to 100 ° C. immediately after the completion of the hot rolling.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with respect to its structure, chemical composition, and its manufacturing method.
[0014]
The steel according to the present invention systematically has a bainite phase as a main phase, in which 2 to 4% by volume of a MA phase is dispersed. Here, the bainite phase means a phase formed in the upper bainite transformation temperature range, and the MA phase is a mixed phase of martensite and austenite, and the transformation temperature is a portion where C is concentrated to supersaturation in the transformation process. It refers to a mixed phase in which austenite is reduced and part of austenite is transformed into martensite. The identification is performed by performing a two-stage etching process for dissolving the carbide after the nital corrosion, and identifying an insoluble carbide as the MA phase.
[0015]
After heating the steel slab having the composition shown in Table 1 to 1150 ° C., a reduction of about 30% in the austenite recrystallized region and about 60% in the austenite non-recrystallized region was performed, and the temperature was higher than the ferrite transformation start temperature. Perform hot rolling ending at 800 ° C. in the region, immediately after the hot rolling, accelerated cooling at a cooling rate of 10 to 30 ° C. / s to 100 ° C. to obtain a steel having a bainite phase as a main phase, The effect of the volume fraction of the MA phase in the steel (hereinafter referred to as the “MA phase volume fraction”) on the mechanical properties was precisely investigated.
[0016]
[Table 1]
Figure 2004197190
[0017]
As a result, the following conclusions were obtained.
(1) As shown in FIG. 1, the tensile strength increases as the volume fraction of the MA phase increases.
(2) As shown in FIG. 2, when the volume fraction of the MA phase exceeds 4%, the fracture surface transition temperature, which is one index of toughness, increases, and the toughness deteriorates.
(3) As shown in FIG. 3, the Charpy absorbed energy value at -40 ° C. decreases. From these experimental data, it is found that the tensile strength of 620 MPa or more can be secured if the volume fraction of the MA phase is 2% or more in the bainite steel, and if the volume fraction of the MA phase in the bainite phase is 4% or less, the fracture transition It can be seen that Charpy absorbed energy of 300 J or more at a temperature of -40 ° C or lower and -40 ° C can be obtained. The present invention is based on this.
[0018]
By having the above structure, a high-tensile steel excellent in high-speed ductile fracture propagation arrestability can be obtained, but the weldability of this steel, especially the preheating temperature at the time of welding is set to 20 ° C or less, and In order to secure the necessary mechanical properties by obtaining the above structure in the above condition, the chemical composition is determined as follows.
[0019]
C: 0.005 to 0.02%
C is an element effective for improving the strength, but if it exceeds 0.02%, the volume fraction of the MA phase increases more than 4%, the tensile strength increases, but the fracture surface transition temperature increases, and Decrease absorbed energy value. On the other hand, when C is less than 0.005%, it becomes difficult to turn the structure into bainite, and even if other strength improving elements are added, the target strength cannot be obtained.
[0020]
Si: 0.10-0.30%
Si is contained in an amount of 0.1% or more to strengthen the matrix and improve the strength of the steel. However, Si reduces the ability to form the MA phase in the bainite phase, and if it exceeds 0.30%, the required volume fraction of the MA phase cannot be obtained. Therefore, Si is contained in the range of 0.10 to 0.30%.
[0021]
Mn: 1.0-2.0%
Mn is also an effective element for strengthening the matrix and improving the strength of steel, and it is necessary to add 1.0% or more to maintain high strength. However, the addition exceeding 2.0% impairs the toughness, so the upper limit is made 2.0%.
[0022]
Al: 0.05 to 0.10%
Al must be added as a deoxidizing element in the steel making process so that it is contained in the product in an amount of 0.05% or more. However, if it exceeds 0.10%, coarse oxides remain and become the starting point of destruction, so the upper limit is made 0.1%.
[0023]
Mo: 0.5-1.5%
Mo is an element that promotes bainite transformation. The effect appears at 0.5% or more, but when it exceeds 1.5%, toughness is impaired.
[0024]
Nb: 0.01-0.07%
If Nb is contained in an amount of 0.01% or more, it precipitates as NbC in austenite and suppresses coarsening of austenite grains at high temperatures. However, if it exceeds 0.07%, the toughness of the product is adversely affected by the presence of excess carbide. Therefore, it is contained in the range of 0.01 to 0.07%.
[0025]
The steel composition of the present invention can be Fe and inevitable impurities other than the above components. However, the following elements can be appropriately blended to increase the strength level of the steel. The inevitable impurities include P, S, O and the like, and these are preferably set to 0.015% or less, 0.0015% or less, and 0.0060% or less, respectively.
[0026]
Cu: 0.5-1.0%, Ni: 0.5-1.5%
Cu and Ni contribute to increasing the tensile strength of steel through matrix reinforcement when added at 0.5% or more. However, the effect is saturated even if it is added in excess, and it is not economical. The limits are 1.0% for Cu, 1.5% for Ni, and 1.0% for Cr.
[0027]
Cr: 0.5-1.0%, V: 0.1-0.5%, B: 0.0004-0.0030%
Cr, V, and B contribute to increasing the tensile strength of steel through matrix reinforcement. However, if the addition is excessive, the toughness deteriorates. The effective addition range of these elements is determined from the above viewpoint, and it is preferable that Cr: 0.5 to 1.0%, V: 0.1 to 0.5%, and B: 0.0004 to 0.0030%, respectively.
[0028]
Ti: 0.005 to 0.030%
When Ti is contained in an amount of 0.005% or more, it is present as a precipitate in the slab heating step, and has an effect of preventing coarsening of austenite grains and improving toughness. However, if it exceeds 0.030%, the toughness of the weld heat affected zone (HAZ) will be degraded.
[0029]
The steel having the above structure and chemical composition is not tempered, that is, the as-rolled tensile strength is 620 MPa or more, the Charpy impact absorption energy at -40 ° C. is not less than 300 J, and the required preheating temperature during welding is 20 ° C. or less. It is a steel that has properties and is excellent in high ductile fracture propagation stopping characteristics. In order to produce such steel, it is desirable to take the following steps.
[0030]
First, a steel slab having a predetermined composition in the above range is manufactured and heated at a temperature of 1100 to 1250 ° C. The steel according to the present invention is a very low carbon steel having a C content of 0.02% or less, and when a slab is heated at a temperature of 1250 ° C. or more, abnormal coarsening of austenite grains occurs, which may cause deterioration of toughness. Therefore, the slab heating temperature is set to 1250 ° C or less. However, if the heating temperature is too low, a problem occurs in terms of rolling equipment capacity and the like.
[0031]
The slab heated in the above range is subjected to hot rolling. In the hot rolling, a reduction of 30% or more in the austenite recrystallized region and a reduction of 60% in the austenite non-recrystallized region are applied to refine the structure. All are for the purpose of making the structure finer.
[0032]
The rolling end temperature of the hot rolling is set in a range higher than the ferrite transformation start temperature, and accelerated cooling is immediately performed. The reason why the rolling end temperature of the hot rolling is set to a temperature higher than the ferrite transformation starting temperature is to prevent the formation of ferrite which causes a decrease in strength in the hot rolling process.
[0033]
The accelerated cooling is started immediately after the completion of the hot rolling, and the cooling rate at that time is selected so as to obtain a bainite phase in which 2 to 4% by volume of a MA phase is dispersed. For this purpose, for example, a known CCT diagram can be used. This CCT diagram can be created using both calculation and tissue observation of the actual sample. FIG. 4 is a CCT diagram as a result of calculation and structure observation for steel No. 3 in Table 1. From this figure, it can be seen that when the cooling rate from 900 ° C. is 10 to 30 ° C./s, a bainite phase in which 2 to 4% of the MA phase is dispersed can be obtained.
[0034]
Thus, by the CCT diagram obtained by utilizing the calculation and the structure observation, it is possible to obtain the cooling condition under which the bainite phase in which 2 to 4% of the MA phase is dispersed can be obtained. In this case, if the cooling rate after the completion of hot rolling is set to 10 to 30 ° C./s, a steel having a structure and mechanical properties suitable for the purpose of the present invention can be obtained.
[0035]
Accelerated cooling continues to at least 100 ° C. The reason why the cooling stop temperature is set to 100 ° C. or lower is that, when cooling is stopped in a temperature range of 100 ° C. or higher, bainite is tempered and the strength and toughness are reduced.
[0036]
【Example】
(Example 1)
By mass ratio C: 0.11%, Si: 0.22%, Mn: 1.2%, Al: 0.052%, Cr: 0.55%, Mo: 0.61%, V: 0.14%, Nb: 0.02%, Ti: 0.005%, B: A slab having a composition of 0.009% was treated under the conditions shown in Table 2 to produce a thick steel plate having a thickness of 20 to 50 mm. The structure and characteristic values of the obtained thick steel plate are as shown in Table 3, and those manufactured by the conditions of the present invention are from the bainite phase in which 2 to 4% of the MA phase is dispersed by volume ratio. With a vE -40 of 300 J or more and a tensile strength of 620 MPa or more.
[0037]
The tensile test was carried out using a JIS No. 4 test piece in accordance with JIS Z 2201, and the Charpy impact test was carried out using a V-notch test piece taken from a 1 / 2t portion of a steel sheet according to JIS Z 2202. The volume fraction of the MA phase was determined by observation with a scanning electron microscope. The welding crack evaluation test was performed in accordance with a y-shaped welding crack test method according to JIS Z 3158, and the weldability was evaluated by a weld preheating temperature at which cracks did not occur.
[0038]
[Table 2]
Figure 2004197190
[0039]
[Table 3]
Figure 2004197190
[0040]
(Example 2)
After heating steel slabs having various compositions shown in Tables 4 to 6 at about 1200 ° C, the cumulative rolling reduction is 40% at 1000 ° C, which is an austenite recrystallized region, and the cumulative rolling reduction is 925 ° C or less, which is an austenite non-recrystallized region. Rolling was performed so that the rate became 80%, and the rolling end temperature was finished at 825 ° C., which is a higher temperature range than the ferrite transformation start temperature. Immediately after the completion of hot rolling, accelerated cooling was performed at a cooling rate of 10 to 20 ° C / s, and the cooling stop temperature was 100 ° C.
[0041]
The structures and characteristic values of the obtained steel plates are shown in Tables 7 to 9 corresponding to the compositions in Tables 4 to 6, respectively. Those having the composition of the present invention had a structure composed of a bainite phase in which 2 to 4% by volume of a MA phase was dispersed, had a vE- 40 of 300 J or more, and a tensile strength of 620 MPa or more. The test method is the same as in Example 1.
[0042]
[Table 4]
Figure 2004197190
[0043]
[Table 5]
Figure 2004197190
[0044]
[Table 6]
Figure 2004197190
[0045]
[Table 7]
Figure 2004197190
[0046]
[Table 8]
Figure 2004197190
[0047]
[Table 9]
Figure 2004197190
[0048]
When the tensile strength is plotted on the abscissa and the Charpy absorbed energy value is plotted on the ordinate for each of the thick steel plates obtained in the above Example 2, the distribution diagram shown in FIG. 5 is obtained. The steel according to the present invention has a higher Charpy absorbed energy with respect to the tensile strength than the steel shown in the comparative example.
[0049]
【The invention's effect】
According to the present invention, a tensile strength of 620 MPa or more, a Charpy impact absorption energy at -40 ° C. of 300 J or more and a required preheating temperature during welding is 20 ° C. or less, a non-refined high ductility excellent in fracture arrestability, The availability of tensile steel makes the construction of pipelines more economical.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between MA phase volume ratio and tensile strength for steels having the components shown in Table 1.
FIG. 2 is a graph showing the relationship between the MA phase volume ratio and the fracture surface transition temperature for steels having the components shown in Table 1.
FIG. 3 is a CCT diagram of steel having a steel symbol 3 shown in Table 1.
FIG. 4 is a distribution diagram of tensile strength-Charpy absorbed energy value of steel according to the present invention and steel according to a comparative example.
5 is a distribution diagram of a tensile strength (horizontal axis) and a Charpy absorbed energy value (vertical axis) of a thick steel plate obtained in Example 2. FIG.

Claims (6)

化学組成が質量比でC:0.005〜0.020%、Si:0.10〜0.30%、Mn:1.0〜2.0%、Al:0.05〜O.10%、Mo:0.5〜1.5%、Nb:0.01〜0.07%、残部Feおよび不可避不純物からなり、組織が体積率で2〜4%のM-A相が分散しているベイナイト相からなることを特徴とする高速延性破壊伝播停止特性に優れた高張力鋼。Chemical composition by mass ratio: C: 0.005 to 0.020%, Si: 0.10 to 0.30%, Mn: 1.0 to 2.0%, Al: 0.05 to 0.10%, Mo: 0.5 to 1.5%, Nb: 0.01 to 0.07%, A high-strength steel excellent in high-speed ductile fracture propagation arrestability characterized by a balance of Fe and unavoidable impurities, and a structure of a bainite phase in which a 2-4% by volume MA phase is dispersed in a MA phase. 化学組成が、さらにCu:0.5〜1.0%、Ni:0.5〜1.5%のいずれか1又は2を含有するものであることを特徴とする請求項1記載の高速延性破壊伝播停止特性に優れた高張力鋼。2. The high-speed high-ductility fracture stopping characteristic according to claim 1, wherein the chemical composition further contains one or two of 0.5% to 1.0% of Cu and 0.5% to 1.5% of Ni. Tension steel. 化学組成が、さらにCr:0.5〜1.0%、V:0.1〜0.5%,B:0.0004〜0.0030%のいずれか1以上を含有するものであることを特徴とする請求項1又は2記載の高速延性破壊伝播停止特性に優れた高張力鋼。The high-speed ductility according to claim 1 or 2, wherein the chemical composition further contains one or more of Cr: 0.5 to 1.0%, V: 0.1 to 0.5%, and B: 0.0004 to 0.0030%. High tensile strength steel with excellent fracture arrestability. 化学組成が、さらにTi:0.005〜0.030%を含有するものであることを特徴とする請求項1〜3のいずれかに記載の高速延性破壊伝播停止特性に優れた高張力鋼。The high-tensile steel excellent in high-speed ductile fracture propagation stopping characteristics according to any one of claims 1 to 3, wherein the chemical composition further contains Ti: 0.005 to 0.030%. 請求項1〜4に記載の化学組成を有する鋼片を1100〜1250℃の温度に加熱し、オーステナイト再結晶領域において30%以上、オーステナイト未再結晶領域において60%以上の圧下を与え、かつフェライト変態開始温度より高温領域にて終了する熱間圧延を行い、該熱間圧延終了後、直ちに体積率で2〜4%のM-A相が分散しているベイナイト相が得られるように加速冷却することを特徴とする高速延性破壊伝播停止特性に優れた高張力鋼の製造方法。A slab having the chemical composition according to claim 1 is heated to a temperature of 1100 to 1250 ° C., and a reduction of 30% or more in an austenite recrystallized region and 60% or more in an austenite non-recrystallized region is given, and ferrite is added. Perform hot rolling ending in a region higher than the transformation start temperature, and immediately after completion of the hot rolling, accelerated cooling so that a bainite phase in which 2 to 4% of a MA phase is dispersed by volume is obtained immediately. A method for producing a high-strength steel excellent in high-speed ductile fracture propagation arresting characteristics, characterized in that: 加速冷却は、熱間圧延終了後、直ちに冷却速度10〜30℃/sの冷却速度で少なくとも100℃まで行うものであることを特徴とする請求項5記載の高速延性破壊伝播停止特性に優れた高張力鋼の製造方法。The high-speed ductile fracture propagation arresting property according to claim 5, wherein the accelerated cooling is performed immediately after the completion of the hot rolling at a cooling rate of 10 to 30 ° C / s to at least 100 ° C. Manufacturing method for high-tensile steel.
JP2002369551A 2002-12-20 2002-12-20 High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method Pending JP2004197190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369551A JP2004197190A (en) 2002-12-20 2002-12-20 High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369551A JP2004197190A (en) 2002-12-20 2002-12-20 High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method

Publications (1)

Publication Number Publication Date
JP2004197190A true JP2004197190A (en) 2004-07-15

Family

ID=32765741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369551A Pending JP2004197190A (en) 2002-12-20 2002-12-20 High tensile steel excellent in high-speed extension-breaking propagation-stopping characteristic, and its production method

Country Status (1)

Country Link
JP (1) JP2004197190A (en)

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
RU2623551C2 (en) High strength sheet steel having low ratio of yield strength to tensile strength, excellent as of resistance to post-deformation aging, method of its production and high strength welded steel pipe made thereof
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
EP2105513A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength thick-walled line pipe and process for producing the same
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JPH10237583A (en) High tensile strength steel and its production
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2001164338A (en) Automotive high strength electric resistance welded tube excellent in delayed fracture resistance and producing method therefor
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
EP2093302A1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP4205922B2 (en) High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP4449388B2 (en) Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JPH05148539A (en) Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JP3852295B2 (en) Steel with excellent super heat input welding characteristics