JP4205922B2 - High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same - Google Patents
High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same Download PDFInfo
- Publication number
- JP4205922B2 JP4205922B2 JP2002297844A JP2002297844A JP4205922B2 JP 4205922 B2 JP4205922 B2 JP 4205922B2 JP 2002297844 A JP2002297844 A JP 2002297844A JP 2002297844 A JP2002297844 A JP 2002297844A JP 4205922 B2 JP4205922 B2 JP 4205922B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- less
- haz
- steel
- steel pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、変形能、低温靱性およびHAZ靱性に優れた高強度ラインパイプ鋼管に関するものである。
【0002】
【従来の技術】
近年、経済性、安全性等の面から溶接構造物(建築、圧力容器、造船、ラインパイプ)における、高張力鋼の使用は多岐にわたり、溶接性高張力鋼の需要は着実な増加を示している。溶接構造物に使用される鋼は当然のことながら高強度に加え、安全性、作業性の面から、高靱性と優れた変形能を併せ持つことが要求されるが、これらの特性を満足する鋼の製造法として現在ではラインパイプ材の製造に広く使用されている制御圧延制御冷却法(TMCP法)と制御圧延法(CR法)がよく知られている。しかしながら、制御冷却法(TMCP法)で製造した鋼では、圧延後急冷を行った場合、ベイナイト組織となり、強度が高すぎるため延性が低下する問題がある。さらに制御圧延(CR法)の方法では、圧延組織はフェライト・パーライトであり、フェライト粒径も大きくなるため得られる低温靱性は良好でなくなる。
【0003】
例えば、特許文献1,特許文献2および特許文献3における提案では低温靱性については優れた特性を有することが可能なものの延性特性、特に、一様伸びについては議論されておらず、この方法では延性に優れた鋼板あるいは鋼管を製造することができないという問題があった。
【特許文献1】
特公平1−27128号公報
【特許文献2】
特公昭62−5216号公報
【特許文献3】
特公平7−76377号公報
【0004】
さらに、ラインパイプなどの内外面の溶接を行う場合には、溶接熱影響部靱性(HAZ靱性)に優れた鋼管を開発する必要がある。一般的にラインパイプにおいては粗粒再熱HAZ部の靱性が著しく低下することが知られており、この部位に優れた特性を有する鋼管を製造する必要がある。
【0005】
例えば、特公平6−94569「溶接熱影響部の低温靱性に優れた鋼の製造方法」、特公平5−41683「溶接部靱性の優れた低温用高張力鋼の製造法」あるいは、特公平5−27703「溶接熱影響部靱性の優れた高張力鋼」における提案では、HAZ靱性に関して粗粒HAZ部の靱性しか記載されておらず、粗粒再熱HAZ部の靱性については記載がなく、HAZ靱性に優れた鋼管を開発することはできない。さらに、特公平5−25580号公報「低温靱性に優れた大径鋼管の製造方法」においては溶接熱影響部のどの位置を調査しているのか不明であり、また、特公平8−19461号公報「高張力鋼板の製造法」においては50%溶接金属と50%溶接熱影響部の場所にノッチを入れて評価しているものの、その靱性(−20℃でのシャルピー吸収エネルギー)は70J程度しか得られておらず、良好な結果が得られていないという問題があった。
【0006】
【発明が解決しようとする課題】
そこで、本発明は、変形性能に優れ、かつ低温靱性、HAZ靭性に優れたX80グレード(降伏応力が560MPa以上、引張り応力が630MPa以上830MPa未満)の機械的性質を有するラインパイプ用高強度鋼管とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたもので、その要旨は以下の通りである。
(1)母材部が、質量%で、C:0.02〜0.12%、Si:0.02〜0.50%、Mn:0.6〜2.2%、P:0.01%以下、S:0.0050%以下、Nb:0.01〜0.10%、Mo:0.05〜0.50%、Al:0.05%以下、Ti:0.005〜0.030%、N:0.0015〜0.0060%を含有し、残部が鉄および不可避的不純物からなり、前記母材部の組織が、平均粒径で5μm以下のフェライトを面積率で20〜35%含有するベイナイト主体組織であり、粗粒再熱HAZ部の旧オーステナイト粒界上に生成した組織中に下部ベイナイトを面積率で5%以上含有することを特徴とする変形性能および低温靱性ならびにHAZ靱性に優れた高強度鋼管。
(2)前記母材部が、さらに、質量で、Ni:0.1〜1.0%、Cr:0.1〜1.0%、Cu:0.1〜1.5%、V:0.01〜0.10%、B:0.0001〜0.0030%、Ca:0.0001〜0.0050%、REM:0.0001〜0.0050%、および、Mg:0.0001〜0.0050%のうちの1種または2種以上を含有する上記(1)に記載の変形性能および低温靱性ならびにHAZ靱性に優れた高強度鋼管。
(3)質量%で、C:0.02〜0.12%、Si:0.02〜0.50%、Mn:0.6〜2.2%、P:0.01%以下、S:0.0050%以下、Nb:0.01〜0.10%、Mo:0.05〜0.50%、Al:0.05%以下、Ti:0.005〜0.030%、N:0.0015〜0.0060%を含有し、残部が鉄および不可避的不純物からなる鋼片を再加熱し、再結晶温度域で圧延後、900℃以下の未再結晶温度域で累積圧下率50%以上の仕上圧延を行い、その後、Ar3点以上の温度から500℃までを1〜40℃/sの冷却速度で冷却し、その後、前記の冷却速度より速くかつ5℃/s以上の冷却速度で300℃以下までを加速冷却させて鋼板とし、該鋼板を管状に冷間成形した後、該鋼板の突き合わせ部を内側および外側から一層ずつシーム溶接して鋼管とし、さらに、該鋼管のシーム溶接部を200℃〜Ac1点未満の温度で加熱処理を行うことを特徴とする変形性能および低温靱性ならびにHAZ靱性に優れた高強度鋼管の製造方法。
(4)前記鋼片が、さらに、質量で、Ni:0.1〜1.0%、Cr:0.1〜1.0%、Cu:0.1〜1.5%、V:0.01〜0.10%、B:0.0001〜0.0030%、Ca:0.0001〜0.0050%、REM:0.0001〜0.0050%、および、Mg:0.0001〜0.0050%のうちの1種または2種以上を含有する上記(3)に記載の変形性能および低温靱性ならびにHAZ靱性に優れた高強度鋼管の製造方法。
【0008】
【発明の実施の形態】
本発明者らは、変形性能(延性)、特に一様の伸びと低温靱性、HAZ靭性に優れた高強度鋼管の製造法について上記課題を解決すべく様々な制御圧延・制御冷却法(TMCP法)に適した成分系、加熱圧延、冷却プロセスについて多数の実験と詳細な検討を実施した。その結果、母材部の組織が、平均粒径で5μm以下のフェライトを面積率で20%以上含有するベイナイト主体組織であり、かつフュージョンライン近傍の溶接熱影響部の粗大な旧オーステナイト粒界上に生成した組織中に下部ベイナイトを面積率で5%以上含有する母材を作り出せば一様伸びが10%以上で、かつ0℃でのシャルピー吸収エネルギーが200J以上の変形性能に優れ、かつ低温靭性、HAZ靭性に優れた高強度鋼管を製造しうることを知見した。
【0009】
即ち、強度・延性バランスにおいて、延性、特に一様伸びを向上させるためにはフェライトを多く析出させることが重要である。この理由は、フェライト、ベイナイト、マルテンサイトの3者の一様伸びを比較した場合、フェライトが最も柔らかいために一様伸びが最も大きくなるからである。しかしながら、ただ単にフェライトを多く析出させるだけでは制御圧延後空冷処理を行えばよいというものでなく、制御圧延法だけでは強度が低下するため合金元素を多量に添加せざるを得ず、必然的にコスト高になるという問題がある。また、フェライト中に転位が多く存在するような加工フェライトが生成する場合にはポリゴナルフェライトに比べて一様伸びが著しく低下するため好ましくない。
【0010】
また、強度・低温靱性バランスにおいて低温靱性、特に0℃のシャルピー吸収エネルギーを向上させるには低Cとし、かつフェライトおよび第2相(ベイナイト)を微細に分散させてシャルピー吸収エネルギーを向上させることが必要である。低Cにするということは第2相(ベイナイト)を微細に分散させるということを意味する。
【0011】
上述したような強度・延性バランス、あるいは強度・低温靱性バランスに優れた鋼管を製造するためには、再結晶・未再結晶温度域でそれぞれ十分な圧延を行い、平均γ粒径を十分細粒化した後、500℃以上の温度域では冷却速度を小さくし、20%以上のフェライトを生成させた後、できる限り大きな冷却速度で300℃以下に冷却させて残部をベイナイト組織とすることによって、フェライト粒径が5μm以下で、かつフェライト分率が20%以上で、第2相(ベイナイト)が均一に分散し、一様伸びと0℃のシャルピー吸収エネルギーに優れた母材を製造することが必要である。なお、フェライト分率の上限は、実施例の表3の17及び表5の23の鋼管の母材組織の、フェライト分率が35%であることに基づき、35%とした。
【0012】
上記ミクロ組織を達成させるための圧延後の冷却条件については、まずフェライト粒径が5μm以下でかつ、フェライトを20%以上生成させるには、500℃以上での冷却速度の制御が重要となるため、500℃以上での冷却速度について検討した結果、冷却速度を40℃/s以下にすることでフェライト粒径が5μm以下でかつ、フェライトを面積率で20%以上の組織が得られる。しかしながら、500℃未満の温度でも5℃/s以下にすると降伏強度あるいは引張り強度がX80グレードを達成できなくなるため、500℃未満の冷却速度を5℃/s以上にする必要がある。
【0013】
上述した母材を用いてUOE成形等により鋼管に造管後、実施部をシーム溶接するが、シーム溶接部近傍のHAZ部組織が高強度鋼管を作る上で重要なものとなる。
【0014】
溶接熱影響部靱性(HAZ靱性)について述べる。X80グレードの高強度鋼管のHAZ靱性を良好にするには、特に粗粒再熱HAZ部の靱性を向上させる必要があり、そのための溶接部の熱処理条件について検討を実施した。その結果、図1の粗粒再熱HAZ部の模式図、また、図2の粗粒再熱HAZ部の旧γ粒界を拡大したミクロ組織の模式図に示したように、粗粒再熱HAZ部の旧γ粒界上の組織中に下部ベイナイトを5%以上含有することで、粗粒再熱HAZ部の靱性が向上することが明らかとなった。
【0015】
ここでいう粗粒再熱HAZ部とは、鋼管内側および外側からの何れかの最初のシーム溶接の溶接熱により形成されたHAZ部が、その後のシーム溶接の溶接熱により再加熱された領域のうちで、特に、溶接金属と溶接熱影響部の境界(フュージョンライン)近傍で、かつAc1〜Ac3の温度で再加熱された領域をいう。図2(a)に示すように、粗粒再熱HAZ部は、最初のシーム溶接の溶接熱により形成されたHAZ部のうちで、フュージョンライン近傍領域は、特に加熱温度が高いためにγ粒の粒成長により粗大化する結果、粗大粒径の旧γ粒(ベーナイト主体組織)が多く生成する。このように、フュージョンライン近傍領域に多く存在する粗大な旧γ粒(ベーナイト主体組織)が、さらに、その後のシーム溶接の溶接熱によりAc1〜Ac3の温度に再加熱されると、粗大な旧γ粒界上を取り囲むようにγが生成、成長後、冷却により変態して粗大なマルテンサイトに変態する。この粗粒再熱HAZ部の旧γ粒界に生成した粗大なマルテンサイトは破壊の発生点となり、シャルピー吸収エネルギーを低下させる要因となる。そのため、HAZ靱性を向上させるには、この粗大なマルテンサイトを減少させる必要がある。
【0016】
そこで、鋼管の粗粒再熱HAZ部の旧γ粒界上に生成した粗大なマルテンサイトを減少させるためのシーム溶接部の熱処理条件について鋭意検討した。
【0017】
図3に鋼管シーム溶接部の熱処理温度と粗粒再熱HAZ部の旧γ粒界に生成した組織中の下部ベイナイト分率および−10℃でのシャルピー吸収エネルギーの関係を示す。シーム溶接部をAc1点以下の加熱温度で熱処理することによって、図2(b)に示すように粗粒再熱HAZ部の旧γ粒界に生成したマルテンサイトの一部がセメンタイトに分解後、下部ベイナイト組織に変態し、粗粒再熱HAZ部の旧γ粒界に生成した組織中の下部ベイナイト分率の増加にともなってHAZ靱性が向上し、−10℃でのシャルピー吸収エネルギーを100J以上にするには、下部ベイナイト分率が5%以上であれば良いことが判明した。この下部ベイナイトを5%以上生成させるためには、シーム溶接部を熱処理する際の加熱温度を200℃以上Ac1点未満の温度とすれば良いことも明らかとなった。
【0018】
そこで、本発明では、HAZ靱性を十分に向上させるためにフュージョンライン近傍の溶接熱影響部の粗大な旧γ粒界上に生成した組織が下部ベイナイトを面積率で5%以上含有するものとする。
【0019】
また、本発明でフュージョンライン近傍の溶接熱影響部の粗大な旧γ粒界上に生成した組織中に下部ベイナイトを面積率で5%以上含有させるために、鋼管シーム溶接部を熱処理する際の加熱温度を200℃〜Ac1点未満の温度、好ましくは、この加熱温度を200〜400℃の温度範囲とするのがよりHA靱性を向上できる。
【0020】
なお、母材成分でC量が0.07%以下の鋼管では、粗粒再熱HAZ部に旧γ粒界上に生成する粗大なマルテンサイト量が少なくなり、それによるHAZ靱性の低下が顕著に見られなくなるが、この場合でもシーム溶接部の熱処理の実施によりさらにHAZ靱性を向上する必要がある場合に有効となる。
【0021】
以下、本発明の成分の限定理由について述べる。
【0022】
Cは、鋼における母材強度を向上させる基本的な元素として欠かせない元素であり、その有効な下限値として0.02%以上の添加が必要であるが、0.12%を越える過剰の添加では、鋼材の溶接性や靱性の低下を招くので、その上限を0.12%とした。
【0023】
Siは、製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.5%を越えると溶接部ならびに低温靱性およびHAZ靱性を低下させるのでそれを上限とする。
【0024】
Mnは、母材の強度および靱性の確保に必要な元素であるが、2.2%を越えると焼き入れ性が増加し、ベイナイトあるいは島状マルテンサイトが多量に生成し、母材ならびに溶接部の靱性を著しく阻害するが、逆に0.6%未満では、母材の強度確保が困難になるために、その範囲を0.6〜2.2%とする。
【0025】
Pは、鋼の靱性に影響を与える元素であり、0.01%を越えて含有すると鋼材の母材だけでなく溶接部の靱性を著しく阻害するのでその含有される上限を0.01%とした。
【0026】
Sは、0.0050%を越えて過剰に添加されると粗大な硫化物の生成の原因となり、母材ならびに溶接部の靱性を劣化させるのでその含有される上限を0.0050%とした。
【0027】
Nbは、圧延組織の細粒化、焼き入れ性の向上と析出硬化のため含有させるもので強度・低温靱性を共に向上させる重要な元素である。制御圧延材では0.1%を越えて添加しても材質効果がなく、また、溶接性およびHAZ靱性に有害であるために上限を0.1%に限定した。また、下限0.01%は材質上の効果を有する最小値である。
【0028】
Moは、母材の強度・低温靱性をともに向上させる元素であるが、0.05%未満では顕著な効果がない。一方多すぎると焼き入れ性を増大させ、母材、溶接部の靱性を劣化させるので上限を0.50%とした。
【0029】
Alは、通常脱酸材として添加されるが、0.05%を越えると溶接部の靱性が劣化するために下限を0.05%とした。Alは必ずしも添加する必要がない。
【0030】
Tiは、添加量が少ない範囲(Ti:0.005〜0.03%)では微細なTiNを形成し、圧延組織およびHAZの細粒化、つまり、靱性向上に効果的である。この場合NとTiは化学量論的に当量近傍が望ましく、0%≦Ti−3.4N≦0.02%が良好である。また、本発明では、Nを固定、Bの焼き入れ性を保護する効果を併せ持つ。Ti添加量の上限は微細なTiNが鋼片中に通常の製法で得られ、また、TiCによる靱性劣化が起きない条件から0.030%とした。また、0.005%未満ではTiNの十分な効果が得られないので下限を0.005%とした。
【0031】
Nは、溶鋼中に不可避的に混入し、鋼の靱性を劣化させる。特に多量のフリーNはHAZ部に島状マルテンサイトを発生させやすく、HAZ部を大幅に劣化させる。このHAZ部靱性および母材靱性を改善する目的で前記したようにTiを添加するが、Nが0.006%を越えると鋼中のTiNサイズが大きくなり、TiNの効果が減少するためにNの上限を0.006%とした。また、0.0001%以下ではTiNが十分生成されないために下限とした。
【0032】
次に選択元素について述べる。
【0033】
Niは、HAZの硬化性および靱性に悪影響を与えることなく母材の強度・低温靱性を向上させる特性を持つが、0.1%未満ではその効果が無く、1.0%を越えるとHAZの硬化性および靱性上好ましく無いため、下限を0.1%、上限を1.0%とした。
【0034】
Crは、母材の強度を高め、耐水素誘起割れ性にも効果を有するが、0.1%未満では顕著な効果が無く、1.0%を越えるとHAZの硬化性を増大させ、低温靱性・溶接性の低下が大きくなり好ましくない。このため、下限を0.1%、上限を1.0%とした。
【0035】
Cuは、Niとほぼ同等の効果を持つと共に、耐食性、耐水素誘起割れ性にも効果がある。しかし、0.1%未満ではNi同様顕著な効果が無く、1.5%を越えるとNiを添加しても圧延中に割れが発生し、製造が難しくなる。このため、下限を0.1%、上限を1.5%とした。
【0036】
Vは、Nbとほぼ同様の効果をもつが、0.01%以下では顕著な効果が無く、上限は0.10%まで許容できる。
【0037】
Bは、圧延中にオーステナイト粒界に偏析し、焼き入れ性を上げ、ベイナイト組織を生成しやすくするが、0.0001%未満では顕著な焼き入れ性改善効果が無く、0.003%超になるとBNやBconstituentを多く生成するようになるために母材やHAZの靱性を劣化させる。このため、下限を0.0001%、上限を0.003%とした。
【0038】
Ca、REMは、MnSを球状化させ、シャルピー吸収エネルギ−衝撃値を向上させる他、圧延によって、延伸化したMnSと水素による内部欠管の発生防止を防止する。REMの含有用については0.0001%未満であると事実上効果が無く、また、0.005%を越えて添加するとREM−SまたはREM−O−Sが大量に生成して大型介在物となり、鋼の低温靱性のみならず清浄度を害し、また溶接性についても悪影響を及ぼす。CaについてもREMと同様の効果をもち、その有効範囲は0.0001〜0.005%である。
【0039】
Mgは、Tiとの複合脱酸によって微細な酸化物が微細分散し、溶接部の粗大粒成長の防止、粒内フェライトが生成、MnSの球状化によってシャルピー吸収エネルギ−、延性脆性遷移温度が向上する。0.0001%未満であると事実上効果が無く、また、0.005%を越えて添加すると粗大なMg酸化物、Mg硫化物が生成して大型介在物となり、鋼の低温靱性のみならず清浄度を害し、また溶接性についても悪影響を及ぼす。
【0040】
次に製造条件について述べる。
【0041】
以上のような化学成分を有していても、適正な製造条件を採用しなければ所望の組織は得られない。微細なフェライトが分散して存在するベイナイト組織を得る原理的な方法は、再結晶粒を未再結晶温度域で加工し、板厚方向に偏平したオーステナイト粒とし、これをフェライト生成が微細に生成する冷却速度で冷却し、その後急冷して残りの組織を低温変態させることである。以下に具体的な製造条件を述べる。
【0042】
鋼片の加熱温度は1000〜1250℃とすることが好ましい。この理由は、加熱時のオーステナイト粒を小さく保ち圧延組織の細粒化を図るためである。1250℃は加熱時のオーステナイト粒が極端に粗大化しない上限であって、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、冷却後の上部ベイナイト組織も粗大化するため、鋼の靱性が著しく劣化する。一方、加熱温度が余りに低すぎると、Nb,Vなどの析出硬化元素が十分に固溶せず強度・低温靱性バランスが劣化するだけでなく、圧延温度が下がりすぎるために、制御冷却による十分な材質向上効果が期待できない。このため、下限を1000℃とする必要がある。
【0043】
熱間圧延における未再結晶圧延は900℃以下、好ましくは700〜850℃、で行い、その未再結晶温度域での圧下量を50%以上とすることが好ましい。この理由は未再結晶温度での十分な圧延を加えることによってオーステナイト粒の細粒化・延伸化を徹底するためである。しかし、仕上げ温度が不適当であると良好な強度・低温靱性が得られない。また、未再結晶圧延温度の下限が700℃未満では、過度の変態点以下の(γ+α)域圧延によって加工フェライトが多く生成し、延靱性が劣化すると同時に、制御圧延による十分な強度上昇効果が期待できない。一方、未再結晶圧延温度が余りにも高すぎると制御圧延によるオーステナイト粒の細粒化効果が期待できず靱性が低下する可能性があり、上限を900℃、好ましくは850℃とする。
【0044】
その後、Ar3点以上の温度から500℃までの温度域を1〜40℃/sの冷却速度で冷却し、引続き前記の冷却速度より速く5℃/s以上の冷却速度で300℃以下までを加速冷却して鋼板とする。この理由は、フェライト生成が500℃で終了するので、その後、強加速冷却して残部を低温変態させベイナイト組織とする。複相組織とするためには、前段よりも急速冷却する必要があるが、一般に1℃/s以下、40℃/s以上の冷却速度では十分な低温変態が生じない。望ましくは30℃/秒程度以上で冷却するのが望ましい。なお、冷却速度は板厚中心での平均速度である。また、300℃超で冷却を停止すると十分低温変態が完了せず、X80の強度を満足させられないので、300℃以下までを5℃/s以上の冷却速度で冷却する必要がある。熱延鋼帯の場合は、300℃以下で巻き取ることと同義である。前段と後段の冷却は連続的に行われるのが望ましいが、設備配置によっては、不連続となることがある。この場合も、フェライトの粗大化を抑制するために前段と後段の間は30秒以下程度にする必要がある。
【0045】
次に鋼管造管後の溶接部の熱処理条件について述べる。200℃〜Ac1点以下の温度で溶接部の加熱処理を行うことによって、粗粒再熱HAZ部での旧γ粒界に生成したマルテンサイトが一部下部ベイナイト組織に変わり、シャルピーエネルギーが向上するためにAc1点以下の熱処理条件を行う必要がある。好ましくは200〜400℃の範囲で内外面溶接後に行うことが望ましい。上述したが、C量が0.07%以下の鋼では、粗粒再熱HAZ部の旧γ粒界に生成するマルテンサイトが微細になるため、シーム溶接部にAc1点以下の熱処理を必ずしも行う必要はない。
【0046】
【実施例】
次に、本発明の実施例について述べる。
【0047】
転炉、連続鋳造工程で製造した表1、表2(表1のつづき)に示す種々の化学成分の鋳片を用い、製造プロセスを変えて板厚10〜20mmの鋼板を製造した。この時の鋼板の機械的性質を表3〜表6(表4〜表6は表3のつづき)に示す。これらの鋼板を冷間成形し、仮付け溶接、内外面溶接、シーム熱処理を行った後、拡管を行いUOE鋼管とした。その鋼管の母材および溶接部の機械的性質を表3〜表6に示した。なお、粗粒再熱HAZ部の靱性としてはノッチ位置を溶接会合部から母材側に1mm離れた場所としたシャルピー試験を行った。本発明に従って製造した鋼管1〜24はいずれも優れた母材、溶接部の特性を有している。なお、鋼11、鋼14については、シーム熱処理を実施していないがこれは用いた鋼板のC量が0.07%以下であるためである。
【0048】
これに対して、本発明の範囲を外れる比較鋼25〜40は母材延性或いは母材低温靱性あるいは溶接部の靱性のいずれかが不満足で、溶接鋼管としてのバランスに欠けている。
【0049】
【表1】
【0050】
【表2】
【0051】
【表3】
【0052】
【表4】
【0053】
【表5】
【0054】
【表6】
【0055】
【発明の効果】
本発明により強度・低温靱性、延性および溶接性の優れたラインパイプ鋼管の製造が可能となった。
【図面の簡単な説明】
【図1】粗粒再熱HAZ部の模式図である。
【図2】粗粒再熱HAZ部の旧γ粒界を拡大したミクロ組織の模式図で、(a)は熱処理なしの組織を、(b)は400℃加熱の場合の組織を示す模式図である。
【図3】溶接部の熱処理温度と下部ベイナイト分率とHAZ靱性の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength line pipe steel pipe excellent in deformability, low temperature toughness and HAZ toughness.
[0002]
[Prior art]
In recent years, the use of high-strength steel has been widespread in welded structures (buildings, pressure vessels, shipbuilding, line pipes) in terms of economy and safety, and the demand for weldable high-strength steel has shown a steady increase. Yes. Of course, steel used in welded structures is required to have both high strength, safety and workability, as well as high toughness and excellent deformability. Steel that satisfies these characteristics Currently, the controlled rolling control cooling method (TMCP method) and the controlled rolling method (CR method) widely used for the production of line pipe materials are well known. However, steel manufactured by the controlled cooling method (TMCP method) has a problem that when it is rapidly cooled after rolling, a bainite structure is formed, and the strength is too high, resulting in a decrease in ductility. Furthermore, in the method of controlled rolling (CR method), the rolling structure is ferrite pearlite, and the ferrite grain size becomes large, so that the low temperature toughness obtained is not good.
[0003]
For example, in the proposals in
[Patent Document 1]
Japanese Patent Publication No. 1-227128 [Patent Document 2]
Japanese Patent Publication No. 62-5216 [Patent Document 3]
Japanese Examined Patent Publication No. 7-76377 [0004]
Furthermore, when welding inner and outer surfaces such as line pipes, it is necessary to develop a steel pipe excellent in weld heat affected zone toughness (HAZ toughness). In general, it is known that the toughness of the coarse-grained reheated HAZ part is remarkably reduced in the line pipe, and it is necessary to manufacture a steel pipe having excellent characteristics in this part.
[0005]
For example, Japanese Patent Publication No. 6-94569 “Method of manufacturing steel having excellent low temperature toughness of weld heat affected zone”, Japanese Patent Publication No. 5-41683 “Method of manufacturing high strength steel for low temperature with excellent weld zone toughness”, or Japanese Patent Publication No. 5 -27703 "High-tensile strength steel with excellent weld heat affected zone toughness" describes only the toughness of the coarse-grained HAZ part with respect to the HAZ toughness, and does not describe the toughness of the coarse-grained reheated HAZ part. Steel pipes with excellent toughness cannot be developed. Further, in Japanese Patent Publication No. 5-25580 “Manufacturing Method of Large Diameter Steel Pipe Excellent in Low Temperature Toughness”, it is unclear which position of the weld heat affected zone is being investigated, and Japanese Patent Publication No. 8-19461. Although the "high-strength steel plate manufacturing method" evaluates with 50% weld metal and 50% weld heat affected zone with notches, its toughness (Charpy absorbed energy at -20 ° C) is only about 70J. There was a problem that it was not obtained and good results were not obtained.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention provides a high-strength steel pipe for line pipes having mechanical properties of X80 grade (yield stress is 560 MPa or more, tensile stress is 630 MPa or more and less than 830 MPa) excellent in deformation performance, low temperature toughness and HAZ toughness. It aims at providing the manufacturing method.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) Base material part is mass%, C: 0.02-0.12%, Si: 0.02-0.50%, Mn: 0.6-2.2%, P: 0.01 %: S: 0.0050% or less, Nb: 0.01 to 0.10%, Mo: 0.05 to 0.50%, Al: 0.05% or less, Ti: 0.005 to 0.030 %, N: 0.0015 to 0.0060%, the balance is iron and inevitable impurities, and the structure of the base material part is 20 to 35% in terms of area ratio of ferrite having an average particle diameter of 5 μm or less. Deformation performance, low temperature toughness and HAZ toughness characterized by containing a lower bainite in an area ratio of 5% or more in the structure formed on the former austenite grain boundary of the coarse grain reheated HAZ part. Excellent high strength steel pipe.
( 2 ) The base material part is further, by mass, Ni: 0.1 to 1.0%, Cr: 0.1 to 1.0%, Cu: 0.1 to 1.5%, V: 0 .01-0.10%, B: 0.0001-0.0030%, Ca: 0.0001-0.0050%, REM: 0.0001-0.0050%, and Mg: 0.0001-0 A high-strength steel pipe excellent in deformation performance, low-temperature toughness and HAZ toughness according to (1 ), containing one or more of 0050%.
( 3 ) By mass%, C: 0.02-0.12%, Si: 0.02-0.50%, Mn: 0.6-2.2%, P: 0.01% or less, S: 0.0050% or less, Nb: 0.01 to 0.10%, Mo: 0.05 to 0.50%, Al: 0.05% or less, Ti: 0.005 to 0.030%, N: 0 A steel slab containing .0015 to 0.0060% and the balance being iron and inevitable impurities is reheated, rolled in the recrystallization temperature range, and then the cumulative reduction ratio is 50% in the non-recrystallization temperature range of 900 ° C. or less. The above finish rolling is performed, and thereafter, the temperature from Ar3 point or higher to 500 ° C is cooled at a cooling rate of 1 to 40 ° C / s, and then faster than the above cooling rate and at a cooling rate of 5 ° C / s or more. up to 300 ° C. or less and accelerated to cool steel plate, after cold-formed into a tubular of steel plate, inner butt portion of the steel plate And a steel pipe from the outside and layer by layer seam welding, further, excellent in deformability and low temperature toughness and HAZ toughness and performing a heat treatment at a temperature of
( 4 ) The steel slab further includes, by mass, Ni: 0.1 to 1.0%, Cr: 0.1 to 1.0%, Cu: 0.1 to 1.5%, V: 0.00. 01-0.10%, B: 0.0001-0.0030%, Ca: 0.0001-0.0050%, REM: 0.0001-0.0050%, and Mg: 0.0001-0. The method for producing a high-strength steel pipe excellent in deformation performance, low-temperature toughness, and HAZ toughness according to ( 3 ), containing one or more of 0050%.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have made various control rolling / controlled cooling methods (TMCP methods) in order to solve the above problems with respect to a method for producing a high-strength steel pipe excellent in deformation performance (ductility), particularly uniform elongation, low temperature toughness, and HAZ toughness. ) A number of experiments and detailed investigations were carried out on the component system suitable for the heating, heating and cooling processes. As a result, the microstructure of the base material part is a bainite-based structure containing ferrite with an average grain size of 5 μm or less in an area ratio of 20% or more, and on the coarse old austenite grain boundary in the weld heat affected zone near the fusion line. If a base material containing 5% or more of lower bainite is produced in the structure produced in the above, the uniform elongation is 10% or more, the Charpy absorbed energy at 0 ° C. is excellent in deformation performance of 200 J or more, and low temperature It was found that a high-strength steel pipe excellent in toughness and HAZ toughness can be produced.
[0009]
That is, it is important to precipitate a large amount of ferrite in order to improve ductility, particularly uniform elongation, in the balance between strength and ductility. The reason for this is that when comparing the three types of uniform elongation of ferrite, bainite, and martensite, the uniform elongation is the largest because ferrite is the softest. However, simply by precipitating a large amount of ferrite, it is not necessary to perform air cooling after controlled rolling, and the strength is lowered only by the controlled rolling method, so a large amount of alloy elements must be added. There is a problem of high costs. Further, when a processed ferrite in which many dislocations are present in the ferrite is generated, the uniform elongation is remarkably lowered as compared with polygonal ferrite, which is not preferable.
[0010]
Further, in order to improve the low temperature toughness, particularly the Charpy absorbed energy at 0 ° C. in the balance between strength and low temperature toughness, it is necessary to use low C and finely disperse ferrite and the second phase (bainite) to improve the Charpy absorbed energy. is necessary. Low C means that the second phase (bainite) is finely dispersed.
[0011]
In order to produce a steel pipe with excellent strength / ductility balance or strength / low temperature toughness balance as described above, sufficient rolling is performed in the recrystallization / non-recrystallization temperature range, and the average γ grain size is sufficiently fine. After reducing the cooling rate in the temperature range of 500 ° C. or higher and generating 20% or more of ferrite, cooling to 300 ° C. or lower at the highest possible cooling rate to make the remainder a bainite structure, It is possible to produce a base material having a ferrite grain size of 5 μm or less, a ferrite fraction of 20% or more, a uniform dispersion of the second phase (bainite), and excellent uniform elongation and Charpy absorption energy at 0 ° C. is necessary. The upper limit of the ferrite fraction was set to 35% based on the fact that the ferrite fraction of the base metal structure of steel pipes 17 in Table 3 and 23 in Table 5 was 35%.
[0012]
Regarding the cooling conditions after rolling to achieve the above microstructure, first, in order to produce a ferrite grain size of 5 μm or less and 20% or more of ferrite, it is important to control the cooling rate at 500 ° C. or more. As a result of examining the cooling rate at 500 ° C. or higher, by setting the cooling rate to 40 ° C./s or lower, a structure having a ferrite particle size of 5 μm or lower and a ferrite area ratio of 20% or higher can be obtained. However, even if the temperature is less than 500 ° C., if it is made 5 ° C./s or less, the yield strength or tensile strength cannot achieve the X80 grade, so the cooling rate less than 500 ° C. needs to be 5 ° C./s or more.
[0013]
After forming the steel pipe by UOE molding using the above-mentioned base material, the working part is seam welded. The HAZ structure near the seam welded part is important for making a high-strength steel pipe.
[0014]
The weld heat affected zone toughness (HAZ toughness) is described. In order to improve the HAZ toughness of the X80 grade high-strength steel pipe, it is particularly necessary to improve the toughness of the coarse-grain reheated HAZ part, and the heat treatment conditions of the welded part for that purpose were investigated. As a result, as shown in the schematic diagram of the coarse grain reheat HAZ part in FIG. 1 and the schematic diagram of the microstructure in which the former γ grain boundary of the coarse grain reheat HAZ part in FIG. It has been clarified that the toughness of the coarse-grain reheated HAZ part is improved by containing 5% or more of the lower bainite in the structure on the former γ grain boundary of the HAZ part.
[0015]
The coarse-grain reheat HAZ part here is a region where the HAZ part formed by the welding heat of the first seam welding from either the inside or the outside of the steel pipe is reheated by the welding heat of the subsequent seam welding. Among them, in particular, it refers to a region reheated at a temperature of Ac 1 to Ac 3 in the vicinity of the boundary (fusion line) between the weld metal and the weld heat affected zone. As shown in FIG. 2 (a), the coarse-grain reheated HAZ part is the HAZ part formed by the welding heat of the first seam welding. As a result of coarsening by grain growth, a large amount of coarse γ old γ grains (bainite-based structure) are generated. As described above, when coarse old γ grains (bainite-based structure) existing in large amounts in the vicinity of the fusion line are further reheated to a temperature of Ac 1 to Ac 3 by the welding heat of the subsequent seam welding, After γ is formed and grows so as to surround the former γ grain boundary, it transforms by cooling and transforms into coarse martensite. Coarse martensite generated at the old γ grain boundary in the coarse-grain reheated HAZ part becomes a point of occurrence of fracture, which causes a decrease in Charpy absorbed energy. Therefore, in order to improve the HAZ toughness, it is necessary to reduce this coarse martensite.
[0016]
Then, the heat treatment conditions of the seam welded part for reducing the coarse martensite produced on the old γ grain boundary of the coarse grain reheated HAZ part of the steel pipe were intensively studied.
[0017]
FIG. 3 shows the relationship between the heat treatment temperature of the steel pipe seam weld, the lower bainite fraction in the structure formed at the old γ grain boundary of the coarse grain reheated HAZ part, and the Charpy absorbed energy at −10 ° C. After the seam weld is heat-treated at a heating temperature of Ac 1 point or less, as shown in Fig. 2 (b), part of the martensite formed at the old γ grain boundary of the coarse grain reheat HAZ part is decomposed into cementite. The HAZ toughness is improved with the increase of the lower bainite fraction in the structure formed in the former γ grain boundary of the coarse grain reheated HAZ part by transformation into the lower bainite structure, and the Charpy absorbed energy at −10 ° C. is increased to 100 J In order to achieve the above, it has been found that the lower bainite fraction should be 5% or more. It has also been clarified that in order to produce 5% or more of the lower bainite, the heating temperature at the time of heat treatment of the seam welded portion may be set to 200 ° C. or more and less than Ac 1 point.
[0018]
Therefore, in the present invention, in order to sufficiently improve the HAZ toughness, the structure formed on the coarse old γ grain boundary in the weld heat affected zone near the fusion line contains lower bainite in an area ratio of 5% or more. .
[0019]
In addition, in order to include the lower bainite in an area ratio of 5% or more in the structure formed on the coarse old γ grain boundary in the weld heat affected zone near the fusion line in the present invention, the steel pipe seam weld is subjected to heat treatment. The HA toughness can be further improved by setting the heating temperature to a temperature of 200 ° C. to less than Ac 1 point, and preferably to a temperature range of 200 to 400 ° C.
[0020]
Note that in steel pipes with a C content of 0.07% or less as a base material component, the amount of coarse martensite generated on the former γ grain boundary in the coarse grain reheated HAZ portion is reduced, and the HAZ toughness is thereby significantly reduced. Although not seen, it is effective when it is necessary to improve further HA Z toughness by practice of the heat treatment of the seam welded portion even in this case.
[0021]
Hereinafter, the reasons for limiting the components of the present invention will be described.
[0022]
C is an indispensable element as a basic element for improving the strength of the base metal in steel. An effective lower limit value of 0.02% or more is necessary, but an excess exceeding 0.12% is necessary. Addition causes a decrease in the weldability and toughness of the steel material, so the upper limit was made 0.12%.
[0023]
Si is an element necessary as a deoxidizing element in steelmaking, and it is necessary to add 0.02% or more to the steel. However, if it exceeds 0.5%, the welded part, low temperature toughness and HAZ toughness are deteriorated. That is the upper limit.
[0024]
Mn is an element necessary for ensuring the strength and toughness of the base metal. However, if it exceeds 2.2%, the hardenability increases, and a large amount of bainite or island-like martensite is generated. However, if it is less than 0.6%, it is difficult to ensure the strength of the base material, so the range is set to 0.6 to 2.2%.
[0025]
P is an element that affects the toughness of steel, and if it exceeds 0.01%, not only the base material of the steel but also the toughness of the welded portion is remarkably inhibited, so the upper limit of the content is 0.01%. did.
[0026]
If S is added excessively over 0.0050%, coarse sulfides are generated, and the toughness of the base metal and the welded portion is deteriorated. Therefore, the upper limit of the content is set to 0.0050%.
[0027]
Nb is an important element for improving both strength and low-temperature toughness because it is contained for the purpose of making the rolled structure finer, improving hardenability and precipitation hardening. In the case of controlled rolled material, even if added over 0.1%, there is no material effect, and since it is harmful to weldability and HAZ toughness, the upper limit was limited to 0.1%. The lower limit of 0.01% is the minimum value having an effect on the material.
[0028]
Mo is an element that improves both the strength and low-temperature toughness of the base material, but if it is less than 0.05%, there is no significant effect. On the other hand, if the amount is too large, the hardenability is increased and the toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.50%.
[0029]
Al is usually added as a deoxidizer, but if it exceeds 0.05%, the toughness of the welded portion deteriorates, so the lower limit was made 0.05%. Al need not necessarily be added.
[0030]
When Ti is added in a small amount (Ti: 0.005 to 0.03%), fine TiN is formed, which is effective for reducing the rolling structure and HAZ, that is, improving toughness. In this case, N and Ti are preferably near stoichiometric equivalents, and 0% ≦ Ti-3.4N ≦ 0.02% is good. Further, the present invention has the effect of fixing N and protecting the hardenability of B. The upper limit of the amount of Ti added was set to 0.030% from the condition that fine TiN was obtained in a steel slab by a normal manufacturing method and toughness deterioration due to TiC did not occur. Further, if it is less than 0.005%, a sufficient effect of TiN cannot be obtained, so the lower limit was made 0.005%.
[0031]
N is inevitably mixed in the molten steel and deteriorates the toughness of the steel. In particular, a large amount of free N tends to generate island martensite in the HAZ part, and the HAZ part is greatly deteriorated. In order to improve the HAZ toughness and the base metal toughness, Ti is added as described above. However, when N exceeds 0.006%, the TiN size in the steel increases, and the effect of TiN decreases. The upper limit of 0.006%. Further, if it is 0.0001% or less, TiN is not sufficiently generated, so the lower limit is set.
[0032]
Next, selective elements will be described.
[0033]
Ni has the characteristics of improving the strength and low temperature toughness of the base material without adversely affecting the hardenability and toughness of the HAZ. However, if it is less than 0.1%, it has no effect. Since it is not preferable in terms of curability and toughness, the lower limit is set to 0.1% and the upper limit is set to 1.0%.
[0034]
Cr increases the strength of the base metal and has an effect on resistance to hydrogen-induced cracking, but if it is less than 0.1%, there is no significant effect, and if it exceeds 1.0%, it increases the curability of the HAZ and lowers the temperature. It is not preferable because the deterioration of toughness and weldability is increased. Therefore, the lower limit is set to 0.1% and the upper limit is set to 1.0%.
[0035]
Cu has substantially the same effect as Ni, and is also effective in corrosion resistance and resistance to hydrogen-induced cracking. However, if it is less than 0.1%, there is no remarkable effect like Ni, and if it exceeds 1.5%, even if Ni is added, cracks are generated during rolling, making the production difficult. Therefore, the lower limit is set to 0.1% and the upper limit is set to 1.5%.
[0036]
V has substantially the same effect as Nb, but there is no remarkable effect below 0.01%, and the upper limit is allowable up to 0.10%.
[0037]
B segregates at the austenite grain boundaries during rolling, increases the hardenability and facilitates the formation of a bainite structure. However, if it is less than 0.0001%, there is no significant effect of improving hardenability, and it exceeds 0.003%. In this case, the base material and the toughness of the HAZ are deteriorated in order to generate a lot of BN and Bconstituent. Therefore, the lower limit is set to 0.0001% and the upper limit is set to 0.003%.
[0038]
Ca and REM spheroidize MnS to improve the Charpy absorbed energy-impact value, and also prevent the occurrence of internal breakage due to the extended MnS and hydrogen by rolling. When the content of REM is less than 0.0001%, there is practically no effect. When the content exceeds 0.005%, a large amount of REM-S or REM-O-S is generated and becomes a large inclusion. , Not only the low temperature toughness of steel, but also the cleanliness, and the weldability is also adversely affected. Ca has the same effect as REM, and its effective range is 0.0001 to 0.005%.
[0039]
Mg is finely dispersed with fine oxides by complex deoxidation with Ti, preventing coarse grain growth in welds, forming intragranular ferrite, and improving the Charpy absorbed energy and ductile brittle transition temperature by spheroidizing MnS. To do. If it is less than 0.0001%, there is practically no effect, and if added over 0.005%, coarse Mg oxides and Mg sulfides are formed and become large inclusions, not only low temperature toughness of steel It impairs cleanliness and adversely affects weldability.
[0040]
Next, manufacturing conditions will be described.
[0041]
Even if such chemical components are present, a desired structure cannot be obtained unless appropriate manufacturing conditions are employed. The principle method of obtaining a bainite structure in which fine ferrite is dispersed is that the recrystallized grains are processed in the non-recrystallized temperature range to form austenite grains flattened in the thickness direction, and this produces fine ferrite. Cooling at a cooling rate, and then rapidly cooling to transform the remaining tissue at a low temperature. Specific production conditions are described below.
[0042]
It is preferable that the heating temperature of a steel piece shall be 1000-1250 degreeC. This is because the austenite grains during heating are kept small and the rolled structure is made finer. 1250 ° C is the upper limit at which the austenite grains during heating are not extremely coarsened, and when the heating temperature exceeds this, the austenite grains become coarsely mixed and the upper bainite structure after cooling also coarsens, so that the toughness of the steel Deteriorates significantly. On the other hand, if the heating temperature is too low, precipitation hardening elements such as Nb and V are not sufficiently dissolved to deteriorate the strength / low temperature toughness balance, and the rolling temperature is too low. The material improvement effect cannot be expected. For this reason, it is necessary to make a minimum into 1000 ° C.
[0043]
The non-recrystallization rolling in the hot rolling is performed at 900 ° C. or less, preferably 700 to 850 ° C., and the reduction amount in the non-recrystallization temperature range is preferably 50% or more. This is because the austenite grains are thoroughly refined and stretched by applying sufficient rolling at an unrecrystallization temperature. However, if the finishing temperature is inappropriate, good strength and low temperature toughness cannot be obtained. In addition, when the lower limit of the non-recrystallization rolling temperature is less than 700 ° C., a large amount of processed ferrite is generated by (γ + α) region rolling below the excessive transformation point, and the ductility is deteriorated. I can't expect it. On the other hand, if the non-recrystallization rolling temperature is too high, the effect of refinement of austenite grains by controlled rolling cannot be expected, and the toughness may be lowered, and the upper limit is set to 900 ° C, preferably 850 ° C.
[0044]
Thereafter, the temperature range from the temperature of Ar 3 point or higher to 500 ° C. is cooled at a cooling rate of 1 to 40 ° C./s. Subsequently, the cooling rate is higher than the cooling rate of 5 ° C./s to 300 ° C. or lower. Accelerated cooling to make a steel plate. The reason for this is that ferrite formation ends at 500 ° C., and thereafter, strong accelerated cooling is performed to transform the remainder to a low temperature to form a bainite structure. In order to obtain a multiphase structure, it is necessary to cool more rapidly than in the previous stage, but in general, sufficient low-temperature transformation does not occur at cooling rates of 1 ° C./s or less and 40 ° C./s or more. It is desirable to cool at about 30 ° C./second or more. The cooling rate is an average rate at the center of the plate thickness. Further, if the cooling is stopped at over 300 ° C., the low-temperature transformation is not completed sufficiently and the strength of X80 cannot be satisfied. Therefore, it is necessary to cool up to 300 ° C. or less at a cooling rate of 5 ° C./s or more. In the case of a hot-rolled steel strip, it is synonymous with winding at 300 ° C. or lower. Although it is desirable that the cooling of the front stage and the rear stage is performed continuously, it may be discontinuous depending on the equipment arrangement. Also in this case, in order to suppress the coarsening of the ferrite, it is necessary to set the interval between the former stage and the latter stage to about 30 seconds or less.
[0045]
Next, the heat treatment conditions of the welded part after steel pipe forming will be described. By performing heat treatment of the weld zone at a temperature of 200 ° C to Ac 1 point or less, the martensite generated at the old γ grain boundary in the coarse grain reheated HAZ part partially changes to the lower bainite structure, improving Charpy energy In order to achieve this, it is necessary to carry out heat treatment conditions of Ac 1 point or less. It is desirable to carry out after the inner and outer surface welding in the range of 200 to 400 ° C. Have been described above, the C amount is 0.07% or less of the steel, for martensite to produce the old γ grain boundaries coarse reheated HAZ portion becomes finer, the heat treatment of less than 1 point Ac on the seam welded portion necessarily There is no need to do it.
[0046]
【Example】
Next, examples of the present invention will be described.
[0047]
Steel plates having a thickness of 10 to 20 mm were manufactured by changing the manufacturing process using slabs of various chemical components shown in Tables 1 and 2 (continued in Table 1) manufactured in the converter and continuous casting process. The mechanical properties of the steel sheet at this time are shown in Tables 3 to 6 (Tables 4 to 6 are continued from Table 3). These steel sheets were cold formed, tack welded, inner / outer surface welded, and seam heat treated, and then expanded to obtain a UOE steel pipe. Tables 3 to 6 show the mechanical properties of the base metal and the weld of the steel pipe. As for the toughness of the coarse grain reheated HAZ part, a Charpy test was conducted with the
[0048]
On the other hand, the comparative steels 25 to 40 that are out of the scope of the present invention are unsatisfactory in the base metal ductility, the base metal low temperature toughness, or the toughness of the welded portion, and lack the balance as a welded steel pipe.
[0049]
[Table 1]
[0050]
[Table 2]
[0051]
[Table 3]
[0052]
[Table 4]
[0053]
[Table 5]
[0054]
[Table 6]
[0055]
【The invention's effect】
Strength and low temperature toughness, the production of ductile and weldability superior line pipe steel made possible by the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic view of a coarse grain reheat HAZ part.
FIG. 2 is a schematic diagram of a microstructure in which the former γ grain boundary of the coarse grain reheated HAZ part is enlarged, (a) is a schematic diagram showing a structure without heat treatment, and (b) is a schematic diagram showing a structure when heated at 400 ° C. It is.
FIG. 3 is a diagram showing the relationship between the heat treatment temperature of the weld zone, the lower bainite fraction, and the HAZ toughness.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297844A JP4205922B2 (en) | 2002-10-10 | 2002-10-10 | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297844A JP4205922B2 (en) | 2002-10-10 | 2002-10-10 | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004131799A JP2004131799A (en) | 2004-04-30 |
JP4205922B2 true JP4205922B2 (en) | 2009-01-07 |
Family
ID=32287436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002297844A Expired - Fee Related JP4205922B2 (en) | 2002-10-10 | 2002-10-10 | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4205922B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4696615B2 (en) | 2005-03-17 | 2011-06-08 | 住友金属工業株式会社 | High-tensile steel plate, welded steel pipe and manufacturing method thereof |
JP4510680B2 (en) * | 2005-04-01 | 2010-07-28 | 新日本製鐵株式会社 | High-strength steel pipe for pipelines with excellent deformation characteristics after aging and method for producing the same |
JP4833611B2 (en) * | 2005-08-17 | 2011-12-07 | 新日本製鐵株式会社 | 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same |
US8110292B2 (en) | 2008-04-07 | 2012-02-07 | Nippon Steel Corporation | High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same |
JP2008266792A (en) * | 2008-05-28 | 2008-11-06 | Sumitomo Metal Ind Ltd | Hot-rolled steel sheet |
JP4853575B2 (en) | 2009-02-06 | 2012-01-11 | Jfeスチール株式会社 | High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same |
WO2011040624A1 (en) * | 2009-09-30 | 2011-04-07 | Jfeスチール株式会社 | Steel plate with low yield ratio, high strength, and high toughness and process for producing same |
WO2012144248A1 (en) * | 2011-04-19 | 2012-10-26 | 新日本製鐵株式会社 | Electric resistance welded (erw) steel pipe for oil well use and process for producing erw steel pipe for oil well use |
ES2589640T3 (en) | 2011-08-09 | 2016-11-15 | Nippon Steel & Sumitomo Metal Corporation | Hot rolled steel sheet with high elasticity limit and excellent impact energy absorption at low temperature and resistance to softening of the ZAC and method to produce it |
RU2471003C1 (en) * | 2011-12-02 | 2012-12-27 | Министерство Промышленности И Торговли Российской Федерации | Manufacturing method of rolled metal with increased resistance to hydrogen and hydrosulphuric cracking |
BR112014015715B1 (en) | 2011-12-28 | 2021-03-16 | Nippon Steel Corporation | steel tube, sheet steel and production method |
WO2016152170A1 (en) * | 2015-03-26 | 2016-09-29 | Jfeスチール株式会社 | Thick steel plate for structural pipe, method for producing thick steel plate for structural pipe, and structural pipe. |
KR101795882B1 (en) | 2015-12-21 | 2017-11-09 | 주식회사 포스코 | Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same |
-
2002
- 2002-10-10 JP JP2002297844A patent/JP4205922B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004131799A (en) | 2004-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4071906B2 (en) | Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness | |
JP3344308B2 (en) | Ultra-high-strength steel sheet for linepipe and its manufacturing method | |
JP4205922B2 (en) | High strength steel pipe excellent in deformation performance, low temperature toughness and HAZ toughness and method for producing the same | |
JP2006233263A (en) | Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JPH08176659A (en) | Production of high tensile strength steel with low yield ratio | |
JPH07278656A (en) | Production of low yield ratio high tensile strength steel | |
JP4112733B2 (en) | Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
JP5157386B2 (en) | Manufacturing method for thick-walled, high-strength, high-toughness steel pipe material | |
JP2005171300A (en) | High tensile steel for high heat input welding, and weld metal | |
JP3383148B2 (en) | Manufacturing method of high strength steel with excellent toughness | |
JP4116817B2 (en) | Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability | |
JP2009084598A (en) | Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP3290595B2 (en) | Method for manufacturing high-tensile steel plate with excellent toughness and weldability | |
JP4824142B2 (en) | Steel for line pipe with good strength and ductility and method for producing the same | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP2598357B2 (en) | Manufacturing method of high strength steel sheet with excellent low temperature toughness | |
JP3218447B2 (en) | Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness | |
JP4102103B2 (en) | Manufacturing method of high strength bend pipe | |
JP2000104116A (en) | Production of steel excellent in strength and toughness | |
JPH05148539A (en) | Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region | |
JPH08283838A (en) | Production of low yield ratio, high ductility steel excellent in strength, toughness and ductility | |
JPS5877531A (en) | Production of high toughness high tensile steel plate with less separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081017 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4205922 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111024 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121024 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131024 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |