【0001】
【発明の属する技術分野】
本発明は低温焼成した多層配線基板(Low Temperature Co−fired Ceramics基板:以下LTCC基板と称す)用のガラスセラミックスに関する。
【0002】
【従来の技術】
従来から、多層配線基板用のセラミックスとしてアルミナが広く使用されている。ところが、従来のアルミナセラミックス多層配線基板は焼成温度が高く、Cu、Ag等の導電性の良い金属を用いた配線の同時焼成が困難であった。また、省エネルギーの観点からも、高い焼成温度は経済的ではない。昨今、これらの問題を解決できる材料としてガラスセラミックスを用いた低温焼成基板が注目されている。
【0003】
一方、素子の作動周波数がMHzオーダーよりもさらに高周波であるGHzオーダーの周波数領域になると、伝送損失による信号の劣化が大きな問題となっている。この問題を解決するためには、低誘電損失の材料の設計が不可欠である。例えば、特開平9−295827号公報には、950℃以下で低温焼成が可能で、化学的に安定であり、抗折強度が高く、MHzオーダーの周波数領域において比誘電率および誘電正接が低いホウケイ酸塩系ガラスが開示されている。
【0004】
しかしながら、このホウケイ酸塩系ガラスにおいては、MHzオーダーよりもさらに高周波であるGHzオーダーの周波数領域における低誘電損失化のためのガラスの組成設計指針が明らかにされる必要がある。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、GHzオーダーの周波数領域におけるLTCC基板用ガラスセラミックスの誘電損失(誘電正接)を低くするためのガラス組成を見出すことにある。
【0006】
【課題を解決するための手段】
LTCC基板用ガラスセラミックスのGHzオーダーの周波数領域における誘電損失の低減化のためには、ガラスを構成している元素が作る骨格構造の違いによる格子振動の大小や、イオン分極あるいは電子分極の強弱までを考慮した構造設計に基づいた組成の決定をしなければならない。具体的には、ガラスの骨格構造の振動や構成成分イオンの移動あるいは電子雲の変形による損失の原因となるアルカリ、アルカリ土類金属酸化物などのいわゆる網目修飾酸化物が少ないガラスがよい。このことは、酸化ケイ素(SiO2)、酸化ホウ素(B2O3)などの網目形成酸化物が多い方がよいことを意味する。
【0007】
一方、LTCC基板を作製するに当たっては、従来のアルミナ基板と比較して低温で基板を焼成するためにはガラスの軟化温度の最適値を考慮する必要がある。 例えば、最も誘電損失が少ないと考えれられるSiO2(シリカ)ガラスは、軟化温度が高く低温で基板を焼成することができない。
【0008】
本願発明は、係る前提に立って、
1. B(ホウ素)イオンのイオン半径がSi(ケイ素)イオンのイオン半径よりも小さいことから、酸素イオンとの結合力が強く、損失の原因となるガラスの骨格構造の振動が小さいこと、
2. ホウ酸塩系(B2O3)ガラスにおいては、Bイオンに対する酸素イオンの配位形態が特殊(3配位)であり、網目修飾酸化物が少ない組成領域では、他の網目形成酸化物(例えばSiO2)とB2O3との特定比、あるいは、網目修飾酸化物(例えばCaO)とB2O3との特定比において、Bイオンに対する酸素イオンの配位形態が4配位化するいわゆるボロン異常を示すこと
等の理由から、同じ網目形成酸化物の中でも、SiO2を減らし、B2O3を増やすことが誘電損失の低減化と、SiO2ガラスの軟化温度を下げるのに有効な手段でもあるという考えに基づいて完成した。
【0009】
この考え方に基づいて、網目形成酸化物であるSiO2とB2O3以外の成分の量を極力抑えて、SiO2をB2O3で置換してその軟化温度の降下、誘電特性の変化を調べた。その結果、GHzオーダーの周波数領域におけるLTCC基板用ガラスセラミックスの誘電損失(誘電正接)を低くするための組成設計の指針を見出し、低誘電損失であるLTCC基板用ガラスセラミックスが得られるガラスの組成範囲が明らかになった。
【0010】
すなわち、本願発明の低温焼成基板用ガラス組成物は、3GHzにおいて、誘電損失が20×10−4以下であり、ROをMgO、CaO、SrO、BaO、ZnOからなる群の中の1種または2種以上としたとき、RO−Al2O3−B2O3−SiO2の基本組成を有し、その基本組成が、ROとAl2O3は、いずれも1〜25mol%の範囲内にあり、SiO2/B2O3のmol%の比が1.3以下であることを特徴とする。
【0011】
本願発明において、ROは、誘電特性とガラス化との両面からの機能のために配合されるもので、その組成範囲が25mol%以上では誘電特性は悪くなり、1mol%以下の場合には、ガラス化が困難になる。
【0012】
また、Al2O3は、均一なガラスを得るために配合されるが、1mol%以下の場合にはガラス調製時に分相が見られ、25mol%以上ではガラス調製時に結晶化してしまう。
【0013】
しかしながら、ROおよびAl2O3が少ない組成でも、SiO2/B2O3の比によって誘電特性と低温焼成条件に大きく影響する。言い換えれば、SiO2の比率が多い領域では誘電特性は悪く、軟化温度も高くなりすぎて、低温での基板焼成が困難となるため、そのmol%比は1.3より小さいことが必要である。
【0014】
以上のことから、GHzオーダーの周波数領域におけるLTCC基板用ガラスセラミックスの誘電損失(誘電正接)を低くするためのガラス組成として、配合原料から混入する可能性が考えられるアルカリ金属の化合物や鉛の化合物等の不純物の量を極力抑えた上で、ROおよびAl2O3の量と、SiO2/B2O3の比を特定範囲にすることによって、1000℃以下で焼成が可能で、且つ、ガラス単独の誘電特性を著しく損なうことのないガラスセラミックスが得られる。
【0015】
得られたガラスセラミックスは、基本的には非晶質であるが、熱処理条件によっては結晶化する物も見られる。しかしながら、低誘電損失が維持でき、かつ低温で焼成可能ならば、結晶質でも構わない。しかしながら、その誘電特性は、晶出する結晶の物性の影響を受けることに留意しなければならない。
【0016】
また、本発明の低温焼成基板用ガラスの基本組成には、特性改良のための添加物を適宜配合することもできる。例えば、B2O3の配合量が多い場合、空気中の水分等との反応により、ガラス粉末の作製時、あるいはシート成形時の取扱いが困難になったり、焼成後の基板の耐蝕性が悪くなる恐れがある。これらを防止するために、誘電特性を著しく損なわない範囲で、添加物を適宜配合してもよい。 このとき配合する添加物は、酸化アルミ(アルミナ)、酸化チタン、酸化ジルコニア、酸化ランタン等が考えられるが、特にこれらに限定されるものではない。 この場合、焼成時に熱処理条件によっては結晶化する物も見られる。しかしながら、前述のとおり、低誘電損失が維持でき、かつ低温で焼成可能ならば、結晶質でも構わない。しかしながら、その誘電特性は、晶出する結晶の物性の影響を受ける。
【0017】
また、本発明の低温焼成基板用ガラスの基本組成あるいは特性改良のための添加物を適宜配合したものを単独で焼成してガラスセラミックスを得てもよいが、誘電特性、熱膨張特性、強度等の特性改良のために、骨材(フィラー)を適宜混合し焼成することもできる。その骨材としては、特に限定されるものではないが、アルミナ、酸化チタン、石英、シリカガラス、チタン酸バリウム、ニオブ酸リチウム等が考えられる。また、その混合量も、誘電特性および低温焼成の条件を著しく損なわない範囲であれば、特に限定されるものではない。この場合、焼成時の熱処理条件によっては結晶化する物も見られる。しかしながら、低誘電損失が維持でき、かつ低温で焼成可能ならば、結晶質でも構わない。しかしながら、その特性は、前述のように、晶出する結晶の物性の影響を受ける。
【0018】
【発明の実施の形態】
以下、実施例によって本発明の実施の形態を説明する。
【0019】
RO−Al2O3−B2O3−SiO2の基本組成におけるROの種類および量、Al2O3の量、SiO2/B2O3の比を変化させて、軟化温度および誘電特性に対する影響を見た。
【0020】
一般的なガラスの調製法である溶融法に依ってガラスを調製した。構成原料を目的の組成になるように調合し、その組成に応じて1200〜1600℃で30〜60分間熔解した。これを急冷し得られたガラスを、ボールミルによる乾式粉砕で10μm程度に粉砕し、示差熱分析装置(DTA)により軟化温度を測定した。さらに、粉末を成形後、組成に応じて750〜950℃で15〜30分間焼成し、誘電特性の評価用のガラスセラミックスを得た。誘電特性の評価では、空胴共振器を用いた摂動法により、3GHzにおける比誘電率と誘電損失(誘電正接)を測定した。
【0021】
その結果を表1に示す。
【0022】
【表1】
同表における実施例1(NO.1〜8)はROおよびAl2O3の量をいずれも一定(9.1mol%)として、ROの種類とSiO2/B2O3のmol%比を変化させた例である。
【0023】
まず、SiO2/B2O3比を固定して、ROの種類を変化させる観点で見ると、いずれのSiO2/B2O3比においてもROがCaOからBaOに替わると、軟化温度は下がり、誘電正接は、同じか、少し高くなる程度変化しているのがわかる。
【0024】
次に、ROの種類を固定して、SiO2/B2O3のmol%比を変化させた観点で見る。実施例1に示すように、B2O3の比率が多くなるほど、軟化温度は下がり、誘電正接は低くなる傾向にあるのがわかる。
【0025】
比較例1(NO.13〜16)は、実施例1で示した組成のSiO2/B2O3比よりもSiO2比が多い組成の例を示す。誘電正接は実施例1に示した値よりも高くなる傾向にあるのがわかる。また、極端にSiO2比が多い組成の例を示す比較例1(NO.17)では軟化温度が高くなり、LTCC基板として焼成する温度(1000℃以下)では、焼結できないことがわかる。
【0026】
また、比較例2(NO.18、19)は、誘電正接が低かった組成(実施例1のNO.5、6)を基本として、ROの量を3倍の27.3mol%に増した組成について示す。これらの組成では、基本となる組成と比較して、軟化温度は上がり、誘電正接は高くなる傾向にあるのがわかる。即ち、B2O3によるSiO2の置換量が多くても、言い換えれば、SiO2/B2O3比のB2O3の比率が多くても、ROの量が多ければ、誘電損失が高くなることがわかる。
【0027】
実施例2(NO.9、10)は、、実施例1(NO.1、3)を基本として、Al2O3の量を約2倍の16.7mol%に増した組成の例を示す。表に示されているとおり、実施例2に示す範囲でAl2O3の量を増やしても誘電特性は大きく変化しないことがわかる。
【0028】
更に、Al2O3の量を変化させた場合、Al2O3の量が1mol%よりも少ない場合は、溶解時に融体が2液に分相し、均一なガラスを得ることができなかった。また、Al2O3の量が25mol%よりも多い場合は、溶解後の急冷過程で結晶化し、均一なガラスを得ることができなかった。
【0029】
実施例3(NO.11)は、ROをZnOとした組成の例を示す。この系では、焼成時に結晶化(Gahnite:ZnAl2O4)するが、それでも誘電正接は比較的低いことがわかる。
【0030】
以上のことから、誘電損失が低いのは、ROおよびAl2O3の量が少なく、SiO2/B2O3比のB2O3の比率が多い組成であることがわかる。
【0031】
ここで、低誘電損失の目安を、ガラスセラミックスの焼成時に結晶化しない組成において、3GHzにおける誘電正接が20×10−4以下であるとした場合、その特性が得られる組成範囲は、
1.RO(MgO、CaO、SrO、BaO、ZnO)の量の合計を1〜25mol%、
2.Al2O3の量を1〜25mol%の限定した上で、
3. SiO2/B2O3のmol%比が1.3以下(≦1.3)
に特定される。
【0032】
さらに、実施例5(NO.20,21)は、実施例1(NO.1,2)で示したガラス60wt%とアルミナ40wt%を混合して焼成した例である。これより、誘電損失が低いガラスセラミックスが得られることがわかる。このアルミナに代えて、石英、シリカ等の化合物を混合しても同様の効果が得られた。
【0033】
以上のようにして得られた結果を基に、ガラス調製時の調合組成に、高誘電率の物質(結晶)が晶出する成分を添加するか、あるいは得られたガラスに、高誘電率の物質を混合することによって、高誘電率かつ低誘電損失のガラスセラミックスを得ることもできる。
【0034】
実施例4(NO.12)は、高誘電率の結晶であるルチル結晶が晶出するように酸化チタン(TiO2)をガラス調製時の調合物に添加し、焼成した例を示す。 これより、誘電損失を比較的低く抑え、誘電率を上げたガラスセラミックスが得られることがわかる。
【0035】
ここではルチル結晶が晶出する系について例示しているが、他にチタン酸バリウム、ニオブ酸リチウム等の結晶が晶出する化合物を配合しても同様の効果が得られた。
【0036】
さらに、実施例6(NO.22,23) は、実施例1(NO.1,2)で示したガラス60wt%と高誘電率の結晶である酸化チタン(ルチル型結晶)を40wt%混合して焼成した例である。これより、誘電損失を比較的低く抑え、誘電率を上げたガラスセラミックスが得られることがわかる。この酸化チタンに代えて、チタン酸バリウム、ニオブ酸リチウム等の化合物を混合しても同様の効果が得られた。
【0037】
【発明の効果】
本発明によって、以下の効果を奏する。
【0038】
1. 低温焼成によって得られたガラスセラミックス基板(LTCC基板)のマイクロ波及びミリ波領域の周波数における低誘電損失化が達成できる。
【0039】
2.多層配線基板用として最も適した低温焼成ガラスセラミックスが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass ceramic for a multilayer wiring board (Low Temperature Co-fired Ceramics board: hereinafter referred to as an LTCC board) fired at a low temperature.
[0002]
[Prior art]
Conventionally, alumina has been widely used as ceramics for multilayer wiring boards. However, the conventional alumina ceramic multilayer wiring board has a high firing temperature, and it is difficult to simultaneously fire wiring using a metal having good conductivity such as Cu and Ag. Also, from the viewpoint of energy saving, a high firing temperature is not economical. Recently, low-temperature fired substrates using glass ceramics have been attracting attention as a material that can solve these problems.
[0003]
On the other hand, when the operating frequency of the element is in a frequency range on the order of GHz, which is higher than the order of MHz, signal degradation due to transmission loss is a serious problem. To solve this problem, it is essential to design a material with low dielectric loss. For example, Japanese Unexamined Patent Publication No. 9-295827 discloses that borosilicate can be fired at a low temperature of 950 ° C. or lower, is chemically stable, has a high transverse rupture strength, and has a low dielectric constant and a low dielectric loss tangent in a frequency range of MHz order. An acid-based glass is disclosed.
[0004]
However, in this borosilicate glass, it is necessary to clarify a glass composition design guideline for reducing the dielectric loss in a frequency range of the GHz order which is a higher frequency than the MHz order.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to find a glass composition for reducing the dielectric loss (dielectric tangent) of glass ceramics for LTCC substrates in a frequency range on the order of GHz.
[0006]
[Means for Solving the Problems]
In order to reduce the dielectric loss of glass ceramics for LTCC substrates in the frequency range on the order of GHz, it is necessary to reduce the magnitude of lattice vibration due to the difference in the skeleton structure created by the elements constituting the glass, and the strength of ionic or electronic polarization. The composition must be determined based on the structural design in consideration of the above. Specifically, a glass containing few so-called network-modifying oxides such as alkali and alkaline earth metal oxides, which cause loss due to vibration of the skeleton structure of the glass, movement of constituent ions or deformation of the electron cloud, is preferable. This means that it is better to use a large number of network-forming oxides such as silicon oxide (SiO 2 ) and boron oxide (B 2 O 3 ).
[0007]
On the other hand, in manufacturing an LTCC substrate, it is necessary to consider an optimum value of the softening temperature of glass in order to fire the substrate at a lower temperature than a conventional alumina substrate. For example, SiO 2 (silica) glass, which is considered to have the lowest dielectric loss, has a high softening temperature and cannot be fired at a low temperature.
[0008]
The present invention is based on such a premise,
1. Since the ionic radius of the B (boron) ion is smaller than the ionic radius of the Si (silicon) ion, the bonding force with the oxygen ion is strong, and the vibration of the skeleton structure of the glass which causes loss is small.
2. In borate (B 2 O 3 ) glass, the coordination form of oxygen ions with respect to B ions is special (three coordination), and in a composition region where the number of network modifying oxides is small, other network forming oxides ( At a specific ratio between, for example, SiO 2 ) and B 2 O 3 , or a specific ratio between the network modifying oxide (for example, CaO) and B 2 O 3 , the coordination form of oxygen ions to B ions is four-coordinated. valid reasons such as to exhibit a so-called boron anomaly, even within the same network-forming oxides, reducing the SiO 2, increasing the B 2 O 3 and the reduction of dielectric loss, to lower the softening temperature of the SiO 2 glass It was completed based on the idea that it was also an important means.
[0009]
Based on this concept, the amount of components other than the network-forming oxides SiO 2 and B 2 O 3 is minimized, and the SiO 2 is replaced with B 2 O 3 to lower its softening temperature and change dielectric properties. Was examined. As a result, a guideline for a composition design for lowering the dielectric loss (dielectric loss tangent) of the glass ceramics for LTCC substrates in the frequency range of the GHz order was found, and the composition range of the glass from which the glass ceramics for LTCC substrates having low dielectric loss can be obtained. Was revealed.
[0010]
That is, the glass composition for a low-temperature fired substrate of the present invention has a dielectric loss of 20 × 10 −4 or less at 3 GHz, and the RO is one or two of the group consisting of MgO, CaO, SrO, BaO, and ZnO. When it is more than one kind, it has a basic composition of RO—Al 2 O 3 —B 2 O 3 —SiO 2 , and the basic composition is such that both RO and Al 2 O 3 are within a range of 1 to 25 mol%. In this case, the ratio of mol% of SiO 2 / B 2 O 3 is 1.3 or less.
[0011]
In the present invention, RO is compounded for both functions of dielectric properties and vitrification. When its composition range is 25 mol% or more, the dielectric properties are deteriorated. Becomes difficult.
[0012]
Al 2 O 3 is blended in order to obtain a uniform glass. However, if it is 1 mol% or less, phase separation is observed at the time of glass preparation, and if it is 25 mol% or more, it crystallizes at the time of glass preparation.
[0013]
However, even in a composition in which RO and Al 2 O 3 are small, the ratio of SiO 2 / B 2 O 3 greatly affects the dielectric properties and low-temperature firing conditions. In other words, in the region where the ratio of SiO 2 is large, the dielectric properties are poor, the softening temperature is too high, and it is difficult to fire the substrate at a low temperature. Therefore, the mol% ratio needs to be smaller than 1.3. .
[0014]
From the above, as a glass composition for reducing the dielectric loss (dielectric loss tangent) of the glass ceramics for LTCC substrates in the frequency range on the order of GHz, alkali metal compounds and lead compounds which may possibly be mixed from the compounding raw materials are considered. By minimizing the amount of impurities, such as, the amount of RO and Al 2 O 3 and the ratio of SiO 2 / B 2 O 3 to a specific range, firing at 1000 ° C. or lower is possible, and A glass ceramic without significantly impairing the dielectric properties of glass alone can be obtained.
[0015]
The obtained glass ceramics are basically amorphous, but may be crystallized depending on the heat treatment conditions. However, crystalline materials may be used as long as low dielectric loss can be maintained and firing at a low temperature is possible. However, it must be noted that its dielectric properties are affected by the physical properties of the crystal to be crystallized.
[0016]
Further, an additive for improving properties can be appropriately added to the basic composition of the glass for a low-temperature fired substrate of the present invention. For example, when the amount of B 2 O 3 is large, the reaction with moisture in the air or the like makes it difficult to handle glass powder during production or sheet molding, or the substrate after calcination has poor corrosion resistance. Could be. In order to prevent these, additives may be appropriately blended as long as the dielectric properties are not significantly impaired. Examples of additives to be added at this time include aluminum oxide (alumina), titanium oxide, zirconia oxide, and lanthanum oxide, but are not particularly limited thereto. In this case, some crystallization occurs depending on the heat treatment conditions during firing. However, as described above, crystalline materials may be used as long as they can maintain low dielectric loss and can be fired at a low temperature. However, its dielectric properties are affected by the physical properties of the crystal to be crystallized.
[0017]
In addition, the glass for a low-temperature fired substrate of the present invention, which is appropriately mixed with an additive for improving the basic composition or properties, may be fired alone to obtain a glass ceramic, but the dielectric properties, thermal expansion properties, strength, etc. In order to improve the characteristics of the above, an aggregate (filler) can be appropriately mixed and fired. The aggregate is not particularly limited, but alumina, titanium oxide, quartz, silica glass, barium titanate, lithium niobate and the like can be considered. Also, the mixing amount is not particularly limited as long as the dielectric properties and low-temperature firing conditions are not significantly impaired. In this case, a crystallized substance may be observed depending on the heat treatment conditions during firing. However, crystalline materials may be used as long as low dielectric loss can be maintained and firing at a low temperature is possible. However, its properties are affected by the physical properties of the crystals to be crystallized, as described above.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples.
[0019]
By changing the type and amount of RO, the amount of Al 2 O 3 , and the ratio of SiO 2 / B 2 O 3 in the basic composition of RO—Al 2 O 3 —B 2 O 3 —SiO 2 , the softening temperature and the dielectric properties are changed. I saw the effect on.
[0020]
Glass was prepared by a melting method which is a general glass preparation method. The constituent materials were prepared to have the desired composition, and were melted at 1200 to 1600 ° C. for 30 to 60 minutes depending on the composition. The glass was quenched, and the obtained glass was pulverized to about 10 μm by dry pulverization using a ball mill, and the softening temperature was measured with a differential thermal analyzer (DTA). Further, after molding the powder, the powder was fired at 750 to 950 ° C. for 15 to 30 minutes depending on the composition to obtain a glass ceramic for evaluating dielectric properties. In the evaluation of the dielectric characteristics, the relative permittivity and the dielectric loss (dielectric loss tangent) at 3 GHz were measured by a perturbation method using a cavity resonator.
[0021]
Table 1 shows the results.
[0022]
[Table 1]
In Example 1 (NOs. 1 to 8) in the table, the amounts of RO and Al 2 O 3 were both constant (9.1 mol%), and the type of RO and the mol% ratio of SiO 2 / B 2 O 3 were changed. This is an example of a change.
[0023]
First, from the viewpoint of fixing the SiO 2 / B 2 O 3 ratio and changing the type of RO, when RO changes from CaO to BaO in any of the SiO 2 / B 2 O 3 ratios, the softening temperature increases. It can be seen that the dielectric loss tangent changes to the same or slightly higher.
[0024]
Next, from the viewpoint of fixing the type of RO and changing the mol% ratio of SiO 2 / B 2 O 3 . As shown in Example 1, it can be seen that as the ratio of B 2 O 3 increases, the softening temperature decreases and the dielectric loss tangent tends to decrease.
[0025]
Comparative Example 1 (Nos. 13 to 16) shows an example of a composition having a higher SiO 2 ratio than the SiO 2 / B 2 O 3 ratio of the composition shown in Example 1. It can be seen that the dielectric loss tangent tends to be higher than the value shown in Example 1. Further, in Comparative Example 1 (NO. 17), which shows an example of a composition having an extremely high SiO 2 ratio, the softening temperature is high, and it can be seen that sintering cannot be performed at the temperature (1000 ° C. or lower) at which the LTCC substrate is fired.
[0026]
Comparative Example 2 (Nos. 18 and 19) is based on a composition having a low dielectric loss tangent (Nos. 5 and 6 of Example 1), and the composition in which the amount of RO is tripled to 27.3 mol%. It shows about. It can be seen that these compositions tend to have a higher softening temperature and a higher dielectric tangent than the base composition. That is, even if the substitution amount of SiO 2 by B 2 O 3 is large, in other words, even if the ratio of B 2 O 3 in the ratio of SiO 2 / B 2 O 3 is large, if the amount of RO is large, the dielectric loss becomes large. It turns out that it becomes high.
[0027]
Example 2 (Nos. 9 and 10) shows an example of a composition in which the amount of Al 2 O 3 is increased to about 16.7 mol%, which is about twice, based on Example 1 (NOs. 1 and 3 ). . As shown in the table, it can be seen that the dielectric properties do not change significantly even when the amount of Al 2 O 3 is increased within the range shown in Example 2.
[0028]
Furthermore, when the amount of Al 2 O 3 is changed, and when the amount of Al 2 O 3 is less than 1 mol%, the melt separates into two liquids at the time of melting, and a uniform glass cannot be obtained. Was. On the other hand, when the amount of Al 2 O 3 was more than 25 mol%, crystallization occurred during the quenching process after melting, and a uniform glass could not be obtained.
[0029]
Example 3 (NO. 11) shows an example of a composition in which RO is ZnO. In this system, crystallization (Gahnite: ZnAl 2 O 4 ) occurs during firing, but the dielectric loss tangent is still relatively low.
[0030]
From the above, it can be seen that a low dielectric loss is a composition in which the amounts of RO and Al 2 O 3 are small and the ratio of B 2 O 3 in the SiO 2 / B 2 O 3 ratio is large.
[0031]
Here, as a measure of low dielectric loss, if the dielectric loss tangent at 3 GHz is 20 × 10 −4 or less in a composition that does not crystallize when firing glass ceramics, the composition range in which the characteristics can be obtained is as follows:
1. The total amount of RO (MgO, CaO, SrO, BaO, ZnO) is 1 to 25 mol%,
2. After limiting the amount of Al 2 O 3 to 1 to 25 mol%,
3. The mol% ratio of SiO 2 / B 2 O 3 is 1.3 or less (≦ 1.3)
Is specified.
[0032]
Further, Example 5 (NO. 20, 21) is an example in which 60 wt% of the glass shown in Example 1 (NO. 1, 2) and 40 wt% of alumina were mixed and fired. This indicates that a glass ceramic having a low dielectric loss can be obtained. Similar effects were obtained by mixing a compound such as quartz or silica instead of this alumina.
[0033]
Based on the results obtained as described above, a component in which a substance (crystal) having a high dielectric constant is crystallized is added to the prepared composition at the time of preparing the glass, or a high dielectric constant is added to the obtained glass. By mixing the substances, a glass ceramic having a high dielectric constant and a low dielectric loss can be obtained.
[0034]
Example 4 (No. 12) shows an example in which titanium oxide (TiO 2 ) was added to the mixture at the time of preparing the glass and baked so that rutile crystals, which are crystals having a high dielectric constant, were crystallized. This indicates that a glass ceramic having a relatively low dielectric loss and an increased dielectric constant can be obtained.
[0035]
Although a system in which rutile crystals are crystallized is illustrated here, similar effects can be obtained by blending a compound that crystallizes crystals such as barium titanate and lithium niobate.
[0036]
In Example 6 (Nos. 22 and 23), 60 wt% of the glass shown in Example 1 (NOs 1 and 2) was mixed with 40 wt% of titanium oxide (rutile type crystal) which is a crystal having a high dielectric constant. This is an example of firing. This indicates that a glass ceramic having a relatively low dielectric loss and an increased dielectric constant can be obtained. Similar effects were obtained by mixing compounds such as barium titanate and lithium niobate instead of titanium oxide.
[0037]
【The invention's effect】
The present invention has the following effects.
[0038]
1. Low dielectric loss at frequencies in the microwave and millimeter wave regions of the glass ceramic substrate (LTCC substrate) obtained by low-temperature firing can be achieved.
[0039]
2. A low-temperature fired glass ceramic most suitable for a multilayer wiring board can be obtained.