JP2004021259A - 試料または観察対象物の情報取得のための光学装置 - Google Patents
試料または観察対象物の情報取得のための光学装置 Download PDFInfo
- Publication number
- JP2004021259A JP2004021259A JP2003141875A JP2003141875A JP2004021259A JP 2004021259 A JP2004021259 A JP 2004021259A JP 2003141875 A JP2003141875 A JP 2003141875A JP 2003141875 A JP2003141875 A JP 2003141875A JP 2004021259 A JP2004021259 A JP 2004021259A
- Authority
- JP
- Japan
- Prior art keywords
- concave mirror
- optical
- light
- splitter surface
- illumination light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
- G02B21/0048—Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
【解決手段】照明光線および/または検出光線2.1、14.1内の凹面鏡6、16に対応して、そのスプリッタ面3、15に透過領域4と反射領域5を持つ光ビームスプリッタが配置され、照明光がまず最初スプリッタ面3、15の反射領域5で凹面鏡6、16へと反射し、前記凹面鏡から透過領域4にフォーカシングされ、試料11または検出装置17に到達する。入力側で検出装置17と、出力側で凹面鏡6、16の焦点距離変更および/または焦点位置変更のための調整装置と連結する評価装置を設置することができる。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、試料または観察対象物の照明のための光源、試料または観察対象物から発せられる光の受信装置を有する、試料または観察対象物の情報取得のための光学装置に関するものである。
【0002】
【従来の技術】
顕微鏡など光学観察装置の場合は、常に、最高の結像特性が得られるように、照明光路および観察光路に影響を与えることも必要である。これは、光学的分解能の最大限引き上げ、対象物内における高い透過効率の達成、対物レンズひとみへの適合化および焦点体積の修正などの目的のために、例えば照明光路内における光線断面を変更する場合に当てはまる。その上、照明光路内での結像倍率が変更可能であることも望まれる。それによって、照明光線の長さに影響を与えることや、あるいは観察光路内での結像倍率を変更することが可能になるからである。
【0003】
【発明が解決しようとする課題】
光路を対物レンズに適合化させるための可変型光学系として、公知になっているものは、例えば簡易なテレスコープまたは円筒型光学系として構成されており、通例反射性および/または屈折性の光学素子を有している。
例えば図7aに示されるような屈折性光学素子を使用する場合では、個別レンズの焦点距離が合算されることから比較的大きな構成空間が必要になる。さらに、屈折性光学素子の使用下で多色光源を利用する場合では、色収差の修正に対策を講じなければならない。そうでないと、結像特性がすべての波長について必ずしも同じにならないからである。
【0004】
上記の欠点は、確かに(図7bに示されたような)反射性素子の使用で回避可能であるが、しかしそのような装置では、例えば非点収差などの画像欠陥が発現する。その結果、そのような装置による場合、結像特性を補助的手段で改善する必要が生じ、そのため、前記光学機器の品質に制約が加わったり、あるいは技術コストの負担増が強いられることになる。
特に、最近開発の推進されているレーザ走査型顕微鏡検査については、画質を極力向上させることが要求されている。
以下に説明する本発明は、とりわけこの分野に関係するものである。
本発明は、特に共焦点レーザ走査型顕微鏡、蛍光相関型顕微鏡およびレーザ走査型細胞計数器への応用に適している。
【0005】
【課題を解決するための手段】
本発明の課題は、上記種類の装置において、画像特性をできる限り向上させるために照明光路および観察光路に制御可能な影響を与えることにある。
本発明による上記種類の光学装置では、以下のこと、すなわち
透過領域と反射領域から成るスプリッタ面を持つビームスプリッタが少なくとも1つ備わっていること、
光が、スプリッタ面に向けられていて、その反射面から凹面鏡へと反射し、次に凹面鏡から透過領域にフォーカシングされ、前記領域を通過して進むこと、
光が、透過領域にフォーカシングされ、前記領域を通過して凹面鏡に達し、前記凹面鏡からスプリッタ面に向けられ、その反射面により転向すること、
その場合、光を他の光学構成要素の特性に、および/または試料または観察対象物の光学特性に最高の状態で適合させることができるように、凹面鏡鏡面の幾何学構造および凹面鏡とスプリッタ面間の距離によりフォーカシングに影響を与えること、
選択した光線幅を予備設定すること、
および/または光の波面を操作すること、が前提とされている。
【0006】
前記光学装置をレーザ走査型顕微鏡として構成する場合、例えば次のことが前提条件になる:
照明光路内に、透過領域と反射領域から成るスプリッタ面を有するビームスプリッタが設置されていて、照明光がまず最初にスプリッタ面に向けられ、その反射領域で凹面鏡へと反射し、前記凹面鏡から透過領域にフォーカシングされ、そこを通過して試料に到達すること、および/または
検出光路内に、透過領域と反射領域から成るスプリッタ面を有するビームスプリッタが設置されていて、検出光がまず最初にスプリッタ面に向けられ、その反射領域で凹面鏡へと反射し、前記凹面鏡から透過領域にフォーカシングされ、そこを通過して検出装置に到達すること。
【0007】
凹面鏡は、好ましくは、それぞれ照明光路および検出光路のひとみ平面内に設置する。ビームスプリッタは、照明光路および検出光路の中間像平面内またはひとみ平面内に配置することができる。
そのほか、凹面鏡焦点距離の変更のために、および/またはそれぞれのビームスプリッタと対応凹面鏡間の距離変更のために調整装置を配備することができる。
凹面鏡焦点距離の変更により、例えば光線幅の拡大および修正が容易に行える。また、凹面鏡焦点距離の変更およびビームスプリッタと凹面鏡間の距離の変更により、光線幅の拡大およびそれに伴う焦点位置の修正が、同様に容易に行える。
【0008】
本発明の有利な実施態様として、検出装置は評価装置を介して調整装置と結合させることができる。評価装置は、検出信号に対応して調整信号を発するが、この調整信号は、凹面鏡焦点距離の変更および/またはそれぞれのビームスプリッタと対応する凹面鏡間の距離の変更に利用される。
その際、検出装置から受信した光線強度に関する情報は、評価装置によって電子的調整信号に変換され、然るべき調整量の生成に利用されるので、透過量を焦点体積に適合させれば、必要に応じて光線幅を変更することにより、または光線幅の変更に加えて焦点位置を同時修正することにより装置の効率が大きく向上する。既述の手段で単に焦点位置を変更するだけで、例えば焦点走査を行うこともできる。
【0009】
検出光路内に配置された凹面鏡も、同じように検出光をビームスプリッタにフォーカシングするので、焦点領域の検出光は透過領域を通過して、その後、検出装置に到達する。その場合透過領域は、検出光路において共焦点絞りとして作用する。
焦点距離の変更によって、共焦点絞りの幅(ピンホールの大きさ)および試料前記箇所におけるスポットの大きさを調整すること、延いてはレーザ走査型顕微鏡の分解能を高めることが可能である。
【0010】
本発明に基づく上記装置の1態様として、評価装置と連動する転換歯車上に配備されている焦点距離の異なる複数の球面凹面鏡が、照明光路内および/または検出光路内にそれぞれ1つずつ設置される場合がある。すなわち、転換歯車が評価装置によって予備設定された回転角度だけ回転する毎に、選定された焦点距離を持つ球面凹面鏡がそれぞれ1つずつ照明/検出光路に設置される。
【0011】
当例では、転換歯車上に設置される複数の球面凹面鏡の代わりに、焦点距離の変更できる位置調整可能な鏡面を持ち、評価装置と連結する適応型の球面凹面鏡を使用することもできる。その場合、選定された焦点距離が、それぞれ評価装置の発する調整信号によって調整される。
例えば、焦点距離の調整可能なミラーなど適応型光学系を使用した場合では、ビームスプリッタの透過領域は共焦点絞りや空間フィルタとしての作用を持たないので、少なくとも5エアリの直径を持つ孔として形成するのが好ましい。
【0012】
それに対し、透過領域を空間フィルタとして作用させるのであれば、透過領域の直径はそれ相応に適合させねばならない。
その場合スプリッタ面は、衝突する照明光または検出光に対して45°の角度で傾斜しており、その中央には鏡面としての反射領域に取り囲まれた、透過領域を形成する円形または楕円形の孔がある。
【0013】
焦点距離は、転換歯車を回転させて、それによって様々な焦点距離の球面凹面鏡を照明光路または検出光路に設置することで変更可能である。また、適応型凹面鏡が配備されている限りは、鏡面と結合している調整素子の制御によりその焦点距離に影響を与えることができる。
【0014】
試料または装置の光学システムに起因する画像欠陥を修正するためには、光線幅を変更したり、それぞれの光路において適応型球面凹面鏡により波面に影響を与えたりすることが可能である。
透過領域が楕円形の孔として形成されている場合は、スプリッタ面が衝突する照明光または検出光に対して45°の角度で傾斜していれば、見掛け上円形通過孔が形成されて好ましい。
【0015】
フォーカシングされずにスプリッタ面に当たる当初段階での照明光または検出光の進行方向で見て、それぞれのビームスプリッタの後方に、反射領域から凹面鏡の方に向いた光線成分のためでなく、透過領域を通過する光線成分を受け取るための検出器を配置することができる。この検出器で取得した信号は、好ましくも、それぞれの光路の平均出力を監視するために利用することができる。前記検出器は、例えばモニタ・ダイオードとして形成することができる。
【0016】
その場合分離された光線成分は、Tを透過率、AHTを透過領域の面積、Apupilleを有効ひとみ横断面、γHTを透過領域の半径およびγpupilleをひとみの半径として、
次の関係式
T=AHT/Apupille=γHT 2/γpupille 2
で求められるが、T〜1%であるのが好ましい。
【0017】
以上のほか、透過領域を通過して試料の方向に向いた照明光の光路内には、光線平行化のためのレンズまたはレンズ系が配置されていて、そこより光路を試料方向にさらに進めると、走査光学系および鏡胴レンズがあり、最後に対物レンズが設置されている。その場合、回折の制限されたスポットが生成されるが、これは、光学装置のひとみ内またはその近くに配置された走査装置により試料上を横方向に動かされるので、それによって試料が走査される。
【0018】
試料から放出された光は、対物レンズ、鏡胴レンズ、走査光学系および走査装置と逆方向に検出光路を辿り、さらに好ましくはダイクロイック・ビームスプリッタによって照明光路から分離され、ピンホール光学系および共焦点絞りを経由して検出装置に到達する。
蛍光検出の場合では、その上さらに、照明光を遮断するために、波長フィルタを検出光路のほうに向けることができるので、検出装置に受信される光は照明光に影響されることがない。
【0019】
本発明の好ましい実施態様として、照明光をスプリッタ面に点状にフォーカシングする球面凹面鏡が照明光路内および/または検出光路内に設置されることがある。その場合、照明光は円形または楕円形の孔として形成された透過領域を通過するが、通過方向に見てスプリッタ面の後方には、そこに当たった光を平行化してスプリッタ面に反射させるまた別の球面凹面鏡が配置されている。その後、光はスプリッタ面における裏面反射により試料または検出装置の方向へ転向する。
この場合、透過領域と反射領域との面積比が次の関数式を満たしているものとする:
R=(Apupille − AHT)/Apupille=(γpupille 2 − γHT 2)/γpupille 2
但し、Rの値は99%より大きいものとする。式中Apupilleは有効ひとみ横断面、AHTは透過領域の面積、γpupilleはひとみの半径およびγHTは透過領域の半径を表わしている。
【0020】
本発明に基づく装置の同じく有利な1態様として、照明光をスプリッタ面に対しX方向に延びる線形としてフォーカシングする円筒型凹面鏡が、照明光路内および/または検出光路内に設置されている場合がある。スプリッタ面にも透過領域を形成する、同じくX方向に延びたスリット状の孔が設けられていて、そこを照明光が通過する。通過方向に見て、スプリッタ面の後方には、線状に延びた照明光をY方向へと90°回転させて反射させる球面凹面鏡が設置されている。その後光はスプリッタ面における裏面反射により試料または検出装置の方向へ転向する。
その場合、透過領域と反射領域との面積比が次の条件を満たしているものとする:
R=(Apupille − AHT)/Apupille=(π・γpupille − 2bHT)/π・γpupille
但し、Rの値は約97%とする。ここでもApupilleは有効ひとみ横断面、AHTは透過領域の面積、γpupilleはひとみの半径を表わし、最後にbHTは透過領域の幅を表わしている。例えば、透過領域の幅は0.25mm未満とする。
【0021】
さらに、上記実施態様の変形として下記条件のもとで照明光路内および/または検出光路内に、照明光をスプリッタ面に、点状にフォーカシングする球面凹面鏡を設置することができる。その場合、スプリッタ面は衝突する照明光に対して45°傾斜しており、その中央には透過領域を形成する、円形または楕円形の孔が設けられていて、そこを照明光が通過する。通過方向に見て、スプリッタ面の後方には、照明光を線形としてスプリッタ面へと反射させる円筒型凹面鏡が設置されている。その後、光はスプリッタ面における裏面反射により試料または検出装置の方向へ転向する。
【0022】
照明光路に配置された円筒型凹面鏡について、その焦点距離の変更および/またはそれとビームスプリッタとの距離の変更により、球面凹面鏡による光線幅拡大の場合に準じて、走査線の長さを適合させることができる。検出光路内に設置された円筒型凹面鏡は、検出光を走査線検出器へフォーカシングするのに利用できる。
【0023】
最後に挙げた好ましい2つの実施態様をさらに改良したものとして、スプリッタ面の両サイドに、それぞれ互いに向き合って対をなす複数の凹面鏡が設置されてることがある。その場合凹面鏡の焦点距離は各ペア毎に異なっていて、凹面鏡ペアはそれぞれ共通の光軸を持っている。ペアの光軸は共通してXY平面内にあり、Z軸の周りを互いに回転させた位置に配置されている。
【0024】
さらに、スプリッタ面がZ軸の周りを回転可能な状態で設置されており、評価ユニットと連結する駆動装置と結合している。その場合スプリッタ面は、評価装置によってプリセットされた回転角度だけ回転する毎に、選定された凹面鏡ペアの光軸に垂直な方向に合わされる。
この場合、凹面鏡の各ペアはプリセットされた倍率を持つテレスコープを形成している。スプリッタ面が、選定された凹面鏡ペアの光軸に垂直に位置設定されれば、このペアによってプリセットされた倍率が有効なものとなり、それに対応して光線横断面が拡大される。スプリッタ面を回転させて、方向を次の凹面鏡ペアに合わせると、それに伴って倍率が変化する。
【0025】
スプリッタ面の回転によって受光する凹面鏡ペアの数が多ければ多いほど、倍率の種類が増え、光線横断面の変更可能性も多様になる。スプリッタ面の回転における切換ポジションは、それぞれ凹面鏡ペア間の各距離に対応している。
球面凹面鏡と円筒型凹面鏡を、既に上段で説明した方法により、凹面鏡ペアとして組み合わせれば、同一の顕微鏡装置において「点走査」から「線走査」への操作切換を実現することができる。それは、円形または楕円形の孔のあるスプリッタ面を回転可能なように設置して、それを実際に回転させ、ペアとして組み合わせた凹面鏡ペアのいずれかの間に、すなわち「点走査」用の球面/球面ペアか、「線走査」用の円筒型/球面ペアか、あるいは同じく「線走査」用の球面/円筒型ペアかを選択して、そのペア間に設置することによる。
【0026】
本発明によれば、各凹面鏡ペアの一方または双方を適応型凹面鏡として構成し、評価装置と連結させることができる。その場合、評価装置から発せられる調整指令によってその都度焦点距離の変更が促される。
同様の効果は、そのような凹面鏡ペアの一方または双方を光軸の方向に移動可能な状態で配置させることによって達成される。それにより、光路はフォーカシングまたはデフォーカシングの状態に選択設定することができる。
この光学装置の場合、光は凹面鏡表面に必ず垂直に到達する。そのようにして、結像欠陥の発生が確実に防止される。
この光学装置は、必要である限り、光路から完全に外してしまうこともできる。それは、スプリッタ面の法線が凹面鏡ペアのいずれの光軸位置にもこないように、スプリッタ面を回転させることにより行う。
【0027】
本発明に基づく装置のまた別な態様として、凹面鏡の1つが存在する位置にひとみを生成させるために、リレー光学系を照明光路内のスプリッタ面の後方に配置することができる。
直前に挙げた幾つかの実施例でも、蛍光検出の場合には照明光の遮断のため、検出光路の方に転向可能な波長フィルタを設置することができる。
その他、1つまたは複数の凹面鏡に、前記凹面鏡の焦点距離を短縮させるための屈折性光学素子を装備させることもできる。それには例えば、レンズ、結像性ミラーなどが使用の対象になる。
【0028】
本発明には、透過領域と反射領域のスプリッタ面におけるポジションが互いに取り換えられている態様も、すなわち透過領域、反射領域のいずれにしてもスプリッタ面の中央にきたり、辺縁部にきたりする態様も含まれる。
さらには、ひとみ平面が顕微鏡走査装置の反射面と一致している場合も有利に作用する。また、試料から放出された検出光を照明光路から分岐させる目的には、ダイクロイック・ビームスプリッタを設置することが、上記すべての実施態様において有利である。
【0029】
検出装置の出力側には光線強度に関する情報がある。この情報は評価装置において、そこに保存されている情報と比較され、相互間の差異から調整信号が生成される。この信号は、適応型ミラーの焦点距離、転換歯車の回転またはそれぞれの凹面鏡と対応スプリッタ面間の距離を変更させるために利用することができる。
線走査によるスキャニングの場合、検出装置として線形検出器を備えておくと有利になることがある。その場合では、検出器の列方向と試料上を誘導される走査線の方向とを一致させるものとする。
【0030】
【発明の実施の形態】
以下では本発明を実施例に基づきさらに詳しく説明する。
図1によると、光源1から発した照明光2は、光ビームスプリッタのスプリッタ面3に衝突する。
図1bから明らかなように、スプリッタ面3は、孔の形態を取る透過領域4とそれを取り囲む反射領域5とを有している。透過領域4は、例えば円形または楕円形の孔として、反射領域5は鏡面として形成されている。
【0031】
さらに、図1aからは、スプリッタ面3が衝突する照明光に対して45°の角度で傾斜しているのが分かる。それにより、反射領域5に当たった照明光の光線成分2.1が、図示された光学装置のひとみ平面内にある球面凹面鏡6の方向へ転向可能になる。
球面凹面鏡6は光線成分2.1を反射して透過領域4へフォーカシングする。前記領域は中間像平面の位置にあるため、照明光路内で共焦点絞りとしての作用をしている。透過領域4の直径の如何により、装置の光学分解能に影響を与えたり、それをプリセットすることができる。
【0032】
透過領域4は凹面鏡6からの光線投射方向から45°傾斜しているので、それが楕円形であれば、見掛け上は円形になる。
透過領域4の通過後、フォーカシングされた照明光は、続いてレンズ7により平行化される。走査光学系8、鏡胴レンズ9および顕微鏡対物レンズ10により試料11内にスポットが形成されるが、これは、試料11の点走査目的のために、走査装置12により横方向に動かされる。
【0033】
画像情報の含まれた、試料11からの放出光である検出光は、顕微鏡対物レンズ10、鏡胴レンズ9、走査光学系8および走査装置12と逆経路を辿り、検出光路14を照明光路から分離させて、別なビームスプリッタのスプリッタ面15に向けるダイクロイック・ビームスプリッタ13に到達する。
スプリッタ面15は、幾何学構造的にはスプリッタ面3と同様に作られていて(図1b参照)、同じく傾斜角45°で配置されている。
【0034】
反射領域5では、大部分の光線成分14.1が球面凹面鏡16の方向に転向する。凹面鏡16は光線成分14.1を反射後フォーカシングして、スプリッタ面15の透過領域4を通過させる。その後検出光のこの光線成分14.1は検出器17に到達する。
検出器17によって検出光の強度が測定され、それに対応した情報が、図には描かれていない評価装置に送り込まれる。
【0035】
評価装置は、転換歯車18および19用の駆動装置に連結している。転換歯車上には、球面凹面鏡6または16のほかにも、その使用数が本発明に基づく装置の態様によっては様々に異なる別な球面凹面鏡も設置されている。これら凹面鏡については、図では見やすくするために、球面凹面鏡6と16だけを描いてある。
【0036】
検出器17の出力信号に依存して、評価装置では調整信号が生成される。その信号は、転換歯車18および/または19をそれぞれの駆動装置を通じてプリセットされた回転角だけ回転させる指令になる。それに基づき、それぞれ焦点距離の異なった凹面鏡が照明光の光線成分2.1内および検出光の光線成分14.1内に設置される。
【0037】
このように、その焦点距離を基にして、前記光線成分2.1または14.1について、スプリッタ面3または15の透過領域4へのフォーカシングが最適になる凹面鏡を自動的に選択できるようになる。
それにより、対物レンズのひとみに対する照明を適合させ、対物レンズにおける透過効率、光学的分解能を上げること(例えば対物レンズのひとみに対する全面照射による)や、あるいは特殊例では、対物レンズのひとみへの意図的な照明抑制により光学的分解能を低下させることも可能である。
【0038】
特殊な実施態様では、照明光2の衝突方向でスプリッタ面3の後方に、照明光平均出力の監視用として検出器17.1、例えばモニタ・ダイオードを設置することがある。そのときの分離光量は、既にかなり上段で取り上げたT関数式から求められる。
【0039】
照明光路内で回転軸20の周りを回転できる転換歯車18の上に、複数の凹面鏡6、6.1を配置したり、検出光路内で回転軸21の周りを回転できる転換歯車19の上に複数の凹面鏡16、16.1を配置したりする代わりに、焦点距離の変更できる適応型球面凹面鏡をそれぞれ1つだけ設置することもできる。
それにより、前記光路において波面を操作することが、および装置の光学構成要素または検査試料11に起因する画像欠陥の修正にそれを利用することも可能である。評価装置ではこの目的のために、検出信号に依存して、凹面鏡の幾何学構造変更のための調整信号が発せられる。
【0040】
図2aは、可変型光学系が照明光路内に設置されている本発明に基づく装置の1実施例を示している。
ここでは、光源25から発せられ平行化された照明光26は、まずビームスプリッタのスプリッタ面27に向けられる。前記スプリッタ面は、(上記の実施例で既述されている上、図2bにも描かれているように)透過領域4と反射領域5を有している。
スプリッタ面27は衝突する照明光26に対して45°の角度で傾斜しているので、光線成分26.1は反射領域5によりまず凹面鏡28のほうに向けられ、その鏡面で反射した後、スプリッタ面27の透過領域4にフォーカシングされる。
【0041】
本発明によれば、透過領域4を通過してフォーカシングされた光は、照明光路のひとみ平面内に後続配置された球面凹面鏡29に到達する。
凹面鏡29とスプリッタ面27は、透過領域4が凹面鏡29の焦点に一致するような関係に配置されている。その上、透過領域4は顕微鏡装置の中間像平面のポジションにあるので、前記領域は照明光路内の共焦点絞りとして作用することができる。この場合でも透過領域4は、円形の孔として、但しより好ましくは楕円形の孔として形成されている。
【0042】
凹面鏡29は、光線成分26.1をスプリッタ面27の方へ反射して平行化するが、スプリッタ面の裏面でも、すなわち凹面鏡29で反射し、平行化された照明光が衝突する場所でも反射が起こるので、光線成分26.1は試料30の方向に転向されることになる。
その場合、ここでも走査光学系31、鏡胴レンズ32および顕微鏡対物レンズ33により回折の制限されたスポットが生成され、これが、走査装置34により試料30上を横方向に動かされる。なお、走査装置34は顕微鏡装置のひとみ内またはその近くに配置されている。光路内にリレー光学系35を設置すれば、凹面鏡29の位置にひとみを生成するのに利用でき有利である。
【0043】
試料から放出された光は、顕微鏡対物レンズ33、鏡胴レンズ32、走査光学系31および走査装置34と逆経路を辿ってダイクロイック・ビームスプリッタ36に達し、そこで検出光路37が分離される。その後検出光路37はピンホール光学系38および共焦点絞り39を経由して検出器40に到達する。
転向可能な波長フィルタ41はオプション装着され、例えば蛍光検出では照明光成分の遮断のために利用される。
【0044】
この実施例でも検出器40の出力信号は、図には描かれていない評価装置に連接している。評価装置は検出光の強度評価に用いられるが、その際、凹面鏡28および/または凹面鏡29の焦点距離修正に利用される調整信号を発信する。
この場合、同じく図には描かれていない調整装置は、凹面鏡28、29と透過領域4間の距離が検出信号から得られた調整量に相当した分だけ変更されるように構成することができる。あるいは凹面鏡28および/または凹面鏡29は、調整素子により鏡面湾曲度の変更ができ、その凹面鏡鏡面の幾何学構造の変更により、結果的に焦点を変動させる適応型ミラーとして構成される。
【0045】
スプリッタ面27においてフォーカシングされない場合、反射領域5に衝突する照明光成分は減損する。しかし、反射領域と透過領域の面積比が既述のようにR>99%であることから、効率的な光線分布が達成される。この効率は使用波長には依存しない。この場合反射領域の半径は約5mmで、透過領域の半径は0.25mm以下である。
【0046】
凹面鏡28として適応型ミラーを利用すれば、ミラー表面の追加調整により画像欠陥、例えば収差を修正することができる。
スプリッタ面27による光線分離に後続して空間フィルタが装備されている場合、光源の欠陥が修正される結果、空間フィルタの効率も上昇する。
焦点距離変更のための調整装置や適応型ミラーを使用することも、また双方の調整可能性を組合せ利用することも勿論考えられる。
【0047】
両凹面鏡28、29は、その相互作用により、光線幅の変更を可能にするテレスコープを形成する。それにより、対物レンズのひとみに対する照明を適合させ、対物レンズにおける透過効率、光学的分解能を上げること(例えば対物レンズのひとみに対する全面照射による)や、あるいは特殊例では、対物レンズのひとみへの意図的な照明抑制により光学的分解能を低下させることも可能である。
【0048】
例えば凹面鏡29をその光軸に沿って移動させることにより、照明光路を対物レンズひとみにおいて容易にフォーカシングまたはデフォーカシングさせることができる。それにより、試料30における軸方向の焦点位置を変更することができる(フォーカス・スキャニング)。
凹面鏡29として適応型ミラーを使用すれば、ミラー表面の適合化により、それに付随して、光学構成要素または検査試料30を原因とする照明光路内における画像欠陥が修正される。
【0049】
さらに、凹面鏡28に代えて、照明光をスプリッタ面27の透過領域4にフォーカシングさせる、例えばレンズなどの透過素子を使用するのも本発明の範囲内である。その場合、この透過素子は、照明光源25とスプリッタ面27の間に位置設定されねばならない。
【0050】
図3aには凹面鏡28.1および29から構成されるテレスコープが拡大して描かれている。図から明らかなように、照明光路26はスプリッタ面27に当たり、その反射領域5により大部分の光線成分26.1が凹面鏡28.1のほうに向けられる。照明光はそこで透過領域4の方向へ再反射し、透過領域を通過して凹面鏡29に衝突する。この鏡面でさらに反射した後、スプリッタ面27の反射性裏面に達し、そこから試料30の方向へ転向する(図2参照)。
この場合、凹面鏡28.1は球面凹面鏡として、透過領域4は円形の孔(図3b参照)として構成されている。それによりスポットが生成されて、点走査装置を駆動させることができる。
【0051】
図4aおよび図4bに描かれているように、これに代わる別な実施態様では、凹面鏡として円筒型の凹面鏡28.2を使用することができ、透過領域4はスリット状の開口部として形成することができる。この種装置は、直線型照射による試料30の走査に利用される。
図4aから明らかなように、この場合も照明光26はスプリッタ面27の反射領域5に達し、そこからこの場合は円筒型である凹面鏡28.2の方向に転向する。この凹面鏡は照明光の光線成分26.1を1座標についてだけフォーカシングしてスプリッタ面27へと反射させる。その場合、図4bに見られるスリット状透過領域4とスプリッタ面27に向けられた照明光の座標とが互いに照準されているので、照明光はフォーカシングされてスリット状透過領域4を通過し、後置された球面凹面鏡29に衝突する。
【0052】
球面凹面鏡29は照明光を反射させるが、その場合直線状に集束された照明光は90°回転してスプリッタ面27の反射性裏面に当たり、そこから試料30の方向へ転向する。この場合でも透過領域に命中する照明光成分だけが失われるに過ぎない。
その場合、反射領域のひとみ半径は約5mmで、透過領域の幅はbHT<0.25mmである。既にかなり上段で取り上げた関数より、双方の面積比はR=97%であること、さらにまたスプリッタ面27における光線分割の効率は波長に依存しないことが明らかになる。
【0053】
第2実施例のまた別な態様可能性が図5および図6に描かれている。なお、図5は試料30の点走査に用いられる回折制限のあるスポットの生成に関するもので、図6は試料30の線走査に用いられる線状照明の生成に関するものである。図5は、図3aに描かれた凹面鏡28.1、29およびスプリッタ面27をスプリッタ面に当たる照明光26の方向から見たときの図である。スプリッタ面27は45°傾斜しているので、この視点からは楕円形の輪郭に見える。楕円形の輪郭を持つ孔として形成されている透過領域4は、この視点からは円形の孔に見える。
【0054】
さらに、図5から見て取れるように、凹面鏡28.1、29と同じように照明光26の光軸を挟んで向い合う別な2つの凹面鏡28.11および29.1が設置されている。両凹面鏡ペア28.1/29および28.11/29.1は、光軸の周りを互いに角度α=90°ずらした位置にある。凹面鏡28.11の焦点距離は凹面鏡28.1の焦点距離とは異なり、同様に凹面鏡29.1の焦点距離は凹面鏡29の焦点距離とは異なっている。そのことは、それぞれ凹面鏡と光軸間の距離が異なることで証明される。
【0055】
また、スプリッタ面27は光軸の周りを回転できるように、図には描かれていない装置と連結している。スプリッタ面27が、点線で描かれているようなポジションへ回転移動すれば、反射領域5に当たった照明光26は、図2aおよび図3aについて説明したように、球面凹面鏡28.11の方へ転向し、そこから透過領域4の方向へフォーカシングされ、透過領域4を通過して凹面鏡29.1に達し、そこで反射しスプリッタ面27の方向へ改めて平行化され、スプリッタ面27の反射性裏面により試料の方向へ(図平面内へ)転向する。
【0056】
このようなスプリッタ面27の回転によるポジション移動においては、両凹面鏡28.1、29は片方または双方の焦点距離を変更することによって、あるいはこれらが適応型ミラーとして構成されている場合では、それらと透過領域4との距離を変更することにより、双方合わせて光線横断面に影響するテレスコープとして作用する。
【0057】
スプリッタ面27を90°回転させると、確かにその場合でも照明光26がスプリット面27の反射領域5に当たることには変わりないが、しかし反射光線の向けられる先はもはや凹面鏡28.1ではなくて凹面鏡28.11であり、そこから透過領域4に向けてフォーカシングされ、そこを通過して凹面鏡29.1に当たり、そこで平行化されてスプリッタ面27の反射性裏面の方へ戻され、そこから試料30の方向へ(図平面内へ)転向する。
【0058】
凹面鏡ペア28.1/29および28.11/29.1の焦点距離が異なることから、スプリッタ面27の回転ポジションに応じて様々なテレスコープ効果または光線幅の拡大が達成される。このように、光線横断面に影響を与えるものとして凹面鏡ペア28.1/29だけでなく、(スプリッタ面27の回転後には)凹面鏡ペア28.11/29.1も有効に働くことから、光線横断面の適合可能性がさらに広がることになる。
【0059】
本発明のこの実施態様としては、図示された凹面鏡ペア28.1/29および28.11/29.1に限定されるものではなく、別な凹面鏡ペアも設置することができる。例えば4ペアとした場合、反射方向を4凹面鏡ペアの1つに向けるためには、スプリッタ面27の回転角はそれぞれ45°ということになる。
【0060】
図6は原理的には同一の装置を示したものであるが、但しこの場合では試料30上に線状の照明を生成するスリット状の透過領域4を有している。機能態様は、直ぐ上で説明した内容に準じている。
【0061】
【発明の効果】
本発明に基づく装置により、照明光路内における光線横断面を対物レンズひとみに適合させること、延いては装置全体の光学分解能を最適化させることが有利な形で、しかも容易に達成できる。同様に、照明光路内における光線横断面の適合化により対物レンズにおける透過効率を最適化することができる。また、焦点体積を適合化させるという目的で、照明光路内における光線横断面の変更も可能である。
【0062】
例えば線走査型顕微鏡の場合、この種装置の使用のもと照明光路内における結像倍率の変更によって照明光線の長さを適合させることができる。その上、観察光路内における結像倍率の変更によって、光学的断面の厚さを調整することも可能である。それにより、多様な適合化および最適化の可能性が生れ、それぞれの光学観察装置の光学特性を改良させる結果になる。
【0063】
本発明について、上記のように、幾つかの実施例に基づき説明してきたが、それらの場合検出信号が調整装置における調整信号の生成に利用されていて、光線幅の拡大および焦点位置に対し自動的に影響を及ぼすようにしている。また別な実施態様として、評価装置、調整装置およびそれに伴う自動制御を取り止めて、それに代わり、例えば転換歯車の手動回転によって様々な焦点距離の凹面鏡を光路内に設置することや、あるいは類似結果が達成されるように、凹面鏡またはビームスプリッタを手動的に移動させて焦点距離を変更することも考えられる。
【図面の簡単な説明】
【図1】点走査式共焦点レーザ走査型顕微鏡の照明光路および観察光路に可変型光学系の設置された第1実施例の模式図
【図2】点走査式共焦点レーザ走査型顕微鏡の照明光路にだけ可変型光学系の設置された第2実施例の模式図
【図3】図2の実施例に対応する、2つの球面凹面鏡から構成された可変型光学系(a)およびスプリッタ面(b)
【図4】図2の実施例に対応する、円筒型凹面鏡と球面凹面鏡から形成されている可変型光学系(a)およびスプリッタ面(b)
【図5】複数の凹面鏡ペアが配置された実施例における点走査に用いられる光線誘導
【図6】複数の凹面鏡ペアが配置された別の実施例における線走査に用いられる光線誘導
【図7】光学素子の原理を示し、屈折性光学素子(a)反射性素子(b)を
【符合の説明】
1 光源
2 照明光
2.1 光線成分
3 スプリッタ面
4 透過領域
5 反射領域
6、6.1 凹面鏡
7 レンズ
8 走査光学系
9 鏡胴レンズ
10 顕微鏡対物レンズ
11 試料
12 走査装置
13 ビームスプリッタ
14 検出光路
14.1 光線成分
15 スプリッタ面
16、16.1 凹面鏡
17 検出装置
18、19 転換歯車
20 検出器
25 光源
26 照明光
26.1 光線成分
27 スプリッタ面
28、29 凹面鏡
28.1、29.1 凹面鏡
28.11、28.21 凹面鏡
30 試料
31 走査光学系
32 鏡胴レンズ
33 顕微鏡対物レンズ
34 走査装置
35 リレー光学系
36 ビームスプリッタ
37 検出光路
38 ピンホール光学系
39 絞り
40 検出装置
41 フィルタ
Claims (24)
- 試料または観察対象物の照明のための光源、試料または観察対象物から発せられる光の受信装置を有する、試料または観察対象物の情報取得のための光学装置であって、
透過領域と反射領域から成るスプリッタ面を持つビームスプリッタが少なくとも1つ備わっていること、
光がスプリッタ面に向けられていて、その反射面から凹面鏡へと反射し、次に凹面鏡から透過領域にフォーカシングされ、前記領域を通過して進むこと、
光が透過領域にフォーカシングされ、前記領域を通過して凹面鏡に達し、前記凹面鏡からスプリッタ面に向けられ、その反射面により転向すること、
その場合、光を他の光学構成要素の特性に、および/または試料または観察対象物の光学特性に最高の状態で適合させることができるように、凹面鏡鏡面の幾何学構造および凹面鏡とスプリッタ面間の距離によりフォーカシングに影響を与えること、
選択した光線幅を予備設定すること、
および/または光の波面を操作すること、
を特徴とする光学装置。 - 照明光路内に、透過領域(4)と反射領域(5)から成るスプリッタ面(3、27)を有するビームスプリッタが設置されていて、
照明光(2、26)が、まず最初にスプリッタ面(3)に向けられ、その反射領域(5)で凹面鏡へと反射し、前記凹面鏡から透過領域(4)にフォーカシングされ、そこを通過して試料(11、30)に到達すること、
および/または
検出光(14)が、まず最初スプリッタ面(15)に向けられ、その反射領域(5)で凹面鏡へと反射し、前記凹面鏡から透過領域(4)にフォーカシングされ、そこを通過して検出装置に到達することを特徴とする、レーザ走査型顕微鏡として構成されている請求項1に基づく光学装置。 - 凹面鏡が、照明光路および検出光路のそれぞれひとみ平面内に設置されていることを特徴とする請求項2に記載の光学装置。
- ビームスプリッタが、照明光路および検出光路のそれぞれ中間像平面またはひとみ平面内に設置されていることを特徴とする請求項1または2に記載の光学装置。
- 調整装置が、凹面鏡焦点距離の変更のために、および/またはそれぞれのビームスプリッタと対応凹面鏡間の距離変更のために、配備されていることを特徴とする先行請求項の1つに記載の光学装置。
- 調整装置が、評価装置を介して検出装置と結合していて、評価装置が、検出信号に対応して調整信号を発して、凹面鏡焦点距離の変更および/またはそれぞれのビームスプリッタと対応凹面鏡間の距離の変更に利用されることを特徴とする請求項5に記載の光学装置。
- 照明光路内および/または検出光路内にそれぞれ球面凹面鏡(6、16)が設置可能となっていること、
それが、焦点距離の異なる別な球面凹面鏡(6.1、16.1)と共に転換歯車(18、19)上に配置されていて、転換歯車(18、19)の回転により選択された焦点距離を持つ球面凹面鏡(6、6.1、16、16.1)が照明光路および検出光路(2.1、14.1)内に設置されること、または
それが、焦点距離の変更できる調整可能な鏡面を持ち、調整移動により選定焦点距離がプリセットされることを特徴とする先行請求項の1つに記載の光学装置。 - スプリッタ面(3、15)が、衝突する照明光または検出光(2、14)に対して45°の角度で傾斜しており、その中央には透過領域(4)を形成する円形、好ましくは楕円形の孔があって、それが照明光路または検出光路のための空間フィルタとして作用することを特徴とする請求項7に記載の光学装置。
- 検出器(17.1)が、反射領域(5)から凹面鏡に向けられた光線成分を受光するためではなく、透過領域(4)を通過する光線成分(2、14)を受光するために設置されていることを特徴とする先行請求項の1つに記載の光学装置。
- 照明光路内にあるビームスプリッタの後方に光線平行化のための光学装置、好ましくはレンズ(7)またはレンズ系が配置されていることを特徴とする先行請求項の1つに記載の光学装置。
- 照明光(26.1)をスプリッタ面(27)に点状にフォーカシングするための球面凹面鏡(28.1)が設置されていること、
スプリッタ面(27)が、衝突する照明光(26、26.1)に対して45°の角度で傾斜しており、その中央には透過領域(4)を形成する円形または楕円形の孔を有していて、そこを照明光(26.1)が通過すること、
および光線通過方向に見て、スプリッタ面(27)の後方には、そこに当たった照明光(26.1)を平行化してスプリッタ面(27)に反射させるまた別な球面凹面鏡(29)が配置されていて、その後、光はスプリッタ面(27)における裏面反射により試料(30)または検出装置の方向へ転向すること、
を特徴とする請求項1から6の1つに記載の光学装置。 - Apupilleが有効ひとみ横断面、AHTが透過領域(5)の面積、γpupilleがひとみの半径およびγHTが透過領域(4)の半径として、
透過領域(4)と反射領域(5)との面積比が条件
R=(Apupille − AHT)/Apupille=(γpupille 2 − γHT 2)/γpupille 2
を満たしていること、
その場合Rが99%以上で、反射領域(5)の半径が約5mm、および透過領域(4)の半径が0.25mm未満であること
を特徴とする請求項11に記載の光学装置。 - 照明光(26.1)をスプリッタ面(27)に対しX方向に延びる線形としてフォーカシングする円筒型凹面鏡(28.1)が、照明光路内および/または検出光路内に設置されていること、
スプリッタ面(27)が、衝突する照明光に対して45°の角度で傾斜しており、同じくX方向に延びた、透過領域(4)を形成するスリット状の孔が設けられていて、そこを照明光(26.1)が通過すること、
通過方向に見て、スプリッタ面(27)の後方には、照明光(26.1)をY方向へと90°回転させて反射させる球面凹面鏡(29)が設置されていて、その後光がスプリッタ面(27)における裏面反射により試料(30)または検出装置の方向へ転向すること
を特徴とする、請求項1から6の1つに記載の光学装置。 - Apupilleが有効ひとみ横断面、AHTが反射領域(5)の面積、γpupilleがひとみの半径およびbHTが透過領域(4)の幅として、
透過領域と反射領域の面積が条件
R=(Apupille − AHT)/Apupille=(π・γpupille − 2bHT)/π・γpupille
を満たしていること、
但し透過領域(4)の幅が0.25mm未満で、反射領域(5)のひとみ半径が約5mmであること
を特徴とする請求項13に記載の光学装置。 - 照明光(26.1)をスプリッタ面(27)に点状にフォーカシングするための球面凹面鏡(28.1)が照明光路内および/または検出光路内に設置されていること、
スプリッタ面(27)が、衝突する照明光(26、26.1)に対して45°の角度で傾斜しており、その中央には透過領域(4)を形成する円形または楕円形の孔を有していて、そこを照明光(26.1)が通過すること、
および光線通過方向に見て、スプリッタ面(27)の後方には、そこに当たった照明光(26.1)をスプリッタ面(27)に反射させる円筒型凹面鏡が配置されていて、その後、光がスプリッタ面(27)における裏面反射により試料(30)または検出装置の方向へ転向すること
を特徴とする請求項1から6の1つに記載の光学装置。 - スプリッタ面(27)の両サイドに、向い合う別の一対の凹面鏡(28.11/29.1、28.21/29.1)が設置されていること、
その場合凹面鏡の焦点距離が各ペア(28.11/29.1、28.21/29.1)毎に異なっていること、
各ペアが共通の光軸を有していること、
ペアの光軸がXY平面内にあって、各ペアがZ軸の周りを相互に角度α分ずらされた配置になっていること、
およびスプリッタ面(27)がZ軸の周りを回転可能な状態で設置され、評価ユニットと連結する駆動装置と結合していること、
その場合、スプリッタ面は角度αだけ回転する毎に、選定された凹面鏡ペア(28.1/29、28.11/29.1、28.2/29、28.21/29.1)の光軸に垂直な方向に合わされること
を特徴とする請求項11から15の1つに記載の光学装置。 - 凹面鏡(28.1、28.11、28.2、28.21、29、29.1)の1つまたは複数が、焦点距離の変更できる調整可能な鏡面を持ち、評価装置と連結していること、その場合、評価装置から発せられる調整指令によって焦点距離の変更が促されることを特徴とする請求項11から16の1つに記載の光学装置。
- スプリッタ面(27)の後方で凹面鏡(29)の1つが設置されている位置に、ひとみ生成のために用いられるリレー光学系(35)が配置されていることを特徴とする先行請求項の1つに記載の光学装置。
- 蛍光検出において照明光を遮断するために、検出光路内と光路外の方向切換が行える波長フィルタ(41)が設置されていることを特徴とする、先行請求項の1つに記載の光学装置。
- 1つまたは複数の凹面鏡に、前記凹面鏡の焦点距離を短縮させるための屈折性光学素子が装備されていることを特徴とする先行請求項の1つに記載の光学装置。
- ひとみ平面が走査装置(12)の反射面と一致していること、および走査光学系(8、31)、鏡胴レンズ(9、32)、顕微鏡対物レンズ(10、33)間の位置設定が、走査運動によって照明光が試料上を横方向に移動するようになされていることを特徴とする先行請求項の1つに記載の光学装置。
- 試料(11、30)から放出された検出光を照明光路から分岐させるために、別なビームスプリッタ(13、36)が設置されていることを特徴とする先行請求項の1つに記載の光学装置。
- 検出装置(17)の出力側に光線強度に関する情報があり、この情報が評価装置において、そこに保存されている情報と比較されて、相互間の差異から調整信号が生成され、それが鏡面の幾何学構造、適応型ミラーの焦点距離、転換歯車(18、19)の回転またはそれぞれの凹面鏡と対応スプリッタ面(3、27)間の距離を変更させるために利用されることを特徴とする先行請求項の1つに記載の光学装置。
- 線走査によるスキャニングにおいて検出装置(17)として線形検出器が備えられていて、その場合検出器の列方向と試料上を誘導される走査線の方向とが一致していることを特徴とする請求項13または15に記載の光学装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10227119A DE10227119A1 (de) | 2002-06-15 | 2002-06-15 | Optische Anordnung zur Gewinnung von Informationen von einer Probe oder einem Beobachtungsobjekt |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004021259A true JP2004021259A (ja) | 2004-01-22 |
JP4171787B2 JP4171787B2 (ja) | 2008-10-29 |
Family
ID=29557857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003141875A Expired - Fee Related JP4171787B2 (ja) | 2002-06-15 | 2003-05-20 | 試料または観察対象物の情報取得のための光学装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US6888680B2 (ja) |
EP (1) | EP1372012B1 (ja) |
JP (1) | JP4171787B2 (ja) |
AT (1) | ATE491165T1 (ja) |
DE (2) | DE10227119A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102385151A (zh) * | 2010-08-30 | 2012-03-21 | 徕卡显微系统复合显微镜有限公司 | 包括显微物镜和微距物镜的显微镜 |
JP2015505620A (ja) * | 2012-01-24 | 2015-02-23 | カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh | 高分解能3d蛍光顕微鏡法のための顕微鏡および方法 |
JP2015152836A (ja) * | 2014-02-17 | 2015-08-24 | 横河電機株式会社 | 共焦点光スキャナ |
JP2018151624A (ja) * | 2017-03-08 | 2018-09-27 | イラミーナ インコーポレーテッド | 高スループットシーケンシング用のレーザライン照明装置 |
JP2021521606A (ja) * | 2018-05-04 | 2021-08-26 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 均一な照明スポットを生成する複数の光源を含む照明ユニット |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10227120A1 (de) * | 2002-06-15 | 2004-03-04 | Carl Zeiss Jena Gmbh | Mikroskop, insbesondere Laserscanningmikroskop mit adaptiver optischer Einrichtung |
US6996264B2 (en) * | 2002-10-18 | 2006-02-07 | Leco Corporation | Indentation hardness test system |
DE102006047724A1 (de) * | 2006-08-25 | 2008-02-28 | Carl Zeiss Surgical Gmbh | Operationsmikroskop mit Sensor zur Erfassung der Intensität von Beleuchtungslicht |
US8866039B1 (en) * | 2011-06-30 | 2014-10-21 | The United States Of America As Represented By The Secretary Of The Navy | Laser ignitability systems and methods |
CN114199885A (zh) * | 2021-12-09 | 2022-03-18 | 合肥御微半导体技术有限公司 | 一种晶圆检测装置及其方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61186187A (ja) * | 1985-02-13 | 1986-08-19 | Mitsubishi Electric Corp | レ−ザビ−ム加工装置 |
US5636066A (en) * | 1993-03-12 | 1997-06-03 | Nikon Corporation | Optical apparatus |
US5557447A (en) * | 1994-06-02 | 1996-09-17 | Kollmorgen Corporation | Optical scanner for finite conjugate applications |
EP0750891A1 (en) * | 1995-06-30 | 1997-01-02 | Laser Industries Limited | Laser microscope adaptor apparatus with auto-focus |
US6078420A (en) * | 1998-06-24 | 2000-06-20 | Optical Engineering, Inc. | Hole-coupled laser scanning system |
-
2002
- 2002-06-15 DE DE10227119A patent/DE10227119A1/de not_active Withdrawn
-
2003
- 2003-04-03 AT AT03007650T patent/ATE491165T1/de active
- 2003-04-03 DE DE50313303T patent/DE50313303D1/de not_active Expired - Lifetime
- 2003-04-03 EP EP03007650A patent/EP1372012B1/de not_active Expired - Lifetime
- 2003-05-20 JP JP2003141875A patent/JP4171787B2/ja not_active Expired - Fee Related
- 2003-06-10 US US10/458,699 patent/US6888680B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102385151A (zh) * | 2010-08-30 | 2012-03-21 | 徕卡显微系统复合显微镜有限公司 | 包括显微物镜和微距物镜的显微镜 |
JP2015505620A (ja) * | 2012-01-24 | 2015-02-23 | カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh | 高分解能3d蛍光顕微鏡法のための顕微鏡および方法 |
US9885860B2 (en) | 2012-01-24 | 2018-02-06 | Carl Zeiss Microscopy Gmbh | Microscope and method for high-resolution 3D fluorescence microscopy |
JP2015152836A (ja) * | 2014-02-17 | 2015-08-24 | 横河電機株式会社 | 共焦点光スキャナ |
JP2018151624A (ja) * | 2017-03-08 | 2018-09-27 | イラミーナ インコーポレーテッド | 高スループットシーケンシング用のレーザライン照明装置 |
US10774371B2 (en) | 2017-03-08 | 2020-09-15 | Illumina, Inc. | Laser line illuminator for high throughput sequencing |
JP2021521606A (ja) * | 2018-05-04 | 2021-08-26 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 均一な照明スポットを生成する複数の光源を含む照明ユニット |
US11668647B2 (en) | 2018-05-04 | 2023-06-06 | Siemens Healthcare Diagnostics Inc. | Illumination unit with multiple light sources for generating a uniform illumination spot |
JP7336460B2 (ja) | 2018-05-04 | 2023-08-31 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド | 均一な照明スポットを生成する複数の光源を含む照明ユニット |
Also Published As
Publication number | Publication date |
---|---|
JP4171787B2 (ja) | 2008-10-29 |
DE50313303D1 (de) | 2011-01-20 |
US20030231408A1 (en) | 2003-12-18 |
EP1372012A3 (de) | 2005-03-30 |
ATE491165T1 (de) | 2010-12-15 |
DE10227119A1 (de) | 2004-01-15 |
EP1372012A2 (de) | 2003-12-17 |
US6888680B2 (en) | 2005-05-03 |
EP1372012B1 (de) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4047225B2 (ja) | 適応光学装置を有する顕微鏡、特にレーザ走査型顕微鏡 | |
US11086114B2 (en) | Light-scanning microscope with simplified optical system, more particularly with variable pupil position | |
US11067783B2 (en) | Light sheet microscope and method for imaging a sample by light sheet microscopy | |
US7889428B2 (en) | External laser light introducing device | |
JP5525136B2 (ja) | シート光を発生するための光学装置 | |
US9989746B2 (en) | Light microscope and microscopy method | |
US7333255B2 (en) | Laser processing device | |
US7599115B2 (en) | Raster microscope | |
US20060291039A1 (en) | Laser condensing optical system | |
US7554726B2 (en) | Objective for evanescent illumination and microscope | |
JP2008534993A (ja) | 走査装置 | |
TW201512786A (zh) | 用於計量系統之照明光學單元與包括此照明光學單元之計量系統 | |
JP5733539B2 (ja) | 走査型顕微鏡 | |
JP4171787B2 (ja) | 試料または観察対象物の情報取得のための光学装置 | |
JP2019526829A (ja) | ライトシート顕微鏡 | |
US7235777B2 (en) | Light scanning microscope and use | |
US6917468B2 (en) | Confocal microscope | |
JP5084183B2 (ja) | 顕微鏡用落射照明光学系 | |
US20070171502A1 (en) | Beam deflector and scanning microscope | |
JP2006119643A (ja) | ビームまたは光線偏向装置および走査型顕微鏡 | |
US8587865B2 (en) | Device for examining and manipulating microscopic objects with coupled illumination and manipulation light beams | |
JP2009216944A (ja) | 顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080714 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120822 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130822 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |