JP2004055856A - 照明装置、それを用いた露光装置及びデバイス製造方法 - Google Patents
照明装置、それを用いた露光装置及びデバイス製造方法 Download PDFInfo
- Publication number
- JP2004055856A JP2004055856A JP2002211824A JP2002211824A JP2004055856A JP 2004055856 A JP2004055856 A JP 2004055856A JP 2002211824 A JP2002211824 A JP 2002211824A JP 2002211824 A JP2002211824 A JP 2002211824A JP 2004055856 A JP2004055856 A JP 2004055856A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- light amount
- lighting device
- optical integrator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
【解決手段】被照明面を均一に照明するための複数の微小レンズから成るオプティカルインテグレータと、当該オプティカルインテグレータを構成する少なくとも一つの微小レンズに入射する光量を制御する光量制御手段を有し、該光量制御手段は前記被照明面を照明するための2次光源分布が光軸に対してほぼ線対称になるように、前記オプティカルインテグレータの微小レンズに入射する光量を微小レンズ毎独立に制御することを特徴とする照明装置、それを用いた露光装置及びデバイス製造方法を提供する。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、光源からの光を用いて、被照明面を照明する照明装置に関し、特に、半導体素子、液晶表示素子、撮像素子(CCD等)または薄膜磁気ヘッド等を製造するためのリソグラフィ工程中に使用される露光装置において、パターンの描画されたマスク又はレチクル(本出願ではこれらの用語を交換可能に使用する。)を照明する照明装置に関する。
【0002】
【従来の技術】
近年、半導体素子の微細化への要求は益々高くなっており、ラインアンドスペースの最小線幅は0.15μmをきり、0.10μmに到達しようとしている。微細化を達成するためには、露光光の短波長化と投影レンズのNAの増加に加えて、マスクを照明する照度の均一化やマスクやウェハを照明する露光光の角度分布である有効光源分布の均一化も重要である。
【0003】
マスク上を照度むらなく均一に照明し、かつ有効光源分布を均一化するための光学系として、例えば、コリメータレンズと複数の微小レンズで構成されたオプティカルインテグレータ(又はハエの目レンズ)を組み合わせ、被照明面を均一に照明する方法がある。このようなオプティカルインテグレータを光軸に対して対称に配置することにより、微小レンズの個数に相当するだけの2次光源を形成でき、被照明面を複数の方向から重畳して照明することができる。一般に、被照明面での照度不均一を示す値として照度ムラSを被照明面での照度値の最大値をSmax、最小値をSminとして、以下の式で表示する。
【0004】
【数1】
【0005】
かかる照度ムラSを許容範囲内に収めて、かつ、光軸に対して対称の2次光源を形成する。
【0006】
また、解像度を高めるために、斜入射照明や位相シフトマスクと呼ばれる超解像度技術が提案されている。このような照明法では、照明光学系の開口絞りを変更することによってσ値を小さくしたり、輪帯形状や四重極形状のような特殊な形状の2次光源を形成したりしている。更に、被照明面に応じて、標準照明、超解像度技術を利用した一又は複数の照明間で照明モードを切り替える方法も提案されている。
【0007】
【発明が解決しようとする課題】
しかし、最近の超LSIの高集積化にと伴い、回路パターンの焼き付けに要求される照度の均一性は±1%前後という極めて高いものになり、コリメータレンズとオプティカルインテグレータの組み合わせのみでは不十分になってきた。
【0008】
また、複数の照明モードを切り替える場合、ある照明モード(例えば、標準照明に対応する照明モード)に対して照度ムラSが最小になるように照明光学系が調整されていても他の照明モード(例えば、斜入射照明や小σ値に対応する照明モード)では必ずしも照度ムラSが最小にならない。これは、投影露光装置において照明モードを切り替えると光路が異なり、光学素子に使用される反射防止膜の効果が光線の角度によって低下したり、ミラーによる折り返しで反射ムラが発生したり、光学系が偏心したり、ウェハ面、レチクル面、投影光学系、照明光学系の間で生じる反射によって生じるフレアの影響が大きくなって、被照明面に照度ムラが増加するためである。このような照度ムラを照明モードの切り替え時に補正することは従来困難であった。
【0009】
また、2次光源(又は有効光源)の分布もミラーによる折り返しでの反射ムラや光学系の偏心の影響により歪んで非対称となってしまい、縦、横、斜め方向など各種方向存在する回路パターンにおいてパターン方向によって解像性能が異なるという問題もある。
【0010】
そこで、本発明は、これらの問題を解決する新規かつ有用な照明装置、当該照明装置を有する露光装置及びデバイス製造方法を提供することを例示的な目的とする。
【0011】
より特定的には、照明条件(又は照明モード)を変更した際に生じる照度ムラを最小にすると共に2次光源分布を対象に補正してマスクパターンをウェハ面に高い解像力で投影することができる照明装置、当該照明装置を有する露光装置及びデバイス製造方法を提供することを本発明の例示的な目的とする。
【0012】
【課題を解決するための手段】
かかる目的を達成するために、本発明の一側面としての照明装置は、被照明面を均一に照明するための複数の微小レンズから成るオプティカルインテグレータと、当該オプティカルインテグレータを構成する少なくとも一つの微小レンズに入射する光量を制御する光量制御手段を有し、該光量制御手段は前記被照明面を照明するための2次光源分布が光軸に対してほぼ線対称になるように、前記オプティカルインテグレータの微小レンズに入射する光量を微小レンズ毎独立に制御することを特徴とする。かかる照明装置は光量制御手段を利用して被照明面での照度の均一化を図ることができる。また、かかる照明装置は光量制御手段を利用して被照明面を照明する2次光源分布を制御することができる。必要があれば、前記照明装置は、別のオプティカルインテグレータを更に有し、前記被照明面は前記別のオプティカルインテグレータの入射面であり、前記別のオプティカルインテグレータの射出面に形成された2次光源を用いて別の被照明面をほぼ均一に照明してもよい。このようなダブルインテグレーター構成、更には、トリプルインテグレーター構成に対しても本発明は好適である。
【0013】
前記光量制御手段は、例えば、NDフィルターや遮光部を有する。また、前記光量制御手段は、透過率の異なる複数の光量調整部を有し、前記照明装置は、前記複数の光量調整部を切り替える切り替え部を更に有してもよい。かかる照明装置は、照明条件(例えば、コヒーレンスファクタσ)に応じて光量制御手段の光量調整部の種類を変更して被照明面の照度ムラの低減を図ることができる。
【0014】
前記被照明面を異なる形状の2次光源で照明する複数の2次光源形成部と、前記複数の2次光源形成部を切り替える第2の切り替え部を更に有し、前記第1の切り替え部は前記第2の切り替え部に同期して前記光量調整部を切り替え、各光量調整部は対応する2次光源形成部が形成する2次光源を使用した場合の前記被照明面における照度ムラを小さくするように調整されていてもよい。これにより、2次光源形成部が形成する形状(例えば、輪帯や四重極などの)2次光源に応じて被照明面の照度ムラを低減することができる。
【0015】
本発明の別の側面としての露光装置は、上述の照明装置と、レチクル又はマスクに形成されたパターンを被露光体に投影する投影光学系とを有する。かかる露光装置も、上述の照明装置と同様に、前記被照明面又は前記別の被照明面としてのレチクル又はマスク及び被露光体(例えば、ウェハ)の有効光源分布を均一にすることができる。
【0016】
本発明の更に別の側面としてのデバイス製造方法は、上述の露光装置を用いて前記被露光体を投影露光するステップと、前記投影露光された前記被露光体に所定のプロセスを行うステップとを有する。上述の露光装置の作用と同様の作用を奏するデバイス製造方法の請求項は、中間及び最終結果物であるデバイス自体にもその効力が及ぶ。また、かかるデバイスは、例えば、LSIやVLSIなどの半導体チップ、CCD、LCD、磁気センサー、薄膜磁気ヘッドなどを含む。
【0017】
本発明の他の目的及び更なる特徴は以下添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
【0018】
【発明の実施の形態】
以下、添付図面を参照して本発明の一側面としての露光装置100及び照明装置100について説明する。ここで、図1は、露光装置100の単純化された光路を示す概略図である。露光装置1は、照明装置110と、レチクル12と、投影光学系13と、プレート15とを有する。図1は、照明装置100の一例の単純化された光路を示す概略図である。
【0019】
本実施形態の露光装置1は、ステップアンドスキャン方式でマスク12に形成された回路パターンをプレート15に露光する投影露光装置であるが、本発明はステップアンドリピート方式その他の露光方式を適用することができる。ここで、ステップアンドスキャン方式は、マスクに対してプレート15を連続的にスキャンしてマスクパターンをプレートに露光すると共に、1ショットの露光終了後プレートをステップ移動して、次のショットの露光領域に移動する露光法である。また、ステップアンドリピート方式は、プレートのショットの一括露光ごとにプレートをステップ移動して次のショットを露光領域に移動する露光法である。
【0020】
照明装置110は、転写用の回路パターンが形成されたレチクル12を照度ムラなく、かつ、有効光源分布を均一に照明し、光源部と照明光学系とを有する。光源部は、光源1と、楕円ミラー2と、コールドミラー3とを有する。
【0021】
光源1は、本実施形態では、g線(波長約436nm)やi線(波長約365nm)等の水銀ランプ、キセノンランプからなる発光管であり、紫外線及び遠紫外線等を放射する高輝度の発光部1aを有している。発光部1aは、楕円ミラー2の第1焦点近傍に配置し、第2焦点4に結像する。コールドミラー3は多層膜より構成され、大部分の赤外光を透過すると共に大部分の紫外光を反射している。楕円ミラー2はコールドミラー3を介して第2焦点4近傍に発光部1aの発光部像(光源像)1bを形成している。
【0022】
なお、本発明は、波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザー、波長約157nmのF2エキシマレーザーなどレーザー光源やYAGレーザーを使用してもよいし、そのレーザーの個数も限定されない。レーザーを使用する場合は、レーザー光源からの平行光の断面形状の寸法の縦横比率を所望の値に変換することによりビーム形状を所望のものに成形する整形光学系を使用し、後述するオプティカルインテグレータ6を照明するのに必要な大きさと発散角を持つ光束を形成することが好ましい。また、コヒーレントなレーザー光束をインコヒーレント化するインコヒーレント化光学系を使用することが好ましい。
【0023】
照明光学系はマスク12を照明し、光学系5、オプティカルインテグレータ6、絞り7、集光レンズ8、ミラー9、結像レンズ11、光量制御手段17を有する。
【0024】
光学系5は、コンデンサーレンズ、コリメータレンズ、ズームレンズなどから構成され、第2焦点4近傍に形成された発光部像1bを光量制御手段17を介してオプティカルインテグレータ6の入射面6aに結像させている。
【0025】
オプティカルインテグレータ6は、断面が四角形状の複数の微小レンズ6cを2次元的に所定のピッチで配列して構成しており、その射出面6bの近傍に2次光源を形成する。オプティカルインテグレータ6は、入射光の角度分布を位置分布に変換して出射し、入射面6aと出射面6bとはフーリエ変換の関係になっている(本明細書において、フーリエ変換の関係とは、光学的に瞳面と物体面(又は像面)、物体面(又は像面)と瞳面となる関係を意味する)。
【0026】
オプティカルインテグレータ6は、本実施形態では、このようにロッドレンズ(即ち、微小レンズ素子)を多数組み合わせて構成されたハエの目レンズであるが、本発明が使用可能なオプティカルインテグレータはかかる形状に限定されるものではなく、例えば各組が直交するように配置された複数の組のシリンドリカルレンズアレイ板などでもよい。また、ロッドレンズが3面以上の屈折面を有するハエの目レンズを使用してもよい。
【0027】
ここで、シリンドリカルレンズアレイ板は、2組のシリンドリカルレンズアレイ(又はレンチキュラーレンズ)板を重ねることによって構成される。1枚目と4枚目の組のシリンドリカルレンズアレイ板はそれぞれ焦点距離f1を有し、2枚目と3枚目の組のシリンドリカルレンズアレイ板はf1とは異なる焦点距離f2を有する。同一組のシリンドリカルレンズアレイ板は相手の焦点位置に配置される。2組のシリンドリカルレンズアレイ板は直角に配置され、直交方向でFナンバー(即ち、レンズの焦点距離/有効口径)の異なる光束を作る。なお、組数が2に限定されないことはいうまでもない。
【0028】
なお、必要があれば、オプティカルインテグレータ6を均一に照明するために別のハエの目レンズを設けてもよい。
【0029】
光量制御手段17は、後述する2次光源の変更に伴って切り替え可能であり、オプティカルインテグレータ6の入射面6aの近傍に配置している。光量制御手段17は、オプティカルインテグレータ6の複数の微小レンズのうち少なくとも一の微小レンズを透過する光量をNDフィルタや遮光部材からなる光量調整部により制御している。18はホルダーであり、コンソール(不図示)からの指令信号に基づいて、照明モードの変更と共に複数種ある光量制御手段17のうちの一つを選択してオプティカルインテグレータ6の入射面6aに移動させ、被照明面10上の照度分布及び2次光源分布を調整している。
【0030】
絞り7は2次光源の形状を決定する。絞り7は照明条件に応じて絞り交換機構(アクチュエータ)16によって種々の絞り7a、7bが光路中に位置するように切り替え可能となっている。絞り7としては、例えば、図9(a)に示すように、通常の円形開口の絞り、後述する投影レンズ13の瞳面14上の光強度分布を変化させる図9(b)に示す輪帯照明用絞り、図9(c)に示す4重極照明用絞り、図9(d)に示す小σ値照明用絞り等の1つから構成される。ここで、図9は、絞り7に適用可能な様々な絞りの平面図であり、黒い部分は遮光部で白い部分は開口部である。
【0031】
本実施形態は複数の種類の絞り7を使用することにより、集光レンズ8に入射する光束を変化させて投影光学系13の瞳面14上の光強度分布を適切に制御している。集光レンズ8はオプティカルインテグレータ6の射出面6b近傍の2次光源から射出し、絞り7を透過した複数の光束を集光し、ミラー9で反射させて被照斜面としてのマスキングブレード10面を均一にケーラー照明によって照明する。
【0032】
マスキングブレード10は複数の可動遮光板より構成され、任意の開口形状、例えば、投影光学系13がレンズタイプの場合はほぼ矩形の開口を、オフナータイプの反射ミラー系の場合は円弧状の開口を有している。マスキングブレード10の開口部を透過した光束を被照明面としてのマスク12の照明光として使用する。マスキングブレード10は開口幅を自動可変な絞りであり、後述するプレート15の(開口スリットの)転写領域を縦方向で変更可能にする。また、露光装置100は、プレート15の(1ショットのスキャン露光領域としての)転写領域の横方向を変更可能にする、上述のマスキングブレードと類似した構造のスキャンブレードを更に有してもよい。スキャンブレードも開口幅が自動可変できる絞りであり、マスク12面と光学的にほぼ共役な位置に設けられる。これにより露光装置1は、これら二つの可変ブレードを用いることによって露光を行うショットの寸法に合わせて転写領域の寸法を設定することができる。
【0033】
結像レンズ11は、マスキングブレード10の開口形状を被照斜面としてのレチクル12面に転写し、レチクル12面上の回路パターンをウエハーチャックに載置したプレート(本実施形態ではウエハ)15面上に縮小投影する。
【0034】
本実施形態の照明光学系では、発光部1aと第2焦点4とオプティカルインテグレータ6の入射面6aとマスキングブレード10とレチクル12とプレート15面とが共役関係である。また、絞り7と投影光学系18の瞳面14とが略共役関係となっている。
【0035】
なお、本実施形態では、本出願人が特開平5−47656号公報や特開平5−47640公報で提案しているように、レチクル面12面上のパターン形状に応じて開口形状の異なった絞り7を選択し、投影光学系18の瞳面14に形成される光強度分布を種々と変えている。
【0036】
以下、光量制御手段17の光学的作用について説明する。
【0037】
図2(A)は光量制御手段17の光量調整部としてNDフィルター(又は遮光部材)を用いた光学フィルターの光入射側から見た概略平面図であり、図2(B)は光量制御手段(光学フィルター)17とオプティカルインテグレータ6の位置関係を示す要部側面図である。
【0038】
図2(A)の光学フィルター17はオプティカルインテグレータ6を構成する複数の微小レンズ6c(同図では点線で示す69個の微小レンズ)に各々対応していて、複数の領域の透過光量が調整できる光量調整部を有している。図2(A)ではオプティカルインテグレータ6の微小レンズのうち13個の微小レンズに対応して、入射光量を減少させる円形状のNDフィルター31による13個の光量調整部21を示している。
【0039】
本実施形態のNDフィルターや遮光部材は一般にガラス基板面上にCr等の金属膜や誘導体多層膜を蒸着したり、または基板そのものに色素を混ぜたりして所望の透過率が得られるように構成している。なお、NDフィルターと同様の光学的性質を有するものであれば、他の光学部材を用いても良い。
【0040】
図2(B)において、6cはオプティカルインテグレータ6を構成する複数の微小レンズである。微小レンズ6cの光入射側のレンズ面6bの前側焦点は光入射側のレンズ面6aの位置にある。このため、光学系5で微小レンズ6cのレンズ面6aに集光した光束はレンズ面6bより平行光束として射出している。そしてレンズ面6bから射出した平行光束は絞り7aを介し、集光レンズ8で集光されミラー9で反射してマスキングブレード10上に集光している。このようにしてオプティカルインテグレータ6の光入射面6aとマスキングブレード10とを共役関係になるようにしている。
【0041】
本実施形態において、被照射面に形成される照度分布は、理想的には各微小レンズ6cの入射面での照度分布を重ね合わせたものであり、光軸対称な系であれば照度ムラは発生しない。しかしながら実際には、オプティカルインテグレータ6の正弦条件不満足量により周辺の照度が低くなり、レンズ系のフレアー、偏心、レンズのコーティング特性などにより、被照斜面10に照度ムラが生じてくる。図3(A)はプレート15面上での照度ムラの一例である。
【0042】
更に、図4(A)はこのとき計測された2次光源分布をオプティカルインテグレータ6の微小レンズ6c単位毎に当てはめたときの数値である。ここで計測された2次光源分布は図4(A)に示されたように、光軸に対して非対称な分布となっている。
【0043】
次に、本実施形態における基本的な照度ムラ補正および2次光源分布の非対称性を補正する方法として、光学フィルター17の構成について述べる。
【0044】
光学フィルター17は、オプティカルインテグレータを構成する微小レンズ群の内少なくとも1つの微小レンズにおいて、被照射面と共役な入射面6aの一部の光量を調整している。今、図4(A)において2次光源分布の計測結果は中心値を100として正規化してあり、それぞれの計測値はオプティカルインテグレータの各々の微小レンズに対応している。光量調整部にあたる計測値の和をn、透過率をT、オプティカルインテグレータを構成する全ての微小レンズの計測値の和をNとする(本例はN=4693)。このとき光量制御手段の光量調整部の形状部分は(1−T)・nの光が被照斜面に到達しなくなる。よって被照斜面では、そのNDフィルターの形状に略対応領域において、
n・(1−T)/N
という微小量の照度を低下させていることになる。
【0045】
ここで光学フィルター17はオプティカルインテグレータ6の入射面から所定間隔Dの位置に配置されており、Dが大きくなるに従ってNDフィルターによる照度低下部分とそうでない部分との境界が不鮮明になり、被照射面上(プレート15)での照度分布変化の断面は矩形ではなく、図3(C)の斜線部でしめしたようななだらかな形状で照度低下を起こす。このようにNDフィルターの透過率調整部の形状、大きさ、透過率、距離Dを適切に決めることによって、被照斜面全域に渡って照度分布を均一にすることができる。
【0046】
このとき、2次光源分布は以下のように変化する。即ち、各オプティカルインテグレータ6の微小レンズ入射面側の照度分布は各微小レンズにおいて均一だと仮定する。ここで、微小レンズの入射面全域の面積をSallとし、光量調整部の面積をSsubとすると、光量調整を行った微小レンズ6cを透過する光量は、(1−T)・(Ssub/Sall)だけ光強度が弱まることになる。これにより、2次光源分布図4(A)が光軸に対して点対称になるように光量調整部とNDフィルターの透過率を選択すればよい。
【0047】
以下のように光学フィルター17を構成することによって、被照斜面における照度ムラ補正と2次光源分布の非対称性の補正が同時に行うことができる。
【0048】
これを本例に当てはめれば、例えば図3(A)において軸上と周辺部での照度分布差が4.7%、オプティカルインテグレータ6を構成する微小レンズの数は図2(A)のごとく69個とする。このとき照度ムラおよび2次光源分布の非対称性を補正する為に光量調整部21に透過光量を80%に減少させる円形状のNDフィルター31を図3(B)(または図4(B))のように4個設けている。また、微小レンズを□10mm×10mm、このNDフィルター径をφ8.0mmとする。
【0049】
円形状部を透過した光束の強度は低下し、理想的には透過率調整部と共役な面上で277・(1−80/100)/4693≒4.7(%)の照度低下が起こるため、軸上と周辺部での照度分布差を補正することができる。
【0050】
このときNDフィルターにより2次光源分布は光量制御する各微小レンズにおいて、(1−80/100)・(4.0・4.0・π/10・10)=10(%)だけ分布を低下させる。これにより、2次光源分布は図4(C)のようになり、光軸に対してほぼ対称な2次光源分布が達成される。
【0051】
以上のように、照度ムラ及び2次光源の非対称性を各照明モードで最適に補正するNDフィルターを構成し、これを照明モード毎に切り替えることによって、各照明モードで照度ムラ及び2次光源の非対称性を補正することができる。NDフィルターの構成にあたっては、装置組立後、各照明モードで照度ムラ及び2次光源の非対称性を測定器(図不示)で測定し、その結果から最適なNDフィルターを装置に構成しても良いし、事前にシミュレーションや光学部品の透過率・反射率等の測定結果から、装置で発生する照度ムラや2次光源分布の非対称性を予測しておき、それを最適に補正するNDフィルターを複数構成し、照度ムラおよび有効光源を測定器(図不示)で測定した結果によって、最も適したNDフィルターを選択するようにしても良い。
【0052】
次に、NDフィルターの形状について説明する。NDフィルターの形状は、照度分布の補正形状に応じて様々な形状が考えられる。図5に、これらの例を図2(A)と同様に示す。図5(A)は、NDフィルターの中心に円形の光量調整部が形成されている。この形状は被照射面の中心部ホットスポットを修正するのに適している。図5(B)は、NDフィルター17に輪帯の光量調整部が形成されており、被照射面が輪帯形状に照度が高くなっている場合の補正に有効である。図5(C)は、微小レンズの大きさに合わせた四角形に穴のあいたような形状の光量調整部が形成されており、被照射面での周辺部の照度が高い場合に有効である。図5(D)は、正方形領域のうち対角線上の2つの隅に光量調整部が形成されており、非対称な照度ムラを補正する場合のフィルターの形状を示している。このように、照度ムラの形状に合わせて光量調整部の形状を最適化すれば被照射面上で均一な照度を得ることができる。
【0053】
また、照度分布の形状、量が異なる複数の照度不均一部分が被照射面に分布している場合は、各々の透過率調整部の形状が異なったり、透過率が異なったりすることがあり得る。図6に示すのは、図5(A)及び図5(D)の透過率調整部を組み合わせた光学フィルター17とそれにより補正される照度分布の2次元表示の一例である。
【0054】
本実施形態では、照明条件毎にNDフィルター17を交換機構によって切り替えているので照明モード毎に最適なNDフィルターを使用することによって各照明条件に対して照度ムラ及び2次光源分布の非対称性を最適に補正することができる。
【0055】
マスク12は、例えば、石英製で、その上には転写されるべき回路パターン(又は像)が形成され、図示しないマスクステージに支持及び駆動される。マスク12から発せられた回折光は投影光学系13を通りプレート15上に投影される。プレート15は、被露光体でありレジストが塗布されている。マスク12とプレート15とは光学的に共役の関係に配置される。
【0056】
露光装置100がステップアンドスキャン方式の露光装置(即ち、スキャナー)であれば、マスク12とプレート15を走査することによりマスク12のパターンをプレート15上に転写する。また、露光装置100が、ステップアンドリピート方式の露光装置(即ち、ステッパー)であれば、マスク12とプレート15とを静止させた状態で露光を行う。
【0057】
図示しないマスクステージは、マスク12を支持して図示しない移動機構に接続される。マスクステージ及び投影光学系13は、例えば、床等に載置されたベースフレームにダンパ等を介して支持されるステージ鏡筒定盤上に設けられる。マスクステージは、当業界周知のいかなる構成をも適用できる。図示しない移動機構はリニアモータなどで構成され、光軸と直交する方向にマスクステージを駆動することでマスク12を移動することができる。露光装置100は、マスク12とプレート15を図示しない制御装置によって同期した状態で走査する。
【0058】
投影光学系13は、マスク12に形成されたパターンを経た光束をプレート15上に結像する。投影光学系13は、複数のレンズ素子のみからなる光学系、複数のレンズ素子と少なくとも一枚の凹面鏡とを有する反射屈折光学系(カタディオプトリック光学系)、複数のレンズ素子と少なくとも一枚のキノフォームなどの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正が必要な場合には、互いに分散値(アッベ値)の異なるガラス材からなる複数のレンズ素子を使用したり、回折光学素子をレンズ素子と逆方向の分散が生じるように構成したりする。投影光学系13の瞳面14は有効光源形状を規定する。
【0059】
プレート15は、本実施形態ではウェハであるが、液晶基板その他の被処理体を広く含む。プレート15にはフォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークはベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。
【0060】
プレート15は図示しないウェハステージに支持される。ウェハステージは、当業界で周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。例えば、ウェハステージはリニアモータを利用して光軸と直交する方向にプレート15を移動する。マスク12とプレート15は、例えば、同期して走査され、マスクステージとウェハステージの位置は、例えば、レーザー干渉計などにより監視され、両者は一定の速度比率で駆動される。ウェハステージは、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられる。
【0061】
以下、露光装置1の露光動作について説明する。露光において、光源1から発せられた光は、楕円ミラー2及びコールドミラー3によって第2焦点4で結像して光学系5に入射する。予め、被照明面としてのマスク12面を照明するのに適した絞り7が絞り交換機構16によって選択され、当該絞り7に対応した光量制御手段17がホルダー18によって選択されている。
【0062】
光学系5を経た光は、光量制御手段17によって光量制御された後にオプティカルインテグレータ6に入射し、絞り7、集光レンズ8、ミラー9、マスキングブレード10、結像レンズ11を経てマスク12面を照明する。マスク12を通過した光束は投影光学系13の結像作用によって、プレート15上に所定倍率で縮小投影される。プレート15上の露光光束の角度分布(即ち、有効光源分布)はほぼ均一になる。
【0063】
本実施形態の露光装置100は、光量制御手段17及び対応する絞り7を使用してマスキングブレード10及びマスク12を照明する際に照度ムラが最小になり、2次光源分布を対称にするように予め光量制御手段17を設定している。絞り7を変更すればそれに応じて光量制御手段17も変更される。このため、本実施形態は、照明モードを変更した際に生じる照度ムラを最小にできると共に、2次光源分布及び有効光源分布を均一にし、レジストへのパターン転写を高精度に行って高品位なデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。
【0064】
次に、図7及び図8を参照して、上述の露光装置100を利用したデバイスの製造方法を説明する。図7は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)ではデバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)ではシリコンなどの材料を用いてウェハを製造する。ステップ4(ウェハプロセス)は前工程と呼ばれ、マスクとウェハを用いてリソグラフィ技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。
【0065】
図8は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)ではウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)ではウェハにイオンを打ち込む。ステップ15(レジスト処理)ではウェハに感光剤を塗布する。
【0066】
ステップ16(露光)では、露光装置100によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。
【0067】
これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施形態の製造方法によれば有効光源分布の均一化を図れるので従来よりも高品位のデバイスを製造することができる。このように、かかる露光装置100を使用するデバイス製造方法、並びに結果物としてのデバイスも本発明の一側面として機能するものである。
【0068】
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
【0069】
本実施形態によれば、オプティカルインテグレータ6を使用した投影露光装置100において照度均一性及び2次光源分布の対称に優れた照明が可能になり、更に照明モードを変更しても最適な照明条件を維持しえる。
【0070】
【発明の効果】
本発明によれば、照明条件(又は照明モード)を変更した際に生じる照度ムラを最小にすると共に2次光源分布を対象に補正してマスクパターンをウェハ面に高い解像力で投影することができる照明装置、当該照明装置を有する露光装置及びデバイス製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の露光装置の単純化された光路図である。
【図2】図1に示す光量制御手段とオプティカルインテグレータとの関係を示す概略平面図及び側面図である。
【図3】本実施形態による被照明面での照度分布の変化特性例を説明するための図である。
【図4】図1に示すオプティカルインテグレータの各微小レンズに対応した2次光源分布を示す図である。
【図5】NDフィルタの種々の例を示す図である。
【図6】図5に示すNDフィルタの組み合わせの一例とその補正形状を示す図である。
【図7】デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。
【図8】図7に示すステップ4のウェハプロセスの詳細なフローチャートである。
【図9】図1に示す絞りに適用可能な様々な例を示す平面図である。
【符号の説明】
1 水銀ランプ(光源)
2 楕円ミラー
3 コールドミラー
4 楕円ミラーの第2焦点
5 ズームレンズ
6 オプティカルインテグレータ
7 絞り
8 レンズ
9 ミラー
10 マスキングブレード
11 レンズ
12 マスク又はレチクル
13 投影光学系(投影レンズ)
14 投影レンズの瞳面
15 プレート
16 絞り交換機構
17 光量制御手段
18 光学フィルタ交換機構
21 光量調整部
31 NDフィルタ
100 露光装置
110 照明装置
Claims (8)
- 被照明面を均一に照明するための複数の微小レンズから成るオプティカルインテグレータと、
当該オプティカルインテグレータを構成する少なくとも一つの微小レンズに入射する光量を制御する光量制御手段を有し、該光量制御手段は前記被照明面を照明するための2次光源分布が光軸に対してほぼ線対称になるように、前記オプティカルインテグレータの微小レンズに入射する光量を微小レンズ毎独立に制御することを特徴とする照明装置。 - 前記光量制御手段は、NDフィルターを有する請求項1記載の照明装置。
- 前記光量制御手段は、遮光部を有する請求項1記載の照明装置。
- 前記光量制御手段は、透過率の異なる複数の光量調整部を有し、
前記照明装置は、前記複数の光量調整部を切り替える切り替え部を更に有する請求項1乃至3のうちいずれか一項記載の照明装置。 - 前記光量制御手段は、形状の異なる複数の光量調整部を有し、
前記照明装置は、前記複数の光量調整部を切り替える第1の切り替え部を更に有する請求項1乃至4のうちいずれか一項記載の照明装置。 - 前記被照明面を異なる形状の2次光源で照明する複数の2次光源形成部と、
前記複数の2次光源形成部を切り替える第2の切り替え部を更に有し、
前記第1の切り替え部は前記第2の切り替え部に同期して前記光量調整部を切り替え、各光量調整部は対応する2次光源形成部が形成する2次光源を使用した場合の前記被照明面における照度ムラを小さくするように調整されている請求項5記載の照明装置。 - 請求項1乃至6のうちいずれか一項記載の照明装置と、
レチクル又はマスクに形成されたパターンを被露光体に投影する投影光学系とを有する露光装置。 - 請求項7記載の露光装置を用いて被露光体を投影露光する工程と、
前記投影露光された被露光体に所定のプロセスを行う工程とを有するデバイス製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211824A JP2004055856A (ja) | 2002-07-19 | 2002-07-19 | 照明装置、それを用いた露光装置及びデバイス製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002211824A JP2004055856A (ja) | 2002-07-19 | 2002-07-19 | 照明装置、それを用いた露光装置及びデバイス製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004055856A true JP2004055856A (ja) | 2004-02-19 |
Family
ID=31934917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002211824A Withdrawn JP2004055856A (ja) | 2002-07-19 | 2002-07-19 | 照明装置、それを用いた露光装置及びデバイス製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004055856A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253432A (ja) * | 2005-03-11 | 2006-09-21 | Disco Abrasive Syst Ltd | ウエーハのレーザー加工方法および加工装置 |
JP2007027240A (ja) * | 2005-07-13 | 2007-02-01 | Nikon Corp | 照明光学装置、露光装置、および露光方法 |
JP2007311085A (ja) * | 2006-05-16 | 2007-11-29 | National Institute Of Advanced Industrial & Technology | 擬似太陽光照射装置 |
JP2008294442A (ja) * | 2007-05-23 | 2008-12-04 | Asml Holding Nv | フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ |
JP2009260337A (ja) * | 2008-04-14 | 2009-11-05 | Nikon Corp | 照明光学系、露光装置、およびデバイス製造方法 |
JP2009267390A (ja) * | 2008-04-29 | 2009-11-12 | Nikon Corp | オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法 |
WO2010073801A1 (ja) * | 2008-12-25 | 2010-07-01 | 株式会社 ニコン | 照明光学系、露光装置及びデバイスの製造方法 |
CN102253602A (zh) * | 2010-05-18 | 2011-11-23 | 上海微电子装备有限公司 | 一种光刻系统中实时控制照明剂量的装置 |
JP2014013246A (ja) * | 2005-02-01 | 2014-01-23 | Nisshinbo Holdings Inc | 太陽電池の出力特性の測定方法、並びに、そのソーラーシミュレータ、及び、ソーラーシミュレータに適用する照度設定用モジュールと光量調整部 |
WO2014038289A1 (ja) * | 2012-09-05 | 2014-03-13 | 山下電装株式会社 | ソーラシミュレータ |
KR20160120664A (ko) * | 2015-04-08 | 2016-10-18 | 캐논 가부시끼가이샤 | 조명 광학장치, 및 디바이스 제조 방법 |
WO2018003418A1 (ja) * | 2016-06-28 | 2018-01-04 | 株式会社ブイ・テクノロジー | 照度調整フィルタの製造方法、照度調整フィルタ、照明光学系、及び露光装置 |
-
2002
- 2002-07-19 JP JP2002211824A patent/JP2004055856A/ja not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014013246A (ja) * | 2005-02-01 | 2014-01-23 | Nisshinbo Holdings Inc | 太陽電池の出力特性の測定方法、並びに、そのソーラーシミュレータ、及び、ソーラーシミュレータに適用する照度設定用モジュールと光量調整部 |
JP4684687B2 (ja) * | 2005-03-11 | 2011-05-18 | 株式会社ディスコ | ウエーハのレーザー加工方法および加工装置 |
JP2006253432A (ja) * | 2005-03-11 | 2006-09-21 | Disco Abrasive Syst Ltd | ウエーハのレーザー加工方法および加工装置 |
JP2007027240A (ja) * | 2005-07-13 | 2007-02-01 | Nikon Corp | 照明光学装置、露光装置、および露光方法 |
JP2007311085A (ja) * | 2006-05-16 | 2007-11-29 | National Institute Of Advanced Industrial & Technology | 擬似太陽光照射装置 |
JP2008294442A (ja) * | 2007-05-23 | 2008-12-04 | Asml Holding Nv | フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ |
JP4719772B2 (ja) * | 2007-05-23 | 2011-07-06 | エーエスエムエル ホールディング エヌ.ブイ. | フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ |
JP2009260337A (ja) * | 2008-04-14 | 2009-11-05 | Nikon Corp | 照明光学系、露光装置、およびデバイス製造方法 |
JP2009267390A (ja) * | 2008-04-29 | 2009-11-12 | Nikon Corp | オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法 |
WO2010073801A1 (ja) * | 2008-12-25 | 2010-07-01 | 株式会社 ニコン | 照明光学系、露光装置及びデバイスの製造方法 |
CN102253602A (zh) * | 2010-05-18 | 2011-11-23 | 上海微电子装备有限公司 | 一种光刻系统中实时控制照明剂量的装置 |
WO2014038289A1 (ja) * | 2012-09-05 | 2014-03-13 | 山下電装株式会社 | ソーラシミュレータ |
JP2014053098A (ja) * | 2012-09-05 | 2014-03-20 | Yamashita Denso Kk | ソーラシミュレータ |
KR20160120664A (ko) * | 2015-04-08 | 2016-10-18 | 캐논 가부시끼가이샤 | 조명 광학장치, 및 디바이스 제조 방법 |
JP2016200649A (ja) * | 2015-04-08 | 2016-12-01 | キヤノン株式会社 | 照明光学装置、およびデバイス製造方法 |
KR102035163B1 (ko) | 2015-04-08 | 2019-10-22 | 캐논 가부시끼가이샤 | 조명 광학장치, 및 디바이스 제조 방법 |
WO2018003418A1 (ja) * | 2016-06-28 | 2018-01-04 | 株式会社ブイ・テクノロジー | 照度調整フィルタの製造方法、照度調整フィルタ、照明光学系、及び露光装置 |
JP2018004742A (ja) * | 2016-06-28 | 2018-01-11 | 株式会社ブイ・テクノロジー | 照度調整フィルタの製造方法、照度調整フィルタ、照明光学系、及び露光装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3826047B2 (ja) | 露光装置、露光方法、及びそれを用いたデバイス製造方法 | |
JP3259657B2 (ja) | 投影露光装置及びそれを用いたデバイスの製造方法 | |
JP3634782B2 (ja) | 照明装置、それを用いた露光装置及びデバイス製造方法 | |
JP3631094B2 (ja) | 投影露光装置及びデバイス製造方法 | |
JP2002359176A (ja) | 照明装置、照明制御方法、露光装置、デバイス製造方法及びデバイス | |
KR20100099121A (ko) | 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법 | |
JP3817365B2 (ja) | 投影露光装置及びそれを用いたデバイスの製造方法 | |
KR100485314B1 (ko) | 투영노광장치와 이것을 사용한 디바이스제조방법 | |
KR100823405B1 (ko) | 노광장치 및 디바이스 제조 방법 | |
JP3605047B2 (ja) | 照明装置、露光装置、デバイス製造方法及びデバイス | |
JP4474121B2 (ja) | 露光装置 | |
JP2004055856A (ja) | 照明装置、それを用いた露光装置及びデバイス製造方法 | |
US20040218164A1 (en) | Exposure apparatus | |
WO2000057459A1 (fr) | Méthode d'exposition et dispositif correspondant | |
JP2003232901A (ja) | 光学素子、照明装置及び露光装置 | |
JP4545854B2 (ja) | 投影露光装置 | |
JP3958122B2 (ja) | 照明装置、およびそれを用いた露光装置、デバイス製造方法 | |
JP4838430B2 (ja) | 露光装置及びデバイス製造方法 | |
JP2000277413A (ja) | 露光量制御方法、露光装置およびデバイス製造方法 | |
JPH0766121A (ja) | 投影露光装置及びそれを用いた半導体素子の製造方法 | |
JP3673731B2 (ja) | 露光装置及び方法 | |
JP2009267390A (ja) | オプティカルインテグレータ、照明光学系、露光装置、およびデバイス製造方法 | |
JPH0936026A (ja) | 投影露光装置及びそれを用いた半導体デバイスの製造方法 | |
JP2005310942A (ja) | 露光装置、露光方法、及びそれを用いたデバイス製造方法 | |
JP2002217083A (ja) | 照明装置及び露光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070416 |