JP2003311816A - Measuring method for deflection of screw of screw type extruder, and screw type extruder - Google Patents
Measuring method for deflection of screw of screw type extruder, and screw type extruderInfo
- Publication number
- JP2003311816A JP2003311816A JP2002119129A JP2002119129A JP2003311816A JP 2003311816 A JP2003311816 A JP 2003311816A JP 2002119129 A JP2002119129 A JP 2002119129A JP 2002119129 A JP2002119129 A JP 2002119129A JP 2003311816 A JP2003311816 A JP 2003311816A
- Authority
- JP
- Japan
- Prior art keywords
- screw
- barrel
- type extruder
- eddy current
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/728—Measuring data of the driving system, e.g. torque, speed, power, vibration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92076—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92361—Extrusion unit
- B29C2948/9238—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/9239—Screw or gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92571—Position, e.g. linear or angular
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92876—Feeding, melting, plasticising or pumping zones, e.g. the melt itself
- B29C2948/92885—Screw or gear
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、押出し機スクリュ
の引き出し及びバレルの取り外しを行うことなくスクリ
ュ翼先端面とバレル孔の内周面との摩耗量を推定するこ
とができるようにした、スクリュ式押出し機のスクリュ
振れ計測方法、及びスクリュ式押出し機に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to estimate the amount of wear between the tip surface of a screw blade and the inner peripheral surface of a barrel hole without pulling out an extruder screw and removing the barrel. TECHNICAL FIELD The present invention relates to a method for measuring a shake of a screw type extruder and a screw type extruder.
【0002】[0002]
【従来の技術】スクリュ式押出し機は、バレルと、この
バレルのバレル孔(チャンバ室)に回転可能に挿入され
た1本又は2本のスクリュとを備えており、スクリュを
回転させることでゴム、樹脂などの材料を搬送しながら
混練・混合して押出すようにしたものである。スクリュ
式押出し機では、そのスクリュの軸長Lが軸径Dに比べ
て長く、一般に、ゴム用冷間押出し機ではL/Dの値が
15程度、樹脂用混練押出し機ではL/Dの値が42程
度である。このため、スクリュ式押出し機では、スクリ
ュの撓みが機械的に無視できない大きな値となる。一
方、スクリュ式押出し機では、押出し効率を高めるため
に、スクリュ翼先端面(スクリュ山頂)とバレル孔の内
周面との隙間が狭く、一般に0.1〜1.0mm程度に
設定されている。2. Description of the Related Art A screw type extruder is equipped with a barrel and one or two screws rotatably inserted into a barrel hole (chamber chamber) of the barrel. The material such as resin is kneaded, mixed and extruded while being conveyed. In screw type extruders, the screw axial length L is longer than the shaft diameter D. Generally, the cold extruder for rubber has an L / D value of about 15 and the kneading extruder for resin has an L / D value. Is about 42. For this reason, in the screw type extruder, the deflection of the screw becomes a large value that cannot be mechanically ignored. On the other hand, in the screw type extruder, in order to improve the extrusion efficiency, the gap between the screw blade tip surface (the screw crest) and the inner peripheral surface of the barrel hole is narrow, and is generally set to about 0.1 to 1.0 mm. .
【0003】これらのことから、スクリュ式押出し機で
は、押出し運転中にスクリュ軸方向におけるスクリュ根
元部分以外の箇所において、スクリュ翼先端面とバレル
孔の内周面とが接触し、スクリュ翼先端面又はバレル孔
の内周面、あるいは、その両方が摩耗することが避けら
れない。樹脂用混練押出し機では、溶融樹脂を潤滑材と
してスクリュ翼先端面とバレル孔の内周面との接触を低
減しうるものの、樹脂ペレットやパウダーが溶融するま
での間に、やはり摩耗が発生することになる。また、押
出し材料中に配合されている硬質粉体、例えば工業カー
ボン、シリカ、炭酸カルシウムなどによっても、スクリ
ュ翼先端面やバレル孔の内周面の摩耗が発生する。そし
て、摩耗度合いが大きくなると、押出し量が低下し、ま
た、例えば混合分散不良によって押出し製品の品質が低
下したり、材料温度低下によって未溶融物残留が発生し
たりする。さらに摩耗が進行すると、バレルのジャケッ
ト孔から水漏れが発生することもある。From these facts, in the screw type extruder, the tip surface of the screw blade comes into contact with the inner peripheral surface of the barrel hole at a position other than the screw root portion in the screw axial direction during the extrusion operation, and the tip surface of the screw blade is Or, it is inevitable that the inner peripheral surface of the barrel hole or both of them are worn. In the kneading extruder for resin, although the contact between the screw blade tip surface and the inner peripheral surface of the barrel hole can be reduced by using the molten resin as a lubricant, abrasion still occurs before the resin pellets and powder are melted. It will be. Further, the hard powder mixed in the extruded material, such as industrial carbon, silica, calcium carbonate, etc., also causes abrasion of the tip surface of the screw blade and the inner peripheral surface of the barrel hole. When the degree of wear increases, the amount of extrusion decreases, and the quality of the extruded product deteriorates due to, for example, poor mixing and dispersion, or unmelted material remains due to a decrease in material temperature. If the wear further progresses, water leakage may occur from the jacket hole of the barrel.
【0004】従来、摩耗量を確かめる方法としては、ス
クリュをバレルからバレル外部に引き出し、そのスクリ
ュ翼外径の寸法を計測し、製作寸法との差からスクリュ
の摩耗量を確かめるようにしていた。また、バレルにつ
いては、バレルを取り外し、バレル孔の内径を計測し、
製作寸法との差からバレル孔の内周面の摩耗量を確かめ
るようにしていた。Conventionally, as a method of confirming the wear amount, the screw is pulled out from the barrel to the outside of the barrel, the outer diameter of the screw blade is measured, and the wear amount of the screw is confirmed from the difference from the manufacturing size. Also, for the barrel, remove the barrel, measure the inner diameter of the barrel hole,
The amount of wear on the inner peripheral surface of the barrel hole was confirmed from the difference with the manufacturing dimensions.
【0005】[0005]
【発明が解決しようとする課題】従来は、前述したよう
に、スクリュ翼先端面とバレル孔の内周面の摩耗量を確
かめるために、スクリュの引き出し及びバレルの取り外
しを行うことが必要であり、そのために多大の労力と時
間を要していた。Conventionally, as described above, it is necessary to pull out the screw and remove the barrel in order to confirm the amount of wear of the tip surface of the screw blade and the inner peripheral surface of the barrel hole. However, it took a lot of effort and time.
【0006】本発明は、以上のような事情に鑑みてなさ
れたものであって、押出し機スクリュの引き出し及びバ
レルの取り外しを行うことなくスクリュ翼先端面とバレ
ル孔の内周面との摩耗量を推定することができるように
した、スクリュ式押出し機のスクリュ振れ計測方法、及
びスクリュ式押出し機を提供することを目的とするもの
である。The present invention has been made in view of the above circumstances, and the amount of wear between the screw blade tip surface and the inner peripheral surface of the barrel hole without pulling out the extruder screw and removing the barrel. It is an object of the present invention to provide a screw runout measuring method for a screw type extruder and a screw type extruder capable of estimating the above.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、本発明は次のような技術的手段を採用している。In order to achieve the above object, the present invention employs the following technical means.
【0008】請求項1の発明は、スクリュ式押出し機の
バレルのバレル孔に回転可能に挿入されたスクリュの振
れを計測するに際し、前記バレルに設けられた渦電流式
変位センサを用いて、スクリュ式押出し機運転中におけ
るスクリュ翼先端面までの距離を計測することを特徴と
するスクリュ式押出し機のスクリュ振れ計測方法であ
る。According to a first aspect of the present invention, when measuring the runout of a screw rotatably inserted in a barrel hole of a barrel of a screw type extruder, an eddy current displacement sensor provided in the barrel is used to measure the runout of the screw. A screw runout measuring method for a screw type extruder, wherein the distance to the tip surface of the screw blade is measured during operation of the screw type extruder.
【0009】請求項2の発明は、前記請求項1記載のス
クリュ式押出し機のスクリュ振れ状態計測方法におい
て、前記スクリュに対して複数個の渦電流式変位センサ
を用いて、前記スクリュの位相の異なるスクリュ翼先端
面までの距離をそれぞれ計測することを特徴とするもの
である。According to a second aspect of the present invention, in the method for measuring the screw runout state of the screw type extruder according to the first aspect, a plurality of eddy current displacement sensors are used for the screw to detect the phase of the screw. The feature is that the distances to different screw blade tip surfaces are measured respectively.
【0010】請求項3の発明は、バレルと、前記バレル
のバレル孔に回転可能に挿入されたスクリュとを備えた
スクリュ式押出し機において、先端面が前記バレル孔の
内周面の一部を構成するように前記バレルに設けられた
センサ保持体と、前記センサ保持体によって保持され、
運転中における前記スクリュまでの距離を検出する渦電
流式変位センサと、渦電流式変位センサからの出力を処
理してスクリュ翼先端面までの距離を計測するセンサ出
力処理手段とを備えていることを特徴とするスクリュ式
押出し機である。According to a third aspect of the present invention, in a screw type extruder having a barrel and a screw rotatably inserted in the barrel hole of the barrel, the tip end surface of the screw extruder is a part of the inner peripheral surface of the barrel hole. A sensor holder provided on the barrel so as to be configured, and held by the sensor holder,
An eddy current displacement sensor that detects the distance to the screw during operation, and a sensor output processing unit that processes the output from the eddy current displacement sensor and measures the distance to the tip surface of the screw blade. Is a screw type extruder.
【0011】請求項4の発明は、前記請求項3記載のス
クリュ式押出し機において、前記センサ保持体の材質が
エンジニアリングプラスチック又はセラミックであるこ
とを特徴とするものである。According to a fourth aspect of the present invention, in the screw type extruder according to the third aspect, the material of the sensor holder is engineering plastic or ceramic.
【0012】請求項4の発明は、前記請求項3又は4記
載のスクリュ式押出し機において、前記渦電流式変位セ
ンサを略一定の温度に保持するセンサ温度調整手段を備
えていることを特徴とするものである。According to a fourth aspect of the invention, in the screw type extruder according to the third or fourth aspect, there is provided a sensor temperature adjusting means for holding the eddy current displacement sensor at a substantially constant temperature. To do.
【0013】本発明によるスクリュ式押出し機のスクリ
ュ振れ計測方法、及びスクリュ式押出し機によれば、バ
レルに設けられた渦電流式変位センサを用いて、スクリ
ュ式押出し機運転中におけるスクリュ翼先端面までの距
離を計測し、この距離のスクリュ式押出し機運転に伴う
経時的変化に基づいて、スクリュ翼先端面とバレル孔の
内周面との摩耗量を推定することができる。これによ
り、押出し機スクリュの引き出し及びバレルの取り外し
を行わなくてすみ、スクリュ式押出し機のメンテナンス
にかかる労力と時間を大幅に軽減でき、押出し機稼働率
の向上を図ることができる。なお、渦電流式変位センサ
は、導電体からなる検出対象との距離(検出対象の位置
・変位)を検出するセンサである。本発明では、検出対
象がスクリュであること、センサヘッドが小形であるこ
となどの点から、渦電流式変位センサを採用している。According to the screw runout measuring method of the screw type extruder and the screw type extruder according to the present invention, the tip surface of the screw blade during operation of the screw type extruder is used by using the eddy current displacement sensor provided in the barrel. It is possible to estimate the amount of wear between the tip surface of the screw blade and the inner peripheral surface of the barrel hole based on the change over time with the operation of the screw type extruder. As a result, it is not necessary to pull out the extruder screw and remove the barrel, and the labor and time required for maintenance of the screw type extruder can be greatly reduced, and the extruder operating rate can be improved. The eddy current displacement sensor is a sensor that detects a distance (position / displacement of the detection target) made of a conductor to the detection target. In the present invention, the eddy current displacement sensor is adopted because the detection target is a screw and the sensor head is small.
【0014】本発明によるスクリュ式押出し機では、セ
ンサ保持体先端面がバレル孔の内周面の一部を形成する
ようにバレルにセンサ保持体を設け、このセンサ保持体
に埋め込むことで渦電流式変位センサを保持するように
なされている。この場合、センサ保持体の材質として
は、渦電流式変位センサの距離検出性能に悪影響を与え
ないようにするために非金属であることがよく、硬度と
強度に優れるとともに安価で取り扱いが容易なエンジニ
アリングプラスチックが挙げられる。種々のエンジニア
リングプラスチックのうちから、押出し材料に合う耐熱
温度などの特性を持つものを選択すればよい。また、耐
熱温度や耐薬品性に優れるとともに、温度膨張が極めて
小さいという点でセラミックが挙げられる。セラミック
製の場合、押出し材料に含まれる無機配合剤とよく似た
組成からなるものとすることで、センサ保持体からの摩
耗粉が製品品質に及ぼす影響を極めて小さくしうるとい
う利点がある。In the screw type extruder according to the present invention, the sensor holding body is provided in the barrel so that the front end surface of the sensor holding body forms a part of the inner peripheral surface of the barrel hole, and the sensor holding body is embedded in the sensor holding body to thereby cause the eddy current. Holds the displacement sensor. In this case, the material of the sensor holder is preferably non-metal so as not to adversely affect the distance detection performance of the eddy current displacement sensor, and it has excellent hardness and strength and is inexpensive and easy to handle. Examples include engineering plastics. From various engineering plastics, one having characteristics such as heat resistant temperature suitable for the extruded material may be selected. In addition, ceramics are mentioned because they are excellent in heat resistance temperature and chemical resistance and have extremely small temperature expansion. In the case of ceramics, the composition having a composition very similar to the inorganic compounding agent contained in the extruded material has an advantage that the influence of abrasion powder from the sensor holder on the product quality can be made extremely small.
【0015】本発明によるスクリュ式押出し機におい
て、渦電流式変位センサを略一定の温度に保持するセン
サ温度調整手段を備えているものでは、渦電流式変位セ
ンサの温度ドリフトによる検出誤差を最小にすることが
でき、より正確な計測を行うことができる。In the screw type extruder according to the present invention, which is provided with the sensor temperature adjusting means for keeping the eddy current displacement sensor at a substantially constant temperature, the detection error due to the temperature drift of the eddy current displacement sensor is minimized. Therefore, more accurate measurement can be performed.
【0016】[0016]
【発明の実施の形態】以下、図面を参照して本発明の実
施形態について説明する。図1は本発明によるスクリュ
振れ計測方法を実施するためのスクリュ式押出し機の構
成を示す断面図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the configuration of a screw type extruder for carrying out the method for measuring the shake of a screw according to the present invention.
【0017】本実施形態のスクリュ式押出し機10は、
2軸の同方向回転のものであり、図1に示すように、バ
レル11と2本のスクリュ12,12’とを備えてい
る。バレル11はバレル本体11aとバレル蓋体11c
とからなり、これらの内部には2つのバレル孔11b,
11b’が径方向に連通状に、かつバレル軸方向に延び
るように並設され、これらのバレル孔11b,11b’
にスクリュ12,12’が回転可能にそれぞれ挿入され
ている。バレル本体11a及びバレル蓋体11cには、
バレル孔11b,11b’の内周面に沿って、温水ある
いは油などが流されてバレル11の温度調整を行うため
の多数の温度調整媒体流通用ジャケット孔11dが設け
られている。各スクリュ12,12’は、2条の翼をそ
れぞれ有するものである。The screw type extruder 10 of this embodiment is
As shown in FIG. 1, it has two barrels and two screws 12 and 12 '. The barrel 11 includes a barrel body 11a and a barrel lid 11c.
And two barrel holes 11b,
11b 'are arranged in parallel so as to communicate with each other in the radial direction and extend in the barrel axial direction, and these barrel holes 11b, 11b' are provided.
The screws 12 and 12 'are rotatably inserted into the respective screws. The barrel body 11a and the barrel lid 11c include
A large number of jacket holes 11d for temperature control medium circulation are provided along the inner peripheral surfaces of the barrel holes 11b and 11b 'to adjust the temperature of the barrel 11 by flowing hot water or oil. Each screw 12, 12 'has two wings.
【0018】バレル蓋体11cには図1における上下方
向においてバレル11外部から一方のバレル孔11bに
通じる孔が設けられており、この孔に、先端面がバレル
孔11bの内周面の一部を構成するようにエンジニアリ
ングプラスチック製のセンサ保持体13が嵌め差し込ま
れ固着されている。このセンサ保持体13に、円柱状を
なし、スクリュ12との距離を検出する渦電流式変位セ
ンサ(渦電流式変位センサヘッド)14が埋め込まれて
固着されている。渦電流式変位センサ14は、センサ先
端部をセンサ保持体13先端面(バレル孔11bの内周
面)に近接させ、信号ケーブルが接続されたセンサ基端
部をセンサ保持体13から突出させた状態でセンサ保持
体13に埋め込まれている。The barrel lid 11c is provided with a hole which communicates from the outside of the barrel 11 to one barrel hole 11b in the vertical direction in FIG. 1, and the front end of this hole is part of the inner peripheral surface of the barrel hole 11b. The sensor holder 13 made of engineering plastic is fitted and fixed so as to form An eddy current type displacement sensor (eddy current type displacement sensor head) 14 for detecting the distance to the screw 12 is embedded and fixed to the sensor holder 13. In the eddy current displacement sensor 14, the sensor tip portion is brought close to the tip surface of the sensor holding body 13 (the inner peripheral surface of the barrel hole 11b), and the sensor base end portion to which the signal cable is connected is projected from the sensor holding body 13. It is embedded in the sensor holder 13 in this state.
【0019】一般に、渦電流式変位センサは、その検出
可能距離は小さく、小形の渦電流式変位センサでは10
mm程度であることから、検出対象にできるだけ近づけ
ることがよい。しかし、渦電流式変位センサ14の先端
部によってバレル孔11bの内周面の一部を形成するこ
とは、該先端部にスクリュ12のスクリュ翼先端面12
aが接触することも考えられるため、強度的にも不適切
である。このため、渦電流式変位センサ14の先端部
は、センサ保持体13先端面(バレル孔11bの内周
面)に近接させて位置させている。本実施形態では、渦
電流式変位センサ14の先端部とセンサ保持体13先端
面(バレル孔11bの内周面)との間隔距離Laは、
1.7mmに設定されている。In general, an eddy current displacement sensor has a short detectable distance, and a small eddy current displacement sensor has a detection distance of 10 mm.
Since it is about mm, it is preferable to bring it as close as possible to the detection target. However, forming a part of the inner peripheral surface of the barrel hole 11b by the tip portion of the eddy current displacement sensor 14 means that the screw blade tip surface 12 of the screw 12 is formed at the tip portion.
Since a may contact with a, it is inappropriate in terms of strength. Therefore, the tip portion of the eddy current displacement sensor 14 is positioned close to the tip surface of the sensor holder 13 (the inner peripheral surface of the barrel hole 11b). In the present embodiment, the distance La between the tip of the eddy current displacement sensor 14 and the tip of the sensor holder 13 (the inner peripheral surface of the barrel hole 11b) is
It is set to 1.7 mm.
【0020】また、センサ保持体13には、渦電流式変
位センサ14を略一定の温度に保持するための温度調整
媒体を流す温度調整媒体流通路13aが設けられてい
る。本実施形態では、図示しない温度調整水循環装置か
ら温度約50℃に温度調整された温水が温度調整媒体流
通路13aに流され、しかる後、温度調整水循環装置へ
戻されるようになっている。センサ保持体13の温度調
整媒体流通路13a、及び温度調整水循環装置(図示せ
ず)は、渦電流式変位センサ14を略一定の温度に保持
するセンサ温度調整手段を構成している。Further, the sensor holder 13 is provided with a temperature adjusting medium flow passage 13a for flowing a temperature adjusting medium for keeping the eddy current displacement sensor 14 at a substantially constant temperature. In the present embodiment, hot water whose temperature is adjusted to about 50 ° C. is caused to flow from the temperature adjusting water circulating device (not shown) to the temperature adjusting medium flow passage 13a, and then returned to the temperature adjusting water circulating device. The temperature adjusting medium flow passage 13a of the sensor holder 13 and the temperature adjusting water circulating device (not shown) constitute a sensor temperature adjusting means for holding the eddy current displacement sensor 14 at a substantially constant temperature.
【0021】渦電流式変位センサ14の出力は、A/D
変換器などを介して、プログラムされたパーソナルコン
ピュータ15に取り込まれるようになっている。パーソ
ナルコンピュータ15は、渦電流式変位センサ14から
の出力を処理して渦電流式変位センサ14とスクリュ1
2のスクリュ翼先端面12aとの距離を計測し、この距
離のスクリュ式押出し機運転に伴う経時的変化を表示す
るセンサ出力処理手段を構成している。The output of the eddy current displacement sensor 14 is the A / D
It is designed to be loaded into the programmed personal computer 15 via a converter or the like. The personal computer 15 processes the output from the eddy current type displacement sensor 14 and processes the output from the eddy current type displacement sensor 14 and the screw 1.
The sensor output processing means is configured to measure the distance from the screw blade tip surface 12a of No. 2 and display the change with time of the operation of the screw type extruder.
【0022】このように本実施形態のスクリュ式押出し
機10は構成されている。図2はスクリュ式押出し機運
転中における渦電流式変位センサの出力の一例を示す図
である。Thus, the screw type extruder 10 of this embodiment is constructed. FIG. 2 is a diagram showing an example of the output of the eddy current displacement sensor during operation of the screw type extruder.
【0023】図2のグラフは、スクリュ式押出し機運転
中における渦電流式変位センサ14の出力を500Hz
(2ms)のサンプリングピッチにてサンプリングして
得たものである。なお、周知のように、渦電流式変位セ
ンサ14の出力は、検出対象との距離が大きくなるに従
って大きくなるものである。図2に示すように、時間
1.96秒の間に20回の出力電圧極小点、つまり、渦
電流式変位センサ14によってスクリュ12のスクリュ
翼先端面12aとの距離が検出されたことが観察され
る。スクリュ12が前述のように2条の翼を有するもの
であることから、渦電流式変位センサ14に対して2回
スクリュ翼先端面12aが通過することで、スクリュ1
2が1回転したことになる。1.96秒間に20回の出
力電圧極小点が存在することは、スクリュ12が回転速
度312回/minに相当し、設定されたスクリュ回転
速度に一致した。これにより、渦電流式変位センサ14
による検出が確実になされていることが確認できた。The graph of FIG. 2 shows the output of the eddy current displacement sensor 14 at 500 Hz during operation of the screw type extruder.
It is obtained by sampling at a sampling pitch of (2 ms). As is well known, the output of the eddy current displacement sensor 14 increases as the distance to the detection target increases. As shown in FIG. 2, it was observed that the output voltage minimum point was detected 20 times during the time of 1.96 seconds, that is, the distance between the screw 12 and the tip surface 12a of the screw blade 12 was detected by the eddy current displacement sensor 14. To be done. Since the screw 12 has the two blades as described above, the screw blade tip surface 12a passes twice with respect to the eddy current displacement sensor 14, so that the screw 1
It means that 2 has rotated once. The presence of the output voltage minimum point 20 times within 1.96 seconds corresponds to a rotation speed of the screw 12 of 312 times / min, which corresponds to the set screw rotation speed. As a result, the eddy current displacement sensor 14
It was confirmed that the detection by the method was performed reliably.
【0024】ところで、図2からもわかるように、スク
リュ翼先端面12aまでの距離以外についてみると、例
えば、スクリュ胴部までの距離は、その距離が多少変化
しても出力電圧が全く変化しない検出範囲になっている
ため、検出精度が悪く正確な距離検出ができない。ま
た、スクリュ翼面については、スクリュ胴部に比べて検
出精度が改善されるものの、スクリュ翼の位相と渦電流
式変位センサ14出力との正確な対応付けが困難であ
る。これに対して、スクリュ12のスクリュ翼先端面1
2aまでの距離については、最も精度良く検出でき、ま
た、スクリュ翼先端が球面状をなしているため位相を考
慮する必要がなく、検出対象位置として優れている。As can be seen from FIG. 2, except for the distance to the tip surface 12a of the screw blade, for example, the distance to the screw body does not change at all even if the distance changes a little. Since it is within the detection range, the detection accuracy is poor and accurate distance detection cannot be performed. Further, with respect to the screw blade surface, although the detection accuracy is improved as compared with the screw body portion, it is difficult to accurately associate the phase of the screw blade with the output of the eddy current displacement sensor 14. On the other hand, the screw blade tip surface 1 of the screw 12
The distance up to 2a can be detected most accurately, and since the tip of the screw blade has a spherical shape, it is not necessary to consider the phase, which is an excellent detection target position.
【0025】図3は、スクリュ式押出し機運転中の所定
時間における渦電流式変位センサとスクリュ翼先端面と
の距離と、その距離が計測された回数との関係を示すグ
ラフである。渦電流式変位センサとスクリュ翼先端面と
の距離は、0.05mm刻みで表示してある。FIG. 3 is a graph showing the relationship between the distance between the eddy current displacement sensor and the tip surface of the screw blade at a predetermined time during the operation of the screw extruder, and the number of times the distance is measured. The distance between the eddy current displacement sensor and the tip surface of the screw blade is shown in increments of 0.05 mm.
【0026】図3のグラフは、次のようにして得たもの
である。スクリュ式押出し機運転中の所定時間(この例
では90秒間)における渦電流式変位センサ14の出力
を、A/D変換器により500Hz(2ms)のサンプ
リングピッチにてサンプリングしてパーソナルコンピュ
ータ15に取り込む。次に、パーソナルコンピュータ1
5は、得られた多数個の距離検出データのうちから、図
2に示す各出力電圧極小点に対応するもの、すなわち、
90秒間における渦電流式変位センサ14とスクリュ翼
先端面12aとの距離Liを求める。この場合、本実施
形態では前記距離Liの計測分解能は0.05mmとし
ている。そして、得られた距離Liとその距離Liが計
測された回数との関係を、記憶部に格納するとともに、
パーソナルコンピュータ15のCRTディスプレイに表
示できるようになっている。なお、前記距離Liの求め
方については、例えば、距離検出データにおいて前記距
離Liが存在する範囲がスクリュ12の回転速度から特
定できるので、この範囲における最小値を求めることで
前記距離Liを容易に求めることができる。The graph of FIG. 3 is obtained as follows. The output of the eddy current displacement sensor 14 during a predetermined time (90 seconds in this example) during operation of the screw type extruder is sampled by the A / D converter at a sampling pitch of 500 Hz (2 ms) and is taken into the personal computer 15. . Next, personal computer 1
Reference numeral 5 represents one of the obtained distance detection data corresponding to each output voltage minimum point shown in FIG.
A distance Li between the eddy current displacement sensor 14 and the screw blade tip surface 12a in 90 seconds is obtained. In this case, in this embodiment, the measurement resolution of the distance Li is 0.05 mm. Then, the relationship between the obtained distance Li and the number of times the distance Li is measured is stored in the storage unit, and
It can be displayed on the CRT display of the personal computer 15. Regarding the method of obtaining the distance Li, for example, the range in which the distance Li exists in the distance detection data can be specified from the rotation speed of the screw 12, and thus the distance Li can be easily obtained by obtaining the minimum value in this range. You can ask.
【0027】このようにして、図3に示すように、スク
リュ式押出し機運転中の所定時間における渦電流式変位
センサ14とスクリュ翼先端面12aとの距離Liを計
測することができ、計測されたこれらの距離Liから、
その最接近距離Lminと最離反距離Lmaxとを求め
ることができる。図3においては、渦電流式変位センサ
14とスクリュ翼先端面12aとの最接近距離Lmin
は1.95mmであり、最離反距離Lmaxは2.6m
mである。In this way, as shown in FIG. 3, the distance Li between the eddy current displacement sensor 14 and the screw blade tip surface 12a during a predetermined time during the operation of the screw extruder can be measured and measured. From these distances Li,
The closest distance Lmin and the farthest reaction distance Lmax can be obtained. In FIG. 3, the closest distance Lmin between the eddy current displacement sensor 14 and the screw blade tip surface 12a is Lmin.
Is 1.95 mm and the maximum separation distance Lmax is 2.6 m.
m.
【0028】したがって、所定の時間間隔をおいて、渦
電流式変位センサ14とスクリュ12のスクリュ翼先端
面12aとの距離の計測を実施するとともに、パーソナ
ルコンピュータ15のCRTディスプレイに図3に示す
ような計測結果を時系列的に表示することにより、渦電
流式変位センサ14とスクリュ12のスクリュ翼先端面
12aとの最接近距離Lmin及び最離反距離Lmax
について、その経時的変化を知ることができる。そし
て、前記最接近距離Lminと前記最離反距離Lmax
との経時的変化から、スクリュ12のスクリュ翼先端面
12aとバレル孔11bの内周面の摩耗量を推定するこ
とができる。Therefore, the distance between the eddy current displacement sensor 14 and the screw blade tip surface 12a of the screw 12 is measured at a predetermined time interval, and the CRT display of the personal computer 15 displays the distance as shown in FIG. By displaying the various measurement results in time series, the closest distance Lmin and the farthest separation distance Lmax between the eddy current displacement sensor 14 and the screw blade tip surface 12a of the screw 12 are shown.
For, it is possible to know the change over time. Then, the closest distance Lmin and the farthest reaction distance Lmax.
The wear amount of the screw blade tip surface 12a of the screw 12 and the inner peripheral surface of the barrel hole 11b can be estimated from the change with time.
【0029】すなわち、経時的に、渦電流式変位センサ
14とスクリュ12のスクリュ翼先端面12aとの最接
近距離Lminが変化せず、一方、渦電流式変位センサ
14とスクリュ翼先端面12aとの最離反距離Lmax
が大きくなっている場合、例えば、はじめにAmmであ
った最接近距離Lminがそのままで変化せず、はじめ
にA+2mmであった最離反距離Lmaxが大きくなる
方向に変化した場合、スクリュ翼先端面12aの摩耗が
進行しており、最離反距離Lmaxの経時的変化量をス
クリュ翼先端面12aの摩耗量として推定することがで
きる。スクリュ翼先端面12aの摩耗の進行により、ス
クリュ翼先端面12aとバレル孔11bの内周面との隙
間が大きくなった分だけ、スクリュ12の遊び量が増加
したと推定される。That is, the closest distance Lmin between the eddy current displacement sensor 14 and the screw blade tip surface 12a of the screw 12 does not change over time, while the eddy current displacement sensor 14 and the screw blade tip surface 12a are not changed. Maximum separation distance Lmax
Is large, for example, when the closest distance Lmin that was initially Amm does not change as it is, but when the closest separation distance Lmax that was initially A + 2 mm changes in the direction of increasing, the wear of the screw blade tip surface 12a is increased. Is progressing, and it is possible to estimate the amount of change in the maximum separation distance Lmax with time as the amount of wear of the screw blade tip surface 12a. It is estimated that the amount of play of the screw 12 increased as the clearance between the screw blade tip surface 12a and the inner peripheral surface of the barrel hole 11b increased due to the progress of wear of the screw blade tip surface 12a.
【0030】また、経時的に、渦電流式変位センサ14
とスクリュ翼先端面12aとの最接近距離Lminが小
さくなり、一方、渦電流式変位センサ14とスクリュ翼
先端面12aとの最離反距離Lmaxがそれと同程度大
きくなる場合、例えば、はじめにAmmであった最接近
距離Lminが小さくなる方向に変化する一方、はじめ
にA+2mmであった最離反距離Lmaxがそれと同程
度に大きくなる方向に変化した場合、バレル孔11bの
内周面の摩耗が進行しており、最接近距離Lminの経
時的変化量をバレル孔11bの内周面の摩耗量として推
定することができる。バレル孔11bの内周面の摩耗の
進行により、スクリュ翼先端面12aとバレル孔11b
の内周面との隙間が大きくなり、スクリュ12の移動量
が増加したと推定される。In addition, over time, the eddy current displacement sensor 14
When the minimum distance Lmin between the screw blade tip surface 12a and the screw blade tip surface 12a becomes smaller, while the maximum separation distance Lmax between the eddy current displacement sensor 14 and the screw blade tip surface 12a becomes as large as that, for example, first, Amm. When the closest distance Lmin changes in the direction of decreasing, while the distance Amax of A + 2 mm in the first direction changes to increase in the same direction, the inner peripheral surface of the barrel hole 11b is abraded. The amount of change in the closest distance Lmin with time can be estimated as the amount of wear of the inner peripheral surface of the barrel hole 11b. As the wear of the inner peripheral surface of the barrel hole 11b progresses, the tip surface 12a of the screw blade and the barrel hole 11b
It is estimated that the gap between the inner peripheral surface of the screw 12 and the inner peripheral surface of the screw became large and the moving amount of the screw 12 increased.
【0031】また、経時的に、渦電流式変位センサ14
とスクリュ翼先端面12aとの最接近距離Lminが大
きくなり、一方、渦電流式変位センサ14とスクリュ翼
先端面12aとの最離反距離Lmaxが大きくなる場
合、スクリュ翼先端面12aとバレル孔11bの内周面
との摩耗が進行していると推定されている。この場合、
最接近距離Lminの経時的変化量をバレル孔11bの
内周面の摩耗量として推定することができる。また、最
接近距離Lminの経時的変化量と最離反距離Lmax
の経時的変化量との差をスクリュ翼先端面12aの摩耗
量として推定することができる。なお、このスクリュ1
2とバレル孔11bの内周面に関する摩耗量の推定結果
から、もう一方のスクリュ12’とバレル孔11b’の
内周面についても摩耗度合いを推定することができる。In addition, over time, the eddy current displacement sensor 14
When the closest distance Lmin between the screw blade tip surface 12a and the screw blade tip surface 12a increases, while the maximum separation distance Lmax between the eddy current displacement sensor 14 and the screw blade tip surface 12a increases, the screw blade tip surface 12a and the barrel hole 11b. It is estimated that the wear of the inner peripheral surface of the is progressing. in this case,
The amount of change over time of the closest distance Lmin can be estimated as the amount of wear of the inner peripheral surface of the barrel hole 11b. In addition, the amount of change in the closest distance Lmin with time and the maximum distance Lmax
Can be estimated as the amount of wear of the screw blade tip surface 12a. In addition, this screw 1
2 and the wear amount of the inner peripheral surface of the barrel hole 11b, the degree of wear of the other screw 12 'and the inner peripheral surface of the barrel hole 11b' can be estimated.
【0032】図4は本発明によるスクリュ振れ計測方法
を実施するための別のスクリュ式押出し機の構成を示す
断面図である。ここで、前記図1に示すスクリュ式押出
し機との相違点は、スクリュ12に対して1個でなく2
個の渦電流式変位センサ14,24を備え、スクリュ1
2について位相が90°異なるスクリュ翼先端面までの
距離をそれぞれ計測するようにした点にある。この点以
外は、前記図1に示すスクリュ式押出し機と同一の構成
である。よって、前記図1に示すものと同一又は実質的
に同一な部分には同一の符号を付してある。FIG. 4 is a sectional view showing the structure of another screw type extruder for carrying out the screw runout measuring method according to the present invention. Here, the difference from the screw type extruder shown in FIG.
The eddy current type displacement sensors 14 and 24 are provided, and the screw 1
2 is that the distance to the tip surface of the screw blade having a phase difference of 90 ° is measured. Except for this point, it has the same configuration as the screw type extruder shown in FIG. Therefore, the same or substantially the same parts as those shown in FIG. 1 are designated by the same reference numerals.
【0033】すなわち、図4に示すように、バレル11
の一方の側壁には図4における左右方向においてバレル
11外部から一方のバレル孔11bに通じる孔が設けら
れており、この孔に、先端面がバレル孔11bの内周面
の一部を形成するようにエンジニアリングプラスチック
製のセンサ保持体23が嵌め差し込まれ固着されてい
る。このセンサ保持体23に、スクリュ12との距離を
検出する渦電流式変位センサ24が埋め込まれて固着さ
れている。That is, as shown in FIG. 4, the barrel 11
A hole is provided on one side wall of the barrel 11 from the outside of the barrel 11 to the one barrel hole 11b in the left-right direction in FIG. 4, and the tip surface forms a part of the inner peripheral surface of the barrel hole 11b. As described above, the sensor holder 23 made of engineering plastic is fitted and fixed. An eddy current displacement sensor 24 for detecting the distance from the screw 12 is embedded and fixed to the sensor holder 23.
【0034】このように、スクリュ12に対して上下方
向に設けられた前記図1における渦電流式変位センサ1
4に加え、左右方向に設けられた渦電流式変位センサ2
4が備えられている。そして、図5に示すように、スク
リュ12の2条の各スクリュそれぞれに関して、一方の
渦電流式変位センサ14に対してスクリュ翼先端面が到
達すると同時に、他方の渦電流式変位センサ24に対し
て前記スクリュ翼先端面とは位相が90°異なる部位の
スクリュ翼先端面が到達するように、2個の渦電流式変
位センサ14,24が配設されている。また、23aは
センサ保持体23の温度調整媒体流通路であり、図示し
ない温度調整水循環装置からの温度調整された温水が温
度調整媒体流通路23aに流され、しかる後、温度調整
水循環装置へ戻されるようになっている。As described above, the eddy current type displacement sensor 1 shown in FIG.
In addition to 4, the eddy current displacement sensor 2 provided in the left-right direction
4 is provided. Then, as shown in FIG. 5, with respect to each of the two threads of the screw 12, the tip surface of the screw blade reaches one of the eddy current displacement sensors 14 and at the same time as the other eddy current displacement sensor 24. The two eddy current displacement sensors 14 and 24 are arranged so that the tip end surface of the screw blade at a portion having a phase difference of 90 ° from the tip end surface of the screw blade reaches. Reference numeral 23a denotes a temperature adjustment medium flow passage of the sensor holder 23. Hot water whose temperature is adjusted from a temperature adjustment water circulation device (not shown) is caused to flow into the temperature adjustment medium flow passage 23a, and then returned to the temperature adjustment water circulation device. It is supposed to be.
【0035】このように構成される本実施形態のスクリ
ュ式押出し機20によれば、1つのスクリュ12に対し
て2個の渦電流式変位センサ14,24を備え、スクリ
ュ12について位相が90°異なるスクリュ翼先端面ま
での距離をそれぞれ計測するようにしたものであるか
ら、1個の渦電流式変位センサ14を用いるものに比べ
て、スクリュ12のスクリュ翼先端面とバレル孔11b
の内周面の摩耗量をより正確に推定することができる。According to the screw type extruder 20 of this embodiment having such a structure, one screw 12 is provided with two eddy current type displacement sensors 14 and 24, and the phase of the screw 12 is 90 °. Since the distances to the different tip surfaces of the screw blades are respectively measured, the tip surfaces of the screw blades of the screw 12 and the barrel holes 11b are compared with those using one eddy current displacement sensor 14.
It is possible to more accurately estimate the wear amount of the inner peripheral surface of the.
【0036】[0036]
【発明の効果】以上述べたように、本発明によるスクリ
ュ式押出し機のスクリュ振れ計測方法、及びスクリュ式
押出し機によれば、バレルに設けられた渦電流式変位セ
ンサを用いて、スクリュ式押出し機運転中におけるスク
リュ翼先端面までの距離を計測し、この距離のスクリュ
式押出し機運転に伴う経時的変化に基づいて、スクリュ
翼先端面とバレル孔の内周面との摩耗量を推定すること
ができる。これにより、押出し機スクリュの引き出し及
びバレルの取り外しを行わなくてすみ、スクリュ式押出
し機のメンテナンスにかかる労力と時間を大幅に軽減で
き、押出し機稼働率の向上を図ることができる。As described above, according to the screw runout measuring method of the screw type extruder and the screw type extruder according to the present invention, the screw type extruder is used by using the eddy current type displacement sensor provided in the barrel. The distance to the tip surface of the screw blade during machine operation is measured, and the wear amount between the tip surface of the screw blade and the inner peripheral surface of the barrel hole is estimated based on the change over time with the operation of this screw type extruder. be able to. As a result, it is not necessary to pull out the extruder screw and remove the barrel, and the labor and time required for maintenance of the screw type extruder can be greatly reduced, and the extruder operating rate can be improved.
【図1】本発明によるスクリュ振れ計測方法を実施する
ためのスクリュ式押出し機の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of a screw type extruder for carrying out a screw runout measuring method according to the present invention.
【図2】スクリュ式押出し機運転中における渦電流式変
位センサの出力の一例を示す図である。FIG. 2 is a diagram showing an example of an output of an eddy current displacement sensor during operation of a screw type extruder.
【図3】スクリュ式押出し機運転中の所定時間における
渦電流式変位センサとスクリュ翼先端面との距離と、そ
の距離が計測された回数との関係を示すグラフである。FIG. 3 is a graph showing a relationship between a distance between an eddy current displacement sensor and a screw blade tip surface during a predetermined time during operation of the screw extruder and the number of times the distance is measured.
【図4】本発明によるスクリュ振れ計測方法を実施する
ための別のスクリュ式押出し機の構成を示す断面図であ
る。FIG. 4 is a cross-sectional view showing the configuration of another screw type extruder for carrying out the screw runout measuring method according to the present invention.
【図5】図4における2個の渦電流式変位センサとスク
リュ翼との位置関係を説明するための図である。5 is a diagram for explaining the positional relationship between the two eddy current displacement sensors and the screw blade in FIG.
10,20…スクリュ式押出し機 11…バレル 11
a…バレル本体 11b,11b’…バレル孔 11c
…バレル蓋体 11d…温度調整媒体流通用ジャケット
孔 12,12’…スクリュ 12a…スクリュ翼先端
面 13,23…センサ保持体 13a,23a…温度
調整媒体流通路 14,24…渦電流式変位センサ 1
5…パーソナルコンピュータ10, 20 ... Screw type extruder 11 ... Barrel 11
a ... Barrel body 11b, 11b '... Barrel hole 11c
… Barrel lid 11d… Jacket holes for temperature control medium circulation 12, 12 ′… Screw 12a… Screw blade tip surface 13,23… Sensor support 13a, 23a… Temperature control medium flow passages 14,24… Eddy current displacement sensor 1
5 ... Personal computer
Claims (5)
に回転可能に挿入されたスクリュの振れを計測するに際
し、前記バレルに設けられた渦電流式変位センサを用い
て、スクリュ式押出し機運転中におけるスクリュ翼先端
面までの距離を計測することを特徴とするスクリュ式押
出し機のスクリュ振れ計測方法。1. An eddy current displacement sensor provided in a barrel of a screw type extruder is used to measure the deflection of a screw rotatably inserted in a barrel hole of the barrel of the screw type extruder. A method for measuring the runout of a screw type extruder in which the distance to the tip surface of the screw blade is measured.
変位センサを用いて、前記スクリュの位相の異なるスク
リュ翼先端面までの距離をそれぞれ計測することを特徴
とする請求項1記載のスクリュ式押出し機のスクリュ振
れ計測方法。2. The screw according to claim 1, wherein a plurality of eddy current displacement sensors are used for the screw to measure the distances to the tip surfaces of the screw blades having different phases of the screw. Method for measuring the runout of the screw of a rotary extruder.
可能に挿入されたスクリュとを備えたスクリュ式押出し
機において、先端面が前記バレル孔の内周面の一部を構
成するように前記バレルに設けられたセンサ保持体と、
前記センサ保持体によって保持され、運転中における前
記スクリュまでの距離を検出する渦電流式変位センサ
と、渦電流式変位センサからの出力を処理してスクリュ
翼先端面までの距離を計測するセンサ出力処理手段とを
備えていることを特徴とするスクリュ式押出し機。3. A screw type extruder having a barrel and a screw rotatably inserted into a barrel hole of the barrel, wherein the tip end surface constitutes a part of an inner peripheral surface of the barrel hole. A sensor holder provided on the barrel,
An eddy current displacement sensor that is held by the sensor holder and detects the distance to the screw during operation, and a sensor output that processes the output from the eddy current displacement sensor to measure the distance to the screw blade tip surface. A screw type extruder equipped with a processing means.
ングプラスチック又はセラミックであることを特徴とす
る請求項3記載のスクリュ式押出し機。4. The screw type extruder according to claim 3, wherein the sensor holder is made of engineering plastic or ceramic.
機において、前記渦電流式変位センサを略一定の温度に
保持するセンサ温度調整手段を備えていることを特徴と
するスクリュ式押出し機。5. The screw type extruder according to claim 3, further comprising a sensor temperature adjusting means for holding the eddy current type displacement sensor at a substantially constant temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119129A JP3819318B2 (en) | 2002-04-22 | 2002-04-22 | Screw runout measuring method of screw type extruder and screw type extruder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002119129A JP3819318B2 (en) | 2002-04-22 | 2002-04-22 | Screw runout measuring method of screw type extruder and screw type extruder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003311816A true JP2003311816A (en) | 2003-11-06 |
JP3819318B2 JP3819318B2 (en) | 2006-09-06 |
Family
ID=29535779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002119129A Expired - Fee Related JP3819318B2 (en) | 2002-04-22 | 2002-04-22 | Screw runout measuring method of screw type extruder and screw type extruder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819318B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009066998A (en) * | 2007-09-14 | 2009-04-02 | Daikoo:Kk | Twin-screw extrusion molding machine |
WO2010082526A1 (en) * | 2009-01-13 | 2010-07-22 | 株式会社神戸製鋼所 | Sealed kneading machine |
JP2010162692A (en) * | 2009-01-13 | 2010-07-29 | Kobe Steel Ltd | Sealed type kneader and method for monitoring the same |
JP2010162689A (en) * | 2009-01-13 | 2010-07-29 | Kobe Steel Ltd | Sealed type kneader and method for monitoring position of fixed-side seal component of sealed type kneader |
JP2015152520A (en) * | 2014-02-18 | 2015-08-24 | 株式会社神戸製鋼所 | Inspection device |
US20180224265A1 (en) * | 2017-02-08 | 2018-08-09 | Glycon Corp. | Apparatus and method for determining feedscrew and barrel wear |
KR20210058895A (en) * | 2018-09-13 | 2021-05-24 | 데이비스-스탠다드, 엘엘씨 | Diagnostic troubleshooting system for extrusion units |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018212078A1 (en) * | 2018-07-19 | 2020-01-23 | Continental Reifen Deutschland Gmbh | Device for mixing rubber mixtures with monitoring sensor for mixing tool webs, use of a sensor for monitoring a distance between a mixing tool web and the inner wall of a device housing, and method for monitoring a distance between a mixing tool web and the inner wall of a device housing |
-
2002
- 2002-04-22 JP JP2002119129A patent/JP3819318B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009066998A (en) * | 2007-09-14 | 2009-04-02 | Daikoo:Kk | Twin-screw extrusion molding machine |
WO2010082526A1 (en) * | 2009-01-13 | 2010-07-22 | 株式会社神戸製鋼所 | Sealed kneading machine |
JP2010162692A (en) * | 2009-01-13 | 2010-07-29 | Kobe Steel Ltd | Sealed type kneader and method for monitoring the same |
JP2010162689A (en) * | 2009-01-13 | 2010-07-29 | Kobe Steel Ltd | Sealed type kneader and method for monitoring position of fixed-side seal component of sealed type kneader |
US8911139B2 (en) | 2009-01-13 | 2014-12-16 | Kobe Steel, Ltd. | Internal batch mixer with alarm |
JP2015152520A (en) * | 2014-02-18 | 2015-08-24 | 株式会社神戸製鋼所 | Inspection device |
US20180224265A1 (en) * | 2017-02-08 | 2018-08-09 | Glycon Corp. | Apparatus and method for determining feedscrew and barrel wear |
US10247534B2 (en) * | 2017-02-08 | 2019-04-02 | Glycon Corp. | Apparatus and method for determining feedscrew and barrel wear |
KR20210058895A (en) * | 2018-09-13 | 2021-05-24 | 데이비스-스탠다드, 엘엘씨 | Diagnostic troubleshooting system for extrusion units |
JP2022500279A (en) * | 2018-09-13 | 2022-01-04 | デービス−スタンダード, エルエルシー | Extruder diagnostic troubleshooting system |
US11478972B2 (en) | 2018-09-13 | 2022-10-25 | Davis-Standard, Llc | Diagnostic troubleshooting system for an extrusion system |
KR102501832B1 (en) | 2018-09-13 | 2023-02-24 | 데이비스-스탠다드, 엘엘씨 | Diagnostic troubleshooting system for extrusion equipment |
JP7232904B2 (en) | 2018-09-13 | 2023-03-03 | デービス-スタンダード, エルエルシー | Extruder Diagnostic Troubleshooting System |
Also Published As
Publication number | Publication date |
---|---|
JP3819318B2 (en) | 2006-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003311816A (en) | Measuring method for deflection of screw of screw type extruder, and screw type extruder | |
US8904852B2 (en) | Method for establishing rheometric parameters of samples and rotational rheometer | |
US5078007A (en) | In-line polymer melt rheometer | |
SE502508C2 (en) | Control system and method of coating a body with a tread | |
KR102543321B1 (en) | High-temperature wear-resistance characteristic evaluation apparatus and method for cylindrical tube inner circumferential surface | |
JP2020044695A (en) | Method and system for extruding rubber material | |
KR860002045B1 (en) | Control of centrifugal pipe casting operation | |
US20230373151A1 (en) | Extruder and method for manufacturing strand | |
CN107817760A (en) | Lathe | |
JP6905224B2 (en) | Tool wear estimation method | |
EP0801733B1 (en) | Method for measuring viscosity and viscosimeter | |
JP3321759B2 (en) | Plastic molding machine | |
CN113906278B (en) | Temperature sensor for rubber mixer | |
Shen et al. | An experimental evaluation of melt temperature sensors for thermoplastic extrusion | |
JP5281510B2 (en) | Method for calculating friction characteristics between flowable material and flow path wall surface and measuring device used therefor | |
JPS6254654B2 (en) | ||
JP4298249B2 (en) | Method and apparatus for measuring molecular weight of polymer fluid, and method and apparatus for controlling molecular weight of polymer fluid | |
JP3725683B2 (en) | Extruder and temperature prediction method | |
JP3656121B2 (en) | Injection state determination method and determination apparatus for injection molding machine | |
US11390009B2 (en) | Method for the online monitoring of film quality and film machine comprising a device for the online monitoring of film quality | |
JP4606320B2 (en) | Method for detecting abnormality in roll gap of kneading apparatus and method for producing resin kneaded product including the same | |
JP2006103316A (en) | Forming workability evaluation system and its method | |
JPH04214320A (en) | Screw extruder | |
JP4215594B2 (en) | Continuous kneader | |
JP2002286405A (en) | Method of measuring film thickness of endless belt and film thickness measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |