Nothing Special   »   [go: up one dir, main page]

JP2003138315A - Induction heater for steel - Google Patents

Induction heater for steel

Info

Publication number
JP2003138315A
JP2003138315A JP2001331868A JP2001331868A JP2003138315A JP 2003138315 A JP2003138315 A JP 2003138315A JP 2001331868 A JP2001331868 A JP 2001331868A JP 2001331868 A JP2001331868 A JP 2001331868A JP 2003138315 A JP2003138315 A JP 2003138315A
Authority
JP
Japan
Prior art keywords
temperature
heating
steel material
heating device
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001331868A
Other languages
Japanese (ja)
Inventor
Mitsuru Nakamura
充 中村
Osamu Kada
修 加田
Masahiro Toda
正弘 戸田
Koichi Morishita
弘一 森下
Haruhiko Segawa
治彦 瀬川
Motohide Mori
元秀 森
Kohei Segawa
幸平 瀬川
Yasuo Hirose
泰雄 廣瀬
Shoji Iwaki
昭二 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001331868A priority Critical patent/JP2003138315A/en
Publication of JP2003138315A publication Critical patent/JP2003138315A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heater which can reliably raise the temperature of a center part of a steel member to the temperature immediately below the liquidus, maintain a surface layer part in a non-molten condition, and feed the steel member to the next hot working in a most favorable condition. SOLUTION: In this induction heater to pass the steel member through an induction heating coil in the heater and heat the steel member, a cooling device 4 to allow a cooling medium to flow into a space between the heater body and the steel member 3 is disposed on an end part of the heater body. Preferably, a steel member surface temperature detecting means is provided on the outlet side of the heater body, and a means to control the heating quantity, the cooling medium quantity and the moving speed in a single or combined manner based on the detected temperature is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材の高周波誘導
加熱装置、特に熱間鍛造、熱間圧延、熱間転造等の熱間
加工へ供給する鋼材をかなり高い温度にまで加熱するこ
とができる誘導加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency induction heating apparatus for steel materials, and more particularly to heating steel materials supplied to hot working such as hot forging, hot rolling and hot rolling to a considerably high temperature. The present invention relates to an induction heating device that can be used.

【0002】[0002]

【従来の技術】例えば、鋼材の誘導加熱装置は、熱間鍛
造、熱間圧延、熱間転造等の熱間加工へ加工素材を供給
する際に、加工素材を所定温度まで加熱する手段として
広く用いられている。特に、熱間鍛造は、比較的複雑な
形状の大物の各種機械部品を鍛造する手段として採用さ
れてきたが、最近では変形抵抗を低減しかつ成形性を高
める目的で、できるだけ高温に加工素材を加熱して鍛造
加工を施すことが要望されてきている。
2. Description of the Related Art For example, an induction heating apparatus for steel materials is used as a means for heating a processing material to a predetermined temperature when supplying the processing material to hot working such as hot forging, hot rolling and hot rolling. Widely used. In particular, hot forging has been adopted as a means for forging various large mechanical parts with relatively complicated shapes, but recently, for the purpose of reducing deformation resistance and increasing formability, processing materials should be made as hot as possible. There is a demand for heating and forging.

【0003】従来においても、無酸化雰囲気中にて加工
素材の液相線直下近傍の温度まで素材表層部を高周波加
熱してから熱間鍛造を実施すると、非常に加工変形特性
が良好でかつ加工エネルギーも削減可能なことが開示さ
れている(特許第2505999号、特許第25593
19号公報参照)。この高周波誘導加熱装置を用いた素
材加熱では、素材の中心まで液相線直下まで昇温しよう
とすると、誘導加熱は素材の表層部を加熱し表層から内
部への熱伝導となるため、表層を液相線以上の温度まで
加熱する必要があり、表層部の溶融が生じてしまう。素
材の溶融は、送りローラの搬送不良、素材の重量減を発
生させ、その結果、鍛造作業の中断や鍛造製品の欠肉発
生を招くという問題を引き起こす。
Conventionally, when hot forging is performed after heating the surface layer of the material to a temperature in the vicinity of the liquidus line of the material to be processed in a non-oxidizing atmosphere, the hot workability is very good and the workability is excellent. It is disclosed that energy can also be reduced (Japanese Patent No. 2505999 and Japanese Patent No. 255593).
19). In heating the material using this high-frequency induction heating device, when trying to raise the temperature to just below the liquidus line to the center of the material, induction heating heats the surface layer of the material and conducts heat conduction from the surface layer to the inside. It is necessary to heat to a temperature above the liquidus, and the surface layer portion will be melted. The melting of the material causes the conveyance failure of the feed roller and the weight reduction of the material, resulting in the interruption of the forging work and the occurrence of the wall thickness of the forged product.

【0004】加工素材の表層部と内部との温度差を小さ
くする方法としては、(1)低周波誘導加熱、(2)誘
導加熱均熱帯の延長、の2つの手段が考えられるが、前
者は加熱装置(電源、制御盤、加熱コイル本体)の改造
が必要でかつ加熱時間の延長を招き、後者は加熱装置延
長のためその前後設備の改造が必要とされ、いずれにし
ろ大幅な誘導加熱設備の改造と生産性の低下が問題とな
っている。なお、特許第2559319号公報において
も、鋼材表層部を加熱する際にアルゴン、窒素等の無酸
化性ガスにより冷却しながら加熱することが記載されて
いるが、具体的にどのように冷却するか或いはその設備
構成を明確に開示していないため、実現性が乏しい。
As a method for reducing the temperature difference between the surface layer and the inside of the processed material, two methods of (1) low frequency induction heating and (2) extension of induction heating soaking can be considered. The heating device (power supply, control panel, heating coil body) needs to be modified and the heating time is extended, and the latter requires modification of the equipment before and after the heating device extension. Remodeling and lowering productivity have become problems. In addition, Japanese Patent No. 2559319 also describes that when heating the steel material surface layer portion, the steel material surface layer portion is heated while being cooled by a non-oxidizing gas such as argon or nitrogen, but how is it specifically cooled? Or, because the equipment configuration is not disclosed explicitly, the feasibility is poor.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の点に
鑑みてなされたもので、鋼材の中心部を液相線直下の温
度まで確実に昇温すると共に、表層部は非溶融状態を維
持することができ、最も好適な状態で鋼材を次の熱間加
工へ供給することが可能な高周波誘導加熱装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and reliably raises the temperature of the central portion of the steel material to a temperature just below the liquidus line, and the surface layer portion is in a non-melted state. An object of the present invention is to provide a high-frequency induction heating device that can be maintained and can supply the steel material to the next hot working in the most suitable state.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明の要旨は次の通りである。 (1)加熱装置本体内の高周波加熱コイル中に鋼材を通
して加熱する誘導加熱装置において、前記加熱装置本体
の端部に、加熱装置本体と鋼材との間に冷却媒体を流入
させる冷却装置を配置したことを特徴とする高周波誘導
加熱装置。 (2)鋼材及び加熱装置本体は相対的に移動可能であ
り、冷却装置は冷却媒体を鋼材の高温側から低温側へ流
入させるように構成されていることを特徴とする(1)
記載の誘導加熱装置。 (3)冷却媒体が、空気、窒素ガス、アルゴンガスのい
ずれかもしくはその混合であることを特徴とする(1)
又は(2)記載の誘導加熱装置。 (4)加熱装置本体の出側に鋼材表面温度検出手段を設
けると共に、この検出温度に基づき加熱量、冷却媒体量
及び移動速度のいずれか単独もしくは組合せを制御する
手段を設けたことを特徴とする(1)〜(3)のいずれ
か1項記載の誘導加熱装置。
The gist of the present invention for solving the above problems is as follows. (1) In an induction heating device that heats steel material through a high-frequency heating coil in the heating device body, a cooling device that causes a cooling medium to flow between the heating device body and the steel material is arranged at an end of the heating device body. A high frequency induction heating device characterized by the above. (2) The steel material and the heating device main body are relatively movable, and the cooling device is configured to allow the cooling medium to flow from the high temperature side to the low temperature side of the steel material (1)
Induction heating device as described. (3) The cooling medium is any one of air, nitrogen gas, argon gas, or a mixture thereof (1)
Alternatively, the induction heating device according to (2). (4) A steel material surface temperature detecting means is provided on the outlet side of the heating device main body, and means for controlling any one of a heating amount, a cooling medium amount, and a moving speed based on the detected temperature is provided. The induction heating device according to any one of (1) to (3).

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、熱間鍛造素材加熱用の高
周波誘導加熱装置の一例を示すものであり、図では3個
の加熱装置本体をライン上に間隔をおいて配列したもの
を例としているが、誘導加熱装置自体は通常用いられる
ものと変わるところはない。すなわち、図示の如く内部
にそれぞれ高周波加熱コイル2a、2b、2cを有する
3個の第1〜第3加熱装置本体1a、1b、1cを定間
隔に直列に配置し、コイル中心を矢印方向に鋼材(鋼材
ビレット)3が互いに接触状態で連続して搬送・装入さ
れる。鋼材3の搬送は、加熱装置の入側、各加熱装置本
体間及び出側に配置した複数の搬送ローラ10や搬送ベ
ルトにより適宜行われる。第3加熱装置本体1cの出側
には、所定温度まで加熱されて抽出される鋼材3の表面
に向って冷却媒体(ここでは空気)を吹き付けてその表
層部を冷却するための冷却装置4が設置されている。冷
却装置4の後方には図示していないが、鋼材が熱間鍛造
機の加工工具(金型)へ送給するためのシュート部が設
置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a high-frequency induction heating device for heating a hot forging material. In the drawing, three heating device bodies are arranged on a line at intervals. The device itself is no different from the one normally used. That is, as shown in the drawing, three first to third heating device bodies 1a, 1b, 1c each having a high-frequency heating coil 2a, 2b, 2c inside are arranged in series at regular intervals, and the coil center is made of steel material in the arrow direction. (Steel billets) 3 are continuously conveyed and loaded in contact with each other. The conveyance of the steel material 3 is appropriately performed by a plurality of conveyance rollers 10 and a conveyance belt arranged on the inlet side of the heating device, between the heating device bodies, and on the outlet side. On the outlet side of the third heating device body 1c, there is provided a cooling device 4 for blowing a cooling medium (here, air) toward the surface of the steel material 3 that is heated to a predetermined temperature and extracted to cool the surface layer portion. is set up. Although not shown, a chute portion for feeding the steel material to the working tool (die) of the hot forging machine is installed behind the cooling device 4.

【0008】冷却装置4の具体例としては、図2に示す
如く、冷却本管5に接続する環状(完全な環状でなく1
部を切り欠いた)の冷却ヘッダー6と、該冷却ヘッダー
6の内径側に等間隔に配置した複数個(図では6個)の
冷却ノズル7とから構成される。冷却ノズル7は図2
(a)に示すように、鋼材3の入側において、冷却ヘッ
ダー6の中心に向ってかつ鋼材の表面に対し一定の角度
をもって設置され、環状冷却ヘッダー6の中心ラインに
そって送給されてくる鋼材3の送り方向と対向するよう
に冷却媒体(空気)を流して鋼材の表面を冷却する。冷
却装置4はできるだけ加熱装置本体の端部に近接して設
置することが望ましいが、加熱コイルにより加熱されな
いようにすることが必要である。また、冷却ヘッダー6
の径或いは形状は、鋼材の断面サイズや形状に応じて適
宜交換すればよく、また、冷却ノズルの個数も任意に変
更することができる。このため冷却装置全体をカセット
方式にして加熱装置側に取換自在にしておけば便利であ
る。
As a concrete example of the cooling device 4, as shown in FIG. 2, an annular shape (not a perfect annular shape, which is connected to the cooling main pipe 5) is used.
The cooling header 6 is formed by cutting away parts, and a plurality (six in the figure) of cooling nozzles 7 are arranged at equal intervals on the inner diameter side of the cooling header 6. The cooling nozzle 7 is shown in FIG.
As shown in (a), on the inlet side of the steel material 3, it is installed toward the center of the cooling header 6 and at a certain angle with respect to the surface of the steel material, and is fed along the center line of the annular cooling header 6. A cooling medium (air) is caused to flow so as to face the feeding direction of the coming steel material 3 to cool the surface of the steel material. The cooling device 4 is preferably installed as close to the end of the heating device body as possible, but it is necessary to prevent it from being heated by the heating coil. Also, the cooling header 6
The diameter or shape may be appropriately changed according to the cross-sectional size or shape of the steel material, and the number of cooling nozzles can be arbitrarily changed. Therefore, it is convenient if the entire cooling device is of a cassette type and can be replaced by the heating device side.

【0009】また、図1の誘導加熱装置においては、第
1加熱装置本体1aと第2加熱装置本体1bの間、第2
加熱装置本体1bと第3加熱装置本体1cの間、及び冷
却装置4の出側に、それぞれ鋼材3の表層温度を測定す
る温度計8a、8b、8cが設置されるとともに、誘導
加熱装置全体の出側にそのライン上で加熱を終えた鋼材
の中心部の温度を計測する温度計9が設置されている。
温度計としては非接触で温度が計測できる放射温度計な
どを用いる。なお、中間の表層温度を計測する温度計8
a、8bについては省略することもできる。
In addition, in the induction heating apparatus of FIG. 1, between the first heating apparatus main body 1a and the second heating apparatus main body 1b, the second heating apparatus main body 1a is provided.
Between the heating device main body 1b and the third heating device main body 1c, and on the outlet side of the cooling device 4, thermometers 8a, 8b, 8c for measuring the surface temperature of the steel material 3 are installed, respectively. A thermometer 9 for measuring the temperature of the center of the steel material that has been heated on the line is installed on the outlet side.
As the thermometer, a radiation thermometer that can measure temperature without contact is used. In addition, the thermometer 8 for measuring the intermediate surface temperature
It is also possible to omit a and 8b.

【0010】実際の操業に際しては、図1の装置におい
て、例えば断面円形の鋼材(ビレット)3は第1加熱装
置本体1aの入側から常温(室温)の状態で順次供給さ
れ、搬送ローラ10により後行材が先行材を押す形で搬
送されながら、通過する高周波加熱コイル2a、2b、
2cによって表層部が段階的に誘導加熱される。素材表
層部の加熱によって、表層から内部への熱伝導により素
材全断面が加熱されて行くことになる。このような加熱
過程において、鋼材の中心部まで液相線直下の温度に加
熱するには、表層部をそれ以上の温度に加熱する必要が
あり、特に、熱間鍛造では素材径が比較的大きく(通
常、φ40mm以上)なるため、熱伝導特性から表層部を
液相線を超える温度まで加熱しないと内部まで熱エネル
ギーが到達しないという問題があった。
In actual operation, in the apparatus shown in FIG. 1, for example, a steel material (billet) 3 having a circular cross section is sequentially supplied from the inlet side of the first heating device body 1a at room temperature (room temperature), and is conveyed by the conveying roller 10. The high-frequency heating coils 2a, 2b passing through the trailing material while being conveyed while pushing the preceding material,
The surface layer portion is induction-heated stepwise by 2c. By heating the surface layer of the material, the entire cross section of the material is heated by heat conduction from the surface layer to the inside. In such a heating process, in order to heat the center of the steel to a temperature just below the liquidus line, it is necessary to heat the surface layer to a temperature higher than that, and particularly in hot forging, the material diameter is relatively large. Since it is usually (φ 40 mm or more), there is a problem that the heat energy does not reach the inside unless the surface layer portion is heated to a temperature exceeding the liquidus due to the heat conduction characteristic.

【0011】そこで本発明においては、図1及び図2に
示す如く、加熱装置出側に設置した表層冷却装置4(冷
却ノズル7)により、加熱の出側から入側に向って(鋼
材の高温側から低温側へ向って)冷却媒体(空気)を噴
射して鋼材表層を冷却するようにした。ノズル7から鋼
材表層に吹き付けられた空気は、鋼材に衝突してから鋼
材表層にそって鋼材進行方向とは逆方向に冷却能を弱め
ながら流れてゆく。図3は本発明の加熱過程と表層部冷
却過程を概念的に示すもので、一旦加熱の中間過程では
素材表層温度と中心温度が大きく乖離するが、冷却装置
からの空気噴射による表層冷却が有効になるに従い、表
層温度と中心温度の差が縮小し始め、最終的には中心温
度が液相線直下の温度まで上昇する。このとき表層温度
は液相線温度を超えることはない。表層冷却をしない
と、表層温度は破線に示す温度となって中心温度が液相
線直下に到達する前に液相線温度を超えてしまう。
Therefore, in the present invention, as shown in FIG. 1 and FIG. 2, the surface layer cooling device 4 (cooling nozzle 7) installed on the outlet side of the heating device moves from the outlet side of heating toward the inlet side (high temperature of steel material). The cooling medium (air) was injected from the side toward the low temperature side to cool the steel surface layer. The air blown from the nozzle 7 to the surface layer of the steel material collides with the steel material and then flows along the surface layer of the steel material in a direction opposite to the traveling direction of the steel material while weakening the cooling capacity. FIG. 3 conceptually shows the heating process and the surface layer cooling process of the present invention. Although the material surface temperature and the central temperature largely deviate in the intermediate process of heating once, the surface cooling by air injection from the cooling device is effective. As, the difference between the surface temperature and the central temperature begins to decrease, and finally the central temperature rises to a temperature just below the liquidus line. At this time, the surface temperature does not exceed the liquidus temperature. If the surface layer is not cooled, the surface temperature becomes the temperature shown by the broken line, and the center temperature exceeds the liquidus temperature before reaching the position just below the liquidus line.

【0012】なお、上述した加熱・冷却過程では、常時
各温度計8a、8b、8c、9にて素材表層温度及び中
心温度を測定しながら、目標温度との対比において加熱
制御を行うことになる。鋼材の温度コントロールのフロ
ーを図4に示す。図4において、まず、鋼材はその成分
等により物性値が異なることから、当該鋼材の物性値に
より液相線温度T0 を予め確認しておく。次に、この液
相線温度と予測される操業変動に基づき素材表層部の上
限温度T1 と素材中心部必要最低温度T2 (大体T0
20℃程度)人為的に設定してから、使用する加熱装置
の能力などを考慮して当該鋼材の標準加熱温度パターン
の計算と設定を行う。即ち、ここでは、各加熱コイル間
の表層温度及び最終加熱コイル出側表層温度と、最終加
熱コイル出側における断面中心温度が設定され、これに
対応した加熱パターンが決定され、加熱装置及び冷却装
置の出力値を決める。図4における各温度の定義は次の
通りである。 T1 :第3加熱装置出側での表層設定温度 T2 :第3加熱装置出側での中心設定温度 T3 :第2加熱装置−第3加熱装置間での表層測定温度 T4 :第3加熱装置出側での表層測定温度 T5 :第3加熱装置出側での中心測定温度 T6 :第1加熱装置−第2加熱装置間での表層測定温度 断面中心温度の実測値T5 が中心部必要最低温度T2
び最終加熱コイル出側表層温度の実測値T4 が表層部の
上限温度T1 と対比され、それがT4 ≦T1 及びT5
2 の条件を満たせば、当該鋼材の加熱パターンは満足
すべきものとみなされ、そのまま次工程(例えば、鍛造
工程)へ送られる。
In the heating / cooling process described above, heating control is performed in comparison with the target temperature while constantly measuring the material surface temperature and the central temperature with the thermometers 8a, 8b, 8c and 9. . The flow of temperature control of steel is shown in FIG. In FIG. 4, since the physical properties of steel materials differ depending on their components, the liquidus temperature T 0 is confirmed in advance from the physical property values of the steel materials. Next, based on this liquidus temperature and the predicted operation fluctuation, the upper limit temperature T 1 of the material surface layer and the minimum required temperature T 2 of the material center portion (generally T 0
After setting artificially about 20 ° C), the standard heating temperature pattern of the steel material is calculated and set in consideration of the capability of the heating device used. That is, here, the surface temperature between each heating coil, the surface temperature of the final heating coil outlet side, and the cross-sectional center temperature on the final heating coil outlet side are set, the heating pattern corresponding to this is determined, and the heating device and the cooling device are set. Determine the output value of. The definition of each temperature in FIG. 4 is as follows. T 1: the third heating device out surface configuration in side temperature T 2: the third center setting of the heating device delivery temperature T 3: the second heating device - the surface layer measured temperature T 4 of between the third heating device: the 3 surface temperature measured on the outlet side of the heating device T 5 : center measured temperature on the outlet side of the third heating device T 6 : surface temperature measured between the first heating device and the second heating device actual measurement value T 5 of the cross-section center temperature Is the minimum required temperature T 2 at the center and the measured value T 4 of the surface temperature on the outlet side of the final heating coil is compared with the upper limit temperature T 1 at the surface, which is T 4 ≦ T 1 and T 5
If the condition of T 2 is satisfied, the heating pattern of the steel material is considered to be satisfactory, and the steel product is directly sent to the next step (for example, forging step).

【0013】しかし、実測値がT4 ≦T1 及びT5 ≧T
2 の条件を満たさない場合には、そのケース毎に温度制
御を変える必要がある。即ち、条件を満たさないケース
としては、T4 >T1 及びT5 ≧T2 、T4 >T1
及びT5 <T2 、T4 <T 1 及びT5 <T2 が考えら
れ、また、それぞれの不足温度分或いは過剰温度分が算
出される。これに対し本発明においては、素材加熱装置
の搬送速度、加熱コイル電圧量及び表層冷却風量のいず
れか単独、もしくはこれらの2以上の組合せからなる任
意の加熱パターンを選択することにより、加熱制御を行
い鋼材の温度をコントロールする。例えば、のケース
では、搬送速度を早めるか、誘導加熱コイルの電圧量を
下げるか、もしくはこれらの任意の組合せで、鋼材の表
層及び中心の温度を下げることにより対処し、のケー
スでは搬送速度を早めるか、誘導加熱コイルの電圧量を
下げるか、冷却装置の風量を上げるか、もしくはこれら
の任意の組合せで、鋼材の表層温度T4 を下げながら鋼
材中心温度T5 を上げることにより対処する。のケー
スでは、搬送速度を遅くするか、誘導加熱コイルの電圧
量を上げるか、冷却装置の風量を下げるか、もしくはこ
れらの任意の組合せで、鋼材の表層温度を上げることに
より対処する。本発明のこのような制御方式の採用は、
鋼材の加熱速度変化、鋼材寸法変化及び鋼材毎の液相線
温度変化に対して設備を変更することなく、対処し得る
ことを可能にしている。
However, the measured value is TFour≤T1And TFive≧ T
2If the conditions of are not met, the temperature control is
I need to change my mind. That is, the case where the conditions are not met
As TFour> T1And TFive≧ T2, TFour> T1
And TFive<T2, TFour<T 1And TFive<T2I thought
In addition, the respective insufficient temperature or excessive temperature is calculated.
Will be issued. On the other hand, in the present invention, the material heating device
Transport speed, heating coil voltage and surface cooling air volume
This may be a single item or a combination of two or more of these items.
Perform heating control by selecting the desired heating pattern.
Controls the temperature of steel. For example, the case
Then, increase the transfer speed or change the voltage of the induction heating coil.
Lower, or any combination of these, the steel surface
This is dealt with by lowering the temperature of the layer and the center,
In this case, increase the transfer speed or increase the voltage of the induction heating coil.
Lower it, increase the airflow of the cooling system, or these
Surface temperature T of the steel with any combination ofFourLowering steel
Material center temperature TFiveDeal by raising. The case
In this case, slow down the transfer speed or reduce the voltage of the induction heating coil.
Increase the air volume, reduce the air flow in the cooling device, or
With any combination of these, to raise the surface temperature of steel
Deal more. Adopting such a control method of the present invention,
Change in heating rate of steel, change in steel size, and liquidus line for each steel
Capable of coping with temperature changes without changing equipment
Makes it possible.

【0014】また、上記の制御フローでは中間の表層温
度実測値T3 、T6 は特に用いなかったが、場合によっ
てはこれらの実測値も制御対象にすれば、より細かい温
度制御を行うことも可能である。この場合、第1及び第
2加熱装置本体1a、1bの出側にも冷却装置をそれぞ
れ配置しておき、各加熱装置毎に鋼材表層を冷却するこ
とが好ましい。このようにすれば、鋼材表層をなだらか
に加熱することができ、断面サイズの大きな鋼材に対し
て有効である。
Further, although the intermediate surface temperature measurement values T 3 and T 6 are not particularly used in the above control flow, finer temperature control may be performed in some cases if these measured values are also controlled. It is possible. In this case, it is preferable that cooling devices are arranged on the outlet sides of the first and second heating device bodies 1a and 1b, respectively, and the steel material surface layer is cooled for each heating device. By doing so, the surface layer of the steel material can be gently heated, which is effective for steel materials having a large cross-sectional size.

【0015】なお、図示の例では3個の加熱装置本体を
直列に設置した例を示したが、本発明ではこれ限ること
なく単一、2個或いはそれ以上の配置であっても差し支
えない。後続する熱間加工の種類や鋼材の種別及びサイ
ズ(特に、断面サイズ)、さらには生産性を考慮して加
熱装置本体の数を選択すればよい。例えば、小断面のビ
レットを鋼材とする場合には、単一もしくは2個の加熱
装置本体で加熱することで十分目的を達成することが可
能である。
In the illustrated example, three heating device bodies are installed in series, but the present invention is not limited to this, and a single, two, or more arrangement may be used. The number of heating device bodies may be selected in consideration of the type of subsequent hot working, the type and size of steel material (particularly, the cross-sectional size), and the productivity. For example, when a billet having a small cross section is made of steel, the purpose can be sufficiently achieved by heating with a single or two heating device main bodies.

【0016】また、上記の説明では熱間鍛造に供する素
材加熱の例をして記述したが、本発明はこれに限らず、
圧延における高周波誘導加熱及び燃焼バーナー加熱によ
る液相線直下温度での棒鋼・線材の熱間圧延、転造にお
ける同じく高周波誘導加熱及び燃焼バーナー加熱による
液相線直下温度での歯車の熱間転造においても同様に、
表層から中心までの距離がある鋼材形状を加熱する場合
に、表層を溶融させることなく、鋼材中心まで液相線直
下温度まで加熱する設備に適用することができる。
Further, in the above description, an example of heating the material used for hot forging is described, but the present invention is not limited to this.
Hot rolling of steel bars and wire rods at temperatures just below the liquidus line by high frequency induction heating and combustion burner heating in rolling, and hot rolling of gears at temperatures just below the liquidus line by high frequency induction heating and combustion burner heating in rolling Similarly in
When heating a steel material shape having a distance from the surface layer to the center, it can be applied to equipment for heating to the temperature just below the liquidus line to the center of the steel material without melting the surface layer.

【0017】[0017]

【実施例】熱間鍛造用素材を加熱する場合を例として本
発明を適用した場合を以下に実施例として示す。 [実施条件] 熱間鍛造用素材:鋼種S48、径67.5φ×長さ19
7mm、液相線温度1280℃、目標素材中心部最低温度
(T2 )1260℃ 加熱装置:図1に示す3分割タイプの高周波誘導加熱、
仕様は表1に、また運転条件を表2に示す。
EXAMPLE A case where the present invention is applied will be described below as an example taking the case of heating a hot forging material as an example. [Implementation conditions] Hot forging material: Steel type S48, diameter 67.5φ x length 19
7 mm, liquidus temperature 1280 ° C., target material center minimum temperature (T 2 ) 1260 ° C. Heating device: 3 division type high frequency induction heating shown in FIG. 1,
The specifications are shown in Table 1, and the operating conditions are shown in Table 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[実施結果]上記の条件で鋼材を加熱した
ところ、鋼材の温度推移は図5に示す通りであった。な
お、図5では比較として全く素材表層の冷却を行わない
例を合わせて示す。図から分かるように、鋼材の表層を
エアスプレー冷却(風速では10m/s)すると、表層
は1275℃まで温度が抑制されると共に中心は125
0℃となるのに対し、冷却しない場合には中心は125
0℃となっても表層は1370℃となり、溶融が認めら
れた。従って、エアスプレー冷却すると鋼材表層部の溶
融を防止しながら均一冷却が可能であり、鋼材の表層と
中心の温度差は冷却をしない例が120℃であったの
が、本発明では25℃まで縮小している。なお、本発明
では表2に示すように、素材サイクルタイム(鍛造工程
での1個当りの材料を加工するに要する時間)が11.
6秒となっているが、従来の冷却しない場合のサイクル
タイムが15〜16秒程度であったので短縮されてお
り、結果的に鍛造工程の生産性の向上に寄与しているこ
とも確認された。
[Results of Implementation] When the steel material was heated under the above conditions, the temperature transition of the steel material was as shown in FIG. For comparison, FIG. 5 also shows an example in which the surface layer of the material is not cooled at all. As can be seen from the figure, when the surface layer of the steel material is cooled by air spray (wind speed is 10 m / s), the temperature of the surface layer is suppressed to 1275 ° C.
The temperature is 0 ° C, whereas the center is 125 without cooling.
Even at 0 ° C, the surface layer reached 1370 ° C, and melting was recognized. Therefore, when air spray cooling is used, uniform cooling is possible while preventing melting of the surface layer of the steel material, and the temperature difference between the surface layer and the center of the steel material is 120 ° C in the example in which cooling is not performed, but in the present invention, up to 25 ° C It is shrinking. In the present invention, as shown in Table 2, the material cycle time (the time required to process one material in the forging process) is 11.
Although it is 6 seconds, the cycle time without conventional cooling is about 15 to 16 seconds, which is shortened, and it is also confirmed that it contributes to the improvement of productivity in the forging process as a result. It was

【0021】[0021]

【発明の効果】以上説明した本発明に係る高周波誘導加
熱装置によれば、鋼材表層部を非溶融状態に維持しなが
ら鋼材の中心部を液相線直下の温度まで確実に昇温する
ことができ、最も好適な状態で鋼材を次の熱間加工へ供
給することが可能となり、次の熱間加工での操業性、歩
留り及び生産性の向上に寄与するところ大である。しか
も、設備面においても従前の加熱装置を特に大幅に改造
することなく冷却装置を配設することができる利点もあ
る。
According to the high-frequency induction heating apparatus of the present invention described above, it is possible to reliably raise the temperature of the central portion of the steel material to a temperature just below the liquidus line while maintaining the surface layer portion of the steel material in a non-molten state. This makes it possible to supply the steel material to the next hot working in the most suitable state, and contributes to the improvement of operability, yield and productivity in the next hot working. Moreover, in terms of equipment, there is also an advantage that the cooling device can be arranged without significantly modifying the conventional heating device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る誘導加熱装置の一実施例を示す全
体概略図。
FIG. 1 is an overall schematic view showing an embodiment of an induction heating device according to the present invention.

【図2】図1における冷却装置の具体例を示す図で、
(a)は一部断面側面図、(b)は正面図。
FIG. 2 is a diagram showing a specific example of the cooling device in FIG.
(A) is a partial cross-sectional side view and (b) is a front view.

【図3】本発明を適用して鋼材を加熱したときの素材温
度と加熱時間との関係を示す概略図。
FIG. 3 is a schematic diagram showing a relationship between a material temperature and a heating time when a steel material is heated by applying the present invention.

【図4】本発明装置を用いて鋼材の加熱とその制御を行
った場合の制御フロー図。
FIG. 4 is a control flow chart when heating and controlling a steel material using the apparatus of the present invention.

【図5】本発明の実施例における鋼材(S48)の加熱
開始から加熱終了までの温度と時間との関係をシミュレ
ートした図。
FIG. 5 is a diagram simulating the relationship between temperature and time from the start of heating to the end of heating of the steel material (S48) in the example of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1c 加熱装置本体 2a〜2c 高
周波加熱コイル 3 鋼材 4 冷却装置 5 冷却本管 6 冷却ヘッダ
ー 7 冷却ノズル 8a〜8c 表
層温度計 9 中心部温度計 10 搬送ロー
1a-1c Heating device main body 2a-2c High-frequency heating coil 3 Steel material 4 Cooling device 5 Cooling main 6 Cooling header 7 Cooling nozzle 8a-8c Surface layer thermometer 9 Center part thermometer 10 Conveying roller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 充 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 (72)発明者 加田 修 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 戸田 正弘 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 森下 弘一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 瀬川 治彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 森 元秀 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 瀬川 幸平 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 廣瀬 泰雄 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 岩城 昭二 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 Fターム(参考) 3K059 AA09 AB04 AB19 AB20 AB26 AC33 AD03 4K034 AA03 BA08 CA01 CA03 DA06 DB02 DB03 DB04 FA01 FB03   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuru Nakamura             12 Nakamachi, Muroran City, Hokkaido Nippon Steel Corporation Stock             Muroran Works (72) Inventor Osamu Kada             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Masahiro Toda             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Koichi Morishita             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Haruhiko Segawa             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Motohide Mori             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. (72) Inventor Kohei Segawa             1 Wano Wari, Arao-cho, Tokai-shi, Aichi Made in Aichi             Within Steel Co., Ltd. (72) Inventor Yasuo Hirose             1 Wano Wari, Arao-cho, Tokai-shi, Aichi Made in Aichi             Within Steel Co., Ltd. (72) Inventor Shoji Iwaki             1 Wano Wari, Arao-cho, Tokai-shi, Aichi Made in Aichi             Within Steel Co., Ltd. F term (reference) 3K059 AA09 AB04 AB19 AB20 AB26                       AC33 AD03                 4K034 AA03 BA08 CA01 CA03 DA06                       DB02 DB03 DB04 FA01 FB03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加熱装置本体内の高周波加熱コイル中に
鋼材を通して加熱する誘導加熱装置において、前記加熱
装置本体の端部に、加熱装置本体と鋼材との間に冷却媒
体を流入させる冷却装置を配置したことを特徴とする高
周波誘導加熱装置。
1. An induction heating apparatus for heating a steel material through a high-frequency heating coil in a heating apparatus main body, wherein a cooling device is provided at an end of the heating apparatus main body for introducing a cooling medium between the heating apparatus main body and the steel material. A high-frequency induction heating device characterized by being arranged.
【請求項2】 鋼材及び加熱装置本体は相対的に移動可
能であり、冷却装置は冷却媒体を鋼材の高温側から低温
側へ流入させるように構成されていることを特徴とする
請求項1記載の高周波誘導加熱装置。
2. The steel material and the heating device body are relatively movable, and the cooling device is configured to allow the cooling medium to flow from the high temperature side to the low temperature side of the steel material. High frequency induction heating device.
【請求項3】 冷却媒体が、空気、窒素ガス、アルゴン
ガスのいずれかもしくはその混合であることを特徴とす
る請求項1又は2記載の高周波誘導加熱装置。
3. The high frequency induction heating device according to claim 1, wherein the cooling medium is any one of air, nitrogen gas, argon gas, or a mixture thereof.
【請求項4】 加熱装置本体の出側に鋼材表面温度検出
手段を設けると共に、この検出温度に基づき加熱量、冷
却媒体量及び移動速度のいずれか単独もしくは組合せを
制御する手段を設けたことを特徴とする請求項1〜3の
いずれか1項記載の高周波誘導加熱装置。
4. A steel material surface temperature detecting means is provided on the outlet side of the heating device main body, and means for controlling any one of a heating amount, a cooling medium amount and a moving speed based on the detected temperature is provided. The high frequency induction heating device according to any one of claims 1 to 3, which is characterized in that.
JP2001331868A 2001-10-30 2001-10-30 Induction heater for steel Pending JP2003138315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331868A JP2003138315A (en) 2001-10-30 2001-10-30 Induction heater for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331868A JP2003138315A (en) 2001-10-30 2001-10-30 Induction heater for steel

Publications (1)

Publication Number Publication Date
JP2003138315A true JP2003138315A (en) 2003-05-14

Family

ID=19147368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331868A Pending JP2003138315A (en) 2001-10-30 2001-10-30 Induction heater for steel

Country Status (1)

Country Link
JP (1) JP2003138315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516897A (en) * 2007-01-29 2010-05-20 エージーエー エービー Heat treatment method for spread steel products
JP2011127135A (en) * 2009-12-15 2011-06-30 Daikin Industries Ltd Induction-heating method and induction-heating apparatus
KR20210113630A (en) * 2019-01-08 2021-09-16 에스엠에스 그룹 게엠베하 Method for induction heating of steel ingot using shell as transfer shoe, and apparatus for implementing said method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516897A (en) * 2007-01-29 2010-05-20 エージーエー エービー Heat treatment method for spread steel products
JP2013091111A (en) * 2007-01-29 2013-05-16 Aga Ab Thermal treatment method for expanded steel product
JP2011127135A (en) * 2009-12-15 2011-06-30 Daikin Industries Ltd Induction-heating method and induction-heating apparatus
KR20210113630A (en) * 2019-01-08 2021-09-16 에스엠에스 그룹 게엠베하 Method for induction heating of steel ingot using shell as transfer shoe, and apparatus for implementing said method
KR102625428B1 (en) 2019-01-08 2024-01-18 에스엠에스 그룹 게엠베하 Method for induction heating of steel ingots using a shell as a transport shoe, and apparatus for carrying out the method

Similar Documents

Publication Publication Date Title
US6180933B1 (en) Furnace with multiple electric induction heating sections particularly for use in galvanizing line
US10612108B2 (en) Method for heating steel sheets and device for carrying out the method
CN102632388B (en) A kind of leader tape welding production line and method being applicable to singlestandmill
WO2010122847A1 (en) Method of producing seamless pipe and apparatus for performing the same
US20160208353A1 (en) Heat treatment method for ring-shaped member and heat treatment equipment for ring-shaped member
CN102781598A (en) Hot-rolled steel sheet manufacturing method and manufacturing device
JP2014522911A (en) Method for heating a molded part for subsequent press hardening and a continuous furnace for partially heating a molded part preheated to a predetermined temperature
JP2009285728A (en) Heating apparatus and heating method of steel plate for hot press forming
JP5729059B2 (en) Heat-treated steel or bending member manufacturing apparatus and manufacturing method
CN100513589C (en) Producing method for steel plate and equipment therefor
JP2011179035A (en) Method for controlling sheet temperature in continuous annealing furnace, and continuous annealing furnace
KR20180020264A (en) Fast response heaters and associated control systems used in combination with metal treatment furnaces
JP2013091111A (en) Thermal treatment method for expanded steel product
JP2003138315A (en) Induction heater for steel
KR102103368B1 (en) Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
JPS60247485A (en) Continuous welding method and device for metallic pipe
TWI626094B (en) Method for controlling temperatures of a heating furnace
KR102103367B1 (en) Production equipment line for hot-rolled steel strip and production method for hot-rolled steel strip
JP2009263701A (en) Method for heating material to be heated
JP2003225701A (en) Device for continuously rolling seamless steel tube
JP6439938B2 (en) Heating method after cutting continuous cast slab
KR101225337B1 (en) Apparatus and method for controlling tempering temperature in cooling bed
CN111922081B (en) Continuous casting-rolling and rolling short-process preparation method of special-shaped magnesium alloy section
CN115522040B (en) Automatic control method for temperature of cold-rolling continuous annealing furnace
CN102189120A (en) Supplementary heating method for low plastic metal plate band

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212