Nothing Special   »   [go: up one dir, main page]

JP2003188432A - Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith - Google Patents

Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith

Info

Publication number
JP2003188432A
JP2003188432A JP2001384312A JP2001384312A JP2003188432A JP 2003188432 A JP2003188432 A JP 2003188432A JP 2001384312 A JP2001384312 A JP 2001384312A JP 2001384312 A JP2001384312 A JP 2001384312A JP 2003188432 A JP2003188432 A JP 2003188432A
Authority
JP
Japan
Prior art keywords
layer
piezoelectric
ink jet
oxide
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001384312A
Other languages
Japanese (ja)
Inventor
Atsushi Tomosawa
淳 友澤
Akiyuki Fujii
映志 藤井
Hideo Torii
秀雄 鳥井
Akiko Kubo
晶子 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001384312A priority Critical patent/JP2003188432A/en
Publication of JP2003188432A publication Critical patent/JP2003188432A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable piezo-electric device and its manufacturing method which has a high piezo-electric constant (d<SB>31</SB>) and good reproducibility of piezo-electric characteristics with minimum variations. <P>SOLUTION: An adhesion layer 2 made of oxidizing metal is laid on a board 1. A first electrode layer 3 made of non-oxidizing metal is laid on the layer 2. A seed 5 made of oxide of the element of the adhesion layer and distributed insularly on the first electrode layer is laid on the first electrode layer. An orientation control layer 6 made of oxide is laid on the first electrode on which the seed is formed. A piezo-electric layer 7 made of oxide is laid on the layer 6. A second electrode layer 8 is laid on the piezo-electric layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロセンサ、
マイクロアクチュエーター、マイクロポンプ、マイクロ
スピーカー、インクジエツトヘツド等に利用される圧電
素子及びその製造方法並びにインクジエツトヘツド及び
インクジエツトヘツドを印字手段として備えたインクジ
エツト式記録装置に関する。
TECHNICAL FIELD The present invention relates to a microsensor,
The present invention relates to a piezoelectric element used for a microactuator, a micropump, a microspeaker, an ink jet head and the like, a method for manufacturing the same, and an ink jet recording apparatus having the ink jet head and the ink jet head as a printing means.

【0002】[0002]

【従来の技術】近年圧電素子を備えた電子機器に対して
小型化、省電力化、高速駆動化が強く要求されるような
ってきた。その要求を満たすために、圧電素子は従来か
ら多く使用されてきた焼結体に比べて著しく体積の小さ
い圧電体薄膜を利用したものが使用されるようになって
きた。従来のこの種の圧電素子としては図6の一部断面
図に示すように、絶縁膜100上にチタンと白金からなる
電極下層101を設け、その上に白金からなる電極上層を
設けて下部電極103とし、下部電極103上に圧電体薄膜層
104を設け、圧電体薄膜上に上部電極105を設けて圧電体
薄膜104にクラツクの発生が生じにくくしたものがあっ
た(例えば特開2000−252544号公報)。
2. Description of the Related Art In recent years, there has been a strong demand for miniaturization, power saving, and high speed driving of electronic devices equipped with piezoelectric elements. In order to meet the demand, a piezoelectric element that uses a piezoelectric thin film having a volume significantly smaller than that of a sintered body that has been widely used has been used. As a conventional piezoelectric element of this type, as shown in a partial cross-sectional view of FIG. 6, an electrode lower layer 101 made of titanium and platinum is provided on an insulating film 100, and an electrode upper layer made of platinum is provided thereon to form a lower electrode. 103, and a piezoelectric thin film layer on the lower electrode 103
There is one in which 104 is provided and the upper electrode 105 is provided on the piezoelectric thin film to prevent the occurrence of cracks in the piezoelectric thin film 104 (for example, Japanese Patent Laid-Open No. 2000-252544).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
のように非酸化性金属からなる電極上にチタン酸ジルコ
ン酸鉛(以下、PZTという)のような酸化物の圧電体薄
膜を形成すると、高い圧電定数(d31)が得られる(00
1)の結晶面が優先配向した圧電体薄膜が再現性よく形
成できないという課題があった。また、非酸化性金属か
らなる電極と酸化物の圧電体薄膜との間では強固な接着
性が得られないという課題もあった。従って、従来の構
成の圧電素子を量産すると、高い圧電定数(d31)が得
られない、圧電特性の再現性に欠ける、ばらつきが大き
い、信頼性が低いという課題があった。また、従来の圧
電素子を備えたインクジエツトヘツドはインク吐出能が
低く、量産すると特性の再現性に欠け、ばらつきが大き
く、信頼性が低いという課題があった。さらに、従来の
インクジエツトヘツドを備えたインクジエツト式記録装
置は記録媒体に対する記録のばらつきが大きく、信頼性
が低いという課題があった。本発明は、従来技術におけ
る前記課題を解決するものであり、高い圧電定数
(d31)を有し、圧電特性の再現性が良好で、ばらつき
が小さく、信頼性の高い圧電素子とその製造方法を提供
することを目的とする。また、高性能なインクジエツト
ヘツドとインクジエツト式記録装置を提供することを目
的とする。
However, when a piezoelectric thin film of an oxide such as lead zirconate titanate (hereinafter referred to as PZT) is formed on an electrode made of a non-oxidizing metal as in the above-mentioned conventional technique, High piezoelectric constant (d 31 ) is obtained (00
There was a problem that the piezoelectric thin film in which the crystal plane of 1) was preferentially oriented could not be formed with good reproducibility. In addition, there is a problem that strong adhesion cannot be obtained between the electrode made of non-oxidizing metal and the piezoelectric thin film of oxide. Therefore, when mass-producing a piezoelectric element having a conventional configuration, there were problems that a high piezoelectric constant (d 31 ) could not be obtained, the reproducibility of piezoelectric characteristics was poor, there was a large variation, and the reliability was low. Further, the ink jet head provided with the conventional piezoelectric element has a low ink ejection capability, and when mass-produced, there is a problem in that the reproducibility of the characteristics is lacking, the variation is large, and the reliability is low. Further, the conventional ink jet type recording apparatus provided with the ink jet head has a problem that the variation in recording on the recording medium is large and the reliability is low. The present invention solves the above-mentioned problems in the prior art, and has a high piezoelectric constant (d 31 ), good reproducibility of piezoelectric characteristics, small variation, and high reliability, and a method for manufacturing the same. The purpose is to provide. It is another object of the present invention to provide a high performance ink jet head and an ink jet type recording apparatus.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の圧電素子は、基板上に酸化性金属からなる
密着層を設け、その密着層上に非酸化性金属からなる第
1の電極層を設け、その第1の電極層上に島状に分布した
前記密着層の元素の酸化物からなるシ−ドを設け、その
シ−ドを形成した第1の電極層上に酸化物からなる配向
制御層を設け、その配向制御層上に酸化物からなる圧電
体層を設け、その圧電体層上に第2の電極層を設けたこ
とを特徴とする。
In order to achieve the above object, a piezoelectric element of the present invention is provided with an adhesion layer made of an oxidizing metal on a substrate and a non-oxidizing metal made on the adhesion layer.
A first electrode layer is provided, and a seed made of an oxide of the element of the adhesion layer distributed in an island shape is provided on the first electrode layer, and the seed is formed on the first electrode layer. An alignment control layer made of an oxide is provided, a piezoelectric layer made of an oxide is provided on the alignment control layer, and a second electrode layer is provided on the piezoelectric layer.

【0005】前記圧電素子の構成によれば、酸化物から
なるシ−ドを設けることにより第1の電極層と酸化物か
らなる配向制御層との接着性を強固にし、配向制御層と
酸化物からなる圧電体層とも強固な接着性を得ることが
可能となる。
According to the structure of the piezoelectric element, by providing a seed made of an oxide, the adhesion between the first electrode layer and the orientation control layer made of an oxide is strengthened, and the orientation control layer and the oxide are made. It is possible to obtain strong adhesiveness also with the piezoelectric layer made of.

【0006】また、配向制御層により圧電体層を(00
1)の結晶面を優先配向させることが可能となるので高
い圧電定数(d31)を有し、圧電特性の再現性、ばらつ
き、信頼性の高い圧電素子を実現することができる。
Further, the piezoelectric layer is made of (00
Since the crystal plane of 1) can be preferentially oriented, a piezoelectric element having a high piezoelectric constant (d 31 ) and having high reproducibility, variation and reliability of piezoelectric characteristics can be realized.

【0007】前記圧電素子の構成における密着層は、チ
タン、鉄、コバルト、ニツケル、マンガンの群から選ば
れた1種以上であるのが好ましい。そして、密着層の厚
みは0.005μmから0.2μmであるのが好ましい。また、第
1の電極層は、白金、イリジウム、ロジウム、ルテニウ
ムの群から選ばれた1種以上であるのが好ましい。ま
た、シ−ドは、酸化チタン、酸化鉄、酸化コバルト、酸
化ニツケル、酸化マンガンの群から選ばれた1種以上で
あるのが好ましい。そして、第1の電極層に対するシ−
ドの比率は0.1原子%から15原子%であるのが好まし
い。また、配向制御層は、チタン酸鉛ランタンもしくは
チタン酸鉛ランタンにマグネシウム又はマンガンの群か
ら選ばれた1種以上を添加し、さらに鉛がチタン酸鉛ラ
ンタンの化学量論組成よりも5原子%から30原子%過剰
に含まれた組成であるものが好ましい。そして、配向制
御層の厚みは0.005μmから0.2μmであるのが好ましい。
また、圧電体層は、チタン酸ジルコン酸鉛もしくはチタ
ン酸ジルコン酸鉛にマグネシウム(Mg)、ニオブ(N
b)、亜鉛(Zn)の群から選ばれた1種以上を添加したも
のであるのが好ましい。そして、圧電体層の厚みは1μm
から10μmであるのが好ましい。
The adhesion layer in the structure of the piezoelectric element is preferably at least one selected from the group consisting of titanium, iron, cobalt, nickel and manganese. The thickness of the adhesive layer is preferably 0.005 μm to 0.2 μm. Also,
The electrode layer of 1 is preferably one or more selected from the group consisting of platinum, iridium, rhodium and ruthenium. The seed is preferably one or more selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, nickel oxide and manganese oxide. Then, the shield for the first electrode layer
It is preferable that the proportion of the metal is 0.1 atomic% to 15 atomic%. Further, the orientation control layer, lead lanthanum titanate or lead lanthanum titanate is added one or more selected from the group of magnesium or manganese, further lead is 5 atom% than the stoichiometric composition of lead lanthanum titanate. To 30 atomic% excess is preferable. The thickness of the orientation control layer is preferably 0.005 μm to 0.2 μm.
The piezoelectric layer is made of lead zirconate titanate, lead zirconate titanate, magnesium (Mg), niobium (N
It is preferable that one or more kinds selected from the group of b) and zinc (Zn) are added. And the thickness of the piezoelectric layer is 1 μm
To 10 μm is preferred.

【0008】本発明に係る圧電素子の製造方法は、基板
上に酸化性金属からなる密着層を非酸化性雰囲気中で形
成し、その密着層上に非酸化性金属からなる第1の電極
層を非酸化性雰囲気中で形成し、前記密着層と前記第1
の電極層を酸化性雰囲気中でアニ−ルして密着層の元素
を第1の電極層上に拡散させて島状に分布させ、その密
着層の元素を酸化させてシ−ドを形成し、そのシ−ドを
形成した第1の電極層上に酸化物からなる配向制御層を
形成し、その配向制御層上に酸化物からなる圧電体層を
形成し、その圧電体層上に第2の電極層を形成すること
を特徴とする。
In the method of manufacturing a piezoelectric element according to the present invention, an adhesion layer made of an oxidizing metal is formed on a substrate in a non-oxidizing atmosphere, and a first electrode layer made of a non-oxidizing metal is formed on the adhesion layer. Formed in a non-oxidizing atmosphere, the adhesion layer and the first
The electrode layer of 1 is annealed in an oxidizing atmosphere to diffuse the elements of the adhesion layer on the first electrode layer and distribute them in an island shape, and the elements of the adhesion layer are oxidized to form a seed. An orientation control layer made of an oxide is formed on the seed electrode-formed first electrode layer, a piezoelectric body layer made of an oxide is formed on the orientation control layer, and a first layer is formed on the piezoelectric body layer. It is characterized in that two electrode layers are formed.

【0009】本発明の圧電素子の製造方法によれば、酸
化物からなるシ−ドを形成することにより第1の電極層
と酸化物からなる配向制御層との接着性が強固になり、
配向制御層と圧電体層とも強固な接着性を得ることが可
能となり、配向制御層により圧電体層を(001)の結晶
面に優先配向させることが可能となるので高い圧電定数
(d31)を有し、圧電特性の再現性が良好で、ばらつき
が小さく、信頼性の良好な圧電素子を製造することがで
きる。
According to the method for manufacturing a piezoelectric element of the present invention, the adhesion between the first electrode layer and the orientation control layer made of oxide is strengthened by forming the seed made of oxide,
It is possible to obtain strong adhesion between the orientation control layer and the piezoelectric layer, and the orientation control layer allows the piezoelectric layer to be preferentially oriented to the (001) crystal plane, so that a high piezoelectric constant (d 31 ). It is possible to manufacture a piezoelectric element having the following characteristics, good reproducibility of piezoelectric characteristics, small variation, and good reliability.

【0010】本発明に係るインクジエツトヘツドは、基
板の一方の面上に振動板を設け、その振動板上に酸化性
金属からなる密着層を設け、その密着層上に非酸化性金
属からなる第1の電極層を設け、その第1の電極層上に島
状に分布した前記密着層の元素の酸化物からなるシ−ド
を設け、そのシ−ドを形成した第1の電極層上に酸化物
からなる配向制御層を設け、その配向制御層上に酸化物
からなる圧電体層を設け、その圧電体層上に第2の電極
層を設け、前記基板の他方の面に隔壁で囲まれた圧力室
を設けた圧電素子と、その圧電素子の隔壁と、インク吐
出口及び圧力室を備えたインクジエツトヘツド本体とを
接合したことを特徴とする。
In the ink jet head according to the present invention, a vibration plate is provided on one surface of a substrate, an adhesion layer made of an oxidizing metal is provided on the vibration plate, and a non-oxidizing metal is made on the adhesion layer. A first electrode layer is provided, and a seed made of an oxide of an element of the adhesion layer distributed in an island shape is provided on the first electrode layer, and the seed is formed on the first electrode layer. An orientation control layer made of an oxide is provided on the piezoelectric layer, an piezoelectric layer made of an oxide is provided on the orientation control layer, a second electrode layer is provided on the piezoelectric layer, and a partition is formed on the other surface of the substrate. It is characterized in that a piezoelectric element provided with an enclosed pressure chamber, a partition wall of the piezoelectric element, and an ink jet head main body having an ink ejection port and a pressure chamber are joined.

【0011】前記本発明のインクジエツトヘツドの構成
によれば、酸化物からなるシ−ドにより第1の電極層と
配向制御層との接着性が強固になり、配向制御層と圧電
体層とも強固な接着性を得ることが可能となり、配向制
御層により圧電体層を(001)の結晶面に優先配向させ
ることが可能となるので高い圧電定数(d31)を有し、
圧電特性の再現性が良好で、ばらつきが小さく、信頼性
の良好なインクジエツトヘツドを実現することができ
る。
According to the constitution of the ink jet head of the present invention, the adhesion between the first electrode layer and the alignment control layer is strengthened by the oxide seed, and both the alignment control layer and the piezoelectric layer are formed. It becomes possible to obtain strong adhesiveness, and the orientation control layer allows the piezoelectric layer to be preferentially oriented to the (001) crystal plane, so that it has a high piezoelectric constant (d 31 ).
It is possible to realize an ink jet head having good reproducibility of piezoelectric characteristics, small variation, and good reliability.

【0012】また、高い圧電定数(d31)の圧電体層を
備えているためインク吐出能の高いインクジエツトヘツ
ドを実現することができる。
Further, since the piezoelectric layer having a high piezoelectric constant (d 31 ) is provided, an ink jet head having a high ink ejection capability can be realized.

【0013】また、本発明のインクジエツトヘツドはイ
ンク吐出能が高いため、電源電圧の調整幅のマ−ジンを
大きくとることができるのでインク吐出量のばらつきを
容易に制御することができる。
Further, since the ink jet head of the present invention has a high ink ejection capability, the margin for adjusting the power supply voltage can be made large, so that the variation in the ink ejection amount can be easily controlled.

【0014】また、本発明のインクジエツトヘツドの構
成においては、酸化性金属からなる密着層はチタン、
鉄、コバルト、ニツケル、マンガンの群から選ばれた1
種以上であるのが好ましい。そして、密着層の厚みは0.
005μmから0.2μmであるのが好ましい。また、非酸化性
金属からなる第1の電極層は、白金、イリジウム、ロジ
ウム、ルテニウムの群から選ばれた1種以上であるのが
好ましい。また、シ−ドは、酸化チタン、酸化鉄、酸化
コバルト、酸化ニツケル、酸化マンガンの群から選ばれ
た1種以上であるのが好ましい。そして、第1の電極層に
対するシ−ドの比率は0.1原子%から15原子%であるの
が好ましい。また、配向制御層はチタン酸鉛ランタンも
しくはチタン酸鉛ランタンにマグネシウム又はマンガン
の群から選ばれた1種以上を添加したものであり、さら
に鉛がチタン酸鉛ランタンの化学量論組成よりも5原子
%から30原子%過剰に含まれた組成であるのが好まし
い。そして、配向制御層の厚みは0.005μmから0.2μmで
あるのが好ましい。また、圧電体層は、チタン酸ジルコ
ン酸鉛もしくはチタン酸ジルコン酸鉛にマグネシウム
(Mg)、ニオブ(Nb)、亜鉛(Zn)の群から選ばれた1
種以上を添加したものであるのが好ましい。そして、圧
電体層の厚みは1μmから10μmであるのが好ましい。
Further, in the constitution of the ink jet head of the present invention, the adhesion layer made of an oxidizing metal is titanium.
1 selected from the group of iron, cobalt, nickel and manganese
It is preferably at least one species. And the thickness of the adhesion layer is 0.
It is preferably 005 μm to 0.2 μm. The first electrode layer made of a non-oxidizing metal is preferably one or more selected from the group consisting of platinum, iridium, rhodium and ruthenium. The seed is preferably one or more selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, nickel oxide and manganese oxide. The ratio of the seed to the first electrode layer is preferably 0.1 atom% to 15 atom%. The orientation control layer is made of lead lanthanum titanate or lead lanthanum titanate to which one or more kinds selected from the group of magnesium and manganese are added, and the lead content is 5% or more than that of lead lanthanum titanate. It is preferable that the composition contains at least 30 atomic% in excess. The thickness of the orientation control layer is preferably 0.005 μm to 0.2 μm. The piezoelectric layer is selected from the group consisting of lead zirconate titanate or lead zirconate titanate, magnesium (Mg), niobium (Nb), and zinc (Zn).
It is preferable that one or more kinds are added. The thickness of the piezoelectric layer is preferably 1 μm to 10 μm.

【0015】本発明のインクジエツトヘツドの製造方法
は、基板上の一方の面上に振動板を形成し、その振動板
上に酸化性金属からなる密着層を非酸化性雰囲気中で形
成し、その密着層上に非酸化性金属からなる第1の電極
層を非酸化性雰囲気中で形成し、前記密着層と前記第1
の電極層を非酸化性雰囲気中でアニ−ルして密着層の元
素を第1の電極層上に拡散させて島状に分布させ、この
密着層の元素を酸化性雰囲気中で酸化させてシ−ドを形
成し、そのシ−ドを形成した第1の電極層上に配向制御
層を形成し、その配向制御層上に圧電体層を形成し、そ
の圧電体層上に第2の電極層を形成し、前記基板の他方
の面に隔壁で囲まれた圧力室を形成して圧電素子を形成
し、その圧電素子の隔壁と、インク吐出口及び圧力室を
備えたインクジエツトヘツド本体とを接合することを特
徴とする。
In the method for producing an ink jet head of the present invention, a vibration plate is formed on one surface of a substrate, and an adhesion layer made of an oxidizing metal is formed on the vibration plate in a non-oxidizing atmosphere. A first electrode layer made of a non-oxidizing metal is formed on the adhesion layer in a non-oxidizing atmosphere, and the adhesion layer and the first electrode layer are formed.
The electrode layer of 1 is annealed in a non-oxidizing atmosphere to diffuse the elements of the adhesion layer on the first electrode layer and distribute them in an island shape, and the elements of the adhesion layer are oxidized in an oxidizing atmosphere. A seed is formed, an orientation control layer is formed on the first electrode layer on which the seed is formed, a piezoelectric layer is formed on the orientation control layer, and a second layer is formed on the piezoelectric layer. An ink jet head main body provided with an electrode layer, a pressure chamber surrounded by a partition wall on the other surface of the substrate to form a piezoelectric element, and the partition wall of the piezoelectric element, an ink ejection port and a pressure chamber. It is characterized by joining and.

【0016】本発明のインクジエツトヘツドの製造方法
によれば、酸化物からなるシ−ドにより第1の電極層と
配向制御層との接着性が強固になり、配向制御層と圧電
体層とも強固な接着性を得ることが可能となるので圧電
特性の再現性が良好で、ばらつきが小さく、信頼性の良
好なインクジエツトヘツドを製造することができる。
According to the method for producing an ink jet head of the present invention, the adhesion between the first electrode layer and the orientation control layer is strengthened by the oxide seed, and both the orientation control layer and the piezoelectric layer are formed. Since it is possible to obtain a strong adhesiveness, it is possible to manufacture an ink jet head having good reproducibility of piezoelectric characteristics, small variation, and good reliability.

【0017】本発明に係るインクジエツト式記録装置の
構成は、本発明のインクジェットヘッドと、前記インク
ジェットヘッドを記録媒体の幅方向に移送するインクジ
ェットヘッド移送手段と、前記インクジェットヘッドの
移送方向に対して略垂直方向に記録媒体を移送する記録
媒体移送手段とを備えたことを特徴とする。このインク
ジエツト式記録装置の構成によれば、インク吐出能が高
く、信頼性の高いインクジェットヘッドを用いて構成す
ることにより、記録媒体に対する記録のばらつきが小さ
く、信頼性の高いインクジエツト式記録装置を実現する
ことができる。
The structure of the ink jet recording apparatus according to the present invention comprises an ink jet head of the present invention, an ink jet head transfer means for moving the ink jet head in the width direction of a recording medium, and an ink jet head moving direction substantially in the transfer direction of the ink jet head. And a recording medium transfer means for transferring the recording medium in a vertical direction. According to this ink jet type recording apparatus, by using an ink jet head having high ink ejection capability and high reliability, it is possible to realize a highly reliable ink jet type recording apparatus with little variation in recording on the recording medium. can do.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施形態1)図1は本実施形態の圧電素
子の製造方法を示す図である。同図(a)において、1は
厚みが0.2mm、幅が20mm、長さが20mmのシリコン(Si)
からなる基板であり、その基板上に厚みが0.01μmの酸
化性金属であるチタン(Ti)からなる密着層2を形成し
た。この密着層は、基板を400℃に加熱しながら非酸化
性雰囲気の1Paのアルゴンガス中で5分間スパツタリング
を行って形成した。次に密着層上に厚みが0.2μmの非酸
化性金属である白金(Pt)からなる第1の電極層3を形成
した。この第1の電極層は室温において1Paのアルゴンガ
ス中で30分間スパツタリングを行って形成した。次に図
1(b)および(c)に示すように、基板、密着層、第1の
電極層からなる積層体を0.5Paのアルゴン−酸素ガス
(ガス体積比Ar:O2=10:2)の酸化性雰囲気中で300℃
で30分アニ−ルしてチタンを白金中に拡散させて島状に
分布させて酸化チタン(TiOx)からなる島状に分布した
シ−ド5を形成した。この場合の第1の電極層表面にお
けるシ−ドの比率(Ti/Pt)をニ次イオン質量分析法(S
IMS)で測定すると1.5原子%であった。次に図1(d)に
示すように、表面にシ−ドを形成した第1の電極層上
に、厚みが0.02μmの鉛の含有量が化学量論組成よりも
過剰な、組成0.8(Pb0.9La0.1)TiO3+0.2PbOのチタン酸
鉛ランタンからなる配向制御層6を形成した。この配向
制御層は基板を560℃に加熱しながら0.3Paのアルゴン−
酸素ガス(ガス体積比Ar:O2=19:1)中で、0.7(Pb
0.9La0. 1)TiO3+0.3PbOの組成のターゲットを用いて10
分間スパッタリングを行って形成した。この配向制御層
は(001)面が優先配向したペロブスカイト型結晶構造
である。次に、配向制御層上に、基板を600℃に加熱し
ながら0.3Paのアルゴン−酸素ガス(ガス体積比Ar:O2
=19:1)中で2時間スパッタリングを行って厚みが2.5
μmの(001)面が優先配向したチタン酸ジルコン酸鉛
(PbZr0.53Ti0.47O3)からなるペロブスカイト型結晶構
造の圧電体層7を形成した。この圧電体層の(001)面の
配向度をX線回折法で測定すると98%であった。ここで
配向度とは、(001)面、(110)面、(111)面の回折
強度の和を100としたときの(001)面の回折強度の割合
である。次に圧電体層上に厚みが0.2μmの白金(Pt)か
らなる第2の電極層7を形成した。2から7の各層の幅は0.
2mm、長さは15mmとし基板上に100個形成した。上記構成
の圧電素子において第1の電極層と第2の電極層の間に電
気信号を印加すると圧電体層において機械信号に変換さ
れる。本実施形態の圧電体層の圧電定数(d31)は−100
pC/Nで、そのバラツキは±1.5%の範囲であった。この
圧電定数(d31)の測定法については後で述べる。ま
た、この圧電素子に100Vの交流電圧を10時間印加した
が、99%が破壊せず、高い信頼性を示した。以上の様
に、本実施形態の圧電素子によれば、次に記載する比較
例と比較すると各層の密着性が向上し、圧電体層中には
クラツクの発生がなく、かつ(001)面が優先配向した
圧電薄膜を再現性良く形成できるので工業的に量産して
も特性の再現性に優れ、ばらつきが少なく、信頼性も向
上した。
(Embodiment 1) FIG. 1 is a diagram showing a method of manufacturing a piezoelectric element of this embodiment. In the figure (a), 1 is silicon (Si) having a thickness of 0.2 mm, a width of 20 mm, and a length of 20 mm.
The adhesion layer 2 made of titanium (Ti) which is an oxidizing metal and has a thickness of 0.01 μm was formed on the substrate. The adhesion layer was formed by sputtering the substrate at 400 ° C. for 5 minutes in 1 Pa of argon gas in a non-oxidizing atmosphere. Next, a first electrode layer 3 made of non-oxidizing metal platinum (Pt) having a thickness of 0.2 μm was formed on the adhesion layer. This first electrode layer was formed by performing sputtering at room temperature in an argon gas of 1 Pa for 30 minutes. Next figure
As shown in 1 (b) and (c), the stack consisting of the substrate, the adhesion layer, and the first electrode layer was oxidized with 0.5 Pa of argon-oxygen gas (gas volume ratio Ar: O2 = 10: 2). 300 ℃ in the atmosphere
After annealing for 30 minutes, titanium was diffused in platinum and distributed in an island shape to form an island-shaped seed 5 composed of titanium oxide (TiOx). In this case, the seed ratio (Ti / Pt) on the surface of the first electrode layer was determined by the secondary ion mass spectrometry (S
It was 1.5 atom% when measured by IMS). Next, as shown in FIG. 1 (d), on the first electrode layer having a seed formed on the surface, a composition of 0.8 An orientation control layer 6 made of lead lanthanum titanate of Pb 0.9 La 0.1 ) TiO 3 + 0.2PbO was formed. This orientation control layer was heated to 560 ° C and the substrate was heated to 560 ° C with 0.3 Pa argon-
In oxygen gas (gas volume ratio Ar: O2 = 19: 1), 0.7 (Pb
0.9 La 0. 1) by using a target of the composition of TiO 3 + 0.3PbO 10
It was formed by performing sputtering for minutes. This orientation control layer has a perovskite crystal structure in which the (001) plane is preferentially oriented. Next, on the orientation control layer, while heating the substrate to 600 ° C., 0.3 Pa of argon-oxygen gas (gas volume ratio Ar: O 2
= 19: 1) and the thickness is 2.5 after sputtering for 2 hours.
A piezoelectric layer 7 having a perovskite type crystal structure made of lead zirconate titanate (PbZr0.53Ti0.47O3) having a (001) plane with a preferential orientation of μm was formed. The degree of orientation of the (001) plane of this piezoelectric layer was 98% when measured by the X-ray diffraction method. Here, the degree of orientation is the ratio of the diffraction intensity of the (001) plane when the sum of the diffraction intensities of the (001) plane, the (110) plane and the (111) plane is 100. Next, a second electrode layer 7 made of platinum (Pt) having a thickness of 0.2 μm was formed on the piezoelectric layer. The width of each layer from 2 to 7 is 0.
100 pieces were formed on the substrate with a length of 2 mm and a length of 15 mm. In the piezoelectric element having the above structure, when an electric signal is applied between the first electrode layer and the second electrode layer, it is converted into a mechanical signal in the piezoelectric layer. The piezoelectric constant (d31) of the piezoelectric layer of this embodiment is −100.
The variation was pC / N in the range of ± 1.5%. The method for measuring the piezoelectric constant (d31) will be described later. Moreover, when an AC voltage of 100 V was applied to this piezoelectric element for 10 hours, 99% of the piezoelectric elements did not break down and showed high reliability. As described above, according to the piezoelectric element of the present embodiment, the adhesion of each layer is improved as compared with the comparative example described below, no crack is generated in the piezoelectric layer, and the (001) plane is Since the piezoelectric thin film with preferential orientation can be formed with good reproducibility, it has excellent reproducibility of characteristics even if it is mass-produced industrially, has less variation, and has improved reliability.

【0020】(比較例1)実施形態1と同じシリコン(S
i)からなる基板上に厚みが0.05μmのチタン(Ti)からな
る密着層を形成した。この密着層は、基板を400℃に加
熱しながら1Paのアルゴンガス中で30分間スパツタリン
グを行って形成した。次に密着層上に厚みが0.2μmの白
金(Pt)からなる第1の電極層を形成した。この第1の電
極層は室温において1Paのアルゴンガス中で30分間スパ
ツタリングを行って形成した。次に、第1の電極層上に
厚みが2.5μmのチタン酸ジルコン酸鉛(PbZr0.53Ti0.47
O3)からなる圧電体層を形成した。この圧電体層は基板
を600℃に加熱しながら0.3Paのアルゴン−酸素ガス(ガ
ス体積比Ar:O2=19:1)中で2時間スパッタリングを行
って形成した。次に圧電体層上に厚みが0.2μmの白金
(Pt)からなる第2の電極層を形成した。この第1の電極
層は室温において1Paのアルゴンガス中で30分間スパツ
タリングを行って形成した。前記の各層の幅は0.2mm、
長さは15mmとし基板上に100個形成した。本比較例の圧
電素子が実施形態1と異なる点は、第1の電極上に酸化物
からなるシ−ドがなくかつ配向制御層を設けていない点
である。この圧電体層の(001)面の配向度は30%で、
かつ圧電特性を示さないパイロクロア相の混じった状態
であり、圧電定数(d31)は−5〜−25pC/Nの範囲で、バ
ラツキが大きい結果であった。また、この圧電素子に10
0Vの交流電圧を印加すると10分間で95%が破壊した。
(Comparative Example 1) The same silicon (S
An adhesion layer made of titanium (Ti) having a thickness of 0.05 μm was formed on the substrate made of i). This adhesion layer was formed by sputtering the substrate at 400 ° C. in an argon gas of 1 Pa for 30 minutes for sputtering. Next, a first electrode layer made of platinum (Pt) having a thickness of 0.2 μm was formed on the adhesion layer. This first electrode layer was formed by performing sputtering at room temperature in an argon gas of 1 Pa for 30 minutes. Next, lead zirconate titanate (PbZr0.53Ti0.47) having a thickness of 2.5 μm was formed on the first electrode layer.
A piezoelectric layer made of O3) was formed. This piezoelectric layer was formed by sputtering the substrate in argon-oxygen gas (gas volume ratio Ar: O2 = 19: 1) of 0.3 Pa for 2 hours while heating the substrate to 600 ° C. Next, a second electrode layer made of platinum (Pt) having a thickness of 0.2 μm was formed on the piezoelectric layer. This first electrode layer was formed by performing sputtering at room temperature in an argon gas of 1 Pa for 30 minutes. The width of each layer is 0.2 mm,
The length was 15 mm and 100 pieces were formed on the substrate. The piezoelectric element of this comparative example is different from that of the first embodiment in that there is no seed made of an oxide on the first electrode and no alignment control layer is provided. The degree of orientation of the (001) plane of this piezoelectric layer is 30%,
In addition, it was a state in which a pyrochlore phase that did not exhibit piezoelectric characteristics was mixed, and the piezoelectric constant (d31) was in the range of -5 to -25 pC / N, resulting in large variation. In addition, this piezoelectric element
When an AC voltage of 0 V was applied, 95% was destroyed in 10 minutes.

【0021】(比較例2)実施形態1と同じシリコン(S
i)からなる基板上に厚みが0.05μmのチタン(Ti)からな
る密着層を形成した。この密着層は、基板を400℃に加
熱しながら1Paのアルゴンガス中で30分間スパツタリン
グを行って形成した。次に密着層上に厚みが0.2μmの白
金(Pt)からなる第1の電極層を形成した。この第1の電
極層は室温において1Paのアルゴンガス中で30分間スパ
ツタリングを行って形成した。この基板、密着層、第1
の電極層からなる積層体を0.5Paのアルゴン−酸素ガス
(ガス体積比Ar:O2=10:2)の酸化性雰囲気中で300℃
で30分アニ−ルしてチタンを白金中に拡散させて島状に
分布させて酸化チタン(TiOx)からなる島状に分布した
シ−ド5を形成した。この場合の第1の電極層表面にお
けるシ−ドの比率(Ti/Pt)をニ次イオン質量分析法(S
IMS)で測定すると1.7原子%であった。次に表面にシ−
ドを形成した第1の電極層上に、厚みが0.02μmの鉛の
含有量が化学量論組成の組成(Pb0.9La0.1)TiO3のチタ
ン酸鉛ランタンからなる配向制御層を形成した。この配
向制御層は基板を560℃に加熱しながら0.3Paのアルゴン
−酸素ガス(ガス体積比Ar:O2=19:1)中で、(Pb0.9
La0.1)TiO3の組成のターゲットを用いて10分間スパッ
タリングを行って形成した。この配向制御層は、(00
1)面の配向度が20%と低いぺロブスカイト型結晶構造
であった。次に、この配向制御層上に、厚みが2.5μmの
チタン酸ジルコン酸鉛(PbZr0.53Ti0.47O3)からなる圧
電体層を形成した。この圧電体層は基板を600℃に加熱
しながら0.3Paのアルゴン−酸素ガス(ガス体積比Ar:O
2=19:1)中で2時間スパッタリングを行って形成し
た。次に圧電体層上に厚みが0.2μmの白金(Pt)からな
る第2の電極層を形成した。この第1の電極層は室温にお
いて1Paのアルゴンガス中で30分間スパツタリングを行
って形成した。前記の各層の幅は0.2mm、長さは15mmと
し基板上に100個形成した。本比較例の圧電素子が実施
形態1と異なる点は、配向制御層が鉛過剰の組成ではな
く、配向制御膜の(001)面の配向度が20%と低い点であ
る。この圧電体層の(001)面の配向度は40%で、かつ
圧電特性を示さないパイロクロア相の混じった状態であ
り、圧電定数(d31)は−10〜−45pC/Nで、バラツキが
大きい結果であった。また、この圧電素子に100Vの交流
電圧を印加すると30分間で75%が破壊した。
(Comparative Example 2) The same silicon (S
An adhesion layer made of titanium (Ti) having a thickness of 0.05 μm was formed on the substrate made of i). This adhesion layer was formed by sputtering the substrate at 400 ° C. in an argon gas of 1 Pa for 30 minutes for sputtering. Next, a first electrode layer made of platinum (Pt) having a thickness of 0.2 μm was formed on the adhesion layer. This first electrode layer was formed by performing sputtering at room temperature in an argon gas of 1 Pa for 30 minutes. This substrate, adhesion layer, first
The laminated body consisting of the electrode layers of 0.5 to 300 ° C. in an oxidizing atmosphere of 0.5 Pa of argon-oxygen gas (gas volume ratio Ar: O 2 = 10: 2).
After annealing for 30 minutes, titanium was diffused in platinum and distributed in an island shape to form an island-shaped seed 5 composed of titanium oxide (TiOx). In this case, the seed ratio (Ti / Pt) on the surface of the first electrode layer was determined by the secondary ion mass spectrometry (S
It was 1.7 atomic% when measured by IMS). Then on the surface
An orientation control layer made of lead lanthanum titanate having a composition (Pb 0.9 La 0.1 ) TiO 3 with a lead content of stoichiometric composition was formed on the first electrode layer on which the lead was formed. This orientation control layer was heated to 560 ° C. while heating the substrate at 560 ° C. in argon-oxygen gas (gas volume ratio Ar: O2 = 19: 1) of 0.3 Pa (Pb 0.9
It was formed by performing sputtering for 10 minutes using a target having a composition of La 0.1 ) TiO 3 . This orientation control layer is (00
1) The perovskite crystal structure had a low degree of orientation of 20%. Next, a piezoelectric layer made of lead zirconate titanate (PbZr0.53Ti0.47O3) having a thickness of 2.5 μm was formed on the orientation control layer. This piezoelectric layer was heated to 600 ℃ while the substrate was heated to 600 ℃.
It was formed by sputtering for 2 hours in 2 = 19: 1). Next, a second electrode layer made of platinum (Pt) having a thickness of 0.2 μm was formed on the piezoelectric layer. This first electrode layer was formed by performing sputtering at room temperature in an argon gas of 1 Pa for 30 minutes. Each layer had a width of 0.2 mm and a length of 15 mm, and 100 layers were formed on the substrate. The piezoelectric element of this comparative example is different from that of the first embodiment in that the orientation control layer does not have a lead-rich composition, and the orientation degree of the (001) plane of the orientation control film is as low as 20%. The degree of orientation of the (001) plane of this piezoelectric layer is 40%, and it is a state in which a pyrochlore phase that does not exhibit piezoelectric characteristics is mixed, and the piezoelectric constant (d31) is -10 to -45 pC / N, with large variations. It was the result. When 100V AC voltage was applied to this piezoelectric element, 75% of it was destroyed in 30 minutes.

【0022】(実施形態2)本実施形態のインクジエツ
トヘツドは図2に示すように、実施形態1で用いたのと同
じシリコン基板1の一方の面上に厚みが5μmのクロムか
らなる振動板9を室温で1Paのアルゴンガス中でスパッタ
リング法で形成し、次に、その振動板上に実施形態1と
同じ圧電素子を同じ製造方法で形成し、次に図3に示す
ように、シリコン基板の他方の面をドライエツチング法
で加工してシリコンからなる隔壁10で囲まれた圧力室11
aを形成してインクジエツトヘツド用の圧電素子を形成
した。次に、前記圧電素子の隔壁と、インク吐出口12と
圧力室b13を備えたステンレスからなるインクジエツト
ヘツド本体14とを接着剤(アクリル樹脂)15で接着し
た。このような構成において、第1の電極層と第2の電極
層の間に電気信号を印加すると圧電素子で機械信号に変
換されてたわみ振動が発生し、そのたわみ振動により圧
力室内のインクがインク吐出口から吐出される。本実施
形態のインクジエツトヘツドは上記構成の単独のインク
ジエツトヘツドを20mm×20mmの面積内に100個形成
した。このインクジエツトヘツドは工業的に量産しても
吐出能の再現性、ばらつきは比較例の圧電素子を備えた
インクジエツトヘツドより格段に向上した。また、各単
独のインクジエツトヘツドに周波数10kHz、電圧30Vの交
流電圧を10日間印加してもインク吐出不良は全くなく、
吐出能もほとんど低下しなかった。
(Embodiment 2) As shown in FIG. 2, the ink jet head of this embodiment is a diaphragm made of chromium having a thickness of 5 μm on one surface of the same silicon substrate 1 as used in Embodiment 1. 9 is formed by a sputtering method in an argon gas of 1 Pa at room temperature, then the same piezoelectric element as that of Embodiment 1 is formed on the diaphragm by the same manufacturing method, and then a silicon substrate is formed as shown in FIG. The other surface of the pressure chamber 11 is processed by the dry etching method and is surrounded by a partition wall 10 made of silicon.
By forming a, a piezoelectric element for an ink jet head was formed. Next, the partition wall of the piezoelectric element and the ink jet head main body 14 made of stainless steel having the ink ejection port 12 and the pressure chamber b13 were bonded with an adhesive (acrylic resin) 15. In such a configuration, when an electric signal is applied between the first electrode layer and the second electrode layer, a flexural vibration is generated by being converted into a mechanical signal by the piezoelectric element, and the flexural vibration causes ink in the pressure chamber to become ink. It is discharged from the discharge port. In the ink jet head of the present embodiment, 100 individual ink jet heads having the above-described structure are formed within an area of 20 mm × 20 mm. Even when the ink jet head was industrially mass-produced, the reproducibility and dispersion of the ejection performance were markedly improved as compared with the ink jet head provided with the piezoelectric element of the comparative example. In addition, there is no ink ejection failure even if an AC voltage of frequency 10 kHz and voltage 30 V is applied to each individual ink jet head for 10 days.
The discharge capacity also did not decrease.

【0023】(実施形態3)本実施形態の圧電素子は実
施形態1で用いたのと同じシリコンからなる基板上にニ
ツケル(Ni)からなる厚みが0.01μmの密着層を形成し
た。この密着層は、基板を400℃に加熱しながら非酸化
性雰囲気の1Paのアルゴンガス中で15分間スパツタリン
グを行って形成した。次に密着層上に、非酸化性金属で
あるイリジウム(Ir)からなる厚みが0.15μmの第1の電
極層3を形成した。この第1の電極層は室温において1Pa
のアルゴンガス中で30分間スパツタリングを行って形成
した。次に、基板、密着層、第1の電極層からなる積層
体を1.0Paのアルゴン−酸素ガス(ガス体積比Ar:O2=1
0:2)の酸化性雰囲気中で400℃で30分アニ−ルしてニ
ツケルをイリジウム中に拡散させて島状に分布させて酸
化ニツケル(NiOx)からなる島状に分布したシ−ドを形
成した。この場合のシ−ドの比率(Ni/Ir)は3原子%で
あった。次にシ−ド上に、厚みが0.05μmの鉛の含有量
が化学量論組成よりも過剰な、組成0.85(Pb 0.9L
a0.1)TiO3+0.15PbOのチタン酸鉛ランタンに2原子%の
マグネシウムを添加した(001)面が優先配向したペロ
ブスカイト型結晶構造の配向制御層を形成した。この配
向制御層は基板を600℃に加熱しながら0.3Paのアルゴン
−酸素ガス(ガス体積比Ar:O2=18:2)中で20分間ス
パッタリングを行って形成した。この配向制御層上に厚
みが3μmのマグネシウムニオブ酸ジルコニウムチタン酸
鉛{0.6Pb(Mg1/3Nb2/3)O3+0.2PbZrO3+0.2PbTiO3}か
らなるペロブスカイト結晶構造の圧電体層を形成した。
この圧電体層の(001)面の配向度をX線回折法で測定す
ると100%であった。次に、圧電体層上に厚みが0.2μm
の白金(Pt)からなる第2の電極層を形成した。その断
面構造は図1(d)と同じである。上記各層の幅は0.2m
m、長さは15mmとし基板上に100個形成した。上記構成の
圧電素子において、第1の電極層と第2の電極層の間に電
気信号を印加すると圧電体層において機械信号に変換さ
れる。この圧電体層の圧電定数(d31)は−135pC/Nであ
り、そのバラツキは±2.0%の範囲であった。また、こ
の圧電素子に100Vの交流電圧を10時間印加したが、98%
が破壊せず、高い信頼性を示した。以上の様に、本実施
の形態の圧電素子によれば各層の密着性が向上し、圧電
体層中にはクラツクの発生がなく、かつ(001)面が優
先配向した圧電薄膜を再現性良く形成できるので工業的
に量産しても特性の再現性に優れ、ばらつきが少なく、
信頼性も向上した。
(Embodiment 3) In the piezoelectric element of this embodiment, an adhesion layer made of nickel (Ni) and having a thickness of 0.01 μm is formed on the same substrate made of silicon as used in the first embodiment. This adhesion layer was formed by sputtering the substrate at 400 ° C. for 15 minutes in 1 Pa of argon gas in a non-oxidizing atmosphere. Next, a first electrode layer 3 made of iridium (Ir) which is a non-oxidizing metal and having a thickness of 0.15 μm was formed on the adhesion layer. This first electrode layer is 1 Pa at room temperature.
Was formed by performing sputtering for 30 minutes in Argon gas. Next, a laminated body composed of the substrate, the adhesion layer, and the first electrode layer was applied with 1.0 Pa of argon-oxygen gas (gas volume ratio Ar: O 2 = 1.
0: 2) in an oxidizing atmosphere at 400 ° C for 30 minutes to diffuse nickel into iridium and distribute the islands to form islands of nickel oxide (NiOx). Formed. The seed ratio (Ni / Ir) in this case was 3 atomic%. Next, on the seed, the composition of 0.85 (Pb 0.9 L
An orientation control layer having a perovskite type crystal structure in which (001) plane was preferentially oriented was formed by adding 2 atom% of magnesium to lead lanthanum titanate of a 0.1 ) TiO 3 + 0.15PbO. This orientation control layer was formed by performing sputtering for 20 minutes in an argon-oxygen gas (gas volume ratio Ar: O2 = 18: 2) of 0.3 Pa while heating the substrate at 600 ° C. A piezoelectric layer having a perovskite crystal structure of lead magnesium zirconium titanate niobate {0.6Pb (Mg1 / 3Nb2 / 3) O3 + 0.2PbZrO3 + 0.2PbTiO3} having a thickness of 3 μm was formed on the orientation control layer.
The degree of orientation of the (001) plane of this piezoelectric layer was 100% when measured by the X-ray diffraction method. Next, the thickness of 0.2μm on the piezoelectric layer
A second electrode layer made of platinum (Pt) was formed. Its sectional structure is the same as in Fig. 1 (d). The width of each layer above is 0.2m
100 pieces were formed on the substrate with m and length of 15 mm. In the piezoelectric element having the above structure, when an electric signal is applied between the first electrode layer and the second electrode layer, it is converted into a mechanical signal in the piezoelectric layer. The piezoelectric constant (d31) of this piezoelectric layer was −135 pC / N, and the variation was within ± 2.0%. An alternating voltage of 100 V was applied to this piezoelectric element for 10 hours.
Did not break down and showed high reliability. As described above, according to the piezoelectric element of the present embodiment, the adhesion of each layer is improved, no crack is generated in the piezoelectric layer, and the piezoelectric thin film in which the (001) plane is preferentially oriented has good reproducibility. Since it can be formed, it has excellent reproducibility of characteristics even if it is industrially mass-produced, and there is little variation,
Reliability has also improved.

【0024】(実施形態4)本実施形態のインクジエツ
トヘツドは、実施形態3の圧電素子を備え、振動板に厚
みが3μmの酸化アルミニウム(Al2O3)を用いた以外は
実施形態2のインクジエツトヘツドと同じ構成である。
前記振動板は基板を600℃に加熱しながら5Paのアルゴン
−酸素ガス中でスパッタリング法で形成した。このイン
クジエツトヘツドの第1の電極層と第2の電極層の間に電
気信号を印加すると圧電体層で機械信号に変換されてた
わみ振動を発生させ、そのたわみ振動により圧力室内の
インクがインク吐出口から吐出される。本実施形態のイ
ンクジエツトヘツドは圧電定数の大きい圧電体層を備え
ているため実施形態2のインクジエツトヘツドより高い
吐出能を有する。本実施形態のインクジエツトヘツドは
単独のインクジエツトヘツドを20mm×20mmの面積内
に100個形成した。このインクジエツトヘツドは工業的
に量産しても吐出能の再現性、ばらつきは比較例の圧電
素子を備えたインクジエツトヘツドより格段に向上し
た。また、各単独のインクジエツトヘツドに周波数10kH
z、電圧30Vの交流電圧を10日間印加してもインク吐出不
良は全くなく、吐出能もほとんど低下しなかった。
(Embodiment 4) The ink jet head of the present embodiment is provided with the piezoelectric element of the third embodiment, and except that the diaphragm is made of aluminum oxide (Al2O3) having a thickness of 3 μm. It has the same structure as.
The diaphragm was formed by sputtering in argon-oxygen gas of 5 Pa while heating the substrate at 600 ° C. When an electric signal is applied between the first electrode layer and the second electrode layer of this ink jet head, the piezoelectric layer converts it into a mechanical signal to generate a flexural vibration, and the flexural vibration causes ink in the pressure chamber to ink. It is discharged from the discharge port. The ink jet head of the present embodiment has a piezoelectric layer having a large piezoelectric constant, and therefore has a higher ejection capability than the ink jet head of the second embodiment. In the ink jet head of this embodiment, 100 individual ink jet heads were formed within an area of 20 mm × 20 mm. Even when the ink jet head was industrially mass-produced, the reproducibility and dispersion of the ejection performance were markedly improved as compared with the ink jet head provided with the piezoelectric element of the comparative example. In addition, the frequency of 10kH is added to each individual ink jet head.
Even if an AC voltage of 30V was applied for 10 days, there was no ink ejection defect and the ejection performance was hardly reduced.

【0025】(実施形態5)本実施形態の圧電素子は、
厚みが0.5mm、幅が20mm、長さが20mmのステンレスから
なる基板上に、酸化性金属であるマンガン(Mn)からなる
厚みが0.1μmの密着層をスパツタリング法で形成した。
この密着層は、基板を400℃に加熱しながら非酸化性雰
囲気の1Paのアルゴンガス中で30分間スパツタリングを
行って形成した。次に、密着層上に厚みが0.2μmの白金
ロジウム合金(Pt−Rh)からなる非酸化性金属である第
1の電極層を形成した。この第1の電極層は、室温におい
て非酸化性雰囲気の1Paのアルゴンガス中で40分間スパ
ツタリングを行って形成した。次に、基板、密着層、第
1の電極層からなる積層体を0.5Paのアルゴン−酸素ガス
(ガス体積比Ar:O2=10:2)の酸化性雰囲気中で300℃
で30分アニ−ルしてマンガンを白金ロジウム合金中に拡
散させて島状に分布させて酸化マンガン(MnOx)からな
る島状に分布したシ−ドを形成した。この場合のシ−ド
の比率(Mn/Pt-Rh)は10原子%であった。次にシ−ド上
に、厚みが0.05μmの鉛の含有量が化学量論組成よりも
過剰な、組成0.7(Pb 0.9La0.1)TiO3+0.3PbOのチタン
酸鉛ランタンに5原子%のマンガン(Mn)を添加した配
向制御層を形成した。この配向制御層は基板を560℃に
加熱しながら0.3Paのアルゴン−酸素ガス(ガス体積比A
r:O2=19:1)中で20分間スパッタリングを行って形成
した。この配向制御層は(001)面が優先配向したペロ
ブスカイト型結晶構造である。次に配向制御層上に、厚
みが3μmの亜鉛ニオブ酸ジルコニウムチタン酸鉛{0.6P
b(Zn1/3Nb2/3)0.2PbZrO3+0.2PbTiO3}からなるペロブ
スカイト型結晶構造の圧電体層を形成した。この圧電体
層の(001)面の配向度をX線回折法で測定すると95%で
あった。次に、圧電体層上に厚みが0.2μmの白金(Pt)
からなる第2の電極層を室温で1Paのアルゴンガス中で形
成した。その断面構造は図1と同じである。上記各層の
幅は0.2mm、長さは15mmとし基板上に100個形成した。上
記構成の圧電素子において第1の電極層と第2の電極層の
間に電気信号を印加すると圧電体層において機械信号に
変換される。この圧電体層の圧電定数(d31)は−110pC
/Nであり、そのバラツキは±1.8%の範囲であった。ま
た、この圧電素子に100Vの交流電圧を10時間印加した
が、99%が破壊せず、高い信頼性を示した。以上の様
に、本実施形態の圧電素子によれば、各層の密着性が向
上し、圧電体層中にはクラツクの発生がなくかつ(10
0)面が優先配向した圧電体層を再現性良く形成できる
ので工業的に量産しても特性の再現性に優れ、ばらつき
が少なく、信頼性も向上した。
(Embodiment 5) The piezoelectric element of the present embodiment is
On a substrate made of stainless steel having a thickness of 0.5 mm, a width of 20 mm and a length of 20 mm, an adhesion layer made of manganese (Mn) which is an oxidizing metal and having a thickness of 0.1 μm was formed by a sputtering method.
This adhesion layer was formed by sputtering the substrate at 400 ° C. for 30 minutes in 1 Pa of argon gas in a non-oxidizing atmosphere. Next, a non-oxidizing metal of platinum-rhodium alloy (Pt-Rh) with a thickness of 0.2 μm was formed on the adhesion layer.
An electrode layer of 1 was formed. The first electrode layer was formed by performing sputtering for 40 minutes in argon gas of 1 Pa in a non-oxidizing atmosphere at room temperature. Next, the substrate, the adhesion layer, the
The laminated body consisting of 1 electrode layer was placed in an oxidizing atmosphere of 0.5 Pa of argon-oxygen gas (gas volume ratio Ar: O 2 = 10: 2) at 300 ° C.
After annealing for 30 minutes, the manganese was diffused into the platinum-rhodium alloy and distributed in the form of islands to form island-shaped seeds of manganese oxide (MnOx). The seed ratio (Mn / Pt-Rh) in this case was 10 atomic%. Next, on the seed, the lead content of 0.05 μm in thickness was over the stoichiometric composition, and the composition of 0.7 (Pb 0.9 La 0.1 ) TiO 3 +0.3 PbO in lead lanthanum titanate contained 5 atomic% An orientation control layer containing manganese (Mn) was formed. This orientation control layer was heated at 560 ° C. on the substrate and 0.3 Pa of argon-oxygen gas (gas volume ratio A
It was formed by performing sputtering for 20 minutes in r: O2 = 19: 1). This orientation control layer has a perovskite crystal structure in which the (001) plane is preferentially oriented. Then, on the orientation control layer, lead zirconium titanate zirconium titanate with a thickness of 3 μm {0.6P
A piezoelectric layer having a perovskite crystal structure made of b (Zn1 / 3Nb2 / 3) 0.2PbZrO3 + 0.2PbTiO3} was formed. The degree of orientation of the (001) plane of this piezoelectric layer was 95% when measured by the X-ray diffraction method. Next, on the piezoelectric layer, platinum (Pt) with a thickness of 0.2 μm
Was formed in argon gas at 1 Pa at room temperature. Its sectional structure is the same as in FIG. The width of each layer was 0.2 mm and the length was 15 mm, and 100 layers were formed on the substrate. In the piezoelectric element having the above structure, when an electric signal is applied between the first electrode layer and the second electrode layer, it is converted into a mechanical signal in the piezoelectric layer. The piezoelectric constant (d31) of this piezoelectric layer is -110pC.
/ N, and the variation was within ± 1.8%. Moreover, when an AC voltage of 100 V was applied to this piezoelectric element for 10 hours, 99% of the piezoelectric elements did not break down and showed high reliability. As described above, according to the piezoelectric element of the present embodiment, the adhesion of each layer is improved, no crack is generated in the piezoelectric layer, and (10
Since the piezoelectric layer in which the (0) plane is preferentially oriented can be formed with good reproducibility, the reproducibility of the characteristics is excellent, the variation is small, and the reliability is improved even when industrially mass-produced.

【0026】(実施形態6)本実施形態のインクジエツ
トヘツドは、実施形態5の圧電素子を備え、振動板に厚
みが3μmの酸化ジルコニウム(ZrO2)を用いた以外は実
施形態2のインクジエツトヘツドと同じ構成である。前
記振動板は基板を600℃に加熱しながら2Paのアルゴン−
酸素ガス中でスパッタリング法で形成した。この構成に
おいて、第1の電極層と第2の電極層の間に電気信号を印
加すると圧電体層で機械信号に変換されてたわみ振動を
発生させ、そのたわみ振動により圧力室内のインクがイ
ンク吐出口から吐出される。本実施の形態のインクジエ
ツトヘツドは上記構成の単独のインクジエツトヘツドを
20mm×20mmの面積内に100個形成した。このインク
ジエツトヘツドは工業的に量産しても吐出能の再現性、
ばらつきは比較例の圧電素子を備えたインクジエツトヘ
ツドより格段に向上した。また、各単独のインクジエツ
トヘツドに周波数10kHz、電圧30Vの交流電圧を10日間印
加してもインク吐出不良は全くなく、吐出能もほとんど
低下しなかった。
(Embodiment 6) The ink jet head of the present embodiment is provided with the piezoelectric element of the fifth embodiment, and except that the diaphragm is made of zirconium oxide (ZrO2) having a thickness of 3 μm. It has the same structure as. The diaphragm is 2 Pa of argon while heating the substrate to 600 ° C.
It was formed by a sputtering method in oxygen gas. In this configuration, when an electric signal is applied between the first electrode layer and the second electrode layer, the piezoelectric layer converts it into a mechanical signal to generate flexural vibration, and the flexural vibration causes ink in the pressure chamber to eject ink. It is discharged from the outlet. The ink jet head of the present embodiment is a single ink jet head having the above configuration.
100 pieces were formed within an area of 20 mm × 20 mm. Even if this ink jet head is industrially mass-produced, the reproducibility of discharge ability,
The variation was significantly improved as compared with the ink jet head provided with the piezoelectric element of the comparative example. In addition, even when an AC voltage having a frequency of 10 kHz and a voltage of 30 V was applied to each individual ink jet head for 10 days, there was no ink ejection failure and the ejection performance was hardly reduced.

【0027】(実施形態7)図4は本発明のインクジエ
ツトヘツドを備えたインクジエツト式記録装置16の概略
構成図である。同図において17はインクジエツトヘツド
であり、このインクジエツトヘツドから吐出されたイン
ク滴を紙等の記録媒体18に着弾させて記録を行う。イン
クジエツトヘツドは、キヤリツジ軸19に沿って主走査方
向Xに移動するインクジエツトヘツド移動手段20に搭載
されていて、インクジエツトヘツド移動手段がキヤリツ
ジ軸19に沿って往復動するのに応じて主走査方向Xに往
復動する。さらに、インクジエツト式記録装置は記録媒
体をインクジエツトヘツドの主走査方向Xと略垂直方向
の副走査方向Yに移動させる複数個の記録媒体移動手段2
1を備える。本実施形態のインクジエツト式記録装置は
吐出能のばらつきが少なく、10日間駆動してもインクの
吐出不良はなく高い信頼性を示した。
(Embodiment 7) FIG. 4 is a schematic configuration diagram of an ink jet recording apparatus 16 provided with the ink jet head of the present invention. In the figure, 17 is an ink jet head, and ink droplets ejected from this ink jet head are made to land on a recording medium 18 such as paper for recording. The ink jet head is mounted on the ink jet head moving means 20 that moves in the main scanning direction X along the carriage axis 19, and the ink jet head moving means moves according to the reciprocating movement along the carriage axis 19. Reciprocates in the scanning direction X. Further, the ink jet type recording apparatus has a plurality of recording medium moving means 2 for moving the recording medium in the sub scanning direction Y which is substantially perpendicular to the main scanning direction X of the ink jet head.
With 1. The ink jet type recording apparatus of the present embodiment has a small variation in ejection ability, and even if it is driven for 10 days, there is no ejection failure of ink and high reliability is exhibited.

【0028】次に、図5を参照しながら本発明の圧電定
数(d31)の測定法について説明する。
Next, the method for measuring the piezoelectric constant (d 31 ) of the present invention will be described with reference to FIG.

【0029】同図において22が圧電定数(d31)を測定
するための厚さが2.5μmの圧電体層であり、その片面に
は厚さが0.1μmの白金からなる下部電極23が設けられ、
他方の面には厚さが1.5μmのアルミニウムからなる上部
電極24が設けられている。そして前記圧電体層と電極は
T字型の片持ち梁に加工されている。圧電体層と電極の
全長は800μmであり、幅が広い部分(幅は500μ
m)の長さは300μm、幅が狭い部分(幅は50μ
m)の長さは500μmである。幅の広い部分は導電性
接着剤(銀ペ−スト)25によって導電性支持基板(ステ
ンレス基板)26に固定されている。
In the figure, reference numeral 22 is a piezoelectric layer having a thickness of 2.5 μm for measuring the piezoelectric constant (d 31 ), and a lower electrode 23 made of platinum having a thickness of 0.1 μm is provided on one surface thereof. ,
An upper electrode 24 made of aluminum having a thickness of 1.5 μm is provided on the other surface. The piezoelectric layer and the electrodes are processed into a T-shaped cantilever. The total length of the piezoelectric layer and the electrodes is 800 μm, and the wide part (width is 500 μm)
m) has a length of 300 μm and a narrow width (width is 50 μm).
The length of m) is 500 μm. The wide portion is fixed to a conductive support substrate (stainless steel substrate) 26 with a conductive adhesive (silver paste) 25.

【0030】下部電極と電気的に導通している導電性支
持基板には、リード線a27が接続されている。また、上
部電極にはリード線b28が接続されている。そしてリー
ド線a27、リード線b28を介して下部電極と上部電極と
の間に電圧を印加すると、圧電体層は図5のx方向に伸
びる。圧電体層の伸びの変化量ΔL(m)は、印加電圧
をE(V)、圧電体層の厚さをt(m)、圧電体層の長
さをL(m)、圧電体層の圧電定数をd31(pm/V)
として、下記(数1)によって表記される。
A lead wire a27 is connected to the conductive support substrate which is electrically connected to the lower electrode. A lead wire b28 is connected to the upper electrode. When a voltage is applied between the lower electrode and the upper electrode via the lead wire a27 and the lead wire b28, the piezoelectric layer extends in the x direction in FIG. The amount of change ΔL (m) in the elongation of the piezoelectric layer is as follows: the applied voltage is E (V), the thickness of the piezoelectric layer is t (m), the length of the piezoelectric layer is L (m), The piezoelectric constant is d 31 (pm / V)
Is expressed by the following (Equation 1).

【0031】[0031]

【数1】 [Equation 1]

【0032】ここで、膜厚の薄い下部電極と接合してい
る圧電体層の下側部分はx方向へ伸びるが、膜厚の厚い
上部電極と接合している圧電体層の上側部分は、膜厚の
厚い上部電極によってその伸び変位が抑制される。その
結果、導電性支持基板に固定された一端部と反対側の圧
電体層の先端が図5の+z軸方向に変位する。従って、
電圧の印加と除去を一定周波数で繰り返すと、圧電体層
の先端が所定の変位幅でz軸方向に上下運動する。そし
て、印加電圧と圧電体層の先端の変位幅を測定し、前記
(数1)より圧電定数(d31)を算出した。
Here, the lower portion of the piezoelectric layer joined to the lower electrode having a small film thickness extends in the x direction, while the upper portion of the piezoelectric layer joined to the upper electrode having a large film thickness is The elongation displacement is suppressed by the thick upper electrode. As a result, the tip of the piezoelectric layer on the side opposite to the one end fixed to the conductive support substrate is displaced in the + z axis direction in FIG. Therefore,
When the application and removal of voltage is repeated at a constant frequency, the tip of the piezoelectric layer moves up and down in the z-axis direction with a predetermined displacement width. Then, the applied voltage and the displacement width of the tip of the piezoelectric layer were measured, and the piezoelectric constant (d 31 ) was calculated from the above (Equation 1).

【0033】なお、本発明における圧電素子及びインク
ジエツトヘツドにおいて、基板としてはシリコン、ステ
ンレスについて説明したがこれらに代えてガラス、結晶
化ガラス、酸化マグネシウムを用いても同様の効果が得
られる。また、酸化性金属としてはチタン、ニツケル、
マンガンについて説明したがこれらに代えて鉄、コバル
トを用いても同様の効果が得られる。また、シ−ドとし
ては酸化チタン、酸化ニツケル、酸化マンガンについて
説明したがこれらに代えて酸化鉄、酸化コバルトを用い
ても同様の効果が得られる。また、非酸化性金属として
は白金、イリジウム、白金ロジウムについて説明したが
これらに代えてルテニウムを用いても同様の効果が得ら
れる。
In the piezoelectric element and the ink jet head according to the present invention, the substrate has been described as silicon or stainless steel, but glass, crystallized glass or magnesium oxide may be used in place of these to obtain the same effect. Also, as the oxidizing metal, titanium, nickel,
Although manganese has been described, similar effects can be obtained by using iron or cobalt instead of manganese. Although titanium oxide, nickel oxide, and manganese oxide have been described as the seeds, the same effect can be obtained by using iron oxide or cobalt oxide instead of them. Although platinum, iridium and platinum rhodium have been described as non-oxidizing metals, the same effect can be obtained by using ruthenium instead of them.

【0034】さらに、第1の電極層に対するシ−ドの比
率を0.1原子%から15原子%に限定したのは、0.1原子%
未満では十分な密着性が得られないとともにシード上に
形成する配向制御膜の結晶の(001)配向性が悪化し、ま
た15原子%を超えると密着性が低下するとともにシード
上に形成する配向制御膜にペロブスカイト相以外のパイ
ロクロア相が混在して結晶性が悪化するためである。ま
た、密着層の厚みを0.005μmから0.2μmに限定したの
は、0.005μm未満では十分な密着性が得られないととも
にシードの拡散による供給量が不足し、0.2μmを超える
と密着性が低下するとともにシードの拡散による供給量
が過剰になるためである。
Further, the ratio of the seed to the first electrode layer is limited to 0.1 atom% to 15 atom% by 0.1 atom%
If less than 15%, sufficient adhesion cannot be obtained and the (001) orientation of the crystal of the orientation control film formed on the seed deteriorates.If it exceeds 15 atom%, the adhesion decreases and the orientation formed on the seed. This is because the control film contains a pyrochlore phase other than the perovskite phase and the crystallinity deteriorates. In addition, the thickness of the adhesion layer was limited to 0.005 μm to 0.2 μm because when the thickness is less than 0.005 μm, sufficient adhesion cannot be obtained and the supply amount due to seed diffusion is insufficient, and when it exceeds 0.2 μm, the adhesion decreases. This is because the amount of seed supplied by the diffusion becomes excessive.

【0035】また、配向制御膜の厚みを0.005μmから0.
2μmに限定したのは、0.005μm未満では十分な(001)面
の配向性を有する配向制御膜が得られず、0.2μmを超え
ると圧電体層の(001)面の結晶配向に及ぼす影響に差異
が少なくなり、実用上不必要であるためである。さらに
配向制御膜のチタン酸鉛ランタンもしくはチタン酸鉛ラ
ンタンにマグネシウム又はマンガンの群から選ばれた1
種以上を添加したものに、鉛が化学量論組成よりも5原
子%から30原子%過剰に含まれた組成に限定した組成で
あるのは、鉛の過剰添加量が5%未満では配向制御膜の
(001)面の配向度が低くなり、圧電体層の(001)面の配向
度が低くパイロクロアの混ざった相となり圧電定数が低
下し、また鉛の過剰添加量が30%を超えると配向制御膜
の(001)面の配向度が低くなり、圧電体層の(001)面の配
向度が低く酸化鉛の混ざった相となり圧電定数が低下す
るためである。
Further, the thickness of the orientation control film is changed from 0.005 μm to 0.
The limitation to 2 μm is that if it is less than 0.005 μm, an orientation control film having sufficient orientation of the (001) plane cannot be obtained, and if it exceeds 0.2 μm, it affects the crystal orientation of the (001) plane of the piezoelectric layer. This is because the difference is small and it is unnecessary in practice. Further, lead lanthanum titanate or lead lanthanum titanate for the orientation control film is selected from the group consisting of magnesium and manganese.
The composition limited to the composition containing 5% to 30 atomic% of lead in excess of the stoichiometric composition to the one containing more than one species is the orientation control when the excessive addition amount of lead is less than 5%. Of membrane
The degree of orientation of the (001) plane becomes low, the degree of orientation of the (001) plane of the piezoelectric layer becomes low, and the phase becomes a phase in which pyrochlore is mixed, and the piezoelectric constant decreases. This is because the degree of orientation of the (001) plane of the film becomes low, the degree of orientation of the (001) plane of the piezoelectric layer becomes low, and the phase becomes a phase in which lead oxide is mixed, and the piezoelectric constant decreases.

【0036】さらに配向制御膜中のランタンの比率は、
過剰に含まれた鉛を除いた鉛/ランタンの比率が原子%
比で90/10の場合について説明したが、これに変えて鉛
/ランタン比率が99.9/0.1から70/30の間の組成であ
れば、同等の効果が得られる。
Further, the ratio of lanthanum in the orientation control film is
The ratio of lead / lanthanum excluding excess lead is atomic%
The case where the ratio is 90/10 has been described, but the same effect can be obtained if the composition has a lead / lanthanum ratio of 99.9 / 0.1 to 70/30 instead.

【0037】また、圧電体層の厚みを1μmから10μmに
限定したのは、1μm未満では大きな変位量が得られない
ためであり、10μmを超えると圧電体層の表面の凹凸が
大きくなり、第2の電極層を平坦に形成することが困難
になり、その結果、変位量のばらつきの小さい圧電素子
を安定に作製することが困難になるためである。さらに
圧電体層にチタン酸ジルコン酸鉛を用いる場合、Zr/Ti
の比率が原子%比で53/47の場合について説明したが、
これに変えてZr/Ti比率が30/70から70/30の間の組成
であれば、同等の効果が得られる。
Further, the reason why the thickness of the piezoelectric layer is limited to 1 μm to 10 μm is that a large displacement amount cannot be obtained if the thickness is less than 1 μm. This is because it is difficult to form the second electrode layer flat, and as a result, it is difficult to stably manufacture a piezoelectric element with a small variation in displacement amount. When lead zirconate titanate is used for the piezoelectric layer, Zr / Ti
I explained that the ratio of is 53/47 in atomic% ratio,
Instead, if the composition has a Zr / Ti ratio between 30/70 and 70/30, the same effect can be obtained.

【0038】[0038]

【発明の効果】本発明によれば、基板上に酸化性金属か
らなる密着層を設け、その密着層上に非酸化性金属から
なる第1の電極層を設け、その第1の電極層上に前記酸化
性金属の酸化物からなる島状に分布したシ−ドを設け、
そのシ−ドを形成した第1の電極層上に配向制御層を設
け、その配向制御層上に圧電体層を設け、その圧電体層
上に第2の電極層を設けた構成とすることによって各層
の密着性並びに圧電体層の結晶構造と優先配向面を制御
できるので工業的に量産しても圧電特性の再現性、ばら
つき及び信頼性の良好な圧電体素子とそれを有するイン
クジエツトヘツドを提供することができる。さらに、吐
出能のばらつきが少なく且つ高信頼性のインクジエツト
式記録装置を提供することができる。
According to the present invention, an adhesive layer made of an oxidizing metal is provided on a substrate, a first electrode layer made of a non-oxidizing metal is provided on the adhesive layer, and the first electrode layer is formed on the first electrode layer. Is provided with an island-shaped seed consisting of the oxide of the oxidizing metal,
An orientation control layer is provided on the first electrode layer on which the seed is formed, a piezoelectric layer is provided on the orientation control layer, and a second electrode layer is provided on the piezoelectric layer. Since the adhesion of each layer, the crystal structure of the piezoelectric layer and the preferentially oriented surface can be controlled, a piezoelectric element having good reproducibility, variation and reliability of piezoelectric characteristics even in industrial mass production and an ink jet head having the same Can be provided. Further, it is possible to provide a highly reliable ink jet type recording apparatus with little variation in ejection ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧電素子の製造工程図1] Manufacturing process diagram of piezoelectric element

【図2】圧電素子の断面図FIG. 2 is a sectional view of a piezoelectric element.

【図3】インクジエツトヘツドの断面図FIG. 3 is a sectional view of an ink jet head.

【図4】インクジエツトヘツド式記録装置の概略構成図FIG. 4 is a schematic configuration diagram of an ink jet head type recording apparatus.

【図5】圧電定数(d31)を測定するための素子FIG. 5: Element for measuring piezoelectric constant (d 31 ).

【図6】従来の圧電素子の断面図FIG. 6 is a sectional view of a conventional piezoelectric element.

【符号の説明】[Explanation of symbols]

1 基板 2 密着層 3 第1の電極層 4 密着層の元素 5 シ−ド 6 配向制御層 7 圧電体層 8 第2の電極層 9 振動板 10 隔壁 11 圧力室a 12 インク吐出口 13 圧力室b 14 インクジェット本体 15 接着剤 16 インクジエツト式記録装置 17 インクジエツトヘツド 18 記録媒体 19 キャリッジ軸 20 インクジエツトヘツド移動手段 21 記録媒体移動手段 22 圧電体層 23 下部電極 24 上部電極 25 導電性接着剤(銀ペースト) 26 導電性支持基板(ステンレス基板) 27 リード線a 28 リード線b 100 絶縁膜 101 電極下層 102 電極上層 103 下部電極 104 圧電体薄膜層 105 上部電極 1 substrate 2 Adhesion layer 3 First electrode layer 4 Elements of adhesion layer 5 seeds 6 Alignment control layer 7 Piezoelectric layer 8 Second electrode layer 9 diaphragm 10 partitions 11 Pressure chamber a 12 Ink outlet 13 Pressure chamber b 14 Inkjet body 15 Adhesive 16 Inkjet recording device 17 Ink Jet Head 18 recording media 19 Carriage axis 20 Ink jet head moving means 21 recording medium moving means 22 Piezoelectric layer 23 Lower electrode 24 Upper electrode 25 Conductive adhesive (silver paste) 26 Conductive support substrate (stainless steel substrate) 27 Lead wire a 28 Lead wire b 100 insulating film 101 electrode lower layer 102 upper electrode layer 103 Lower electrode 104 Piezoelectric thin film layer 105 upper electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 41/18 H01L 41/22 Z 41/22 41/08 L (72)発明者 鳥井 秀雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久保 晶子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2C057 AF93 AG42 AG44 AP14 AP52 AP56 BA04 BA14 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 41/18 H01L 41/22 Z 41/22 41/08 L (72) Inventor Hideo Torii Kadoma City, Osaka Prefecture Daiji Kadoma 1006 Matsushita Electric Industrial Co., Ltd. (72) Inventor Akiko Kubo Osaka Kadoma City Kadoma 1006 Matsushita Electric Industrial Co., Ltd. F term (reference) 2C057 AF93 AG42 AG44 AP14 AP52 AP56 BA04 BA14

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 基板上に酸化性金属からなる密着層を設
け、その密着層上に非酸化性金属からなる第1の電極層
を設け、その第1の電極層上に島状に分布した前記密着
層の元素の酸化物からなるシ−ドを設け、そのシ−ドを
形成した第1の電極層上に酸化物からなる配向制御層を
設け、その配向制御層上に酸化物からなる圧電体層を設
け、その圧電体層上に第2の電極層を設けた圧電素子。
1. An adhesion layer made of an oxidizing metal is provided on a substrate, a first electrode layer made of a non-oxidizing metal is provided on the adhesion layer, and the first electrode layer is distributed like islands on the first electrode layer. A seed made of an oxide of the element of the adhesion layer is provided, an orientation control layer made of an oxide is provided on the first electrode layer on which the seed is formed, and an orientation control layer made of an oxide is provided on the orientation control layer. A piezoelectric element in which a piezoelectric layer is provided and a second electrode layer is provided on the piezoelectric layer.
【請求項2】 基板上に酸化性金属からなる密着層を非
酸化性雰囲気中で形成する工程と、その密着層上に非酸
化性金属からなる第1の電極層を非酸化性雰囲気中で形
成する工程と、前記密着層と前記第1の電極層を酸化性
雰囲気中でアニ−ルして密着層の元素を第1の電極層上
に島状に分布させ、その密着層の元素を酸化させてシ−
ドを形成する工程と、そのシ−ドを形成した第1の電極
層上に酸化物からなる配向制御層を形成する工程と、そ
の配向制御層上に酸化物からなる圧電体層を形成する工
程と、その圧電体層上に第2の電極層を形成する工程と
を有する圧電素子の製造方法。
2. A step of forming an adhesion layer made of an oxidizing metal on a substrate in a non-oxidizing atmosphere, and a first electrode layer made of a non-oxidizing metal on the adhesion layer in a non-oxidizing atmosphere. The step of forming, the adhesion layer and the first electrode layer is annealed in an oxidizing atmosphere to distribute the elements of the adhesion layer in an island shape on the first electrode layer, and the elements of the adhesion layer are Oxidize and see
A step of forming an oxide, a step of forming an orientation control layer made of an oxide on the first electrode layer having the seed formed thereon, and a piezoelectric layer made of an oxide on the orientation control layer. 1. A method for manufacturing a piezoelectric element, comprising: a step; and a step of forming a second electrode layer on the piezoelectric layer.
【請求項3】 基板の一方の面上に振動板を設け、その
振動板上に酸化性金属からなる密着層を設け、その密着
層上に非酸化性金属からなる第1の電極層を設け、その
第1の電極層上に島状に分布した前記密着層の元素の酸
化物からなるシ−ドを設け、そのシ−ドを形成した第1
の電極層上に酸化物からなる配向制御層を設け、その配
向制御層上に酸化物からなる圧電体層を設け、その圧電
体層上に第2の電極層を設け、前記基板の他方の面に隔
壁で囲まれた圧力室を設けた圧電素子と、その圧電素子
の隔壁と、インク吐出口及び圧力室を備えたインクジエ
ツトヘツド本体とを接合してなるインクジエツトヘツ
ド。
3. A vibration plate is provided on one surface of a substrate, an adhesion layer made of an oxidizing metal is provided on the vibration plate, and a first electrode layer made of a non-oxidizing metal is provided on the adhesion layer. A seed comprising an oxide of the element of the adhesion layer distributed in an island shape is provided on the first electrode layer, and the seed is formed.
An orientation control layer made of an oxide is provided on the electrode layer of, a piezoelectric layer made of an oxide is provided on the orientation control layer, and a second electrode layer is provided on the piezoelectric layer. An ink jet head comprising a piezoelectric element having a pressure chamber surrounded by a partition wall, a partition wall of the piezoelectric element, and an ink jet head main body having an ink ejection port and a pressure chamber.
【請求項4】 基板上の一方の面上に振動板を形成する
工程と、その振動板上に酸化性金属からなる密着層を非
酸化性雰囲気中で形成する工程と、その密着層上に非酸
化性金属からなる第1の電極層を非酸化性雰囲気中で形
成する工程と、前記密着層と前記第1の電極層を酸化性
雰囲気中でアニ−ルして密着層の元素を第1の電極層上
に拡散させて島状に分布させ、その密着層の元素を酸化
させてシ−ドを形成する工程と、そのシ−ド上に酸化物
からなる配向制御層を形成する工程と、その配向制御層
上に酸化物からなる圧電体層を形成する工程と、その圧
電体層上に第2の電極層を形成する工程と、前記基板の
他方の面に隔壁で囲まれた圧力室を形成して圧電素子を
形成する工程と、その圧電素子の隔壁と、インク吐出口
及び圧力室を備えたインクジエツトヘツド本体とを接合
する工程とを有するインクジエツトヘツドの製造方法。
4. A step of forming a vibration plate on one surface of a substrate, a step of forming an adhesion layer made of an oxidizing metal on the vibration plate in a non-oxidizing atmosphere, and a step of forming the adhesion layer on the adhesion layer. A step of forming a first electrode layer made of a non-oxidizing metal in a non-oxidizing atmosphere, and annealing the adhesion layer and the first electrode layer in an oxidizing atmosphere to remove the elements of the adhesion layer 1 step of diffusing on the electrode layer to distribute in an island shape, oxidizing the elements of the adhesion layer to form a seed, and forming an orientation control layer made of an oxide on the seed And a step of forming a piezoelectric layer made of an oxide on the orientation control layer, a step of forming a second electrode layer on the piezoelectric layer, and surrounded by a partition wall on the other surface of the substrate. A step of forming a pressure chamber to form a piezoelectric element, a partition of the piezoelectric element, an ink discharge port, and an pressure chamber Ink jet head manufacturing method having a step of joining the Jietsutohetsudo body.
【請求項5】 請求項3に記載のインクジェットヘッド
と、前記インクジェットヘッドを記録媒体の幅方向に移
動するインクジェットヘッド移動手段と、前記インクジ
ェットヘッドの移動方向に対して略垂直方向に記録媒体
を移動する記録媒体移動手段とを備えたインクジェット
式記録装置。
5. The inkjet head according to claim 3, inkjet head moving means for moving the inkjet head in the width direction of the recording medium, and moving the recording medium in a direction substantially perpendicular to the moving direction of the inkjet head. And an ink jet recording apparatus including a recording medium moving unit.
【請求項6】 酸化性金属からなる密着層が、チタン、
鉄、コバルト、ニツケル、マンガンの群から選ばれた1
種以上である請求項1に記載の圧電素子。
6. The adhesion layer made of an oxidizing metal is titanium,
1 selected from the group of iron, cobalt, nickel and manganese
2. The piezoelectric element according to claim 1, which is one or more kinds.
【請求項7】 酸化性金属からなる密着層が、チタン、
鉄、コバルト、ニツケル、マンガンの群から選ばれた1
種以上である請求項3に記載のインクジエツトヘツド。
7. The adhesion layer made of an oxidizing metal is titanium,
1 selected from the group of iron, cobalt, nickel and manganese
4. The ink jet head according to claim 3, wherein the ink jet head is one or more kinds.
【請求項8】 非酸化性金属からなる第1の電極層が、
白金、イリジウム、ロジウム、ルテニウムの群から選ば
れた1種以上である請求項1に記載の圧電素子。
8. The first electrode layer made of a non-oxidizing metal,
2. The piezoelectric element according to claim 1, which is at least one selected from the group consisting of platinum, iridium, rhodium, and ruthenium.
【請求項9】 非酸化性金属からなる第1の電極層が、
白金、イリジウム、ロジウム、ルテニウムの群から選ば
れた1種以上である請求項3に記載のインクジエツトヘツ
ド。
9. The first electrode layer made of a non-oxidizing metal,
4. The ink jet head according to claim 3, which is at least one selected from the group consisting of platinum, iridium, rhodium and ruthenium.
【請求項10】 シ−ドが、酸化チタン、酸化鉄、酸化
コバルト、酸化ニツケル、酸化マンガンの群から選ばれ
た1種以上である請求項1に記載の圧電素子。
10. The piezoelectric element according to claim 1, wherein the seed is one or more selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, nickel oxide, and manganese oxide.
【請求項11】 シ−ドが、酸化チタン、酸化鉄、酸化
コバルト、酸化ニツケル、酸化マンガンの群から選ばれ
た1種以上である請求項3に記載のインクジエツトヘツ
ド。
11. The ink jet head according to claim 3, wherein the seed is one or more selected from the group consisting of titanium oxide, iron oxide, cobalt oxide, nickel oxide and manganese oxide.
【請求項12】 配向制御層が、チタン酸鉛ランタンも
しくはチタン酸鉛ランタンにマグネシウム又はマンガン
の群から選ばれた1種以上を添加し、さらに鉛が化学量
論組成よりも5原子%から30原子%過剰に含まれた組成
である請求項1に記載の圧電素子。
12. The orientation control layer comprises lead lanthanum titanate or lead lanthanum titanate to which one or more members selected from the group of magnesium and manganese are added, and the lead content is 5 atomic% to 30 atomic% more than the stoichiometric composition. The piezoelectric element according to claim 1, wherein the piezoelectric element has a composition that is contained in an excess of atomic%.
【請求項13】 配向制御層が、チタン酸鉛ランタンも
しくはチタン酸鉛ランタンにマグネシウム又はマンガン
の群から選ばれた1種以上を添加し、さらに鉛が化学量
論組成のチタン酸鉛ランタン酸よりも5原子%から30原
子%過剰に含まれた組成である請求項3に記載のインク
ジエツトヘツド。
13. The orientation control layer comprises lead lanthanum titanate or lead lanthanum titanate to which one or more members selected from the group of magnesium and manganese are added, and lead is more than stoichiometric lead lanthanum titanate. 4. The ink jet head according to claim 3, wherein the composition also contains 5 atomic% to 30 atomic% in excess.
【請求項14】 第1の電極層に対するシ−ドの比率が
0.1原子%から15原子%である請求項1に記載の圧電素
子。
14. The ratio of the seed to the first electrode layer is
The piezoelectric element according to claim 1, wherein the content is 0.1 atom% to 15 atom%.
【請求項15】 第1の電極層に対するシ−ドの比率が
0.1原子%から15原子%である請求項3に記載のインクジ
エツトヘツド。
15. The ratio of the seed to the first electrode layer is
4. The ink jet head according to claim 3, which is 0.1 atom% to 15 atom%.
【請求項16】 密着層の厚みが0.005μmから0.2μmで
ある請求項1に記載の圧電素子。
16. The piezoelectric element according to claim 1, wherein the adhesion layer has a thickness of 0.005 μm to 0.2 μm.
【請求項17】 密着層の厚みが0.005μmから0.2μmで
ある請求項3に記載のインクジエツトヘツド。
17. The ink jet head according to claim 3, wherein the adhesion layer has a thickness of 0.005 μm to 0.2 μm.
【請求項18】 配向制御層の厚みが0.005μmから0.2
μmである請求項1に記載の圧電素子。
18. The orientation control layer has a thickness of 0.005 μm to 0.2.
2. The piezoelectric element according to claim 1, which has a thickness of μm.
【請求項19】 配向制御層の厚みが0.005μmから0.2
μmである請求項3に記載のインクジエツトヘツド。
19. The thickness of the orientation control layer is from 0.005 μm to 0.2.
The ink jet head according to claim 3, wherein the ink jet head has a thickness of μm.
【請求項20】 圧電体層が、チタン酸ジルコン酸鉛も
しくはチタン酸ジルコン酸鉛にマグネシウム(Mg)、ニ
オブ(Nb)、亜鉛(Zn)の群から選ばれた1種以上を添
加したものである請求項1に記載の圧電素子。
20. The piezoelectric layer is formed by adding lead zirconate titanate or lead zirconate titanate with at least one member selected from the group consisting of magnesium (Mg), niobium (Nb) and zinc (Zn). 2. The piezoelectric element according to claim 1.
【請求項21】 圧電体層が、チタン酸ジルコン酸鉛も
しくはチタン酸ジルコン酸鉛にマグネシウム(Mg)、ニ
オブ(Nb)、亜鉛(Zn)の群から選ばれた1種以上を添
加したものである請求項3に記載のインクジエツトヘツ
ド。
21. A piezoelectric layer comprising lead zirconate titanate or lead zirconate titanate to which at least one selected from the group consisting of magnesium (Mg), niobium (Nb) and zinc (Zn) is added. 4. The ink jet head according to claim 3.
【請求項22】 圧電体層の厚みが1μmから10μmであ
る請求項1に記載の圧電素子。
22. The piezoelectric element according to claim 1, wherein the piezoelectric layer has a thickness of 1 μm to 10 μm.
【請求項23】 圧電体層の厚みが1μmから10μmであ
る請求項3に記載のインクジエツトヘツド。
23. The ink jet head according to claim 3, wherein the piezoelectric layer has a thickness of 1 μm to 10 μm.
JP2001384312A 2001-12-18 2001-12-18 Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith Withdrawn JP2003188432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384312A JP2003188432A (en) 2001-12-18 2001-12-18 Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384312A JP2003188432A (en) 2001-12-18 2001-12-18 Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith

Publications (1)

Publication Number Publication Date
JP2003188432A true JP2003188432A (en) 2003-07-04

Family

ID=27594070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384312A Withdrawn JP2003188432A (en) 2001-12-18 2001-12-18 Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith

Country Status (1)

Country Link
JP (1) JP2003188432A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007271788A (en) * 2006-03-30 2007-10-18 Brother Ind Ltd Oscillating element, method for manufacturing the same, optical scanner, image forming device, and image display device
JP2008004782A (en) * 2006-06-23 2008-01-10 Fujifilm Corp Ferroelectric element, its manufacturing method, ferroelectric memory, and ink-jet recording head
US7652408B2 (en) 2006-04-07 2010-01-26 Fujifilm Corporation Piezoelectric devices, process for producing the piezoelectric device, and inkjet recording head
JP2010226035A (en) * 2009-03-25 2010-10-07 Tdk Corp Dielectric element, and method of manufacturing the same
US8002390B2 (en) 2008-02-20 2011-08-23 Fuji Xerox Co., Ltd. Piezoelectric element substrate, liquid droplet ejecting head, liquid droplet ejecting device, and piezoelectric element substrate manufacturing method
JP2012199446A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Manufacturing method of piezoelectric element, piezoelectric element, liquid injection head, and liquid injection device
WO2015064341A1 (en) 2013-10-29 2015-05-07 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007271788A (en) * 2006-03-30 2007-10-18 Brother Ind Ltd Oscillating element, method for manufacturing the same, optical scanner, image forming device, and image display device
US7652408B2 (en) 2006-04-07 2010-01-26 Fujifilm Corporation Piezoelectric devices, process for producing the piezoelectric device, and inkjet recording head
JP2008004782A (en) * 2006-06-23 2008-01-10 Fujifilm Corp Ferroelectric element, its manufacturing method, ferroelectric memory, and ink-jet recording head
JP4519810B2 (en) * 2006-06-23 2010-08-04 富士フイルム株式会社 Ferroelectric element and manufacturing method thereof, ferroelectric memory, and ink jet recording head
US8002390B2 (en) 2008-02-20 2011-08-23 Fuji Xerox Co., Ltd. Piezoelectric element substrate, liquid droplet ejecting head, liquid droplet ejecting device, and piezoelectric element substrate manufacturing method
JP2010226035A (en) * 2009-03-25 2010-10-07 Tdk Corp Dielectric element, and method of manufacturing the same
JP2012199446A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Manufacturing method of piezoelectric element, piezoelectric element, liquid injection head, and liquid injection device
WO2015064341A1 (en) 2013-10-29 2015-05-07 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element
CN105659401A (en) * 2013-10-29 2016-06-08 柯尼卡美能达株式会社 Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element
JPWO2015064341A1 (en) * 2013-10-29 2017-03-09 コニカミノルタ株式会社 Piezoelectric element, inkjet head, inkjet printer, and method of manufacturing piezoelectric element
EP3067946A4 (en) * 2013-10-29 2018-01-24 Konica Minolta, Inc. Piezoelectric element, inkjet head, inkjet printer and method for producing piezoelectric element
US9889652B2 (en) 2013-10-29 2018-02-13 Konica Minolta, Inc. Piezoelectric device, inkjet head, inkjet printer, and method of manufacturing piezoelectric device

Similar Documents

Publication Publication Date Title
EP2579348B1 (en) Piezoelectric device, method of manufacturing piezoelectric device, and liquid ejection head
KR100672883B1 (en) Piezoelectric element
JP4058018B2 (en) Piezoelectric element and method for manufacturing the same, ink jet head including the piezoelectric element, ink jet recording apparatus, and angular velocity sensor
US5210455A (en) Piezoelectric/electrostrictive actuator having ceramic substrate having recess defining thin-walled portion
EP2579347B1 (en) Piezoelectric device and method of manufacturing piezoelectric device
EP0736385B1 (en) Printer head for ink jet recording and process for the preparation thereof
JP4361102B2 (en) Method for manufacturing piezoelectric element
JP5300184B2 (en) Piezoelectric body, piezoelectric element, liquid discharge head and liquid discharge apparatus using the piezoelectric element
TWI264839B (en) Dielectric element, piezoelectric element, ink jet head and method for producing the same head
EP0991130B1 (en) Piezoelectric device, ink-jet recording head, method for manufacture, and printer
JPH07108102B2 (en) Method for manufacturing piezoelectric / electrostrictive film type actuator
WO2005086248A1 (en) Piezoelectric element, inkjet head, angular velocity sensor, production methods for these and inkjet recording device
JPH0549270A (en) Piezoelectric/electrostrictive actuator
JP3828116B2 (en) Piezoelectric element
JPH09232644A (en) Piezoelectric thin film element and ink jet recording head using it
JP3996594B2 (en) Piezoelectric element, inkjet head, and inkjet recording apparatus
JP2003188432A (en) Piezo-electric device, its manufacturing method, ink jet head and ink jet recording device equipped therewith
US7193756B2 (en) Piezoelectric element, method for fabricating the same, inkjet head, method for fabricating the same, and inkjet recording apparatus
EP1338672B1 (en) Piezoelectric thin film and method for preparation thereof, piezoelectric element, ink-jet head, and ink-jet recording device
JP2005244174A (en) Piezoelectric device and manufacturing method therefor as well as ink jet head and ink jet type recording equipment using piezoelectric device
JP4451610B2 (en) Piezoelectric element, inkjet head, angular velocity sensor, manufacturing method thereof, and inkjet recording apparatus
JP2003188433A (en) Piezo-electric device, ink jet head and method for manufacturing them and ink jet recording device
JP4138421B2 (en) Droplet discharge head
JP2000158648A (en) Ink jet recording head
JPH0858088A (en) Liquid injection head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060713