JP2003183960A - Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the same - Google Patents
Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the sameInfo
- Publication number
- JP2003183960A JP2003183960A JP2001381452A JP2001381452A JP2003183960A JP 2003183960 A JP2003183960 A JP 2003183960A JP 2001381452 A JP2001381452 A JP 2001381452A JP 2001381452 A JP2001381452 A JP 2001381452A JP 2003183960 A JP2003183960 A JP 2003183960A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- polyacrylonitrile
- carbon fiber
- based carbon
- oxidized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 134
- 229920002239 polyacrylonitrile Polymers 0.000 title claims abstract description 92
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 58
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 58
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 238000012805 post-processing Methods 0.000 abstract description 4
- 239000002657 fibrous material Substances 0.000 abstract 3
- 230000032798 delamination Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 238000004080 punching Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000005539 carbonized material Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Nonwoven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高強度のポリアク
リロニトリル(PAN)系酸化繊維シートに関し、更に
詳述すれば、本発明は、耐熱性、及び耐薬品安定性に優
れた特徴を生かすと共に炭素化材料の中間原料に適した
PAN系酸化繊維シート、及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength polyacrylonitrile (PAN) -based oxidized fiber sheet. More specifically, the present invention takes advantage of the excellent heat resistance and chemical stability. The present invention relates to a PAN-based oxidized fiber sheet suitable as an intermediate raw material for a carbonized material, and a method for producing the same.
【0002】[0002]
【従来の技術】PAN系酸化繊維は、耐熱性、及び耐薬
品安定性に優れているので、断熱材、耐熱材、不燃化シ
ート等に利用されている。更に、このものを炭素繊維製
造の中間原料として用いる場合は、炭素化収率が高く、
高強度の炭素化材料が得られるので、産業上重要なもの
である。2. Description of the Related Art PAN-based oxidized fibers are used for heat insulating materials, heat resistant materials, non-combustible sheets, etc. because they are excellent in heat resistance and chemical resistance stability. Furthermore, when using this as an intermediate raw material for carbon fiber production, the carbonization yield is high,
It is an industrially important material because it provides a high-strength carbonized material.
【0003】酸化繊維をシート状に加工した構造体の一
種に、従来よりニードルパンチ法により製造する酸化繊
維不織布やウォータージェット法により製造する酸化繊
維不織布がある。[0003] As one type of structure obtained by processing oxidized fibers into a sheet, there are conventional oxidized fiber nonwoven fabrics manufactured by the needle punch method and oxidized fiber nonwoven fabrics manufactured by the water jet method.
【0004】低目付で厚さの薄い酸化繊維不織布は、場
所をとらず軽量である。しかし、この低目付で厚さの薄
い不織布は、引張強度が低く、伸びやすいため、上記用
途に応用した場合、寸法安定性が悪く、後加工中に切断
や変形を生じ易いという問題がある。酸化繊維不織布の
強度や伸度に欠ける問題を改善しようとして種類の異な
るシートを重ねることも考えられるが、この場合はシー
ト相互の剥離を生ずるという問題がある。Oxidized fiber non-woven fabric having a low basis weight and a small thickness is space-saving and lightweight. However, this non-woven fabric having a low basis weight and a small thickness has low tensile strength and is easily stretched, so that when it is applied to the above-mentioned applications, it has poor dimensional stability and is likely to be cut or deformed during post-processing. It is possible to stack different types of sheets in order to improve the problem of the lack of strength and elongation of the oxidized fiber nonwoven fabric, but in this case, there is a problem in that the sheets are peeled from each other.
【0005】[0005]
【発明が解決しようとする課題】本発明者は、解決すべ
き上記問題について鋭意検討した結果、PAN系酸化繊
維不織布又はウェッブと、繊維軸を一方向に沿って開繊
したPAN系炭素繊維開繊体とを重ね合わせ、ニードル
パンチ法又はウォータージェット法などの繊維交絡装置
により厚さ方向に交絡させることにより、これらが一体
化すると共に、繊維交絡装置の駆動方向(長さ方向)の
強度が向上し、及び伸びを抑制した炭素繊維で強化され
たPAN系酸化繊維シートを得ることができることを知
得した。DISCLOSURE OF THE INVENTION As a result of intensive studies on the above problems to be solved, the present inventor has found that a PAN-based oxidized fiber non-woven fabric or web and a PAN-based carbon fiber opened by extending the fiber axis along one direction. By superposing the fibers and entangled them in the thickness direction with a fiber entanglement device such as a needle punch method or a water jet method, these are integrated and the strength in the drive direction (length direction) of the fiber entanglement device is improved. It has been found that a PAN-based oxidized fiber sheet reinforced with carbon fibers having improved and suppressed elongation can be obtained.
【0006】更に、この酸化繊維シートは、開繊体と不
織布との一体化が強固になされており、相互の層剥離が
防止されることを知得し、本発明を完成するに至った。[0006] Further, in this oxidized fiber sheet, it has been found that the opened body and the non-woven fabric are firmly integrated with each other, so that mutual layer peeling is prevented, and the present invention has been completed.
【0007】従って、本発明の目的とするところは、上
記問題を解決したPAN系酸化繊維シート、及びその製
造方法を提供することにある。[0007] Therefore, an object of the present invention is to provide a PAN-based oxidized fiber sheet and a method for producing the same, which solve the above problems.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成する本
発明は、以下に記載するものである。The present invention which achieves the above-mentioned object is described below.
【0009】〔1〕 繊維軸を一方向に沿って開繊した
ポリアクリロニトリル系炭素繊維開繊体と、前記開繊体
の片面又は両面に積重したポリアクリロニトリル系酸化
繊維不織布又はウェッブと、前記開繊体の繊維と前記不
織布又はウェッブの繊維とを厚さ方向に交絡させる酸化
繊維又は炭素繊維の交絡繊維とからなるポリアクリロニ
トリル系炭素繊維強化酸化繊維シート。[1] A polyacrylonitrile-based carbon fiber spreader having a fiber axis opened in one direction, and a polyacrylonitrile-based oxidized fiber nonwoven fabric or web stacked on one side or both sides of the spreader, A polyacrylonitrile-based carbon fiber reinforced oxide fiber sheet comprising an open fiber and an entangled fiber of an oxidized fiber or a carbon fiber that entangles the nonwoven fabric or the fiber of the web in the thickness direction.
【0010】〔2〕 ポリアクリロニトリル系炭素繊維
強化酸化繊維シートの、目付(W(g/m2))と長さ
方向の引張強度(S(N/cm))とが、
S/W=1.7〜4.9
20≦W≦500
49≦S≦784
の関係を満足し、且つ長さ方向の引張伸度が2〜15%
である〔1〕に記載のポリアクリロニトリル系炭素繊維
強化酸化繊維シート。[2] The basis weight (W (g / m 2 )) and the tensile strength (S (N / cm)) in the length direction of the polyacrylonitrile-based carbon fiber-reinforced oxidized fiber sheet are S / W = 1. 7 to 4.9 20 ≦ W ≦ 500 49 ≦ S ≦ 784 is satisfied, and the tensile elongation in the length direction is 2 to 15%.
The polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet according to [1].
【0011】〔3〕 繊維軸を一方向に沿って開繊した
ポリアクリロニトリル系炭素繊維開繊体の片面又は両面
に、ポリアクリロニトリル系酸化繊維不織布又はウェッ
ブを積重し、次いで前記開繊体の繊維と前記不織布又は
ウェッブの繊維とを厚さ方向に交絡させて一体化させる
ことを特徴とするポリアクリロニトリル系炭素繊維強化
酸化繊維シートの製造方法。[3] A polyacrylonitrile-based oxidized fiber nonwoven fabric or web is stacked on one side or both sides of a polyacrylonitrile-based carbon fiber opened body whose fiber axis is opened in one direction, and then the above-mentioned opened body is opened. A method for producing a polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet, characterized in that the fibers and the fibers of the non-woven fabric or the web are entangled in the thickness direction to be integrated.
【0012】〔4〕 ポリアクリロニトリル系炭素繊維
開繊体の目付が5〜35g/m2である〔3〕に記載の
ポリアクリロニトリル系炭素繊維強化酸化繊維シートの
製造方法。[4] The method for producing a polyacrylonitrile-based carbon fiber reinforced oxide fiber sheet according to [3], wherein the polyacrylonitrile-based carbon fiber spread material has a basis weight of 5 to 35 g / m 2 .
【0013】〔5〕 ポリアクリロニトリル系酸化繊維
不織布又はウェッブの目付が10〜200g/m2であ
る〔3〕に記載のポリアクリロニトリル系炭素繊維強化
酸化繊維シートの製造方法。[5] The method for producing a polyacrylonitrile-based carbon fiber-reinforced oxidized fiber sheet according to [3], wherein the basis weight of the polyacrylonitrile-based oxidized fiber nonwoven fabric or web is 10 to 200 g / m 2 .
【0014】〔6〕 ポリアクリロニトリル系炭素繊維
強化酸化繊維シートの目付(W(g/m2))と、ポリ
アクリロニトリル系炭素繊維開繊体の目付(W1(g/
m2))とが、
W1/W=0.05〜0.20
の関係を満足する〔3〕に記載のポリアクリロニトリル
系炭素繊維強化酸化繊維シートの製造方法。[6] Basis weight of polyacrylonitrile-based carbon fiber-reinforced oxidized fiber sheet (W (g / m 2 )) and basis weight of polyacrylonitrile-based carbon fiber opened body (W1 (g / m 2 ))
m 2 )) satisfies the following relationship: W1 / W = 0.05 to 0.20. The method for producing a polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet according to [3].
【0015】[0015]
【発明の実施の形態】以下、本発明を図面を参照して説
明する。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings.
【0016】図1は本発明のポリアクリロニトリル(P
AN)系酸化繊維シートの一例を示す概略断面図であ
る。FIG. 1 shows the polyacrylonitrile (P
It is a schematic sectional drawing which shows an example of an AN) type oxidation fiber sheet.
【0017】本発明のPAN系酸化繊維シート2は、繊
維軸を一方向に沿って開繊したPAN系炭素繊維開繊体
4の両面に、PAN系酸化繊維不織布6、8が積重され
てなる。In the PAN-based oxidized fiber sheet 2 of the present invention, the PAN-based oxidized fiber nonwoven fabrics 6 and 8 are stacked on both surfaces of the PAN-based carbon fiber spreader 4 in which the fiber axis is opened in one direction. Become.
【0018】開繊体4の繊維と、不織布又はウェッブ
6、8の繊維とについては、図1に示すようにシートの
厚さ方向に交絡した炭素繊維又は酸化繊維の交絡繊維1
0が刺込まれており、この交絡繊維10は、開繊体4
と、不織布又はウェッブ6、8とを完全に貫通し又は途
中まで刺込み即ちこれらの操作により交絡して、開繊体
4と、不織布又はウェッブ6、8とが一体化している。As for the fibers of the spread material 4 and the fibers of the nonwoven fabric or the webs 6 and 8, as shown in FIG. 1, entangled fibers 1 of carbon fibers or oxidized fibers entangled in the thickness direction of the sheet.
0 has been inserted, and the entangled fiber 10 is the opened fiber 4
And the non-woven fabric or webs 6 and 8 are completely penetrated or stabbed in the middle, that is, entangled by these operations, so that the spread body 4 and the non-woven fabrics or webs 6 and 8 are integrated.
【0019】上記不織布又はウェッブ6、8を構成する
PAN系酸化繊維は、例えば、PAN系プリカーサーを
空気中で、初期酸化温度220〜250℃で10〜60
分酸化処理後、温度勾配0.2〜0.9℃/minで最
高温度250〜280℃まで酸化処理することにより得
ることができ、このPAN系酸化繊維は従来の何れのも
のでも使用できる。PAN系酸化繊維の、適正な比重は
1.36〜1.44、適正な繊度は0.5〜4.0dt
exである。The PAN-based oxide fibers constituting the above nonwoven fabric or webs 6 and 8 are, for example, 10 to 60 at an initial oxidation temperature of 220 to 250 ° C. in a PAN precursor in air.
After the partial oxidation treatment, it can be obtained by performing the oxidation treatment at a maximum temperature of 250 to 280 ° C. with a temperature gradient of 0.2 to 0.9 ° C./min, and any conventional PAN-based oxidized fiber can be used. Proper specific gravity of PAN-based oxidized fiber is 1.36 to 1.44, and proper fineness is 0.5 to 4.0 dt.
ex.
【0020】また、上記PAN系炭素繊維は、例えば、
上記PAN系酸化繊維を、不活性ガス雰囲気下に加熱
し、連続的に炭素化することにより得ることができる。
不活性ガスとしては、窒素、アルゴン、ヘリウム等を用
いることができる。炭素化温度は1300〜2500℃
が好ましい。The PAN-based carbon fiber is, for example,
It can be obtained by heating the PAN-based oxidized fiber in an inert gas atmosphere and continuously carbonizing it.
Nitrogen, argon, helium or the like can be used as the inert gas. Carbonization temperature is 1300 to 2500 ° C
Is preferred.
【0021】以下、図2を参照して、本発明のPAN系
炭素繊維強化酸化繊維シートの製造方法について説明す
る。The method for producing the PAN-based carbon fiber reinforced oxidized fiber sheet of the present invention will be described below with reference to FIG.
【0022】図2において、12は開繊処理前のPAN
系炭素繊維トウであり、14は開繊処理中のPAN系炭
素繊維トウであり、16は開繊処理後の即ち一体化前の
PAN系炭素繊維開繊体である。開繊処理自体は当業者
に公知の技術である。In FIG. 2, reference numeral 12 is a PAN before the opening treatment.
Carbon fiber tow, 14 is a PAN-based carbon fiber tow during fiber-spreading treatment, and 16 is a PAN-based carbon fiber spreader after fiber-spreading treatment, that is, before integration. The opening process itself is a technique known to those skilled in the art.
【0023】本発明のPAN系炭素繊維強化酸化繊維シ
ートに用いる繊維軸を一方向に沿って開繊したPAN系
炭素繊維開繊体16は、目付が5〜35g/m2である
ことが好ましい。The PAN-based carbon fiber spreader 16 in which the fiber axis used in the PAN-based carbon fiber-reinforced oxidized fiber sheet of the present invention is opened along one direction preferably has a basis weight of 5 to 35 g / m 2. .
【0024】開繊体16の目付が5g/m2未満の場合
は、得られるPAN系炭素繊維強化酸化繊維シートの強
度が低く、伸びやすくなる。このため、得られるPAN
系炭素繊維強化酸化繊維シートは寸法安定性が悪く、こ
れを用いて製造する加工品は後加工中に切断や変形を生
じ易いので好ましくない。When the basis weight of the spread fiber 16 is less than 5 g / m 2 , the strength of the obtained PAN-based carbon fiber-reinforced oxidized fiber sheet is low and it tends to stretch. Therefore, the PAN obtained
The carbon fiber reinforced oxide fiber sheet is not preferable because it has poor dimensional stability and a processed product manufactured using the same tends to be cut or deformed during post-processing.
【0025】開繊体16の目付が35g/m2を超える
場合は、得られるPAN系炭素繊維強化酸化繊維シート
が大きく且つ重くなり過ぎるため、場所をとるなど取扱
いにくくなるので好ましくない。When the basis weight of the spread fiber 16 exceeds 35 g / m 2 , the obtained PAN-based carbon fiber-reinforced oxidized fiber sheet is too large and heavy, which is not preferable because it is difficult to handle such as taking up space.
【0026】次いで、図3に示すように開繊体4(図2
では開繊体16)の両面にPAN系酸化繊維不織布又は
ウェッブ6、8を積重する。PAN系酸化繊維不織布又
はウェッブ6、8は、目付が10〜200g/m2であ
ることが好ましい。Then, as shown in FIG.
Then, the PAN-based oxidized fiber non-woven fabric or the webs 6 and 8 are stacked on both sides of the spread material 16). The PAN-based oxidized fiber nonwoven fabric or the webs 6 and 8 preferably have a basis weight of 10 to 200 g / m 2 .
【0027】この不織布又はウェッブ6、8としては、
例えば、PAN系酸化繊維を定長カットした綿をカード
加工して得られるウェッブを用いても良いし、このウェ
ッブを、ニードルパンチ法により、又はウォータージェ
ット法において連続的に水流によりパンチングして得ら
れる不織布を用いても良い。As the non-woven fabric or webs 6 and 8,
For example, a web obtained by carding a cotton obtained by cutting a PAN-based oxidized fiber to a fixed length may be used, or the web may be obtained by needle punching or continuously punching with a water jet in a water jet method. The non-woven fabric may be used.
【0028】その後、前記積重したPAN系炭素繊維開
繊体4と、PAN系酸化繊維不織布又はウェッブ6、8
とを常法によりパンチングして本発明のPAN系炭素繊
維強化酸化繊維シートを得るものである。Thereafter, the piled PAN-based carbon fiber spreader 4 and the PAN-based oxidized fiber nonwoven fabric or webs 6 and 8 are used.
Are punched by a conventional method to obtain the PAN-based carbon fiber-reinforced oxidized fiber sheet of the present invention.
【0029】以上のようにして得られる本発明のPAN
系炭素繊維強化酸化繊維シートは、目付(W(g/
m2))と長さ方向の引張強度(S(N/cm))と
が、
S/W=1.7〜4.9
25≦W≦500
49≦S≦784
の関係を満足し、且つ長さ方向の引張伸度が2〜15%
であることが好ましい。The PAN of the present invention obtained as described above
The carbon fiber reinforced oxide fiber sheet has a basis weight (W (g /
m 2 )) and the tensile strength (S (N / cm)) in the longitudinal direction satisfy the relationship of S / W = 1.7 to 4.9 25 ≦ W ≦ 500 49 ≦ S ≦ 784, and Tensile elongation in the length direction is 2 to 15%
Is preferred.
【0030】また、本発明のPAN系酸化繊維シートの
目付(W(g/m2))と、PAN系炭素繊維強化酸化
繊維開繊体の目付(W1(g/m2))とは、
W1/W=0.05〜0.20
の関係を満足することが好ましい。Further, the basis weight of the PAN-based oxidation fiber sheet of the present invention (W (g / m 2) ), PAN -based carbon fiber reinforced oxide fibers open繊体the basis weight (W1 (g / m 2) ) and is, It is preferable to satisfy the relationship of W1 / W = 0.05 to 0.20.
【0031】この範囲への調節は、一体化する前のPA
N系酸化繊維不織布又はウェッブの目付やPAN系炭素
繊維開繊体の目付を調節すること、及び/又は、一体化
時のニードルパンチ条件やウォータージェット加工条件
を調節することにより行うことができる。Adjustment to this range is performed by adjusting the PA before integration.
It can be performed by adjusting the basis weight of the N-based oxidized fiber nonwoven fabric or web or the basis weight of the PAN-based carbon fiber opened body, and / or by adjusting the needle punching condition and the water jet processing condition at the time of integration.
【0032】なお、上記製造方法においては、PAN系
炭素繊維強化酸化繊維シートは、PAN系炭素繊維開繊
体の両面にPAN系酸化繊維不織布又はウェッブが積重
されているが、これに限られず上記開繊体の片面のみに
上記不織布又はウェッブが積重されて製造されていても
良い。In the above manufacturing method, the PAN-based carbon fiber reinforced oxidized fiber sheet is formed by stacking PAN-based oxidized fiber nonwoven fabrics or webs on both sides of the PAN-based carbon fiber spreader, but not limited to this. The nonwoven fabric or the web may be stacked and produced only on one surface of the spread material.
【0033】[0033]
【実施例】本発明を以下の実施例及び比較例により詳述
する。EXAMPLES The present invention will be described in detail with reference to the following examples and comparative examples.
【0034】以下の実施例及び比較例の条件により酸化
繊維シートを作製した。原料酸化繊維、炭素繊維開繊
体、酸化繊維不織布又はウェッブ、及び酸化繊維シート
の諸物性値を、以下の方法により測定した。Oxidized fiber sheets were produced under the conditions of the following examples and comparative examples. Various physical properties of the raw material oxidized fiber, carbon fiber opened body, oxidized fiber nonwoven fabric or web, and oxidized fiber sheet were measured by the following methods.
【0035】比重:液置換法(JIS R−7601、
置換液:エチルアルコール)により測定した。Specific gravity: Liquid replacement method (JIS R-7601,
Substitution liquid: ethyl alcohol).
【0036】厚さ:直径30mmの円形圧板で200g
の荷重(2.8kPa)時の厚さを測定した。Thickness: 200 g with a circular plate having a diameter of 30 mm
Was measured under a load (2.8 kPa).
【0037】酸化繊維シート性能:引張り強度、引張り
伸度はJIS L−1096により測定した。Oxidized fiber sheet performance: Tensile strength and tensile elongation were measured according to JIS L-1096.
【0038】目付:単位面積当たりの質量と、上記条件
により測定した厚さより算出した。Basis weight: Calculated from the mass per unit area and the thickness measured under the above conditions.
【0039】実施例1
PAN系酸化繊維(繊度2dtex、比重1.39)の
カットファイバー(51mm)をカーディングし、目付
30g/m2、幅1.0mのウェッブを得た。また、P
AN系炭素繊維トウ(繊度1dtex、フィラメント数
9万本、フィラメント引張強度4.0GPa)を、繊維
軸を一方向に沿って開繊処理し、目付6g/m2、幅
1.0mの炭素繊維開繊体を得た。この開繊体と、上記
ウヱッブとを重ね合わせた後、連続的にニードルパンチ
法によりパンチング処理(パンチング数150回/in
2(150回/(2.54cm)2))し、厚さ方向に繊維
を完全に貫通させ又は途中まで刺込み、即ちこれらの操
作により繊維が交絡し、開繊体とウェッブとが一体化さ
れたPAN系炭素繊維強化酸化繊維シートを得た。Example 1 A cut fiber (51 mm) of PAN-based oxidized fiber (fineness: 2 dtex, specific gravity: 1.39) was carded to obtain a web having a basis weight of 30 g / m 2 and a width of 1.0 m. Also, P
An carbon fiber tow (fineness 1 dtex, number of filaments 90,000, filament tensile strength 4.0 GPa) is opened along one direction of the fiber axis, and carbon fiber having a basis weight of 6 g / m 2 and a width of 1.0 m An open fiber was obtained. After superposing this open body and the above-mentioned web, the punching treatment is continuously performed by the needle punching method (punching number: 150 times / in.
2 (150 times / (2.54 cm) 2 ), completely penetrate the fiber in the thickness direction or pierce it halfway, that is, the fibers are entangled by these operations, and the opened fiber and the web are integrated. The obtained PAN-based carbon fiber-reinforced oxidized fiber sheet was obtained.
【0040】得られた酸化繊維シートは、目付が36g
/m2、厚さが0.4mm、長さ方向の引張り強度が1
18N/cm、長さ方向の引張り伸度が3.5%、長さ
方向の引張り強度と目付との比(S/W)が3.3であ
り、しかも炭素繊維開繊体の目付と炭素繊維強化酸化繊
維シートの目付との比(W1/W)が0.17であり、
良好な物性のシートであった。The obtained oxidized fiber sheet has a basis weight of 36 g.
/ M 2 , thickness 0.4 mm, longitudinal tensile strength 1
18N / cm, the tensile elongation in the length direction is 3.5%, the ratio of the tensile strength in the length direction to the basis weight (S / W) is 3.3, and the basis weight and carbon of the carbon fiber spreader are The ratio (W1 / W) to the basis weight of the fiber-reinforced oxidized fiber sheet is 0.17,
The sheet had good physical properties.
【0041】比較例1
PAN系酸化繊維(繊度2dtex、比重1.39)の
カットファイバー(51mm)をカーディングし、目付
40g/m2、幅1.0mのウェッブを得た。この不織
布を、連続的にニードルパンチ法によりパンチング処理
(パンチング数150回/in2(150回/(2.54
cm)2))し、厚さ方向に繊維を完全に貫通させ又は途
中まで刺込み、即ちこれらの操作により繊維が交絡した
PAN系酸化繊維シートを得た。Comparative Example 1 A cut fiber (51 mm) of PAN-based oxidized fiber (fineness: 2 dtex, specific gravity: 1.39) was carded to obtain a web having a basis weight of 40 g / m 2 and a width of 1.0 m. This non-woven fabric is continuously punched by the needle punching method (punching number 150 times / in 2 (150 times / (2.54
cm) 2 )), and the fiber was completely penetrated in the thickness direction or was inserted halfway, that is, a PAN-based oxidized fiber sheet in which the fibers were entangled by these operations was obtained.
【0042】得られた酸化繊維シートは、目付が40g
/m2、厚さが0.5mm、長さ方向の引張り強度が
7.8N/cm、長さ方向の引張り伸度が37%、長さ
方向の引張り強度と目付との比(S/W)が0.20で
あり、良好な物性のシートではなかった。The oxidized fiber sheet thus obtained has a basis weight of 40 g.
/ M 2 , thickness 0.5 mm, longitudinal tensile strength 7.8 N / cm, longitudinal tensile elongation 37%, longitudinal tensile strength to basis weight ratio (S / W ) Was 0.20, which was not a sheet having good physical properties.
【0043】実施例2
PAN系酸化繊維(繊度2dtex、比重1.39)の
カットファイバー(51mm)をカーディングし、目付
30g/m2、幅1.0mのウェッブを得た。また、P
AN系酸化繊維トウ(繊度2dtex、フィラメント数
9万本)を、繊維軸を一方向に沿って開繊処理し、目付
20g/m2、幅1.0mの酸化繊維開繊体を得た。こ
の開繊体の上層及び下層に上記ウヱッブを重ね合わせた
後、連続的にニードルパンチ法によりパンチング処理
(パンチング数150回/in2(150回/(2.54
cm)2))し、厚さ方向に繊維を完全に貫通させ又は途
中まで刺込み、即ちこれらの操作により繊維が交絡し、
開繊体とウェッブとが一体化されたPAN系炭素繊維強
化酸化繊維シートを得た。Example 2 A cut fiber (51 mm) of PAN-based oxidized fiber (fineness: 2 dtex, specific gravity: 1.39) was carded to obtain a web having a basis weight of 30 g / m 2 and a width of 1.0 m. Also, P
An AN-based oxidized fiber tow (fineness: 2 dtex, number of filaments: 90,000) was subjected to opening treatment along a fiber axis in one direction to obtain an oxidized fiber opened body having a basis weight of 20 g / m 2 and a width of 1.0 m. After superposing the above webs on the upper and lower layers of this spreader, the punching treatment was continuously performed by the needle punching method (punching number 150 times / in 2 (150 times / (2.54
cm) 2 )) and completely penetrate the fiber in the thickness direction or pierce it halfway, that is, the fibers are entangled by these operations,
A PAN-based carbon fiber-reinforced oxidized fiber sheet in which the spread body and the web were integrated was obtained.
【0044】得られた酸化繊維シートは、目付が80g
/m2、厚さが0.5mm、長さ方向の引張り強度が4
4N/cm、長さ方向の引張り伸度が32%、長さ方向
の引張り強度と目付との比(S/W)が0.55、炭素
繊維開繊体の目付と炭素繊維強化酸化繊維シートの目付
との比(W1/W)が0.25であり、実施例1のシー
トほどではないが、良好な物性のシートであった。The oxidized fiber sheet obtained had a basis weight of 80 g.
/ M 2 , thickness 0.5 mm, longitudinal tensile strength 4
4 N / cm, tensile elongation in the lengthwise direction is 32%, ratio of tensile strength in the lengthwise direction to basis weight (S / W) is 0.55, basis weight of carbon fiber opened body and carbon fiber reinforced oxidized fiber sheet The ratio (W1 / W) to the fabric weight was 0.25, which was not as good as the sheet of Example 1, but was a sheet having good physical properties.
【0045】[0045]
【発明の効果】本発明のPAN系炭素繊維強化酸化繊維
シートは、繊維軸を一方向に沿って開繊したPAN系炭
素繊維開繊体で強化しているので引張り強度が高い。更
に、使用、又は加工するに際し、場所をとることなく、
軽量であり、強度が高く、伸びにくく、層剥離すること
なく、寸法安定性が良く、後加工中に切断や変形を生じ
にくいシートである。INDUSTRIAL APPLICABILITY The PAN-based carbon fiber reinforced oxidized fiber sheet of the present invention has high tensile strength because it is reinforced by the PAN-based carbon fiber spreader having the fiber axis opened in one direction. Furthermore, when using or processing, it does not take up space,
A sheet that is lightweight, has high strength, is difficult to stretch, does not peel off layers, has good dimensional stability, and is unlikely to be cut or deformed during post-processing.
【図1】本発明のPAN系炭素繊維強化酸化繊維シート
の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a PAN-based carbon fiber-reinforced oxidized fiber sheet of the present invention.
【図2】本発明のPAN系炭素繊維強化酸化繊維シート
に用いるPAN系炭素繊維トウ及び開繊体であって、そ
の開繊処理前、開繊処理中、及び開繊処理後を示す概略
断面図である。FIG. 2 is a schematic cross-sectional view showing a PAN-based carbon fiber tow and a spreader used for the PAN-based carbon fiber-reinforced oxidized fiber sheet of the present invention, showing before the opening, during the opening, and after the opening. It is a figure.
【図3】開繊体と、不織布又はウェッブとの積重時のP
AN系炭素繊維強化酸化繊維シートの一例を示す概略断
面図である。[Fig. 3] P at the time of stacking an opened body and a nonwoven fabric or a web
It is a schematic sectional drawing which shows an example of an AN carbon fiber reinforced oxidation fiber sheet.
2 PAN系酸化繊維シート
4 PAN系炭素繊維開繊体
6、8 PAN系酸化繊維不織布又はウェッブ
10 厚さ方向に交絡した炭素繊維又は酸化繊維の交
絡繊維
12 開繊処理前のPAN系炭素繊維トウ
14 開繊処理中のPAN系炭素繊維トウ
16 開繊処理後のPAN系炭素繊維開繊体2 PAN-based oxidized fiber sheet 4 PAN-based carbon fiber spreader 6, 8 PAN-based oxidized fiber nonwoven fabric or web 10 Entangled fiber of carbon fiber or oxidized fiber entangled in the thickness direction 12 PAN-based carbon fiber tow before opening treatment 14 PAN-based carbon fiber tow during opening processing 16 PAN-based carbon fiber opened body after opening processing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高見 祐介 静岡県駿東郡長泉町上土狩234 東邦テナ ックス株式会社内 Fターム(参考) 4L047 AA03 AA17 AA28 BA03 CA02 CA03 CA05 CA19 CB01 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yusuke Takami Toho Tena 234 Uechikari, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture X Co., Ltd. F-term (reference) 4L047 AA03 AA17 AA28 BA03 CA02 CA03 CA05 CA19 CB01
Claims (6)
クリロニトリル系炭素繊維開繊体と、前記開繊体の片面
又は両面に積重したポリアクリロニトリル系酸化繊維不
織布又はウェッブと、前記開繊体の繊維と前記不織布又
はウェッブの繊維とを厚さ方向に交絡させる炭素繊維又
は酸化繊維の交絡繊維とからなるポリアクリロニトリル
系炭素繊維強化酸化繊維シート。1. A polyacrylonitrile-based carbon fiber spreader having a fiber axis opened in one direction, a polyacrylonitrile-based oxidized fiber nonwoven fabric or a web stacked on one side or both sides of the opened body, and the opening. A polyacrylonitrile-based carbon fiber reinforced oxide fiber sheet comprising carbon fibers or entangled fibers of oxide fibers that entangle the fibers of the fibrous body with the fibers of the non-woven fabric or the web in the thickness direction.
化繊維シートの、目付(W(g/m2))と長さ方向の
引張強度(S(N/cm))とが、 S/W=1.7〜4.9 20≦W≦500 49≦S≦784 の関係を満足し、且つ長さ方向の引張伸度が2〜15%
である請求項1に記載のポリアクリロニトリル系炭素繊
維強化酸化繊維シート。2. The weight per unit area (W (g / m 2 )) and the tensile strength (S (N / cm)) of the polyacrylonitrile-based carbon fiber-reinforced oxidized fiber sheet are S / W = 1. 7-4.9 20 ≦ W ≦ 500 49 ≦ S ≦ 784 is satisfied, and the tensile elongation in the length direction is 2 to 15%.
The polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet according to claim 1.
クリロニトリル系炭素繊維開繊体の片面又は両面に、ポ
リアクリロニトリル系酸化繊維不織布又はウェッブを積
重し、次いで前記開繊体の繊維と前記不織布又はウェッ
ブの繊維とを厚さ方向に交絡させて一体化させることを
特徴とするポリアクリロニトリル系炭素繊維強化酸化繊
維シートの製造方法。3. A polyacrylonitrile-based carbon fiber spreader having a fiber axis opened in one direction is laminated on one or both sides thereof with a polyacrylonitrile-based oxidized fiber nonwoven fabric or web, and then the fibers of the spreader. A method for producing a polyacrylonitrile-based carbon fiber reinforced oxide fiber sheet, characterized in that the non-woven fabric or web fibers are entangled in the thickness direction to be integrated.
の目付が5〜35g/m2である請求項3に記載のポリ
アクリロニトリル系炭素繊維強化酸化繊維シートの製造
方法。4. The method for producing a polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet according to claim 3, wherein the basis weight of the polyacrylonitrile-based carbon fiber opened body is 5 to 35 g / m 2 .
又はウェッブの目付が10〜200g/m2である請求
項3に記載のポリアクリロニトリル系炭素繊維強化酸化
繊維シートの製造方法。5. The method for producing a polyacrylonitrile carbon fiber reinforced oxide fiber sheet according to claim 3, wherein the basis weight of the polyacrylonitrile oxide fiber nonwoven fabric or web is 10 to 200 g / m 2 .
化繊維シートの目付(W(g/m2))と、ポリアクリ
ロニトリル系炭素繊維開繊体の目付(W1(g/
m2))とが、 W1/W=0.05〜0.20 の関係を満足する請求項3に記載のポリアクリロニトリ
ル系炭素繊維強化酸化繊維シートの製造方法。6. A basis weight of a polyacrylonitrile-based carbon fiber reinforced oxide fiber sheet (W (g / m 2 )) and a basis weight of a polyacrylonitrile-based carbon fiber opened body (W1 (g / m 2 )).
m 2 )) satisfies the following relationship: W1 / W = 0.05 to 0.20. 4. The method for producing a polyacrylonitrile-based carbon fiber reinforced oxidized fiber sheet according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001381452A JP2003183960A (en) | 2001-12-14 | 2001-12-14 | Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001381452A JP2003183960A (en) | 2001-12-14 | 2001-12-14 | Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003183960A true JP2003183960A (en) | 2003-07-03 |
Family
ID=27592124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001381452A Pending JP2003183960A (en) | 2001-12-14 | 2001-12-14 | Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003183960A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112089A (en) * | 2010-11-26 | 2012-06-14 | Messier-Bugatti-Dowty | Method of making three-dimensional fiber preform |
CN104167235A (en) * | 2014-07-25 | 2014-11-26 | 江苏通光光缆有限公司 | Conductive fiber cable |
CN110205748A (en) * | 2019-04-30 | 2019-09-06 | 西南石油大学 | A kind of composite nano-fiber membrane and the preparation method and application thereof of β-FeOOH/ polyacrylonitrile |
RU198784U1 (en) * | 2020-02-26 | 2020-07-28 | Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" | NON-WOVEN FIRE RESISTANT PUNCHING MATERIAL |
JP7507237B2 (en) | 2019-10-31 | 2024-06-27 | スリーエム イノベイティブ プロパティズ カンパニー | Thermal insulation material and method |
-
2001
- 2001-12-14 JP JP2001381452A patent/JP2003183960A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112089A (en) * | 2010-11-26 | 2012-06-14 | Messier-Bugatti-Dowty | Method of making three-dimensional fiber preform |
CN104167235A (en) * | 2014-07-25 | 2014-11-26 | 江苏通光光缆有限公司 | Conductive fiber cable |
CN110205748A (en) * | 2019-04-30 | 2019-09-06 | 西南石油大学 | A kind of composite nano-fiber membrane and the preparation method and application thereof of β-FeOOH/ polyacrylonitrile |
JP7507237B2 (en) | 2019-10-31 | 2024-06-27 | スリーエム イノベイティブ プロパティズ カンパニー | Thermal insulation material and method |
RU198784U1 (en) * | 2020-02-26 | 2020-07-28 | Общество с Ограниченной Ответственностью "Фабрика Нетканых Материалов "Весь Мир" | NON-WOVEN FIRE RESISTANT PUNCHING MATERIAL |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI598484B (en) | Carbon fiber non-woven fabric and gas diffusion electrode of polymer electrolyte fuel cell using the same, polymer electrolyte fuel cell, fabrication method of carbon fiber non-woven fabric, and composite sheet | |
TWI261639B (en) | Method for making carbon fiber fabric and product thereof | |
TW201009146A (en) | Nonwoven fabric, felt and manufacturing method thereof | |
EP2781538B1 (en) | Fiber-reinforced composite material and process for producing fiber-reinforced composite material | |
JP2678513B2 (en) | Carbon fiber structure, carbon-carbon composite material, and methods for producing the same | |
JP2005534826A (en) | Pitch-based graphite cloth and felt with felt holes for gas diffusion layer substrates and high thermal conductivity reinforced composites for fuel cells | |
US4902561A (en) | Lock set structure | |
JP2003183960A (en) | Polyacrylonitrile based carbon fiber reinforced oxidized fiber sheet and method for producing the same | |
CN113046920A (en) | Preparation method of prefabricated body for carbon fiber soft felt | |
JP2003183962A (en) | Polyacrylonitrile based carbon fiber sheet and method for producing the same | |
CN110626010A (en) | Activated carbon fiber felt and preparation method and application thereof | |
JP2003183964A (en) | Polyacrylonitrile oxidized fiber sheet and method for producing the same | |
US4987664A (en) | Process for forming an interlocked batting of carbonaceous fibers | |
JP3061228B2 (en) | Method for producing a fiber preform for the production of a composite material product | |
JP2003183961A (en) | Polyacrylonitrile based carbon fiber sheet and method for producing the same | |
JP4863443B2 (en) | Carbon fiber mixed oxidized fiber felt, carbon fiber felt, and manufacturing method thereof | |
JP2003045443A (en) | Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method | |
JP3496074B2 (en) | Fibrous activated carbon knit | |
JPH0533249A (en) | High-density felt of carbon fiber and production thereof | |
JP3010447B2 (en) | Electrode material for battery and its manufacturing method | |
JP2002235247A (en) | Knitted fabric of fibrous activated carbon | |
JP2010059573A (en) | Carbon fiber felt and method for producing the same | |
JPH05171552A (en) | Production of high-density felt made of carbon fiber | |
JPH05325932A (en) | Separator for alkaline secondary battery and manufacture thereof | |
JP4200421B2 (en) | Laminated product of fibrous activated carbon knitted fabric with water repellency |