Nothing Special   »   [go: up one dir, main page]

JP2002116145A - 溶液濃度計測方法および溶液濃度計測装置 - Google Patents

溶液濃度計測方法および溶液濃度計測装置

Info

Publication number
JP2002116145A
JP2002116145A JP2000308144A JP2000308144A JP2002116145A JP 2002116145 A JP2002116145 A JP 2002116145A JP 2000308144 A JP2000308144 A JP 2000308144A JP 2000308144 A JP2000308144 A JP 2000308144A JP 2002116145 A JP2002116145 A JP 2002116145A
Authority
JP
Japan
Prior art keywords
solution
concentration
reagent solution
turbidity
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000308144A
Other languages
English (en)
Inventor
Tatsuro Kawamura
達朗 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000308144A priority Critical patent/JP2002116145A/ja
Priority to US09/969,656 priority patent/US6762054B2/en
Priority to EP01123759A priority patent/EP1197744A3/en
Publication of JP2002116145A publication Critical patent/JP2002116145A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/115831Condition or time responsive

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】 【課題】 計測値の精度を判定することと、この精度の
判定結果に基づき計測の有効性を判定することで、計測
の信頼性を向上させる。 【解決手段】 被検溶液中の特定成分の濃度を計測する
際に、試薬溶液の光学特性を計測し、濃度計測の精度を
確保する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、被検溶液中に溶解
している溶質、例えばタンパク質などの旋光性物質の濃
度を計測するための溶液濃度計測方法および溶液濃度計
測装置に関する。より具体的には、本発明は、被検溶液
に試薬を混合することによって、被検溶液に含まれる特
定成分に起因する光学特性を変化させ、この特定成分の
濃度を計測する方法および装置に関する。
【0002】
【従来の技術】従来からの溶液濃度計測方法としては、
例えば、金属イオン、色素または酵素などを含む試薬溶
液を被検溶液に混合し、被検溶液中の特定成分と反応さ
せることによって、被検溶液の吸光特性(吸光スペクト
ル)を変化させて、この吸光特性の変化を分光器などで
計測する呈色法がある。また、スルホサリチル酸などを
含む酸性試薬溶液を被検溶液に混合し、被検溶液中のタ
ンパク質を凝集させることで、前記被検溶液を混濁化
し、濁度を計測する方法がある。
【0003】さらに、抗原を含む被検溶液に、この抗原
に対する抗体を含む試薬溶液を混合し、抗原抗体複合物
を生成させて混濁化し、被検溶液を透過した透過光の強
度の減少や被検溶液中を伝搬する際に発生した散乱光強
度の増加を検出することで、抗原濃度を決定する方法が
ある。この場合、例えば被検溶液が尿の場合の抗原とし
ては、ヘモグロビン、アルブミンおよび黄体形成ホルモ
ンなどがあげられれ、被検溶液が血液の場合の抗原とと
しては、ヘモグロビン、糖化タンパク質およびC−反応
性タンパク質(CRP)などがあげられる。
【0004】一方、従来の溶液濃度計測装置としては、
分光器および液体クロマトグラフィなどを用いたものが
ある。また、尿検査装置としては、試薬を含浸した試験
紙などがある。この試験紙に尿を浸し、呈色反応を分光
器などによって観測し、尿の成分を検査することができ
る。ここで使用される試験紙は、グルコースまたはタン
パク質などの個々の検査項目に応じてそれぞれ用意され
る。ところが、上述の方法および装置のいずれにおいて
も、使用される試薬の特性変化を検査して、溶液濃度計
測の精度を簡単に判定する対策は、特に講じられてはい
なかった。なぜなら、病院などの専門施設のように、試
薬溶液の使用期限および保存環境などに関する管理体制
が確立している場所では、試薬溶液の特性変化を考慮す
る必要性が低かったからである。
【0005】さらに、これらの施設において専門技術を
有する担当者は、特定成分の濃度が既知の標準サンプル
(コントロール尿およびコントロール血清など)を用
い、必要に応じて計測機器(分光器など)を含めた計測
システム全体の校正や機能検査を実施している。したが
って、訓練されていない素人でも実施できるような試薬
の特性変化に対する対策技術は、特に必要とはされず、
充分な開発もなされていなかった。
【0006】
【発明が解決しようとする課題】しかし、家庭などにお
いて溶液濃度計測検査を実施する場合には、以下のよう
な問題がある。即ち、家庭では、温度、湿度および日照
などの保存環境のばらつきが大きいため、一定期間内の
保存でも、試薬の特性変化のばらつきが大きくなりがち
である。特に、試薬を含む容器を開封した後は、この特
性変化のばらつきが大きくなることがある。また、特に
一般家庭における人々は、尿検査などに応用される溶液
濃度計測方法について熟知しておらず、また訓練されて
いるわけではないことから、試薬の特性変化に対する対
策技術の操作は、できる限り簡単で、かつ自動化された
ものであるのが望ましい。さらに、上述のような溶液濃
度計測装置を尿検査装置として一般家庭に普及させるた
めには、装置の小型化および低コスト化が必要である。
【0007】そこで、本発明は、上記の問題を考慮し、
試薬の特性変化を検査して計測の精度を判定することに
よって計測の信頼性を向上させた溶液濃度計測方法、お
よびかかる方法に用いることのできる小型で維持管理が
容易な溶液濃度計測装置を提供することを目的とする。
換言すると、本発明は、保存環境によって時間と共に試
薬溶液の特性が変化する場合に、この特性変化を検査し
て、この試薬溶液を用いた計測の精度を判定することを
目的とする。具体的には、本発明は、この特性の変化
(差および/または比)があらかじめ設定された範囲か
ら外れた場合に、この試薬溶液を用いた計測が有効であ
ると判定する方法を提供することを目的とする。
【0008】
【課題を解決するための手段】本発明は、被検溶液と試
薬溶液の混合液の光学特性を計測することによって、前
記被検溶液中の特定成分の濃度を計測する溶液濃度計測
方法であって、前記試薬溶液の光学特性を計測して得ら
れる計測値に基づいて前記試薬溶液の特性を検査し、前
記特定成分の濃度計測値の精度を判定することを特徴と
する溶液濃度計測方法に関する。
【0009】より具体的には、前記方法は、(1)特定
の保存環境下の各保存時点において前記試薬溶液の光学
特性の経時変化特性を求める工程、(2)前記保存時点
における試薬溶液を用いた混合液の光学特性を計測し
て、前記混合液の光学特性の経時変化特性を求める工
程、(3)前記試薬溶液および混合液の光学特性の経時
変化特性に基づいて、前記試薬溶液の光学特性の変化に
対する前記混合液の光学特性の変化を表わす特性曲線を
作成する工程、ならびに(4)前記試薬溶液の光学特性
を計測して得られる計測値および前記特性曲線に基づい
て、前記試薬溶液の特性を検査して、前記特定成分の濃
度計測値の精度を判定する工程を含むのが有効である。
【0010】計測する前記被検溶液の光学特性が、吸光
度または濁度であるのが有効である。また、計測する前
記試薬溶液の光学特性が、吸光度または濁度であるのが
有効である。また、上記溶液濃度計測方法においては、
計測する前記混合液および試薬溶液の光学特性が同じで
あり、同一波長の光を用いて光学特性を計測するのが有
効である。また、計測する前記混合液および試薬溶液の
光学特性が同じであり、同一の光学特性計測装置を用い
て計測するのも有効である。
【0011】また、前記試薬溶液の濁度が高いまたは低
い場合に、前記特定成分の濃度の計測値の精度が低く、
前記試薬溶液の濁度が低いまたは高い場合に、前記特定
成分の濃度計測値の精度が高いと判定するのが有効であ
る。また、前記試薬溶液の濁度が所定値以下または以上
である場合に、前記特定成分の濃度計測値の精度が高く
有効であると判定するのが有効である。
【0012】さらに、製造直後に最初に溶液濃度計測方
法に用いられる前記試薬溶液の吸光度および/または濁
度を初期値とし、2回目以降の溶液濃度計測方法に用い
られる前記試薬溶液の吸光度および/または濁度と前記
初期値とを比較し、前記特定成分の濃度計測値の精度を
判定するのが有効である。また、前記吸光度および/も
しくは濁度と前記初期値との差ならびに/または比が、
あらかじめ設定された所定値以下である場合に、前記特
定成分の濃度計測値が有効であると判定するのも有効で
ある。
【0013】さらに、本発明は、被検溶液に光を照射す
る光源と、前記光が前記被検溶液を透過するように前記
被検溶液を保持するサンプルセルと、前記被検溶液を透
過した光を検知する光センサー1および/または前記光
が前記被検溶液中を伝搬する際に発生した散乱光を検知
するように配置された光センサー2と、前記サンプルセ
ルへ前記被検溶液および試薬溶液を導入する輸液系と、
前記輸液系を制御し前記光センサー1および/または光
センサー2の出力信号を解析するコンピューターとを備
え、前記光センサー1の出力信号を前記被検溶液の濁度
もしくは吸光度に対応した計測値として用い、および/
または前記光センサー2の出力信号を前記被検溶液の濁
度に対応した計測値として用い、請求項1〜10のいず
れかに記載の溶液濃度計測方法で、前記被検溶液の特定
成分の濃度を計測することを特徴とする溶液濃度計測装
置にも関する。
【0014】この場合、前記特定成分の濃度が低い被検
溶液の濃度を決定する場合には、前記光センサー2の出
力信号を濁度に対応した計測値として用い、前記特定成
分の濃度が高い被検溶液の濃度を決定する場合には、前
記光センサー1の出力信号を濁度に対応した計測値とし
て用い、前記被検溶液の特定成分の濃度を算出すること
で、計測できる濃度範囲を拡大するのが有効である。ま
た、前記光センサー2の出力信号を前記試薬溶液の濁度
に対応した計測値として用いることで、前記試薬溶液の
特性検査精度を向上させるのが有効である。
【0015】
【発明の実施の形態】上述のように、本発明は、被検溶
液と試薬溶液との混合液の光学特性を計測することで、
被検溶液中の特定成分の濃度を計測する溶液濃度計測方
法であって、前記混合液の光学特性を計測する際に、前
記試薬溶液の光学特性も計測して、この計測値より前記
試薬溶液の特性を検査して、前記試薬溶液を用いた計測
の精度を判定する溶液濃度計測方法である。この方法に
より、検査の信頼性や精度を向上させ、検査工程を大幅
に簡略化することができる。即ち、本発明は、試薬溶液
の光学特性が保存環境によって時間と共に変化する場合
に、この経時変化特性を検査し、この試薬溶液を用いた
計測の精度を判定することを目的とする。
【0016】本発明の方法は、種々の溶液濃度計測装置
を用いて行うことができるが、まず、本発明に係る方法
を実施することのできる溶液濃度計測装置の一例につい
て説明する。図1は、本発明に係る方法を実施すること
のできる光学系および計測系を含む溶液濃度計測装置の
部分断面概略側面図である。また、図2は、図1に示す
溶液濃度計測装置の光学系のみの概略上面図である。
【0017】図1および2に示す溶液濃度計測装置にお
いては、光源1が、種々の波長、強度およびビーム直径
を有する略平行光2を投射する。サンプルセル3は、上
部に開放された開口部を有し、4つの側面が透明な光学
窓を有する。このサンプルセル3としては、被検溶液を
保持した状態で、被検溶液に光を照射することができ、
透過光および散乱光を外部に取り出すことができるもの
を用いる。また、被検溶液を透過した光を検知する光セ
ンサー4、および被検溶液中を伝搬する際に発生した散
乱光7を検知する光センサー5が設置され、コンピュー
ター6は、光源1を制御し、光センサー4および5の出
力信号を解析する。この構成においては、被検溶液の濁
度が増加する場合、光センサー4の出力信号が低下し、
光センサー5の出力信号が増加する。このように、濁度
は透過光強度または散乱光強度より計測することができ
る。
【0018】さらに、図3に、本発明に係る方法を実施
することのできる光学系および計測系を含む別の溶液濃
度計測装置の部分断面概略側面図を示す。また、図4
は、図3に示す溶液濃度計測装置の光学系のみの概略上
面図である。この図3および4に示す溶液濃度計測装置
は、図1および2に示す溶液濃度計測装置を設計変更し
たものである。したがって、光源8、サンプルセル1
0、光センサー11および光センサー12は、上記光源
1、サンプルセル3、光センサー4および光センサー5
と同じである。なお、光センサー4は略平行光9を検知
し、光センサー5は散乱光17を検知する。
【0019】この溶液濃度計測装置においては、さらに
試薬をサンプルセル10に注入する注入口13がサンプ
ルセル10の底部に設けられている。また、サンプルセ
ル10中の被検溶液に試薬溶液を所定容量注入するピペ
ッタ14が設置され、サンプルセル10内において被検
溶液と試薬溶液の混合液を調製することができる。ま
た、サンプルセル10の上部の開口部から、被検溶液を
所定容量導入するピペッタ15が設けられている。コン
ピューター16は、光源8、ピペッタ14および15を
制御し、光センサー11および12の出力信号を解析す
る。この構成においては、濁度が増加する場合、光セン
サー11の出力信号が低下し、光センサー12の出力信
号が増加する。このように、濁度は透過光強度または散
乱光強度より計測することができる。
【0020】本発明者らは、上述のような溶液濃度計測
装置を用いて溶液の濃度を計測する際に、試薬溶液の濁
度によって計測精度に影響が生じることに着目し、本発
明を完成するに至った。図1および2または3および4
に示す溶液濃度計測装置を用いて、被検溶液としてタン
パク質を含む尿の濃度を計測する場合について説明す
る。まず、被検溶液である尿に試薬溶液であるスルホサ
リチル酸試薬溶液(硫酸ナトリウムの塩を2−ヒドロキ
シ−5−スルホ安息香酸水溶液に溶解して得られる試薬
溶液)を混合すると、次第にタンパク質成分が凝集し、
混合液が混濁する。この試薬溶液の混合前後の尿に光を
照射し、透過光強度の低下および/または散乱光強度の
増加によってタンパク質濃度を計測することができる。
【0021】また、被検溶液である尿に抗ヒトアルブミ
ンウサギ血清より抗体成分を精製して得られた試薬溶液
を混合すると、アルブミン(抗原)と抗体により抗原抗
体複合物が生成され、被検溶液が混濁する。この試薬溶
液の混合前後の尿に光を照射し、透過光強度の低下およ
び/または散乱光強度の増加によってアルブミン濃度を
計測することができる。このように、試薬溶液の混合前
の散乱光強度の差より、濃度を算出することで、混濁お
よび着色などの影響を受けず、正確に濃度を計測するこ
とが可能になる。また、試薬溶液の混合前後の透過光強
度の変化より、即ち混合前後の透過光強度の比より、濃
度を算出することで、混濁および着色などの影響を受け
ず、正確に濃度を計測することが可能になる。したがっ
て、上述の方法は、実用的効果が極めて大きく、計測お
よび検査の信頼性を向上させることが可能となる。
【0022】ここで、尿中のタンパク質またはアルブミ
ンの濃度と、透過高強度または散乱光強度との関係を示
す検量線をあらかじめ作成しておけば、種々の被検溶液
の透過光強度または散乱光強度を計測するだけで濃度を
求めることができる。しかし、この検量線を作成した時
と被検溶液の濃度計測時とにおいて、試薬溶液の特性
変化してしまうと、濃度計測値の精度が狂ってしまうこ
とになる。例えば、スルホサリチル酸試薬溶液を低温で
放置すると、スルホサリチル酸試薬溶液中の各種塩が析
出し、試薬溶液そのものの濁度が増加することがある。
また、抗ヒトアルブミンウサギ血清より抗体成分を精製
して得られた試薬溶液を高温で長時間放置すると、試薬
溶液そのものの濁度が増加することがある。同時に、こ
れらの混濁した試薬溶液を被検溶液に混合して得られる
混合液の濁度も変化することがある。ただし、これらの
試薬溶液および混合液の濁度の変化は、試薬溶液の組成
(酸、緩衝剤、反応促進剤および安定化剤などの種
類)、抗体の種類などによって変化する。
【0023】そこで、本発明においては、このように試
薬溶液の光学特性が変化する場合に、試薬溶液そのもの
の光学特性を計測し、この計測値を用いて、濃度計測値
の精度を判定するのである。本発明で取り扱う試薬溶液
の光学特性および光学特性の経時変化特性についてさら
に具体的に説明する。上述のように、試薬溶液を長時間
放置すると、試薬溶液そのものの吸光度および濁度など
の光学特性が変化する。例えば、色素または酵素が変質
または分解することで吸光特性(吸光スペクトル)が変
化したり、試薬溶液中の金属イオンまたは塩分が析出し
てすることで濁度が増加したりする。また、抗体を含ん
だ試薬溶液の場合は、抗体の変性または分解によって濁
度が増加したり、各種添加剤と抗体の結合および/また
は各種添加剤同士の結合などによる沈殿によって濁度が
低下することもある。これらの試薬溶液の特性の変化
は、試薬瓶などの開封後は、酸素または二酸化炭素など
の影響を受けて大きくなることもある。
【0024】これらの試薬溶液の特性の変化に伴い、被
検溶液の光学特性が、前記試薬溶液との混合の前後で異
なることがある。そして、計測された混合液の光学特性
より特定成分の濃度を算出する際には、特性の変化して
いない試薬溶液を用いて作成した検量線を使用するた
め、特性変化した試薬溶液を用いた計測の精度は低いと
いえる。そこで、本発明においては、試薬溶液そのもの
の吸光度および濁度などの光学特性を計測し、この計測
値から、前記試薬溶液を用いた計測の精度を判定するの
である。
【0025】本発明の方法を工程ごとに説明する。 1.工程(1) まず、工程(1)として、特定の保存環境下の各保存時
点において前記試薬溶液の光学特性の経時変化特性を求
める。具体的には、試薬溶液の濁度および吸光度などの
光学特性を、その調製直後(または試薬瓶の開封直後)
からの経時的な変化を求める。即ち、保存時点とは、試
薬溶液の製造直後または開封直後からの経過時間をい
う。この保存時点の数、即ち光学特性の計測回数は、被
検溶液、試薬溶液および装置構成などに応じて、当業者
であれば適宜選択することができる。試薬溶液の濁度お
よび吸光度は、透過光強度および散乱光強度を計測する
ことによって検知することができるが、どちらを計測す
るかは試薬溶液の種類および特性などに応じて適宜選択
すればよい。ただし、試薬溶液の濁度の絶対値が小さい
場合は、濁度を散乱光強度として計測した方が、感度が
高く有利である。
【0026】また、前記濁度および吸光度は、時間と共
に増加するものであっても、低下するものであってもよ
い。例えばスルホサリチル酸試薬溶液は、保存期間が延
びるにしたがって濁度が増加する場合もあるが、組成お
よび保存環境などが異なれば、析出物の沈殿現象などに
より、保存期間が延びるにしたがって濁度が低下するこ
ともある。このような場合においても、その組成および
保存環境など対応する濁度の経時変化特性(例えば、後
述する図7および8)をあらかじめ計測しておき、後述
する工程において試薬溶液および混合液の濁度の関係を
示す特性曲線を求め、これに基づき、計測値の精度判定
や、計測の有効無効を判定することができる。
【0027】即ち、本発明によれば、予想される保存環
境のもとで、各試薬溶液の組成などに応じた試薬溶液お
よびそれを用いた混合液の濁度および光学特性などの経
時変化特性をあらかじめ計測して把握することで、計測
値の精度判定、および計測の有効無効判定を実現でき、
濃度計測の信頼性を向上させることができるのである。
ただし、特定の保存環境下は、雰囲気温度、光の有無、
振動および湿度(特に開封後)などによって決定され
る。
【0028】2.工程(2) つぎに、工程(2)において、前記保存時点における前
記混合液の光学特性を計測して、前記混合液の光学特性
の経時変化特性を求める。具体的には、各保存時点にお
ける試薬溶液を、調製直後または開封直後の被検溶液に
混合し、得られた混合液の光学特性(例えば、透過光強
度および散乱光強度など)を計測する。即ち、製造直後
または開封直後から一定の保存時間を経過した試薬溶液
を用い、被検溶液と混合して混合液を得、その光学特性
を計測する。したがって、ここでいう混合液の光学特性
の経時変化特性とは、混合液そのものの光学特性の経時
変化特性ではなく、各保存時点における試薬溶液の光学
特性に対応した混合液の光学特性を示すことになる。
【0029】そして、試薬溶液の保存期間と、各混合液
の光学特性との関係を示す検量線を作成する。例えば、
製造直後の試薬溶液を用いた混合液の光学特性を初期値
である1とし、ある保存期間経過後の試薬溶液を用いた
混合液の光学特性を指数として示すと便利である。この
指数は、差および比のいずれで表してもよく、混合液の
光学特性の経時変化特性を示すことになる。
【0030】具体的には、試薬溶液および混合液とも
に、濁度が初期値に対して何倍になるか、即ち初期値と
の比で判定してもよく、初期値との差で判定してもよ
い。例えば、初期値が0.17Vの場合、混合液の散乱
光強度、即ち光センサーの出力信号が初期値に比べて、
一定の範囲(例えば、0.017V)における変化を許
容範囲と規定すれば、試薬溶液の散乱光強度が初期値に
対して約1.17倍以内に収まっていれば、この計測を
有効と判定することができる(後述の図13および17
参照。)。これにより、計測の信頼性を確保することが
できる。同様に、試薬溶液の濁度も初期値との差、即ち
散乱光強度の差で判定してもよい。
【0031】なお、混合液および試薬溶液の光学特性
は、それぞれ同一の装置で計測しても別の装置で計測し
てもよい。ただし、同一の装置で計測すれば、計測装置
間における計測値のばらつきの影響を受けることがなく
有利である。また、試薬溶液および混合液について、1
種の光学特性(例えば濁度)のみをを計測すると、工程
(1)および(2)において同一の計測系を利用するで
きるため有利である。即ち、濁度の場合は濁度計だけで
計測でき、吸光度の場合は吸光度計だけで計測できるか
らである。特に、同一波長の光を用いて試薬溶液および
混合液の濁度を計測する場合、用いる濃度計測装置の構
成が簡単化できるため、極めて実用的である。もちろ
ん、各吸光度を計測する場合でも、同一波長の光を用い
て計測することは、同様に、装置コストの点から有利で
ある。
【0032】3.工程(3) そして、工程(3)として、前記試薬溶液および混合液
の光学特性の経時変化特性に基づいて、前記試薬溶液の
光学特性の変化に対する前記混合液の光学特性の変化を
表わす特性曲線を作成する。即ち、例えば、各保存時点
における試薬溶液の光学特性、即ち試薬溶液の経時変化
特性と、各保存時点における試薬溶液を用いた混合液の
光学特性、即ち混合液の経時変化特性との関係を示す検
量線を作成する。
【0033】4.工程(4) 最後に、工程(4)として、前記特性曲線に基づいて試
薬溶液の光学特性を検査し、濃度計測値の精度を判定す
る。前記特定曲線があれば、ある溶液の濃度を計測する
際に用いる試薬溶液の光学特性を求めることにより、こ
の試薬溶液が混合液の光学特性に及ぼす影響を予測する
ことができる。そして、試薬溶液の保存環境(温度な
ど)に応じ、前記特性曲線に基づいて、濃度計測値の誤
差許容範囲をあらかじめ設定してけば、試薬溶液の光学
特性の経時変化特性に応じて、濃度計測値の信頼性を確
保することができる。
【0034】本発明は、上記のように、試薬溶液の特性
が変化した場合に、濃度計測の精度の低下を警告するの
に有効である。この警告により、結果的の計測の信頼性
が向上する。特に、家庭などで、被検溶液として尿およ
び血液を検査する場合において、その簡易性、高信頼
性、小型化および低価格などの特徴から実用性が高い。
以下に、実施例に代表させて本発明をより具体的に説明
するが、本発明はこれらのみに限定されるものではな
い。
【0035】
【実施例】《実施例1》本実施例においては、図1およ
び2に示す溶液濃度計測装置を用いて、本発明に係る方
法を実施した。なお、光源1としては半導体レーザモジ
ュールを用い、波長780nm、強度5.0mW、ビー
ム直径2.0mmの略平行光2を投射した。まず、タン
パク質濃度が実質的にゼロ(<0.1mg/dl)であ
ると判定された尿にタンパク質を添加して、タンパク質
濃度が0、2、5、15、30、60および100mg
/dlの被検溶液を調製した。次に、被検溶液1mlと
試薬溶液であるスルホサリチル酸試薬溶液(硫酸ナトリ
ウムの塩を2−ヒドロキシ−5−スルホ安息香酸水溶液
に溶解して得られる試薬溶液)1mlとを混合して混合
液とした。混合液においては、次第にタンパク質成分が
凝集し、混合液が混濁した。濁り度合い、即ち濁度が安
定してから、この混合液をサンプルセル3へ導入し、コ
ンピューター6で光源1を動作させ、同時に光センサー
4および5の出力信号をモニターした。混合液の濁度が
大きくなると、透過光強度が低下し、散乱光強度が増加
する。したがって、光センサー4および5の出力信号よ
り、タンパク質濃度を計測することができた。
【0036】ここで、計測した透過光強度とタンパク質
濃度との関係を図5に示し、散乱光強度とタンパク質濃
度との関係を図6に示す。これらは、透過光強度または
散乱光強度のタンパク質濃度への依存性を示すともいえ
る。これら図5および6は、濃度計測の際の検量線とし
て使用できる。本検量線を作成した条件ならびに図1お
よび2に示した計測系の設定では、混合前の被検溶液お
よび試薬溶液は実質的に透明である。即ち、混合せずに
被検溶液または試薬溶液を単独でサンプルセル3へ入れ
た際の透過光強度および散乱光強度(光センサー4およ
び5の出力信号)は、純水の透過光強度および散乱光強
度と同じであり、散乱光強度は実質的にゼロとみなせ
る。
【0037】図5において、横軸はタンパク質濃度を、
縦軸(対数表示)は透過光強度を示す。図5から、タン
パク質濃度の増加に伴って濁度が増加するため、透過光
強度、即ち光センサー4の出力信号が低下していること
がわかる。各点をスムーズに結んで実線を得、直線的に
変化している濃度15、30、60および100mg/
dlの点を結んで点線を得た。図5に示したように、2
および5mg/dlの濃度においては、透過光強度がこ
の点線から外れる場合がある。これは、タンパク質濃度
が0mg/dlの場合と比べたときの透過光強度の変化
量、即ち変化割合が全出力信号に比べて小さすぎ、ダイ
ナミックレンジとの関係で各種ノイズの影響を受けやす
いからである。これらから、透過光強度から濃度を算出
する場合には、各種ノイズの影響の避けるために、15
mg/dl以上の高濃度領域が望ましい。
【0038】図6において、横軸はタンパク質濃度を、
縦軸は散乱光強度を示す。図6から、タンパク質濃度の
増加に伴って濁度が増加するため、散乱光強度、即ち光
センサー5の出力信号が増加していることがわかる。各
点をスムーズに結んで実線を得、直線的に変化している
濃度0、2、5および15mg/dlの点を結んで点線
を得た。この実線と点線から明らかなように、約15m
g/dlの濃度までは、散乱光強度が濃度に比例してい
る。しかし、この付近より濃度が高くなるに従い、次第
に傾きが低下している。
【0039】これは、濃度が高くなって光が散乱する確
率が高くなると、散乱光が発生した地点からサンプルセ
ルの外まで伝搬する際に再び散乱する確率が高くなり、
散乱光が光センサー5に到達する確率が低下するからで
ある。したがって、散乱光強度から濃度を算出する場合
において、直線性が確保できるのは低濃度領域(約15
mg/dl以下)に限られる。これらから、低濃度領域
は散乱光強度より濃度を算出し、高濃度領域は透過光強
度より濃度を算出することで、実質的に高精度に計測で
きる濃度範囲、即ちダイナミックレンジを拡大すること
ができることがわかった。具体的には、透過光強度、即
ち光センサー4の出力信号が約0.4V以下の場合は、
図5を検量線として濃度を算出し、散乱光強度、即ち光
センサー5の出力信号が約0.2V以下の場合は、図6
を検量線として濃度を算出するのが有効であることがわ
かった。
【0040】なお、ここで、光路長を長くすれば透過光
強度の変化のみを計測することでも、低濃度領域で高精
度に計測できるが、高濃度領域においては透過光強度の
絶対値が小さくなりノイズが大きくなるので、精度が低
下する。さらに、光路長がなると、装置規模が増大する
という問題もある。本実施例では、低濃度域として約1
5mg/dl以下、高濃度域として約15mg/dl以
上として、低濃度域では散乱光強度で、高濃度域では透
過光強度に基づいて計測するとより高精度であると述べ
た。しかし、上記で述べた各低高の濃度域の濃度範囲
は、サンプルセル3の光路長や、散乱光7の被検溶液中
における伝搬距離、および光学系の配置などによって異
なるため、上記した数値に限定されるものではない。
【0041】実際、透過光の光路長を10mmよりも長
くすれば、透過光強度を計測することでも、濃度が15
mg/dl以下の高精度に算出することができる。ただ
し、このように光路長を拡大すると、高濃度域において
は、光センサー4の出力信号が小さくなりすぎ(約10
-4V程度)、濃度を求めることが困難になる。さらに、
光路長の拡大は、必然的に装置規模を拡大し、実用上好
ましくない。要するに、上述のような方法によれば、装
置構成や規模が一定の制約下にあることにおいて、散乱
光および透過光双方を利用することで、計測濃度範囲即
ちダイナミックレンジが拡大できる。つぎに、試薬溶液
の光学特性の経時変化特性を考慮して、本発明の方法を
行った。
【0042】(1)特定の保存環境下の各保存時点にお
いて試薬溶液の光学特性の経時変化特性を求める工程 まず、上述と同様に、スルホサリチル酸試薬溶液(硫酸
ナトリウムの塩を2−ヒドロキシ−5−スルホ安息香酸
水溶液に溶解して得られる試薬溶液)を調製した。つい
で、図1および2に示した溶液濃度計測装置のサンプル
セル3に試薬溶液のみを入れ、濁度を計測した。このと
き、光センサー5の出力信号を、図5および6に示す検
量線を作成したときの信号の1000倍に拡大(増幅)
してコンピューター6で観測した。そして、試薬溶液を
調製した直後から、30日ごとに600日まで、試薬溶
液の濁度を21回計測した。
【0043】その結果を図7に示す。図7において、横
軸は試薬溶液の保存期間(調製直後からの経過日数)で
ある。また、縦軸は調製直後の散乱光強度(光センサー
5の出力信号)を初期値とした場合の、各時点の散乱光
強度を示している。即ち、初期値を1として、その後の
散乱光強度を指数で示し、この指数を濁度として各点を
実線でスムーズに結んだ。図7において、●は約0℃で
保存した試薬溶液、■は約4℃で保存した試薬溶液、×
は約8℃で保存した試薬溶液を用いた場合を示してい
る。ただし、いずれの場合も、濁度を計測する際には、
温度を室温(約20℃)に戻した。
【0044】(2)各保存時点における混合液の光学特
性を計測し、混合液の光学特性の経時変化特性を求める
工程 また、これと同時に、前記試薬溶液を用い、図6に示す
検量線を作成したときと同じ条件および設定で、タンパ
ク質濃度が15mg/dlの被検溶液の散乱光強度(光
センサー5の出力信号)を計測した。即ち、試薬溶液を
調製した直後から、30日ごとに600日まで、この試
薬溶液を前記被検溶液と混合し、混合液の濁度、即ち散
乱光強度を計測した。ただし、被検溶液は各計測の直前
に調製したので、被検溶液そのものの特性変化は考慮し
なかった。
【0045】この結果を図8に示す。図8において、横
軸は試薬溶液の保存期間(調製直後からの経過日数)で
ある。縦軸は調製直後の試薬溶液を用いて計測した混合
液の散乱光強度(光センサー5の出力信号)を初期値と
したときの、各保存時点の試薬溶液を用いた混合液の散
乱光強度を示している。即ち、散乱光強度を、初期値を
1として指数で示しており、各点を実線でスムーズに結
んだ。図8において、●は約0℃で保存した試薬溶液を
用いた混合液の濁度、■は約4℃で保存した試薬溶液を
用いた混合液の濁度、×は約8℃で保存した試薬溶液を
用いた混合液の濁度を示す。いずれの場合も、濁度を計
測する際には、温度を室温(約20℃)に戻した。
【0046】図7から明らかなように、保存期間が延び
るに従い、試薬溶液の濁度が増加している。例えば、●
で示す約0℃で保存している試薬溶液の散乱光強度は、
200日経過時点では初期値の約1.18倍、600日
経過時点では初期値の約1.65倍になる。また、図8
から明らかなように、保存期間が延びるに従い、被検溶
液と前記試薬溶液の混合液の濁度が低下する。例えば、
●で示す約0℃で保存している試薬溶液を用いた混合液
の濁度は、200日経過時点で初期値の約0.9倍、6
00日経過時点では初期値の約0.74倍になってい
る。
【0047】(3)試薬溶液および混合液の光学特性の
経時変化特性に基づいて、試薬溶液の光学特性の変化に
対する混合液の光学特性の変化を表わす特性曲線を作成
する工程 ここで、試薬溶液の濁度と、試薬溶液および被検溶液を
含む混合液の濁度との関係を図9に示す。図9は、同日
に計測した試薬溶液とこの試薬溶液を用いた混合液の濁
度を示した図で、●は約0℃で保存した試薬溶液の濁度
とこの試薬溶液を用いた混合液の濁度との関係、■は約
4℃で保存した試薬溶液とこの試薬溶液を用いた混合液
の濁度との関係、×は約8℃で保存した試薬溶液とこの
試薬溶液を用いた混合液の濁度との関係を示している。
【0048】(4)試薬溶液の光学特性を計測して得ら
れる計測値および特性曲線に基づいて、試薬溶液の特性
を検査し、特定成分の濃度計測値の精度を判定する工程 図9から明らかなように、本実施例における条件では、
試薬溶液の濁度が増加すると、混合液の濁度が低下す
る。したがって、試薬溶液の濁度が高くなると、混合液
の濁度、即ち透過光強度および/または散乱光強度の計
測値から、図5および6を検量線として用いてタンパク
質の濃度を算出する際の誤差が大きくなり、計測値の精
度が低くなることがわかる。逆に、試薬液の濁度が低い
と、計測値の精度が高くなることがわかる。
【0049】また、計測された時点における試薬溶液の
濁度から、混合液の濁度が初期値に比べて何倍になって
いるかを、各試薬溶液の保存環境に応じて、予測するこ
とができる。したがって、試薬溶液が予測される保存環
境下にあるとき、混合液に対する計測値の精度の許容範
囲を規定することにより、許容される試薬溶液の濁度の
範囲を規定することができる。即ち、試薬溶液の保存温
度範囲を限定することができる場合、試薬溶液の濁度計
測値が規定範囲にあれば、混合液の濁度計測値も許容範
囲にあることになり、精度を確保できる。また、試薬溶
液の濁度が規定範囲内にあるときは混合液に対する計測
は有効と判定し、この規定範囲外にあるときは無効と判
定する。この有効、無効の判定により、計測値の精度を
許容範囲に収めることができ、計測の信頼性を確保する
ことができる。
【0050】ここで、試薬溶液の保存温度範囲がおよそ
0〜8℃である場合、計測値の精度の許容範囲を10%
以内(混合液の濁度が初期値の約0.9倍までに収まる
範囲)とする。図9の●より、試薬溶液の濁度は初期値
に比べて約1.19倍以内に収まっていれば、この計測
を有効と判定できる。これにより、計測の信頼性を確保
することができる。また、試薬溶液の保存温度範囲がお
よそ0〜8℃である場合、計測値の精度の許容範囲を2
0%以内(混合液の濁度が初期値の約0.8倍までに収
まる範囲)とする。この場合、図9の●より、試薬溶液
の濁度は初期値に比べて約1.45倍以内に収まってい
れば、この計測を有効と判定できる。これにより、計測
の信頼性を確保することができる。
【0051】また、試薬溶液の保存温度がおよそ4〜8
℃である場合は、計測値の精度の許容範囲を10%以内
とすると、図9の■より、試薬溶液の濁度は初期値に比
べて約1.23倍以内に収まっていれば、この計測を有
効と判定できる。このように、試薬溶液の保存環境に応
じて、試薬溶液の濁度の規定値を設定する。ここで、予
想される保存環境で、最も混合液の濁度変化が大きい特
性曲線(図9の●で示された特性曲線)で試薬溶液の濁
度範囲を規定すると、混合液濁度の計測値の精度を充分
にに確保することができる。
【0052】《実施例2》図3および4に示す溶液濃度
計測装置を用い、光源8として波長680nm、強度1
5.0mW、ビーム直径2.0mmの略平行光9を投射
する半導体レーザモジュールを用いた。まず、アルブミ
ン濃度が実質的にゼロ(<0.01mg/dl)である
と判定された尿にアルブミンを添加して、アルブミン濃
度が、0、0.2、0.5、1.5、3.0、6.0お
よび10.0mg/dlの被検溶液を調製した。そし
て、コンピューター16の指示によりピペッタ15から
1mlの被検溶液をサンプルセル10へ導入した。そし
て、コンピューター16が光源8を動作させ、同時に光
センサー11および12の出力信号のモニターを開始し
た。
【0053】次に、コンピューター16がピペッタ14
を制御し、注入口13を通じて1mlの試薬溶液(抗ヒ
トアルブミンウサギ血清より抗体成分を精製して得られ
た試薬溶液)をサンプルセル10へ注入して被検溶液と
混合した。試薬溶液が混合されると、アルブミン(抗
原)と抗体により抗原抗体複合物が生成され、被検溶液
が濁り、透過光強度が低下し、散乱光強度が増加した。
この試薬溶液の混合前後の光センサー11および12の
出力信号の変化を解析することで、アルブミン濃度を計
測する。
【0054】アルブミン濃度が0.2mg/dlの被検
溶液を用いたときの透過光強度および散乱光強度、即ち
光センサー11および12の出力信号を、それぞれ図1
0および11に示す。同様に、アルブミン濃度が1.5
mg/dlの被検溶液を用いたときの光センサー11お
よび12の出力信号を図12および13に示し、アルブ
ミン濃度が10mg/dlの被検溶液を用いたときの光
センサー11および12の出力信号を図14および15
に示す。これらの図10〜15において、横軸は試薬溶
液混合後の経過時間(秒)を示し、マイナスは混合前の
時間を示しており、混合前60秒から混合後300秒ま
での透過光強度または散乱光強度の変化を示している。
【0055】これらの図から、透過光強度、即ち光セン
サー11の出力信号は、アルブミンの濃度に応じて低下
していることがわかる。また、これらの図から、散乱光
強度、即ち光センサー12の出力信号は、アルブミンの
濃度に応じて増加していることがわかる。特に、図1
0、12および14から、透過光強度、即ち光センサー
11の出力信号は、試薬混合後(0秒以降)、アルブミ
ンとこれに対する抗体により抗原抗体複合物が生成され
濁度が増加することで、低下していることがわかる。ま
た、図11、13および15から、散乱光強度、即ち光
センサー12の出力信号は、アルブミンとこれに対する
抗体により抗原抗体複合物が生成され濁度が増加するこ
とで、増加していることがわかる。
【0056】このような、透過光強度とアルブミン濃度
との関係、および散乱光強度とアルブミン濃度との関係
をそれぞれ図16および17に示す。図16において
は、試薬混合時(0秒)の透過光強度と、混合後300
秒経過時の透過光強度の比を縦軸に示した。図17にお
いては、試薬混合時(0秒)の散乱光強度と、混合後3
00秒経過時の散乱光強度の差を縦軸に示した。これら
は、濃度計測の際の検量線として使用できる。ここで計
測した被検溶液および試薬溶液は、図3および4に示し
た装置を用いて図10〜15の検量線を作成した条件で
ある限りは、純水と同程度の透明であった。即ち、試薬
溶液混合前の、被検溶液の透過光強度および散乱光強度
(光センサー11および12の出力信号)は、純水の透
過光強度および散乱光強度とほぼ同じであった。また、
試薬溶液のみをサンプルセル10に入れた場合の透過光
強度および散乱光強度も、同様に純水と同じであった。
【0057】図16において、横軸はアルブミン濃度
を、縦軸(対数表示)は透過光強度のの比を示す。各点
をスムーズに結び実線を得、直線的に変化している濃度
1.5、3、6および10mg/dlの点を直線状に結
んで点線を得た。この図16で示したように、濃度が
0.2および0.5mg/dlにおいては、計測値が点
線から外れる場合がある。これは、図10、図12およ
び14を比較すると明らかなように、変化量、即ち変化
割合が全出力信号に比べて小さすぎるため、ダイナミッ
クレンジとの関係で各種ノイズの影響を受けやすいから
である。これらから、透過光強度から濃度を算出する場
合には、各種ノイズの影響の避けるためには、1.5m
g/dl以上の高濃度領域が望ましい。
【0058】図17において、横軸はアルブミン濃度
を、縦軸は散乱光強度の変化量を示す。各点をスムーズ
に結んで実線を得、直線的に変化している濃度0、0.
2、0.5および1.5mg/dlの点を直線状に結ん
で点線を得た。この実線と点線から明らかなように、濃
度が約1.5mg/dlまでは、散乱光強度は濃度に比
例しているが、この付近より濃度が高くなるに従い次第
に傾きが低下している。
【0059】これは、濃度が高くなって光が散乱する確
率が高くなると、散乱光が発生した地点からサンプルセ
ルの外まで伝搬する際に、再び散乱される確率も高くな
り、散乱光が光センサー12に到達する確率が低下する
からである。したがって、散乱光強度の変化から濃度を
算出する場合において、直線性が確保できるのは低濃度
領域(約1.5mg/dl以下)に限られる。これらか
ら、低濃度領域は散乱光強度の変化より濃度を算出し、
高濃度領域は透過光強度の変化より濃度を算出すること
で、実質的に高精度に計測できる濃度範囲を拡大するこ
とができることがわかった。具体的には、透過光強度の
変化の比が約0.7以下の時は、図16を検量線として
濃度を算出し、散乱光強度が約0.2V以下の場合は、
図17を検量線として濃度を算出する。次に、本発明に
係る方法においては、以下のように試薬溶液そのものの
光学特性を計測し、この計測値を用いて、濃度計測値の
精度を判定した。
【0060】(1)特定の保存環境下の各保存時点にお
いて試薬溶液の光学特性の経時変化特性を求める工程 まず、上述と同様に、抗体試薬溶液を調製した。つい
で、図3および4に示した溶液濃度計測装置のサンプル
セル10に試薬溶液のみを2mlを入れ、濁度を計測し
た。このとき、光センサー12の出力信号を、図11、
13および15に示す検量線を作成したときの信号の1
00倍に拡大(増幅)してコンピューター16で観測し
た。そして、試薬溶液を調製した直後から、30日ごと
に600日まで、試薬溶液の濁度を計測した。
【0061】その結果を図18に示す。図18におい
て、横軸は試薬溶液の保存期間(調製直後からの経過日
数)である。また、縦軸は調製直後の散乱光強度(光セ
ンサー12の出力信号)を初期値とした場合の、各時点
の散乱光強度を示している。即ち、初期値を1として、
その後の散乱光強度を指数で示しており、各点を実線で
スムーズに結んだ。図18において、●は約50℃で保
存した試薬溶液、■は約45℃で保存した試薬溶液、×
は約40℃で保存した試薬溶液を用いた場合を示してい
る。ただし、いずれの場合も、濁度を計測する際には、
温度を室温(約20℃)に戻した。
【0062】(2)各保存時点における混合液の光学特
性を計測し、混合液の光学特性の経時変化特性を求める
工程 また、これと同時に、前記試薬溶液を用い、図11およ
び17に示す検量線を作成したときと同じ条件および設
定で、アルブミン濃度が1.5mg/dlの被検溶液の
散乱光強度(光センサー12の出力信号の変化量)を計
測した。即ち、試薬溶液を調製した直後から、30日ご
とに600日まで、上記したようにピペッタ14により
試薬溶液をサンプルセル10に注入して被検溶液と混合
し、混合液の濁度、即ち散乱光強度を計測した。ただ
し、被検溶液は、各計測の直前に調製したので、被検溶
液そのものの特性変化は考慮しなかった。
【0063】この結果を図19に示す。図19におい
て、横軸は試薬溶液の保存期間(調製直後からの経過日
数)である。縦軸は、保存後の試薬溶液を用いた混合液
の散乱光強度と製造直後の試薬溶液を用いた混合液の散
乱光強度との比を示す。即ち、縦軸は調製直後の試薬溶
液を用いた混合液の散乱光強度(光センサー5の出力信
号)を初期値とした場合の、各時点の散乱光強度を示し
ており、初期値を1として指数で示している。そして、
各点を実線でスムーズに結んだ。図19において、●は
約50℃で保存した試薬溶液を用いた混合液の濁度、■
は約45℃で保存した試薬溶液を用いた混合液の濁度、
×は約40℃で保存した試薬溶液を用いた混合液の濁度
を示す。いずれの場合も、濁度を計測する際には、温度
を室温(約20℃)に戻した。
【0064】図18から明らかなように、保存期間が延
びるに従い、試薬溶液の濁度が増加している。例えば、
●で示す約50℃で保存している試薬溶液の散乱光強度
は、300日経過時点で初期値の約1.1倍、600日
経過時点では初期値の約1.22倍になっている。ま
た、図19から明らかなように、保存期間が延びる従
い、被検溶液と当該抗体試薬溶液の混合液の濁度が低下
する。例えば、●で示す約50℃で保存している試薬溶
液を用いた混合液の濁度は、300日経過時点で初期値
の約0.94倍、600日経過時点で初期値の約0.8
8倍になっている。
【0065】(3)試薬溶液および混合液の光学特性の
経時変化特性に基づいて、試薬溶液の光学特性の変化に
対する混合液の光学特性の変化を表わす特性曲線を作成
する工程 ここで、試薬溶液の濁度と、試薬溶液および被検溶液を
含む混合液の濁度との関係を表す特性曲線を図20に示
す。図20は、同日に計測した試薬溶液とこの試薬溶液
を用いた混合液の濁度を示した図で、●は約50℃で保
存した試薬溶液とこの試薬溶液を用いた混合液の濁度と
の関係、■は約45℃で保存した試薬溶液とこの試薬溶
液を用いた混合液の濁度との関係、×は約40℃で保存
した試薬溶液とこの試薬溶液を用いた混合液の濁度との
関係を示している。
【0066】(4)試薬溶液の光学特性を計測して得ら
れる計測値および特性曲線に基づいて、試薬溶液の特性
を検査し、特定成分の濃度計測値の精度を判定する工程 この図20から明らかなように、本実施例における条件
では、試薬溶液の濁度が増加すると、混合液の濁度が低
下する。したがって、試薬溶液の濁度が高くなると、混
合液の濁度、即ち透過光強度の比および/または散乱光
強度の差から、図16および17を検量線として用いて
アルブミンの濃度を算出する際の誤差が大きくなり、計
測値の精度が低くなることがわかる。逆に、混合液の濁
度が低いと、計測値の精度が高くなることがわかる。
【0067】なお、図20と図7を比べると明らかだ
が、本実施例の場合、試薬溶液の保存環境(保存温度)
の違いによる、試薬溶液の濁度と混合液の濁度との関係
を示す特性曲線の違いは実質的に観測されていないが、
計測された時点における試薬溶液の濁度から、混合液の
濁度が初期値に比べて何倍になっているかを予測するこ
とができる。したがって、試薬溶液が予測される保存環
境下にあるとき、混合液に対する計測値の精度の許容範
囲を規定することにより、許容される試薬溶液の濁度の
範囲を規定することができる。即ち、試薬溶液の保存温
度範囲が限定することができる場合、試薬溶液の濁度計
測値が規定範囲にあれば、混合液の濁度計測値も許容範
囲にあることになり、精度を確保できる。また、試薬溶
液の濁度が規定範囲内にあるときは混合液に対する計測
は有効と判定し、この規定範囲外にあるときは無効と判
定する。この有効、無効の判定により、計測値の精度を
許容範囲に収めることができ、計測の信頼性を確保する
ことができる。
【0068】ここで、試薬溶液の保存温度範囲がおよそ
40〜50℃である場合、計測値の精度の許容範囲を5
%以内(混合液の濁度が初期値の約0.95倍までに収
まる範囲)とすると、図20の●、■および×より、試
薬溶液の濁度は初期値に比べて約1.08倍以内に収ま
っていれば、この計測を有効と判定できる。これによ
り、計測の信頼性を確保することができる。また、試薬
溶液の保存温度範囲がおよそ0〜8℃である場合、計測
値の精度の許容範囲を10%以内(混合液の濁度が初期
値の約0.9倍までに収まる範囲)とすると、図20の
●、■および×より、試薬溶液の濁度は初期値に比べて
約1.17倍以内に収まっていれば、この計測を有効と
判定できる。これにより、計測の信頼性を確保すること
ができる。
【0069】本実施例の場合は、試薬溶液の保存温度が
40〜50℃にある限りは、試薬溶液の保存環境にかか
わらず、試薬溶液の濁度の規定値を設定することで、計
測値の精度を許容範囲に収めることができる。
【0070】《実施例3》本実施例においては、図1お
よび2に示す溶液濃度計測装置を用いて、透過光強度に
よりタンパク質濃度を計測した。また、試薬溶液として
ビウレット試薬(酒石酸カリウムナトリウムと硫酸銅を
水酸化ナトリウム溶液に溶解して得られる試薬)を用
い、図1および2で示す溶液濃度計測装置を用いてこの
試薬溶液の吸光度を、透過光強度、即ち光センサ4の出
力信号より算出した。この吸光度は、波長=780nm
に対する吸光度とした。そして、実施例1と同様のタン
パク質を含む尿(被検溶液)を調製し、上記試薬溶液と
混合して、混合液を得た。この混合液について、通常の
分光器を用いて、波長=546nmに対する吸光度を計
測した。ここでは、光路長が10mmの通常の角型サン
プルセルを用いた。この波長=546nmに対する吸光
度より、タンパク質を算出した。
【0071】上記試薬溶液の調製直後の吸光度は、波長
780nmに対して約0.35(透過率では約45%、
光路長=10mm)であった。この状態の試薬溶液を被
検溶液と混合して、混合液の吸光度を計測し、図21に
示す検量線を作成した。図21において、横軸は尿中の
タンパク質濃度を示し、縦軸は混合液の吸光度を示す。
この検量線を用いてタンパク質濃度を算出することがで
きる。
【0072】大気中と同程度の変化を模して、−10〜
40℃の温度で24時間周期で変化する恒温槽内に前記
試薬溶液を保存した。200日経過すると、吸光度は約
0.4(透過率では約40%、光路長=10mm)にな
った。図21の検量線を作成したときと同じ条件で、前
記試薬溶液を被検溶液と混合して混合液を得、この混合
液の吸光度を計測すると、計測値が図21の検量線から
大きく外れる場合があった。さらに、計測値の再現性も
悪かった。例えば、タンパク質濃度=100mg/dl
の場合の吸光度は、図21では約0.08だが、前記試
薬溶液を用いた混合液では、吸光度が0.1以上示すも
のもあった。しかも、その吸光度は、計測毎の違いも大
きく再現性が悪かった。
【0073】上記から明らかなように、試薬溶液の78
0nmに対する吸光度が増加すると、その計測精度が低
下した。したがって、実施例1および2と同様に、試薬
溶液の特性(ここでは吸光度)を計測して、この計測値
より、試薬溶液を用いた計測の精度を判定することがで
きる。そして、例えば試薬溶液の780nmに対する吸
光度が、0.4以上の場合は、この試薬溶液を用いた計
測を無効と判定することで、計測の信頼性を確保するこ
とができる。
【0074】また、本実施例のように、試薬溶液および
混合液の光学特性の経時変化特性の全体像が不明確な場
合は、試薬溶液の光学特性の変化を検出した時点で、こ
の試薬溶液を用いた計測を無効と判定することで、計測
の信頼性をより確実に確保することができる。以上のよ
うに、本実施例によれば、被検溶液中の特定成分の濃度
を計測する際に、試薬溶液の光学特性も計測し、この計
測値から特定成分の濃度計測値の精度を判定し、この判
定結果から計測の有効無効判定ができ、計測の信頼性を
確保できる。
【0075】
【発明の効果】上記したように、本発明は、試薬溶液の
光学特性が変化した場合、これを用いた混合液の光学特
性も変化するという現象に基づく。同時に、この試薬溶
液の光学特性の変化と、混合液の光学特性の変化との関
係(特性曲線に相当)を把握して、これから試薬溶液の
光学特性を計測することで、混合液の光学特性計測の精
度が判定できるという知見に基づく。また、条件によっ
ては、試薬溶液の光学特性が変化しなければ、混合溶液
の光学特性も変化しない。従って、試薬溶液の光学変化
の変化を検知できた時点で、混合液の光学特性に変化が
あり、精度低下の可能性があると判定できる。
【0076】以上のように、本発明によれば、被検溶液
中の特定成分の濃度を計測する際に試薬溶液の光学特性
を計測し、この計測値から特定成分の濃度計測値の精度
判定および計測の有効無効判定をすることができる。そ
して、簡便かつ容易に、溶液濃度計測の信頼性を向上さ
せることができる。
【図面の簡単な説明】
【図1】本発明に係る方法を実施することのできる光学
系および計測系を含む溶液濃度計測装置の部分断面概略
側面図である。
【図2】図1に示す溶液濃度計測装置の光学系のみの概
略上面図である。
【図3】本発明に係る方法を実施することのできる光学
系および計測系を含む別の溶液濃度計測装置の部分断面
概略側面図である。
【図4】図3に示す溶液濃度計測装置の光学系のみの概
略上面図である。
【図5】透過光強度とタンパク質濃度との関係を示す検
量線である。
【図6】散乱光強度とタンパク質濃度との関係を示す検
量線である。
【図7】試薬溶液の保存期間と、試薬溶液の散乱光強度
との関係を示す検量線である。
【図8】試薬溶液の保存期間と、各保存時点の試薬溶液
を用いた混合液の散乱光強度との関係を示す検量線であ
る。
【図9】試薬溶液の濁度と、試薬溶液および被検溶液を
含む混合液の濁度との関係を示す特性曲線である。
【図10】試薬溶液混入後の経過期間と、透過光強度と
の関係を示すグラフである。
【図11】試薬溶液混入後の経過期間と、散乱光強度と
の関係を示すグラフである。
【図12】試薬溶液混入後の経過期間と、透過光強度と
の関係を示すグラフである。
【図13】試薬溶液混入後の経過期間と、散乱光強度と
の関係を示すグラフである。
【図14】試薬溶液混入後の経過期間と、透過光強度と
の関係を示すグラフである。
【図15】試薬溶液混入後の経過期間と、散乱光強度と
の関係を示すグラフである。
【図16】透過光強度とアルブミン濃度との関係を示す
グラフである。
【図17】散乱光強度とアルブミン濃度との関係を示す
グラフである。
【図18】試薬溶液の保存期間と、各保存時点の試薬溶
液の散乱光強度との関係を示す検量線である。
【図19】試薬溶液の保存期間と、各保存時点の試薬溶
液を用いた混合液の散乱光強度との関係を示す検量線で
ある。
【図20】試薬溶液の濁度と、試薬溶液および被検溶液
を含む混合液の濁度との関係を示す特性曲線である。
【図21】尿のタンパク質濃度と、混合液の吸光度の関
係を示す検量線である。
【符号の説明】
1、8 光源 2、9 略平行光 3、10 サンプルセル 4、11 光センサー 5、12 光センサー 6、16 コンピューター 7、17 散乱光

Claims (13)

    【特許請求の範囲】
  1. 【請求項1】 被検溶液と試薬溶液の混合液の光学特性
    を計測することによって、前記被検溶液中の特定成分の
    濃度を計測する溶液濃度計測方法であって、 前記試薬溶液の光学特性を計測して得られる計測値に基
    づいて前記試薬溶液の特性を検査し、前記特定成分の濃
    度計測値の精度を判定することを特徴とする溶液濃度計
    測方法。
  2. 【請求項2】 (1)特定の保存環境下の各保存時点に
    おいて前記試薬溶液の光学特性の経時変化特性を求める
    工程、(2)前記保存時点における試薬溶液を用いた混
    合液の光学特性を計測して、前記混合液の光学特性の経
    時変化特性を求める工程、(3)前記試薬溶液および混
    合液の光学特性の経時変化特性に基づいて、前記試薬溶
    液の光学特性の変化に対する前記混合液の光学特性の変
    化を表わす特性曲線を作成する工程、および(4)前記
    試薬溶液の光学特性を計測して得られる計測値および前
    記特性曲線に基づいて、前記試薬溶液の特性を検査し、
    前記特定成分の濃度計測値の精度を判定する工程を含む
    ことを特徴とする請求項1記載の溶液濃度計測方法。
  3. 【請求項3】 計測する前記被検溶液の光学特性が、吸
    光度または濁度であることを特徴とする請求項1または
    2記載の溶液濃度計測方法。
  4. 【請求項4】 計測する前記試薬溶液の光学特性が、吸
    光度または濁度であることを特徴とする請求項1〜3の
    いずれかに記載の溶液濃度計測方法。
  5. 【請求項5】 計測する前記混合液および試薬溶液の光
    学特性が同じであり、同一波長の光を用いて光学特性を
    計測することを特徴とする請求項1〜4のいずれかに記
    載の溶液濃度計測方法。
  6. 【請求項6】 計測する前記混合液および試薬溶液の光
    学特性が同じであり、同一の光学特性計測装置を用いて
    計測することを特徴とする請求項1〜5のいずれかに記
    載の溶液濃度計測方法。
  7. 【請求項7】 前記試薬溶液の濁度が高いまたは低い場
    合に、前記特定成分の濃度の計測値の精度が低く、前記
    試薬溶液の濁度が低いまたは高い場合に、前記特定成分
    の濃度計測値の精度が高いと判定することを特徴とする
    請求項1〜6のいずれかに記載の溶液濃度計測方法。
  8. 【請求項8】 前記試薬溶液の濁度が所定値以下または
    以上である場合に、前記特定成分の濃度計測値の精度が
    高く有効であると判定することを特徴とする請求項1〜
    7のいずれかに記載の溶液濃度計測方法。
  9. 【請求項9】 製造直後に最初に溶液濃度計測方法に用
    いられる前記試薬溶液の吸光度および/または濁度を初
    期値とし、 2回目以降の溶液濃度計測方法に用いられる前記試薬溶
    液の吸光度および/または濁度と前記初期値とを比較
    し、前記特定成分の濃度計測値の精度を判定することを
    特徴とする請求項1〜8のいずれかに記載の溶液濃度計
    測方法。
  10. 【請求項10】 前記吸光度および/もしくは濁度と前
    記初期値との差ならびに/または比が、あらかじめ設定
    された所定値以下である場合に、前記特定成分の濃度計
    測値が有効であると判定することを特徴とする請求項1
    〜9のいずれかに記載の溶液濃度計測方法。
  11. 【請求項11】 被検溶液に光を照射する光源と、前記
    光が前記被検溶液を透過するように前記被検溶液を保持
    するサンプルセルと、前記被検溶液を透過した光を検知
    する光センサー1および/または前記光が前記被検溶液
    中を伝搬する際に発生した散乱光を検知するように配置
    された光センサー2と、前記サンプルセルへ前記被検溶
    液および試薬溶液を導入する輸液系と、前記輸液系を制
    御し前記光センサー1および/または光センサー2の出
    力信号を解析するコンピューターとを備え、 前記光センサー1の出力信号を前記被検溶液の濁度もし
    くは吸光度に対応した計測値として用い、および/また
    は前記光センサー2の出力信号を前記被検溶液の濁度に
    対応した計測値として用い、請求項1〜10のいずれか
    に記載の溶液濃度計測方法で、前記被検溶液の特定成分
    の濃度を計測することを特徴とする溶液濃度計測装置。
  12. 【請求項12】 前記特定成分の濃度が低い被検溶液の
    濃度を決定する場合には、前記光センサー2の出力信号
    を濁度に対応した計測値として用い、前記特定成分の濃
    度が高い被検溶液の濃度を決定する場合には、前記光セ
    ンサー1の出力信号を濁度に対応した計測値として用
    い、前記被検溶液の特定成分の濃度を算出することで、
    計測できる濃度範囲を拡大することを特徴とする請求項
    11記載の溶液濃度計測装置。
  13. 【請求項13】 前記光センサー2の出力信号を前記試
    薬溶液の濁度に対応した計測値として用いることで、前
    記試薬溶液の特性検査精度を向上させることを特徴とす
    る請求項12または13記載の溶液濃度計測装置。
JP2000308144A 2000-10-06 2000-10-06 溶液濃度計測方法および溶液濃度計測装置 Pending JP2002116145A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000308144A JP2002116145A (ja) 2000-10-06 2000-10-06 溶液濃度計測方法および溶液濃度計測装置
US09/969,656 US6762054B2 (en) 2000-10-06 2001-10-04 Solution concentration measuring method and solution concentration measuring apparatus
EP01123759A EP1197744A3 (en) 2000-10-06 2001-10-04 Solution concentration measuring method and solution concentration measuring aparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000308144A JP2002116145A (ja) 2000-10-06 2000-10-06 溶液濃度計測方法および溶液濃度計測装置

Publications (1)

Publication Number Publication Date
JP2002116145A true JP2002116145A (ja) 2002-04-19

Family

ID=18788503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000308144A Pending JP2002116145A (ja) 2000-10-06 2000-10-06 溶液濃度計測方法および溶液濃度計測装置

Country Status (3)

Country Link
US (1) US6762054B2 (ja)
EP (1) EP1197744A3 (ja)
JP (1) JP2002116145A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263911A (ja) * 2006-03-30 2007-10-11 Sysmex Corp 検体分析装置
JP2011069839A (ja) * 2010-12-21 2011-04-07 Kowa Co 凝集反応測定方法、および凝集反応測定装置
WO2011105464A1 (ja) * 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ 自動分析装置
KR101853630B1 (ko) * 2016-10-18 2018-05-02 주식회사 닥터스팹 액체 흐름/상태 측정장치 및 액체상태 분석시스템

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4606543B2 (ja) * 2000-04-13 2011-01-05 パナソニック株式会社 光学特性計測装置における被検溶液量確認方法および計測系制御方法
JP4832121B2 (ja) * 2006-03-10 2011-12-07 シスメックス株式会社 分析システム
CN101688842A (zh) * 2007-06-19 2010-03-31 贝克曼考尔特公司 异常确定方法及分析装置
CN101915741B (zh) * 2010-08-03 2012-05-30 宁波大学 一种便携式血红蛋白溶液测量系统及相应的测量方法
CN102901705B (zh) * 2012-10-08 2015-04-29 宁波大学 一种基于单片机的血红蛋白浓度检测系统及方法
JP6576843B2 (ja) * 2016-01-22 2019-09-18 株式会社日立ハイテクノロジーズ 自動分析装置及びその散乱光測定光学系評価用標準液
WO2019120522A1 (en) * 2017-12-20 2019-06-27 Hach Lange Gmbh A photometer arrangement for determining an analyte in a liquid sample and a method for determining a concentration of an analyte in a liquid sample
US10976201B2 (en) * 2018-06-25 2021-04-13 Ranzy Morgan, III Liquid color, haze, and clarity instrument, and method of measurement
USD911859S1 (en) 2019-04-26 2021-03-02 Ranzy Morgan, III Color, haze and clarity measurement instrument
CN111323381A (zh) * 2020-04-14 2020-06-23 深圳联开生物医疗科技有限公司 本底电压自适应方法、测量方法、细胞分析仪、存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005983A (en) * 1972-10-16 1977-02-01 Harald Dahms Method and apparatus for colorimetric analysis
DE3005923A1 (de) 1980-02-16 1981-09-03 Compur-Electronic GmbH, 8000 München Photometrisches verfahren und photometrische vorrichtung zur bestimmung von reaktionsablaeufen
JPH0629852B2 (ja) * 1985-08-26 1994-04-20 富士写真フイルム株式会社 偏倚乾式分析要素を用いた液体試料中の被検物質の定量分析方法
US4983513A (en) * 1986-03-28 1991-01-08 Beckman Instruments, Inc. Sulfhydryl compounds for suppressing the inhibitory effects of NAD degradation products on LD-L activity
JPH076917B2 (ja) * 1986-09-01 1995-01-30 富士写真フイルム株式会社 乾式分析方法における検量線の補正方法
JP2654682B2 (ja) * 1989-02-17 1997-09-17 富士写真フイルム株式会社 生化学分析装置、生化学分析補正方法及び補正値記録体
ATE139341T1 (de) 1989-08-23 1996-06-15 Canon Kk Methode zur messung eines immunologisch aktiven materials und dazu geeignete vorrichtung
DE4224621C2 (de) * 1992-07-25 1994-05-05 Boehringer Mannheim Gmbh Verfahren zur Analyse eines Bestandteils einer medizinischen Probe mittels eines automatischen Analysegerätes
JP3504750B2 (ja) * 1993-12-22 2004-03-08 オルソ−クリニカル ダイアグノスティクス,インコーポレイティド 検量関係式の再校正法及び定量試験キット
DE4441368A1 (de) * 1994-11-21 1996-05-23 Henkel Kgaa Reagenz und Verfahren zur Bestimmung von Polycarboxylaten in Wasser
DE19629992A1 (de) * 1996-07-25 1998-01-29 Manfred Dr Winkler Verfahren und Einrichtung zur Bestimmung der Extinktion einer Lichtstrahlung beim Durchdringen einer Probe
EP1096248B1 (en) 1999-10-28 2007-01-10 Matsushita Electric Industrial Co., Ltd. Method for measuring concentration of a solution
JP2001249134A (ja) * 1999-12-28 2001-09-14 Matsushita Electric Ind Co Ltd タンパク質濃度計測用試薬、これを用いたタンパク質濃度計測方法および尿検査方法
US6601006B2 (en) * 2000-12-22 2003-07-29 Idexx Laboratories, Inc. Methods for the calibration of analyte assays

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263911A (ja) * 2006-03-30 2007-10-11 Sysmex Corp 検体分析装置
WO2011105464A1 (ja) * 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ 自動分析装置
US8858882B2 (en) 2010-02-25 2014-10-14 Hitachi High-Technologies Corporation Automatic analysis device
JP2011069839A (ja) * 2010-12-21 2011-04-07 Kowa Co 凝集反応測定方法、および凝集反応測定装置
KR101853630B1 (ko) * 2016-10-18 2018-05-02 주식회사 닥터스팹 액체 흐름/상태 측정장치 및 액체상태 분석시스템

Also Published As

Publication number Publication date
EP1197744A3 (en) 2002-10-16
US6762054B2 (en) 2004-07-13
US20020042142A1 (en) 2002-04-11
EP1197744A2 (en) 2002-04-17

Similar Documents

Publication Publication Date Title
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
US4766083A (en) Method for the photometric determination of biological agglutination
JP2002116145A (ja) 溶液濃度計測方法および溶液濃度計測装置
EP1698883A1 (en) Method of determining hemoglobin concentration in undiluted and unhemolyzed whole blood
WO2009116633A1 (ja) ゲル粒子測定装置
JP2001249134A (ja) タンパク質濃度計測用試薬、これを用いたタンパク質濃度計測方法および尿検査方法
EP1096248B1 (en) Method for measuring concentration of a solution
JPS5925460B2 (ja) ネフェロメトリック・イムノアッセイ法及び装置
JP2007286053A (ja) 免疫測定方法
US7226777B2 (en) Turbidimetric immunoassay and an apparatus therefor
JPH0666808A (ja) クロモゲンの測定方法
JP4121962B2 (ja) 均一化・反応完了判定方法およびこれを用いた溶液濃度計測方法
JP3694449B2 (ja) 溶液濃度計測方法および溶液濃度計測装置
EP1496361B1 (en) Immunoassay method and immunoassay system using a Fourier transformation to judge the occurrence of zone phenomena.
JP2005189245A (ja) 溶液濃度計測方法および溶液濃度計測装置
JPS6118982B2 (ja)
RU2300771C2 (ru) Способ определения гемоглобина в биологических жидкостях
RU2175441C1 (ru) Способ определения метилового спирта в воде
EP1340978A1 (en) Method of determining solution concentration and method of examining urine
SU1647396A1 (ru) Способ количественного определени диоксида серы в воздухе
JP2005043352A (ja) 免疫反応測定方法および免疫反応測定装置
SU1165985A1 (ru) Способ определени железа в акриловых мономерах
SU1354100A1 (ru) Способ определени оксалат-иона в водном растворе
JPH07218507A (ja) 免疫比濁分析方法
JPS6119933B2 (ja)