JP2002194502A - Crank shaft steel superior in both machinability and abrasion resistance - Google Patents
Crank shaft steel superior in both machinability and abrasion resistanceInfo
- Publication number
- JP2002194502A JP2002194502A JP2000400214A JP2000400214A JP2002194502A JP 2002194502 A JP2002194502 A JP 2002194502A JP 2000400214 A JP2000400214 A JP 2000400214A JP 2000400214 A JP2000400214 A JP 2000400214A JP 2002194502 A JP2002194502 A JP 2002194502A
- Authority
- JP
- Japan
- Prior art keywords
- less
- crankshaft
- steel
- machinability
- wear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【0001】[0001]
【技術分野】本発明は,高周波焼入の省略が可能であ
り、被削性及び耐摩耗性に優れたクランクシャフト用鋼
及びこれを用いて作製されたクランクシャフトに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crankshaft steel which can omit induction hardening and is excellent in machinability and wear resistance, and a crankshaft manufactured using the same.
【0002】自動車用エンジン等のクランクシャフト
は, 後述する図1に示すごとく,コネクティングロッ
ドとの連結部であるクランクピンと,シリンダーブロッ
クへの取付け部であるクランクジャーナルとを有する。
クランクシャフトの回転運動は,かかる連結部及び取り
付け部において,Al,Cu,Sn等を主体とした軸受
合金よりなるすべり軸受により支えられている。また,
軸(クランクシャフトのピン,ジャーナル)と軸受との
間には,通常油膜を形成させて回転運動する。2. Description of the Related Art A crankshaft of an automobile engine or the like has, as shown in FIG. 1 to be described later, a crankpin which is a connecting portion with a connecting rod and a crank journal which is a mounting portion to a cylinder block.
The rotational movement of the crankshaft is supported by a sliding bearing made of a bearing alloy mainly composed of Al, Cu, Sn or the like at the connecting portion and the mounting portion. Also,
Normally, an oil film is formed between a shaft (a pin or a journal of a crankshaft) and a bearing, and the shaft rotates.
【0003】クランクピンおよびクランクジャーナル
は,エンジンの爆発力或いは回転慣性力により高い面圧
を高速で受ける。このため,スチール鍛造製のクランク
シャフトにおいては,従来,クランクピンおよびクラン
クジャーナルにおける軸受との摺動部に,耐摩耗性ある
いは耐焼付性を向上させるため,高周波焼入れあるいは
軟窒化等の表面処理が施されている。[0003] The crankpin and the crank journal receive a high surface pressure at a high speed due to the explosive force or rotational inertia force of the engine. For this reason, in the case of steel forged crankshafts, conventionally, surface treatments such as induction hardening or soft nitriding have been applied to the sliding parts of the crankpin and the crank journal with the bearing to improve wear resistance or seizure resistance. It has been subjected.
【0004】クランクシャフトは,鋳造法又はスチール
鍛造法により作製されている。前者の鋳造法は,鋳鉄を
溶解,鋳造し,これを切削加工して,クランクシャフト
の形状にする方法である。鋳造法によれば,鋳物は被削
性がよいので,切削加工し易く,また高周波焼入れも必
要がない。そのため,低コストで製造することができ
る。一方,スチール鍛造法は,鋼材を溶解し,そのイン
ゴットを圧延し,熱間において鍛造し,最終時点で切削
加工して,クランクシャフトの形状にする方法である。
また,耐摩耗性,耐焼付性向上のため,高周波焼入れを
施す必要がある。そのため,この方法は,コストが高
い。[0004] The crankshaft is manufactured by a casting method or a steel forging method. The former casting method is a method in which cast iron is melted and cast, and this is cut to form a crankshaft. According to the casting method, the casting has good machinability, so that it is easy to cut, and there is no need for induction hardening. Therefore, it can be manufactured at low cost. On the other hand, the steel forging method is a method in which a steel material is melted, its ingot is rolled, hot forged, and cut at the final point to form a crankshaft.
In addition, it is necessary to perform induction hardening to improve wear resistance and seizure resistance. Therefore, this method is expensive.
【0005】しかし,エンジンに取りつけて作動させた
とき,鋳造法のクランクシャフトは,スチール鍛造法の
クランクシャフトに比べて騒音が大きい。その理由は,
鋳造法のクランクシャフトは,スチール鍛造のものに比
べて,剛性が低いためである。However, when mounted on an engine and operated, the crankshaft of the casting method has a higher noise than the crankshaft of the steel forging method. The reason is,
This is because the crankshaft of the casting method has lower rigidity than that of the steel forged.
【0006】そこで,本発明者らは,剛性の高いスチー
ル鍛造のクランクシャフトの特長を生かしつつ,ピン,
ジャーナル部の高周波焼入が省略でき,被削性に優れた
低コストのクランクシャフトを得る開発に着目した。そ
のためには,耐摩耗性と被削性という相反する特性を有
した鋼材が必要である。Accordingly, the present inventors have developed a pin, while taking advantage of the characteristics of a steel forged crankshaft having high rigidity.
We focused on the development of a low-cost crankshaft with excellent machinability, in which induction hardening of the journal part can be omitted. For that purpose, a steel material having contradictory characteristics of wear resistance and machinability is required.
【0007】耐摩耗性に優れた鍛造鋼に関する先行技術
を列挙する。特開平6−128690号は,鍛造用のク
ランクシャフト用鋼に関するものであり,この鋼の組成
は,重量比にして,C:0.30〜0.60%,Si:
0.05〜1.00%,Mn:0.40〜1.50%,
S:0.04〜0.12%,V:0.10〜0.40
%,Cr:0.05〜0.50%,Ca:0.0005
〜0.0200%,Al:0.005〜0.018%を
含有し,残部Feならびに不純物元素からなり,かつA
l2O3:0.005%以下,SiO2:0.001%
以下である。そして,この鋼は,V炭化物の析出硬化に
より,フェライト−パーライト組織が良好な耐摩耗性を
発揮する。また,クランクシャフトにおけるクランクピ
ン及びクランクジャーナルの部分に高周波焼入れ及び軟
質化処理を施す必要がない。また,V炭化物の析出硬化
により,疲労強度が高い。しかしながら,コストの観点
からは,V等の高価な合金元素を極力含有させないこと
が望まれる。The prior art relating to forged steel having excellent wear resistance is listed. JP-A-6-128690 relates to steel for crankshafts for forging. The composition of this steel is expressed as a weight ratio of C: 0.30 to 0.60%, Si:
0.05 to 1.00%, Mn: 0.40 to 1.50%,
S: 0.04 to 0.12%, V: 0.10 to 0.40
%, Cr: 0.05 to 0.50%, Ca: 0.0005
0.0200%, Al: 0.005 to 0.018%, the balance being Fe and impurity elements;
l 2 O 3 : 0.005% or less, SiO 2 : 0.001%
It is as follows. In this steel, the ferrite-pearlite structure exhibits good wear resistance due to precipitation hardening of V carbide. Also, there is no need to perform induction hardening and softening on the crankpin and the crank journal of the crankshaft. In addition, fatigue strength is high due to precipitation hardening of V carbide. However, from the viewpoint of cost, it is desirable not to contain expensive alloying elements such as V as much as possible.
【0008】また,特開平10−137888号には,
熱間鍛造部品の製造方法が開示されている。この製造方
法を説明すると,まず,C:0.40から0.60%,
Si:0.01から0.50%,Mn:0.3から2.
0%,Cr:0.01から2.00%,V:0.03か
ら0.20%,N:0.0050から0.0200%
(以上,重量%),残部:鉄および不可避的不純物から
なり,下式Ceq=C+Si/7+Mn/5+Cr/9
+1.5Vによって表される炭素等量(Ceq)が0.
80から1.10%の範囲内の鋼を,1150から13
00℃の範囲内の加熱温度のもとで所望の部品形状に熱
間鍛造して,鍛造まま部品を調製し,次いで,このよう
にして調製した前記鍛造まま部品を,0.2から10℃
/secの範囲内の冷却速度で空冷して,下記機械的性
質を有し,ブリネル硬さ(HB):250から290,
降伏応力(YP):600N/mm2以上,伸び(E
l):15%以上,且つ,フェライト面積率(fF)が
5%以下のパーライトを主体とする金属組織を有する粗
部品を調製し,次いで,この粗部品における他部品との
嵌合い部を,前記嵌合い部の表面粗さが5から25μm
の範囲内になるように仕上げ加工を施す。Japanese Patent Application Laid-Open No. Hei 10-137888 discloses that
A method for manufacturing a hot forged part is disclosed. To explain this manufacturing method, first, C: 0.40 to 0.60%,
Si: 0.01 to 0.50%, Mn: 0.3 to 2.
0%, Cr: 0.01 to 2.00%, V: 0.03 to 0.20%, N: 0.0050 to 0.0200%
(Above, weight%), balance: composed of iron and unavoidable impurities, the following formula: Ceq = C + Si / 7 + Mn / 5 + Cr / 9
The carbon equivalent (Ceq) represented by + 1.5V is 0.
Steel in the range of 80 to 1.10% was changed from 1150 to 13
Hot forging into the desired part shape at a heating temperature in the range of 00 ° C. to prepare the as-forged part, and then the as-forged part prepared in this way is heated to 0.2 to 10 ° C.
/ Sec, and has the following mechanical properties, and has a Brinell hardness (HB): 250 to 290,
Yield stress (YP): 600 N / mm2 or more, elongation (E
l): A rough part having a metal structure mainly composed of pearlite having a ferrite area ratio (fF) of not more than 15% and a ferrite area ratio (fF) of not more than 5% is prepared. The surface roughness of the fitting portion is 5 to 25 μm
Finishing is performed so as to be within the range.
【0009】得られた熱間鍛造部品は,フェライト率5
%以下を達成しているため,ベアリングなどの他の部品
との嵌め合い部に生じるフレッチング摩耗を軽減するこ
とができ,耐摩耗性に優れる。また,焼入・焼戻及び切
削後の表面硬化処理を施す必要がなく,耐フレッチング
摩耗に優れた熱間鍛造部品の製造が可能となる。しかし
ながら,この特開平10−137888号に開示された
鍛造部品は,軸部表面粗さを粗くする必要があるため,
自動車エンジン等においては,たとえ軸(クランクシャ
フト)の摩耗は良好であっても,軸受の損傷,特に異常
摩耗を著しくしてしまうという問題がある。異常摩耗し
た軸受で運転が続けられると,ひいては軸の摩耗,焼付
きのトラブルに発展する危険がある。また,パーライト
主体の組織であるため,被削性に劣り,部品製造コスト
の増加を招くという問題もある。The obtained hot forged part has a ferrite ratio of 5
% Or less, it is possible to reduce fretting wear generated in a fitting portion with other parts such as a bearing, and to have excellent wear resistance. In addition, there is no need to perform surface hardening treatment after quenching / tempering and cutting, so that a hot forged part excellent in fretting resistance can be manufactured. However, in the forged part disclosed in Japanese Patent Application Laid-Open No. 10-137888, it is necessary to increase the surface roughness of the shaft.
In an automobile engine or the like, even if the shaft (crankshaft) has good wear, there is a problem that bearing damage, particularly abnormal wear, becomes remarkable. If the operation is continued with the abnormally worn bearing, there is a danger that the shaft may be worn and seizure may occur. In addition, since the structure is mainly composed of pearlite, there is a problem that the machinability is inferior and the cost of manufacturing parts increases.
【0010】また,特開2000−265242号に
は,熱間鍛造用非調質鋼が開示されている。この鋼の組
成は,重量基準で,C:0.40〜0.70%,Si:
0.50%以下,Mn:0.90〜1.80%,Cr:
0.05〜1.00%,s−Al:0.01〜0.04
5%,およびN:0.005〜0.025%を含有し,
必要に応じてPb:0.030%以下,S:0.20%
以下,Te:0.030%以下,Ca:0.01%以下
およびBi:0.30%以下から選んだ1種または2種
以上を含有し,残部がFeおよび不純物からなり,熱間
鍛造後の組織がフェライト+パーライトであり,初析フ
ェライト面積が10%以下であることを特徴とする。Japanese Patent Application Laid-Open No. 2000-265242 discloses a non-heat treated steel for hot forging. The composition of this steel is as follows: C: 0.40 to 0.70%, Si:
0.50% or less, Mn: 0.90 to 1.80%, Cr:
0.05-1.00%, s-Al: 0.01-0.04
5%, and N: 0.005 to 0.025%,
If necessary, Pb: 0.030% or less, S: 0.20%
Hereinafter, one or more selected from the group consisting of Te: 0.030% or less, Ca: 0.01% or less and Bi: 0.30% or less, with the balance being Fe and impurities, after hot forging Has a structure of ferrite + pearlite, and has a proeutectoid ferrite area of 10% or less.
【0011】上記熱間鍛造用非調質鋼は,合金組成を適
切に選ぶとともに初析フェライト面積率を一定値以下に
規制することにより,熱間鍛造後,焼入れ焼戻しをする
必要のない非調質鋼において,機械加工による成形後に
高周波焼入れや軟窒化などの表面処理を施さなくても,
優れた耐摩耗性を示す。しかしながら,この特開200
0−265242号に開示された熱間鍛造用非調質鋼
は,AlおよびNを比較的多く含有しているため,Al
NおよびAl2O3といった相手攻撃性を示す硬質介在物
が多く存在する。自動車用エンジン等のクランクシャフ
トは,すべり軸受との間に油膜を介して,摺動回転する
ものであり,このような条件下における前記硬質介在物
の存在は,軸受の摩耗損傷を著しくしてしまい,ひいて
は軸の摩耗に及ぶといった問題がある。[0011] The non-heat treated steel for hot forging can be prepared by appropriately selecting the alloy composition and regulating the area ratio of proeutectoid ferrite to a certain value or less, so that quenching and tempering after hot forging is unnecessary. Even if high-quality steel is not subjected to surface treatment such as induction hardening or soft nitriding after forming by machining,
Shows excellent wear resistance. However, Japanese Patent Application Laid-Open
The non-heat treated steel for hot forging disclosed in Japanese Patent Application No. 0-265242 contains a relatively large amount of Al and N.
There are many hard inclusions such as N and Al2O3 which show aggressiveness to the other party. A crankshaft of an automobile engine or the like slides and rotates through an oil film between the bearing and a sliding bearing. Under such conditions, the presence of the hard inclusions causes the bearing to wear and damage significantly. As a result, there is a problem that the shaft is worn.
【0012】本発明はかかる従来の問題点に鑑み,被削
性及び耐摩耗性に優れ,軸受に対しての攻撃性も小さ
く,かつ低コストのクランクシャフト用鋼及びこれを用
いて作製されたクランクシャフトを提供しようとするも
のである。The present invention has been made in view of the above-mentioned conventional problems, and it is excellent in machinability and abrasion resistance, has low aggressiveness to bearings, and is manufactured at low cost. It is intended to provide a crankshaft.
【0013】[0013]
【課題の解決手段】請求項1の発明は,重量%で,C:
0.62〜0.80%,Si:0.60%以下,Mn:
0.30〜1.80%,S:0.04〜0.35%,C
r:0.05〜0.50%,Al:0.005%未満,
O:0.0020%以下,残部Fe及び不可避不純物か
らなり,熱間鍛造後の組織が初析フェライト分率3%以
下のパーライト主体であり,且つ厚み20μm以下の硫
化物系介在物を含有することを特徴とする被削性及び耐
摩耗性に優れたクランクシャフト用鋼である。According to the first aspect of the present invention, C:
0.62-0.80%, Si: 0.60% or less, Mn:
0.30 to 1.80%, S: 0.04 to 0.35%, C
r: 0.05 to 0.50%, Al: less than 0.005%,
O: 0.0020% or less, the balance being Fe and unavoidable impurities, the structure after hot forging is mainly pearlite having a pro-eutectoid ferrite fraction of 3% or less, and contains sulfide-based inclusions having a thickness of 20 µm or less. A steel for crankshafts having excellent machinability and wear resistance.
【0014】本発明者らは,スチール鍛造のクランクシ
ャフトにおける耐摩耗性と被削性という相反する特性の
両立を,軸受の損傷低減にも配慮しつつ,低コストにて
達成するように鋭意研究を重ね,その結果,本発明に至
ったものである。 i)クランクシャフト用鋼の組織はフェライト分率3%
以下のパーライト主体である。また,クランクシャフト
用鋼中のAl量を0.005%未満に規制しているた
め,硬質介在物生成が抑制される。このため,クランク
シャフトの耐摩耗性が向上し,また軸受の損傷を防ぐこ
とができる。 ii)Sをクランクシャフト用鋼中に0.04〜0.3
5%含有させるとともに,Al量を0.005%未満,
O(酸素)量を0.0020%以下に規制することによ
り,クランクシャフトの被削性を改善することができ
る。 iii)S含有により生成したMnS等の硫化物系介在
物は,その厚みが大きい場合にはクランクシャフトの耐
摩耗性を劣化させるが,厚みを20μm以下としている
ため,耐摩耗性を確保することができる。The present inventors have intensively studied to achieve a balance between the contradictory characteristics of wear resistance and machinability in a steel forged crankshaft at a low cost while taking into account the reduction of bearing damage. As a result, the present invention has been achieved. i) The structure of the steel for crankshaft has a ferrite fraction of 3%
The following are mainly pearlite. Further, since the amount of Al in the steel for the crankshaft is regulated to less than 0.005%, the generation of hard inclusions is suppressed. Therefore, the wear resistance of the crankshaft is improved, and damage to the bearing can be prevented. ii) S in the steel for crankshafts is 0.04-0.3
5%, Al content is less than 0.005%,
By limiting the O (oxygen) amount to 0.0020% or less, the machinability of the crankshaft can be improved. iii) Sulfide-based inclusions such as MnS generated by the inclusion of S deteriorate the wear resistance of the crankshaft when its thickness is large, but the wear resistance must be ensured because the thickness is set to 20 μm or less. Can be.
【0015】以上のように本発明のクランクシャフト用
鋼は,被削性及び耐摩耗性に優れ,軸受に対しての攻撃
性も小さく,かつ低コストである。また,熱間鍛造後の
焼入れ・焼戻しが不要であり,耐摩耗性のための高周波
焼入れや軟窒化処理も不要である。また,被削性につい
ても良好である。以下に,クランクシャフト用鋼の各元
素量(重量%)の限定理由を示す。As described above, the steel for crankshafts of the present invention is excellent in machinability and wear resistance, has low aggression to bearings, and is low in cost. Further, quenching and tempering after hot forging are not required, and induction hardening and nitrocarburizing for wear resistance are not required. Also, the machinability is good. The reasons for limiting the amounts (% by weight) of each element in the steel for crankshafts are described below.
【0016】C:0.62〜0.80%, Cは強度の確保ならびに耐摩耗性を向上させるために必
要な元素である。Cが0.62%未満の場合には,鋼の
強度及び耐摩耗性が低下するため,下限を0.62%,
好ましくは0.67%以上とする必要がある。一方,C
が0.80%を越える場合には,強度が必要以上に増加
し,被削性が低下するため,上限を0.80%,好まし
くは0.76%以下とする必要がある。C: 0.62 to 0.80%, C is an element necessary for securing strength and improving wear resistance. If C is less than 0.62%, the strength and wear resistance of the steel are reduced.
Preferably, it must be 0.67% or more. On the other hand, C
Exceeds 0.80%, the strength increases more than necessary and the machinability decreases, so the upper limit must be set to 0.80%, preferably 0.76% or less.
【0017】Si:0.60%以下, Siは製鋼時の脱酸補助材として効果的な元素であると
共に強度,耐摩耗性の向上にも有効な元素である。ただ
しSiが0.60%を越える場合には,被削性の低下を
招くため,上限を0.60%,好ましくは0.35%以
下とする必要がある。Si: 0.60% or less Si is an element effective as a deoxidizing aid at the time of steel making and is also an element effective for improving strength and wear resistance. However, if Si exceeds 0.60%, the machinability is reduced, so the upper limit must be 0.60%, preferably 0.35% or less.
【0018】Mn:0.30〜1.80%, Mnは製鋼時の脱酸補助材として効果的な元素であると
共に鋼の強度確保に必要な元素である。Mnが0.30
%未満の場合には,強度が低下するため,下限を0.3
0%,好ましくは0.40%以上とする必要がある。一
方,Mnが1.80%を越える場合には,ベイナイトや
マルテンサイトといった低温変態組織が生成し,被削性
の低下を招くため,上限を1.80%,好ましくは1.
50%以下とする必要がある。Mn: 0.30 to 1.80%, Mn is an element effective as a deoxidizing aid in steel making and an element necessary for ensuring the strength of steel. Mn is 0.30
%, The lower limit is 0.3.
0%, preferably 0.40% or more. On the other hand, if Mn exceeds 1.80%, a low-temperature transformation structure such as bainite or martensite is formed, which causes a decrease in machinability. Therefore, the upper limit is 1.80%, preferably 1.80%.
It must be 50% or less.
【0019】S:0.04〜0.35%, Sは鋼の被削性を改善するために不可欠な元素である。
Sが0.04%未満では,その効果が得られないため,
下限を0.04%,好ましくは0.13%以上とする必
要がある。反面,Sが0.35%を超える場合には,鋼
の強度および熱間加工性を損なうため,上限を0.35
%,好ましくは0.20%以下とする必要がある。S: 0.04 to 0.35%, S is an element indispensable for improving the machinability of steel.
If S is less than 0.04%, the effect cannot be obtained.
The lower limit needs to be 0.04%, preferably 0.13% or more. On the other hand, when S exceeds 0.35%, the strength and hot workability of steel are impaired, so the upper limit is set to 0.35%.
%, Preferably 0.20% or less.
【0020】Cr:0.05〜0.50%, Crは鋼の耐摩耗性の向上に有効な元素である。Crが
0.05%未満の場合には,その向上が期待できないた
め,下限を0.05%,好ましくは0.10%以上とす
ることが必要である。一方,Crが0.50%を超える
と,被削性の低下を招くため,上限を0.50%,好ま
しくは0.35%以下とする必要がある。Cr: 0.05 to 0.50%, Cr is an element effective for improving the wear resistance of steel. If Cr is less than 0.05%, the improvement cannot be expected, so the lower limit needs to be 0.05%, preferably 0.10% or more. On the other hand, if Cr exceeds 0.50%, the machinability is reduced, so the upper limit must be 0.50%, preferably 0.35% or less.
【0021】Al:0.005%未満, A1は耐摩耗性および被削性に有害なAl2O3および
AlNを生成するため,極力低く抑える必要がある。A
lが0.005%以上の場合には, A12O 3および
AlNの増加および粗大化を招き,耐摩耗性および被削
性を劣化させてしまうので,上限を0.005%とする
必要がある。Al: less than 0.005%, A1 is Al harmful to wear resistance and machinability2O3and
In order to generate AlN, it is necessary to keep it as low as possible. A
If l is 0.005% or more, A12O 3and
AlN increase and coarsening cause wear resistance and
The upper limit is set to 0.005%, as this will deteriorate the performance.
There is a need.
【0022】O(酸素):0.0020%以下, Oが0.0020%を超える場合には,硫化物系介在物
の厚みが大きくなり,耐摩耗性を低下させるという問題
があるため,上限を0.0020%とする必要がある。If O (oxygen) is 0.0020% or less, and if O exceeds 0.0020%, there is a problem that the thickness of the sulfide-based inclusions becomes large and the wear resistance is reduced. Must be set to 0.0020%.
【0023】また,熱間鍛造した後のクランクシャフト
用鋼の組織は,耐摩耗性の点から初析フェライト分率3
%以下のパーライト主体とする必要がある。初析フェラ
イト分率が3%を超える場合には,耐摩耗性低下の問題
が生じる。The structure of the steel for crankshaft after hot forging has a pro-eutectoid ferrite fraction of 3 from the viewpoint of wear resistance.
% Or less of pearlite. If the fraction of pro-eutectoid ferrite exceeds 3%, the problem of reduced wear resistance occurs.
【0024】硫化物系介在物は,クランクシャフト用鋼
の中に形成されている。硫化物系介在物の厚みは,耐摩
耗性の点から20μm以下に規制する必要がある。硫化
物系介在物の厚みが20μmを超えると,耐摩耗性が低
下してしまう。The sulfide inclusions are formed in the steel for the crankshaft. It is necessary to regulate the thickness of the sulfide inclusion to 20 μm or less from the viewpoint of wear resistance. If the thickness of the sulfide inclusions exceeds 20 μm, the wear resistance will be reduced.
【0025】請求項2の発明は,重量%で,C:0.6
2〜0.80%,Si:0.60%以下,Mn:0.3
0〜1.80%,S:0.04〜0.35%,Cr:
0.05〜0.50%,V:0.01〜0.09%,A
l:0.005%未満, O:0.0020%以下,残
部Fe及び不可避不純物からなり,熱間鍛造後の組織が
初析フェライト分率3%以下のパーライト主体であり,
且つ厚み20μm以下の硫化物系介在物を含有すること
を特徴とする被削性及び耐摩耗性に優れたクランクシャ
フト用鋼である。According to a second aspect of the present invention, in the weight percent, C: 0.6%
2 to 0.80%, Si: 0.60% or less, Mn: 0.3
0 to 1.80%, S: 0.04 to 0.35%, Cr:
0.05 to 0.50%, V: 0.01 to 0.09%, A
l: less than 0.005%, O: 0.0020% or less, balance Fe and inevitable impurities, the structure after hot forging is mainly pearlite with a fraction of proeutectoid ferrite of 3% or less,
A crankshaft steel excellent in machinability and wear resistance, characterized by containing a sulfide inclusion having a thickness of 20 μm or less.
【0026】本発明のクランクシャフトには,上記請求
項1の発明の鋼の成分に加えて,Vを0.01〜0.0
9重量%含んでいる。Vは,鋼の耐摩耗性を確保するた
めに有効な元素である。その効果を得るためには,少な
くとも0.01%の含有が必要なため,下限を0.01
%,好ましくは0.03%以上とする必要がある。ただ
し,Vの含有量が0.09%を超えると,コスト高とな
ってしまうため,上限を0.09%とした。本発明の他
の点は上記請求項1の発明と同様である。In the crankshaft of the present invention, in addition to the steel component of the first aspect of the present invention, V is set to 0.01 to 0.0.
Contains 9% by weight. V is an element effective for securing the wear resistance of steel. In order to obtain the effect, it is necessary to contain at least 0.01%.
%, Preferably 0.03% or more. However, if the V content exceeds 0.09%, the cost increases, so the upper limit is set to 0.09%. Other aspects of the present invention are the same as those of the first aspect.
【0027】請求項3の発明のように,上記クランクシ
ャフト用鋼は,更に,重量%で,Bi:0.01〜0.
30%,Pb:0.01〜0.30%,Ca:0.00
03〜0.020%,Mg:0.0003〜0.002
0%,及びREM:0.001〜0.10%のグループ
から選ばれる1種または2種以上を含有していることが
好ましい。これにより,更に鋼の被削性が向上する。以
下,各元素の臨界意義を説明する。According to a third aspect of the present invention, the steel for a crankshaft further includes Bi: 0.01 to 0.
30%, Pb: 0.01 to 0.30%, Ca: 0.00
03-0.020%, Mg: 0.0003-0.002
0% and one or more selected from the group of REM: 0.001 to 0.10%. This further improves the machinability of the steel. Hereinafter, the significance of each element will be described.
【0028】Bi:0.01〜0.30%, Biは,被削性の改善に有効な元素で,その効果を発揮
するためには0.01%以上,好ましくは0.02%以
上の含有が必要である。一方,Biを0.30%を超え
て含む場合にはその効果は飽和し,コスト高になるとと
もに,熱間加工性を損なうので,上限を0.30%,こ
のましくは0.15%以下とする必要がある。Bi: 0.01 to 0.30%, Bi is an element effective for improving the machinability, and in order to exhibit its effect, 0.01% or more, preferably 0.02% or more. Must be included. On the other hand, when Bi is contained in excess of 0.30%, the effect saturates, the cost increases, and the hot workability is impaired. Therefore, the upper limit is set to 0.30%, preferably 0.15%. It is necessary to:
【0029】Pb:0.01〜0.30%, Pbは,Biと同様の効果を示す被削性改善に有効な元
素で,その効果を発揮するためには0.01%以上,好
ましくは0.04%以上の含有が必要である。一方,P
bを0.30%を超えて含む場合にはその効果は飽和
し,かつ熱間加工性を損なうので,上限を0.30%,
このましくは0.25%以下とする必要がある。Pb: 0.01 to 0.30%, Pb is an element effective for improving machinability and has the same effect as Bi. To exhibit the effect, 0.01% or more, preferably, Pb is used. 0.04% or more is required. On the other hand, P
If b is contained in excess of 0.30%, the effect is saturated and the hot workability is impaired.
Preferably, it is required to be 0.25% or less.
【0030】Ca:0.0003〜0.020%, Caは,被削性の改善に効果のある元素であり,その効
果を発揮するためには0.0003%以上,好ましくは
0.0005%以上の含有が必要である。一方,0.0
20%を超えて含有させても,効果が飽和するととも
に,コスト高となるため,上限を0.020%とした。Ca: 0.0003-0.020%, Ca is an element effective in improving machinability, and in order to exhibit the effect, 0.0003% or more, preferably 0.0005%. The above content is necessary. On the other hand, 0.0
Even if the content exceeds 20%, the effect is saturated and the cost increases, so the upper limit is made 0.020%.
【0031】Mg:0.0003〜0.020% Mgは,Caと同様の効果を示し,Caと複合で存在さ
せた場合に大きな被削性改善効果及び機械的性質の異方
性改善効果が得られる。その効果を得るためには,少な
くともMgは0.0003%以上,好ましくは0.00
05%以上必要であるが,必要以上に含有させてもその
効果は飽和状態となり無駄であるためMgの上限を0.
020%とした。Mg: 0.0003% to 0.020% Mg exhibits the same effect as Ca, and when present in a composite with Ca, has a large effect of improving machinability and an effect of improving anisotropy of mechanical properties. can get. In order to obtain the effect, at least Mg is 0.0003% or more, preferably 0.0003% or more.
Although the content is required to be 0.05% or more, even if it is contained more than necessary, the effect becomes saturated and is useless.
020%.
【0032】REM:0.001〜0.10% REMは,被削性改善に有効な希土類元素で,その効果
を発揮するためには0.001%以上,好ましくは0.
005%以上の含有が必要である。一方,REMを0.
10%を超えて含有させても,効果が飽和するととも
に,コストアップを招くので,上限を0.10%とし
た。REM: 0.001 to 0.10% REM is a rare earth element effective for improving machinability. To exhibit its effect, REM is 0.001% or more, preferably 0.1% or more.
005% or more is required. On the other hand, REM was set to 0.
If the content exceeds 10%, the effect is saturated and the cost is increased. Therefore, the upper limit is set to 0.10%.
【0033】請求項4の発明は,ピン部及びジャーナル
部を有するクランクシャフトにおいて,該クランクシャ
フトは,重量%で,C:0.62〜0.80%,Si:
0.60%以下,Mn:0.30〜1.80%,S:
0.04〜0.35%,Cr:0.05〜0.50%,
Al:0.005%未満,O:0.0020%以下,残
部Fe及び不可避不純物からなるクランクシャフト用鋼
を熱間鍛造してなる熱間鍛造品であって,該熱間鍛造品
の組織は,初析フェライト分率3%以下のパーライト主
体であり,且つ厚み20μm以下の硫化物系介在物を含
有し,上記ピン部および上記ジャーナル部におけるすべ
り軸受との摺動面は,表面粗さRzが1μm以下である
ことを特徴とする被削性及び耐摩耗性に優れたクランク
シャフトである。According to a fourth aspect of the present invention, there is provided a crankshaft having a pin portion and a journal portion, wherein the crankshaft is 0.62 to 0.80% by weight, Si:
0.60% or less, Mn: 0.30 to 1.80%, S:
0.04 to 0.35%, Cr: 0.05 to 0.50%,
Al: less than 0.005%, O: 0.0020% or less, a hot forged product obtained by hot forging a crankshaft steel comprising the balance of Fe and inevitable impurities, and the structure of the hot forged product is as follows. And a sulfide-based inclusion having a thickness of 20 μm or less, which is mainly composed of pearlite having a pro-eutectoid ferrite fraction of 3% or less, and a sliding surface of the pin portion and the journal portion with a sliding bearing has a surface roughness Rz. Is not more than 1 μm, and is excellent in machinability and wear resistance.
【0034】請求項4の発明のクランクシャフトは,請
求項1の発明のクランクシャフト用鋼を用いて作製され
たものである。A fourth aspect of the present invention is a crankshaft manufactured using the steel for a crankshaft according to the first aspect of the present invention.
【0035】ピン部およびジャーナル部におけるすべり
軸受との摺動円筒面の表面粗さRzは,1μm以下であ
る。 Rzが1μmを超えると,クランクシャフト及び
すべり軸受の耐摩耗性が劣化する。The surface roughness Rz of the sliding cylindrical surface of the pin portion and the journal portion with the slide bearing is 1 μm or less. When Rz exceeds 1 μm, the wear resistance of the crankshaft and the slide bearing deteriorates.
【0036】本発明のクランクシャフトは,被削性及び
耐摩耗性に優れ,すべり軸受に対しての攻撃性も小さ
く,かつ低コストである。また,熱間鍛造後の焼入れ・
焼戻しが不要であり,耐摩耗性のための高周波焼入れや
軟窒化処理も不要である。また,被削性についても良好
である。本発明のクランクシャフトは,たとえば,ピン
部及びすべり軸受の摺動面とすべり軸受との間に,油膜
を介して摺動回転する。本発明のクランクシャフトは,
上記請求項1の発明のクランクシャフト用鋼をクランク
シャフト形状に熱間鍛造した後に,表面粗さRzが1μ
m以下になるように仕上げ加工を施すことにより,製造
することができる。The crankshaft of the present invention is excellent in machinability and wear resistance, has low aggressiveness against a sliding bearing, and is low in cost. In addition, quenching after hot forging
No tempering is required, and no induction hardening or soft nitriding for wear resistance is required. Also, the machinability is good. The crankshaft according to the present invention is slidably rotated via an oil film between, for example, a pin portion and a sliding surface of the sliding bearing and the sliding bearing. The crankshaft of the present invention
After the crankshaft steel according to the first aspect of the present invention is hot forged into a crankshaft shape, the surface roughness Rz is 1 μm.
m can be manufactured by performing a finishing process so as to be not more than m.
【0037】請求項5の発明は,ピン部及びジャーナル
部を有するクランクシャフトにおいて,該クランクシャ
フトは,重量%で,C:0.62〜0.80%,Si:
0.60%以下,Mn:0.30〜1.80%,S:
0.04〜0.35%,Cr:0.05〜0.50%,
V:0.01〜0.09%,Al:0.005%未満,
O:0.0020%以下,残部Fe及び不可避不純物か
らなるクランクシャフト用鋼を熱間鍛造してなる熱間鍛
造品であって,該熱間鍛造品の組織は,初析フェライト
分率3%以下のパーライト主体であり,且つ厚み20μ
m以下の硫化物系介在物を含有し,上記ピン部および上
記ジャーナル部におけるすべり軸受との摺動面は,表面
粗さRzが1μm以下であることを特徴とする被削性及
び耐摩耗性に優れたクランクシャフトである。According to a fifth aspect of the present invention, there is provided a crankshaft having a pin portion and a journal portion, wherein the crankshaft is 0.62 to 0.80% by weight, Si:
0.60% or less, Mn: 0.30 to 1.80%, S:
0.04 to 0.35%, Cr: 0.05 to 0.50%,
V: 0.01 to 0.09%, Al: less than 0.005%,
O: a hot forged product obtained by hot forging a crankshaft steel comprising 0.0020% or less and the balance of Fe and unavoidable impurities, and the structure of the hot forged product has a pro-eutectoid ferrite fraction of 3%. The following are mainly pearlite and have a thickness of 20μ
m and sulphide inclusions of less than 1 m, and the sliding surface of the pin and the journal with the sliding bearing has a surface roughness Rz of 1 μm or less. An excellent crankshaft.
【0038】本発明のクランクシャフトは,被削性及び
耐摩耗性に優れ,すべり軸受に対しての攻撃性も小さ
く,かつ低コストである。本発明のクランクシャフト
は,上記請求項2の発明のクランクシャフト用鋼を用い
て作製することができる。The crankshaft of the present invention is excellent in machinability and wear resistance, has low aggressiveness against a sliding bearing, and is low in cost. The crankshaft of the present invention can be manufactured using the steel for a crankshaft according to the second aspect of the present invention.
【0039】請求項6の発明のように,上記クランクシ
ャフト用鋼は,更に,重量%で,Bi:0.01〜0.
30%,Pb:0.01〜0.30%,Ca:0.00
03〜0.020%,Mg:0.0003〜0.002
0%,及びREM:0.001〜0.10%のグループ
から選ばれる1種または2種以上を含有していることが
好ましい。これにより,更に鋼の被削性が向上する。本
発明のクランクシャフトは,上記請求項3の発明のクラ
ンクシャフト用鋼を用いて作製することができる。According to a sixth aspect of the present invention, the steel for a crankshaft further contains Bi: 0.01 to 0.
30%, Pb: 0.01 to 0.30%, Ca: 0.00
03-0.020%, Mg: 0.0003-0.002
0% and one or more selected from the group of REM: 0.001 to 0.10%. This further improves the machinability of the steel. The crankshaft of the present invention can be manufactured using the steel for a crankshaft according to the third aspect of the present invention.
【0040】[0040]
【発明の実施の形態】実施形態例1 本発明の実施形態例に係るクランクシャフト用鋼を準備
し,以下の性能を評価した。クランクシャフト用鋼とし
て,本発明の試料A〜I及び比較用の試料J〜Q,なら
びに従来よりクランクシャフトに用いられている非調質
鋼(従来鋼)の試料R及び従来鋳鉄の試料Sを準備し
た。本発明の試料A〜Iのうち,試料A〜C(第1発明
品)は,重量%で,C:0.62〜0.80%,Si:
0.60%以下,Mn:0.30〜1.80%,S:
0.04〜0.35%,Cr:0.05〜0.50%,
Al:0.005%未満,O:0.0020%以下,残
部Fe及び不可避不純物(P,Cu,Ni,Mo,N)
からなる鋼である。試料D,E(第2発明品)は,これ
らの成分に加えて,V0.01〜0.09%を含む鋼で
ある。試料F〜I(第3発明品)は,上記成分に加え
て,Bi:0.01〜0.30%,Pb:0.01〜
0.30%,Ca:0.0003〜0.020%,M
g:0.0003〜0.0020%,及びREM:0.
001〜0.10%のグループから選ばれる1種または
2種以上を含む鋼である。その成分を表1に示す。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 A steel for a crankshaft according to an embodiment of the present invention was prepared, and the following performance was evaluated. Samples A to I of the present invention and samples J to Q for comparison, a sample R of non-heat treated steel (conventional steel) and a sample S of conventional cast iron conventionally used for crankshafts were used as crankshaft steel. Got ready. Among the samples A to I of the present invention, the samples A to C (first invention products) are C: 0.62 to 0.80% by weight, and Si:
0.60% or less, Mn: 0.30 to 1.80%, S:
0.04 to 0.35%, Cr: 0.05 to 0.50%,
Al: less than 0.005%, O: 0.0020% or less, balance Fe and unavoidable impurities (P, Cu, Ni, Mo, N)
Steel. Samples D and E (the second invention) are steels containing 0.01 to 0.09% V in addition to these components. Samples F to I (third invention product) were, in addition to the above components, Bi: 0.01 to 0.30%, Pb: 0.01 to
0.30%, Ca: 0.0003 to 0.020%, M
g: 0.0003-0.0020%, and REM: 0.
Steel containing one or more selected from the group of 001 to 0.10%. The components are shown in Table 1.
【0041】各クランクシャフト用鋼は真空溶解炉にて
溶製し,熱間圧延後,φ60mmに鍛伸した。その後,
1200℃にて30分加熱後,空冷の熱処理を行い,供
試材とした。この処理は,実際のクランクシャフト鍛造
工程を模擬したものであり,得られる硬さと組織は,自
動車エンジン用の実際のクランクシャフトの場合とほぼ
一致する。得られた供試材より,硬さ試験片,引張試験
片,切削試験片,熱間加工試験片を切り出し,試験に供
した。Each crankshaft steel was smelted in a vacuum melting furnace, hot rolled, and then forged to φ60 mm. afterwards,
After heating at 1200 ° C. for 30 minutes, air-cooled heat treatment was performed to obtain a test material. This process simulates an actual crankshaft forging process, and the obtained hardness and structure almost match those of an actual crankshaft for an automobile engine. From the obtained test materials, hardness test pieces, tensile test pieces, cut test pieces, and hot-worked test pieces were cut out and subjected to a test.
【0042】(硬さ,ミクロ組織)硬さは,ビッカース
硬さ計を用い,荷重30kgfにて測定した。また,硬
さ試験後に,研磨された試験片を光学顕微鏡で倍率:×
400で50視野観察し,硫化物系介在物の厚みを測定
した。硫化物系介在物の厚みは,測定された値の最大値
をデータとして採用した。その後,試験片を3%ナイタ
ールにて腐食し,光学顕微鏡で倍率:×400でミクロ
組織観察を行い,組織判定および50視野のポイントカ
ウンティング法によるフェライト分率の測定を行った。(Hardness, Microstructure) The hardness was measured using a Vickers hardness meter under a load of 30 kgf. After the hardness test, the polished specimen was examined with an optical microscope at a magnification of ×
Observation was made at 50 fields at 400, and the thickness of the sulfide-based inclusions was measured. As the thickness of the sulfide inclusions, the maximum value of the measured values was adopted as data. Thereafter, the test piece was corroded with 3% nital, and the microstructure was observed with an optical microscope at a magnification of × 400 to determine the structure and measure the ferrite fraction by the point counting method in 50 visual fields.
【0043】(引張試験)引張試験は,JIS14A号
引張試験片にて,引張強さ,0.2%耐力,伸び,絞り
を測定した。(Tensile Test) In the tensile test, tensile strength, 0.2% proof stress, elongation, and drawing were measured using a JIS No. 14A tensile test piece.
【0044】(切削試験)切削試験は,クランクシャフ
トの加工工程を想定し,超硬工具摩耗,切粉処理性,お
よびドリル寿命について行った。なお,これらの試験の
条件を表2に示した。(Cutting Test) The cutting test was conducted on the carbide tool wear, chip processing, and drill life, assuming a crankshaft processing step. Table 2 shows the conditions of these tests.
【0045】(熱間加工試験)熱間加工試験は,グリー
ブル試験機により,1200℃における高温引張試験を
行い,試験後の絞り値を測定した。(Hot Working Test) In the hot working test, a high-temperature tensile test was performed at 1200 ° C. using a grease tester, and the aperture value after the test was measured.
【0046】上記試験結果を表3及び表4に示した。The test results are shown in Tables 3 and 4.
【0047】[0047]
【表1】 [Table 1]
【0048】[0048]
【表2】 [Table 2]
【0049】[0049]
【表3】 [Table 3]
【0050】[0050]
【表4】 [Table 4]
【0051】上記試験結果より,本発明鋼A〜Iは,硫
化物系介在物の厚みが20μm以下であり,組織が初析
フェライト分率3%以下のパーライト主体であって,
いずれの特性についても,従来鋼とほぼ同等であり,強
度および被削性の面で,クランクシャフトとしての使用
に適している。特に,試料F〜I(第3発明)について
は,非常に優れた被削性を示す。これに対して,比較鋼
Jは,C量が本発明の範囲より低く,フェライト分率が
高くなり,強度面で劣る。比較鋼Kは,逆にC量が本発
明の範囲より高く,被削性において劣る。比較鋼Lにつ
いては,Si量が本発明の範囲より高く,被削性におい
て劣る。比較鋼Mについては,Mn量およびCr量が本
発明の範囲よりも低いため,強度に劣るものであり,比
較鋼Nについては,逆にMn量およびCr量が本発明の
範囲よりも高いため,ベイナイト組織が混在し,被削性
に劣る。比較鋼Oについては,S量が本発明の範囲より
も低く,被削性に劣るものであり,比較鋼Pについて
は,逆にS量が本発明の範囲よりも高く,またO(酸
素)量も本発明の範囲よりも高いため,硫化物系介在物
の厚みが大きく,熱間加工性に劣る。比較鋼Qについて
は,Al量が本発明の範囲よりも高く,被削性に劣るも
のである。From the above test results, the steels A to I of the present invention have a sulfide-based inclusion thickness of 20 μm or less and a structure mainly composed of pearlite having a proeutectoid ferrite fraction of 3% or less.
Both properties are almost the same as conventional steel, and are suitable for use as crankshafts in terms of strength and machinability. In particular, Samples F to I (third invention) exhibit extremely excellent machinability. On the other hand, Comparative Steel J has a lower C content than the range of the present invention, a higher ferrite fraction, and is inferior in strength. Conversely, the comparative steel K has a higher C content than the range of the present invention and is inferior in machinability. The comparative steel L has a higher Si content than the range of the present invention and is inferior in machinability. The comparative steel M is inferior in strength because the Mn content and the Cr content are lower than the range of the present invention, and the comparative steel N is conversely higher in the Mn content and the Cr content than the range of the present invention. , Bainite structure is mixed, and the machinability is poor. For the comparative steel O, the S content is lower than the range of the present invention and the machinability is inferior. For the comparative steel P, on the contrary, the S content is higher than the range of the present invention and O (oxygen) Since the amount is also higher than the range of the present invention, the thickness of the sulfide-based inclusions is large and the hot workability is poor. The comparative steel Q has an Al content higher than the range of the present invention and is inferior in machinability.
【0052】実施形態例2 本例では,試作した実際のクランクシャフトをエンジン
に組付け,耐摩耗性について測定した。測定に供する鋼
は,表1に示される,本発明にかかる試料A〜Iと,比
較用の試料J〜Q,および従来よりクランクシャフト用
に用いられている,非調質鋼(従来鋼)の試料Rおよび
従来鋳鉄の試料Sである。これらのうち,試料A〜Rに
ついては,真空溶解炉にて溶製し,熱間圧延した後,図
1に示すようなジャーナル部11とピン部12とを有す
るクランクシャフト形状に熱間鍛造した後,空冷した。
これらクランクシャフト鍛造品を,機械加工により仕上
げて,試験に供した。Embodiment 2 In this embodiment, a prototype of an actual crankshaft was mounted on an engine, and its wear resistance was measured. The steels to be measured are shown in Table 1 as samples A to I according to the present invention, samples J to Q for comparison, and non-heat treated steels (conventional steels) conventionally used for crankshafts. And sample S of conventional cast iron. Of these, samples A to R were melted in a vacuum melting furnace, hot-rolled, and then hot-forged into a crankshaft having a journal portion 11 and a pin portion 12 as shown in FIG. After that, it was air-cooled.
These forged crankshafts were finished by machining and subjected to a test.
【0053】試料Rについては,ピン部およびジャーナ
ル部に,焼入硬化層深さ3mmとなる条件で高周波焼入
処理を行ったものも用意した。試料Sは,JISで規定
されている鋳鉄:FCD700−2であり,鋳造により
クランクシャフト形状に鋳込んだ後,機械加工により仕
上げて,供試品とした。なお,本実施例においては,い
ずれの供試品も,ピン部およびジャーナル部の機械加工
仕上げは,表面粗さRzが0.8μm以下となるような
ラッピング仕上げとした。Sample R was prepared by subjecting the pin portion and the journal portion to induction hardening under the condition that the hardened layer had a depth of 3 mm. Sample S is cast iron: FCD700-2 specified by JIS. After casting into a crankshaft shape by casting, it was finished by machining to obtain a test sample. In this example, the mechanical finish of the pin portion and the journal portion was wrapped so that the surface roughness Rz was 0.8 μm or less in each of the test samples.
【0054】摩耗試験に先立ち,各供試品は,各ピン部
および各ジャーナル部の摺動面を,表面粗さ計を用い
て,クランクシャフトの長手方向に10点平均粗さ:R
zおよび真直度の測定を行った。表面粗さRzは,各ピ
ン,ジャーナルの中で測定された値の最大値を採用し,
表5に示した。Prior to the abrasion test, each of the specimens was prepared by measuring the sliding surface of each pin portion and each journal portion in the longitudinal direction of the crankshaft by using a surface roughness meter with a 10-point average roughness: R
Measurements of z and straightness were made. As the surface roughness Rz, the maximum value measured in each pin and journal is adopted.
The results are shown in Table 5.
【0055】摩耗試験は,前記クランクシャフト供試品
を,自動車エンジン用すべり軸受とともにエンジンに組
付け,エンジンを運転して行った。ジャーナル部11及
びピン部12におけるすべり軸受との円筒形状の摺動面
10には,運転時に,潤滑油を供給させるようにした。
なお,エンジンの運転条件,運転パターン,運転時間等
の各種試験条件については,供試品間で同一に設定して
行った。In the wear test, the crankshaft sample was mounted on an engine together with a sliding bearing for an automobile engine, and the engine was operated. Lubricating oil is supplied to the cylindrical sliding surface 10 of the journal portion 11 and the pin portion 12 with the slide bearing during operation.
In addition, various test conditions, such as an engine operating condition, an operating pattern, and an operating time, were set identically between the specimens.
【0056】上記摩耗試験後に,供試品の各ピン部およ
び各ジャーナル部の真直度変化を再度測定し,試験前後
での真直度変化量から,軸摩耗量を算出した。すなわ
ち,図2に示すごとく,試験前のクランクシャフトの軸
表面形状31と,試験後のその軸表面形状32とを測定
し,すべり軸受の幅Bに相当する部位の両者の変化量を
算出して軸摩耗量33を求めた。また,参考データとし
て,摩耗試験の前後での各すべり軸受の重量変化量を測
定し,軸受摩耗量を算出した。これら軸摩耗量および軸
受摩耗量の結果は,各ピン部,ジャーナル部の中で測定
された値の最大値を採用し,試料Sの結果を100とし
た場合の指数表示で,表5に示した。After the abrasion test, the change in straightness of each pin portion and each journal portion of the test sample was measured again, and the amount of shaft wear was calculated from the change in straightness before and after the test. That is, as shown in FIG. 2, the shaft surface shape 31 of the crankshaft before the test and the shaft surface shape 32 after the test are measured, and the amount of change in both the portion corresponding to the width B of the slide bearing is calculated. The amount of shaft abrasion 33 was determined. As reference data, the weight change of each slide bearing before and after the wear test was measured, and the bearing wear was calculated. The results of the shaft wear and the bearing wear are shown in Table 5 using the maximum value of the values measured in each pin portion and journal portion, with the result of sample S taken as 100. Was.
【0057】摩耗試験結果の一例を,図3に示した。図
3において,左側から順に,開発鋼(試料G)に高周波
波焼き入れをしない場合,従来鋼(試料R)に高周波焼
入れをしない場合,従来鋼(試料R)に高周波焼入れを
した場合,鋳物(試料S)である場合の軸,軸受け摩耗
量を示した。これらの値は,鋳物の試料Sを100とし
たときの相対値で示した。FIG. 3 shows an example of the wear test results. In FIG. 3, in order from the left side, the developed steel (sample G) is not subjected to induction hardening, the conventional steel (sample R) is not subjected to induction hardening, the conventional steel (sample R) is induction hardened, The abrasion amount of the shaft and the bearing in the case of (Sample S) is shown. These values are shown as relative values when the sample S of the casting is set to 100.
【0058】上記摩耗測定後に,供試品の各ピン部およ
び各ジャーナル部を切断,研磨し,ビッカース硬さ計に
より,表面硬さ,内部硬さの測定を行った。その後,再
研磨して,光学顕微鏡で倍率:×400にて観察し,硫
化物介在物の厚み測定,3%ナイタールで腐食したミク
ロ組織観察による表層部の組織判定,およびポイントカ
ウンティング法によるフェライト分率の測定を行った。
表面硬さ,内部硬さ,フェライト分率については,各ピ
ン,ジャーナルの中で測定された値の平均値を採用し,
硫化物系介在物の厚みについては, 各ピン,ジャーナ
ルの中で測定された値の最大値を採用し,表5に示し
た。After the abrasion measurement, each pin portion and each journal portion of the sample were cut and polished, and the surface hardness and the internal hardness were measured by a Vickers hardness meter. After that, it was polished again and observed with an optical microscope at a magnification of × 400, the thickness of sulfide inclusions was measured, the structure of the surface layer was determined by microstructure observation corroded with 3% nital, and the ferrite content was determined by the point counting method. The rate was measured.
For surface hardness, internal hardness, and ferrite fraction, use the average of the values measured in each pin and journal.
Table 5 shows the maximum thickness of sulfide inclusions measured in each pin and journal.
【0059】[0059]
【表5】 [Table 5]
【0060】上記の結果より,本発明鋼A〜Iは,硫化
物系介在物の厚みが20μm以下であり,組織が初析フ
ェライト分率3%以下のパーライト主体であって,軸摩
耗量,軸受摩耗量共に,従来鋼Rの高周波焼入品とほぼ
同等であり,従来鋳鉄に比べて優れている。これに対し
て,比較鋼Jは,C量が本発明の範囲より低く,フェラ
イト分率が高くなり,軸摩耗量,軸受摩耗量共に劣るも
のであり,比較鋼Kは,それぞれC量およびSi量が本
発明の範囲より高く,軸摩耗量,軸受摩耗量の面では遜
色ないが,実施形態例1で示したとおり,被削性におい
て劣る。比較鋼Lは,本発明の範囲よりもSiが多くフ
ェライト分率が高いため,軸摩耗量及び軸受摩耗量が大
きく,切削加工性に劣る。比較鋼Mについては,Mn量
およびCr量が本発明の範囲よりも低いため,硬さが低
く,軸摩耗量に劣る。比較鋼Nについては,逆にMn量
およびCr量が本発明の範囲よりも高いため,ベイナイ
ト組織が混在し,軸摩耗量,軸受摩耗量共に劣る。比較
鋼Oについては,S量が本発明の範囲よりも低く,軸摩
耗量,軸受摩耗量の面では遜色ないが,実施形態例1で
示したとおり,被削性に劣るものであり,比較鋼Pにつ
いては,逆にS量が本発明の範囲よりも高く,またO
(酸素)量も本発明の範囲よりも高いため,硫化物系介
在物の厚みが大きく,軸摩耗量,軸受摩耗量共に劣る。
比較鋼Qについては,Al量が本発明の範囲よりも高
く,軸摩耗量,軸受摩耗量共に劣るものである。また,
従来鋼Rについては,フェライト分率が高く,高周波焼
入を実施しない場合において,軸摩耗量,軸受摩耗量共
に劣っている。From the above results, the steels A to I of the present invention have a sulfide-based inclusion thickness of 20 μm or less, a pearlite-based microstructure with a pro-eutectoid ferrite fraction of 3% or less, and a shaft wear, The amount of bearing wear is almost the same as that of the conventional induction hardened steel R, and is superior to that of the conventional cast iron. On the other hand, Comparative Steel J has a lower C content than the range of the present invention, a higher ferrite fraction, and is inferior in both shaft wear and bearing wear. Comparative Steel K has C content and Si wear, respectively. Although the amount is higher than the range of the present invention, the amount of shaft wear and the amount of bearing wear are comparable, but as shown in the first embodiment, the machinability is inferior. Since the comparative steel L contains more Si and has a higher ferrite fraction than the range of the present invention, the shaft wear and the bearing wear are large, and the machinability is poor. As for the comparative steel M, since the Mn content and the Cr content are lower than the ranges of the present invention, the hardness is low and the shaft wear is inferior. On the other hand, in the comparative steel N, since the Mn content and the Cr content are higher than the range of the present invention, a bainite structure is mixed, and both the shaft wear amount and the bearing wear amount are inferior. Comparative steel O has a lower S content than the range of the present invention and is comparable in shaft wear and bearing wear. However, as shown in Example 1, the machinability is inferior. Conversely, for steel P, the S content is higher than the range of the present invention, and O
Since the (oxygen) amount is also higher than the range of the present invention, the thickness of the sulfide-based inclusion is large, and both the shaft wear amount and the bearing wear amount are inferior.
In Comparative Steel Q, the Al content was higher than the range of the present invention, and both the shaft wear amount and the bearing wear amount were inferior. Also,
Conventional steel R has a high ferrite fraction and is inferior in both shaft wear and bearing wear when induction hardening is not performed.
【0061】実施形態例3 本例では,フェライト分率,およびピン,ジャーナル部
の表面粗さを変化させて試作したクランクシャフトをエ
ンジンに組付け,耐摩耗性について測定することによ
り,本発明の効果を,更に明らかにする。測定に供する
鋼は,表1に示される,本発明にかかる試料Aであり,
真空溶解炉にて溶製し,熱間圧延した後,図1に示すよ
うなクランクシャフト形状に熱間鍛造後,空冷したもの
(供試品1)と,熱間鍛造後,直ちに900℃に昇温し
た熱処理炉内に鍛造品を挿入して,10分間保持後,毎
分0.5℃の割合で徐冷したもの(供試品2)とを作製
した。これらクランクシャフト鍛造品を,機械加工によ
り仕上げて,試験に供した。Embodiment 3 In this embodiment, a prototype crankshaft was mounted on an engine by changing the ferrite fraction and the surface roughness of pins and journals, and the wear resistance was measured. The effect is further clarified. The steel subjected to the measurement is the sample A according to the present invention shown in Table 1,
Melted in a vacuum melting furnace, hot-rolled, hot-forged into a crankshaft shape as shown in Fig. 1, air-cooled (sample 1), and immediately heated to 900 ° C after hot forging A forged product was inserted into the heated heat treatment furnace, held for 10 minutes, and then gradually cooled at a rate of 0.5 ° C. per minute (sample 2). These forged crankshafts were finished by machining and subjected to a test.
【0062】なお,本実施例においては,供試品2のク
ランクシャフトについては,ピン部およびジャーナル部
の機械加工仕上げを,表面粗さRzが0.8μm以下と
なるよう,ラッピング仕上げした。供試品1のクランク
シャフトについては,ピン部およびジャーナル部の機械
加工仕上げを,表面粗さRz:0.8μm以下(供試品
1−1),表面粗さRz:2.0〜3.0μm(供試品
1−2),表面粗さRz:4.0〜5.0μm(供試品
1−3)となるよう,種々変化させた。In the present embodiment, the crankshaft of the specimen 2 was machine-finished in the pin portion and the journal portion, and lapped so that the surface roughness Rz was 0.8 μm or less. Regarding the crankshaft of sample 1, the pin portion and the journal were machined to finish with a surface roughness Rz: 0.8 μm or less (sample 1-1) and a surface roughness Rz: 2.0 to 3.0. Various changes were made so that 0 μm (sample 1-2) and surface roughness Rz: 4.0 to 5.0 μm (sample 1-3).
【0063】摩耗試験に先立ち,各供試品は,各ピンお
よび各ジャーナルの円筒形状の摺動面を,表面粗さ計を
用いて,クランクシャフトの長手方向に10点平均粗
さ:Rz(試験前の軸粗さ)および真直度の測定を行っ
た。なおRzは,各ピン部及び各ジャーナル部の中で測
定された値の最大値を採用し,表6に示した。Prior to the abrasion test, each of the specimens was tested by measuring the cylindrical sliding surface of each pin and each journal in the longitudinal direction of the crankshaft using a surface roughness meter in the longitudinal direction of the crankshaft: Rz ( (Shaft roughness before the test) and straightness were measured. As Rz, the maximum value measured in each pin portion and each journal portion was adopted, and is shown in Table 6.
【0064】摩耗試験は,前記クランクシャフト供試品
を,自動車エンジン用すべり軸受とともにエンジンに組
付け,エンジンを運転して行った。ジャーナル部11と
ピン部12のすべり軸受との摺動面10には,運転時
に,潤滑油を供給させるようにした。なお,エンジンの
運転条件,運転パターン,運転時間等の各種試験条件に
ついては,供試品間で同一に設定して行った。In the wear test, the crankshaft sample was mounted on an engine together with a sliding bearing for an automobile engine, and the engine was operated. Lubricating oil is supplied to the sliding surface 10 between the journal portion 11 and the slide bearing of the pin portion 12 during operation. In addition, various test conditions, such as an engine operating condition, an operating pattern, and an operating time, were set identically between the specimens.
【0065】軸摩耗量及び軸受摩耗量は,実施形態例2
と同様の方法により測定した。すなわち,上記摩耗試験
後に,供試品の各ピンおよび各ジャーナルの真直度変化
を再度測定し,試験前後での真直度変化量から,軸摩耗
量を算出した(図2参照)。また,参考データとして,
摩耗試験の前後での各軸受の重量変化量を測定し,この
重量変化量からこの重量変化量から軸受摩耗量を算出し
た。これら軸摩耗量および軸受摩耗量の結果は,各ピン
部及び各ジャーナル部の中で測定された値の最大値を採
用し,実施形態例2における試料Sの結果を100とし
た場合の指数表示で,表6に示した。The amount of shaft wear and the amount of bearing wear are determined according to the second embodiment.
It was measured in the same manner as in That is, after the wear test, the straightness change of each pin and each journal of the test sample was measured again, and the shaft wear amount was calculated from the straightness change amount before and after the test (see FIG. 2). Also, as reference data,
The weight change of each bearing before and after the wear test was measured, and from this weight change, the bearing wear was calculated from the weight change. For the results of the shaft wear amount and the bearing wear amount, the maximum value of the values measured in each pin portion and each journal portion is adopted, and an index display when the result of the sample S in the second embodiment is set to 100. And shown in Table 6.
【0066】上記摩耗測定後に,供試品の各ピン部およ
び各ジャーナル部を切断,研磨し,ビッカース硬さ計に
より,表面硬さ,内部硬さの測定を行った。その後,再
研磨して,光学顕微鏡で倍率:×400にて観察し,硫
化物介在物の厚み測定,3%ナイタールで腐食したミク
ロ組織観察による表層部の組織判定,およびポイントカ
ウンティング法によるフェライト分率の測定を行った。
表面硬さ,内部硬さ,フェライト分率については,各ピ
ン部及び各ジャーナル部の中で測定された値の平均値を
採用し,硫化物介在物の厚みについては, 各ピン部及
び各ジャーナル部の中で測定された値の最大値を採用
し,表6に示した。After the wear measurement, each pin portion and each journal portion of the sample were cut and polished, and the surface hardness and the internal hardness were measured with a Vickers hardness meter. Then, it is polished again and observed with an optical microscope at a magnification of × 400, the thickness of sulfide inclusions is measured, the structure of the surface layer is determined by observing the microstructure corroded with 3% nital, and the ferrite content is determined by the point counting method. The rate was measured.
For surface hardness, internal hardness, and ferrite fraction, use the average of the values measured in each pin and each journal, and for the thickness of sulfide inclusions, use each pin and each journal. Table 6 shows the maximum value measured in each part.
【0067】[0067]
【表6】 [Table 6]
【0068】上記の結果より,本発明の鋼を用いても,
供試品1−2,1−3のように,軸の表面粗さRzが1
μmを超えて大きくなったり,供試品2のように,フェ
ライト分率が3%を超えると,軸摩耗量および軸受摩耗
量が多くなることが明らかである。硫化物介在物厚みが
20μm未満の場合には,軸の耐摩耗性が低下しない。
すなわち,本発明においては,鋼の成分範囲,フェライ
ト分率,硫化物系介在物の厚み,クランクシャフトの表
面粗さRzが,本発明の請求範囲内にある時に,優れた
被削性及び耐摩耗性を示すのである。From the above results, even if the steel of the present invention is used,
Like the specimens 1-2 and 1-3, the shaft surface roughness Rz is 1
It is apparent that when the diameter exceeds μm or when the ferrite fraction exceeds 3% as in the sample 2, the shaft wear and the bearing wear increase. If the thickness of the sulfide inclusions is less than 20 μm, the wear resistance of the shaft does not decrease.
That is, in the present invention, when the steel composition range, the ferrite fraction, the thickness of the sulfide-based inclusions, and the surface roughness Rz of the crankshaft are within the claims of the present invention, excellent machinability and resistance to stiffness are obtained. It shows abrasion.
【0069】[0069]
【発明の効果】本発明によれば,被削性及び耐摩耗性に
優れ,軸受に対しての攻撃性も小さく,かつ低コストの
クランクシャフト用鋼及びこれを用いて作製されたクラ
ンクシャフトを提供することができる。According to the present invention, there is provided a low-cost crankshaft steel which is excellent in machinability and wear resistance, has low aggression against bearings, and a crankshaft manufactured using the same. Can be provided.
【図1】実施形態例2,3における,クランクシャフト
の正面図。FIG. 1 is a front view of a crankshaft according to Embodiments 2 and 3.
【図2】実施形態例2,3における,軸摩耗量の測定方
法の概略図。FIG. 2 is a schematic diagram of a method of measuring a shaft wear amount in Embodiments 2 and 3.
【図3】実施形態例2における,摩耗試験結果の一例を
示す説明図。FIG. 3 is an explanatory diagram showing an example of a wear test result in Embodiment 2.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩間 直樹 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 (72)発明者 野村 一衛 愛知県東海市荒尾町ワノ割1番地 愛知製 鋼株式会社内 Fターム(参考) 3J033 AA02 AB03 AC01 BA20 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoki Iwama 1 Wanowari, Arao-cho, Tokai City, Aichi Prefecture Inside Aichi Steel Co., Ltd. (72) Inventor Kazue Nomura 1-Wanowari Arao-cho, Tokai City, Aichi Prefecture Steel, Aichi Steel F term in reference (reference) 3J033 AA02 AB03 AC01 BA20
Claims (6)
Si:0.60%以下,Mn:0.30〜1.80%,
S:0.04〜0.35%,Cr:0.05〜0.50
%,Al:0.005%未満,O:0.0020%以
下,残部Fe及び不可避不純物からなり,熱間鍛造後の
組織が初析フェライト分率3%以下のパーライト主体で
あり,且つ厚み20μm以下の硫化物系介在物を含有す
ることを特徴とする被削性及び耐摩耗性に優れたクラン
クシャフト用鋼。C. 0.62 to 0.80% by weight,
Si: 0.60% or less, Mn: 0.30 to 1.80%,
S: 0.04 to 0.35%, Cr: 0.05 to 0.50
%, Al: less than 0.005%, O: 0.0020% or less, balance Fe and inevitable impurities, the structure after hot forging is mainly pearlite having a proeutectoid ferrite fraction of 3% or less, and has a thickness of 20 μm. A crankshaft steel excellent in machinability and wear resistance, characterized by containing the following sulfide inclusions.
Si:0.60%以下,Mn:0.30〜1.80%,
S:0.04〜0.35%,Cr:0.05〜0.50
%,V:0.01〜0.09%,Al:0.005%未
満, O:0.0020%以下,残部Fe及び不可避不
純物からなり,熱間鍛造後の組織が初析フェライト分率
3%以下のパーライト主体であり,且つ厚み20μm以
下の硫化物系介在物を含有することを特徴とする被削性
及び耐摩耗性に優れたクランクシャフト用鋼。2. C .: 0.62 to 0.80% by weight,
Si: 0.60% or less, Mn: 0.30 to 1.80%,
S: 0.04 to 0.35%, Cr: 0.05 to 0.50
%, V: 0.01 to 0.09%, Al: less than 0.005%, O: 0.0020% or less, the balance being Fe and unavoidable impurities, and the structure after hot forging has a proeutectoid ferrite fraction of 3 % Of a pearlite-based material having a thickness of not more than 20 μm and a sulfide-based inclusion having a thickness of not more than 20 μm.
クシャフト用鋼は,更に,重量%で,Bi:0.01〜
0.30%,Pb:0.01〜0.30%,Ca:0.
0003〜0.020%,Mg:0.0003〜0.0
020%,及びREM:0.001〜0.10%のグル
ープから選ばれる1種または2種以上を含有しているこ
とを特徴とするクランクシャフト用鋼。3. The steel for crankshafts according to claim 1, wherein the steel for crankshafts further has a Bi: 0.01% by weight.
0.30%, Pb: 0.01 to 0.30%, Ca: 0.
0003-0.020%, Mg: 0.0003-0.0
020% and REM: steel for crankshafts, characterized by containing one or more selected from the group of 0.001 to 0.10%.
クシャフトにおいて,該クランクシャフトは,重量%
で,C:0.62〜0.80%,Si:0.60%以
下,Mn:0.30〜1.80%,S:0.04〜0.
35%,Cr:0.05〜0.50%,Al:0.00
5%未満, O:0.0020%以下,残部Fe及び不
可避不純物からなるクランクシャフト用鋼を熱間鍛造し
てなる熱間鍛造品であって,該熱間鍛造品の組織は,初
析フェライト分率3%以下のパーライト主体であり,且
つ厚み20μm以下の硫化物系介在物を含有し,上記ピ
ン部および上記ジャーナル部におけるすべり軸受との摺
動面は,表面粗さRzが1μm以下であることを特徴と
する被削性及び耐摩耗性に優れたクランクシャフト。4. A crankshaft having a pin portion and a journal portion, wherein the crankshaft has a weight percentage of
, C: 0.62 to 0.80%, Si: 0.60% or less, Mn: 0.30 to 1.80%, S: 0.04 to 0.
35%, Cr: 0.05 to 0.50%, Al: 0.00
Less than 5%, O: 0.0020% or less, A hot forged product obtained by hot forging a crankshaft steel comprising the balance of Fe and unavoidable impurities, and the structure of the hot forged product is proeutectoid ferrite. The sliding surface of the pin and the journal with the sliding bearing has a surface roughness Rz of 1 μm or less, which is mainly composed of pearlite having a fraction of 3% or less and containing a sulfide inclusion having a thickness of 20 μm or less. A crankshaft with excellent machinability and wear resistance.
クシャフトにおいて,該クランクシャフトは,重量%
で,C:0.62〜0.80%,Si:0.60%以
下,Mn:0.30〜1.80%,S:0.04〜0.
35%,Cr:0.05〜0.50%,V:0.01〜
0.09%,Al:0.005%未満,O:0.002
0%以下,残部Fe及び不可避不純物からなるクランク
シャフト用鋼を熱間鍛造してなる熱間鍛造品であって,
該熱間鍛造品の組織は,初析フェライト分率3%以下の
パーライト主体であり,且つ厚み20μm以下の硫化物
系介在物を含有し,上記ピン部および上記ジャーナル部
におけるすべり軸受との摺動面は,表面粗さRzが1μ
m以下であることを特徴とする被削性及び耐摩耗性に優
れたクランクシャフト。5. A crankshaft having a pin portion and a journal portion, wherein the crankshaft has a weight percent
, C: 0.62 to 0.80%, Si: 0.60% or less, Mn: 0.30 to 1.80%, S: 0.04 to 0.
35%, Cr: 0.05 to 0.50%, V: 0.01 to
0.09%, Al: less than 0.005%, O: 0.002
0% or less, a hot forged product obtained by hot forging a steel for a crankshaft comprising the balance of Fe and unavoidable impurities,
The structure of the hot forged product is mainly composed of pearlite having a pro-eutectoid ferrite fraction of 3% or less and contains sulfide-based inclusions having a thickness of 20 μm or less, and slides with the sliding bearing in the pin portion and the journal portion. The moving surface has a surface roughness Rz of 1μ.
m and a crankshaft excellent in machinability and wear resistance.
クシャフト用鋼は,更に,重量%で,Bi:0.01〜
0.30%,Pb:0.01〜0.30%,Ca:0.
0003〜0.020%,Mg:0.0003〜0.0
020%,及びREM:0.001〜0.10%のグル
ープから選ばれる1種または2種以上を含有しているこ
とを特徴とするクランクシャフト。6. The crankshaft steel according to claim 4, wherein the steel for crankshafts further contains Bi: 0.01 to
0.30%, Pb: 0.01 to 0.30%, Ca: 0.
0003-0.020%, Mg: 0.0003-0.0
020% and REM: 0.001 to 0.10%. A crankshaft containing one or more kinds selected from the group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000400214A JP3491612B2 (en) | 2000-12-28 | 2000-12-28 | Crankshaft steel with excellent machinability and wear resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000400214A JP3491612B2 (en) | 2000-12-28 | 2000-12-28 | Crankshaft steel with excellent machinability and wear resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002194502A true JP2002194502A (en) | 2002-07-10 |
JP3491612B2 JP3491612B2 (en) | 2004-01-26 |
Family
ID=18864846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000400214A Expired - Fee Related JP3491612B2 (en) | 2000-12-28 | 2000-12-28 | Crankshaft steel with excellent machinability and wear resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3491612B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008120574A1 (en) | 2007-03-29 | 2008-10-09 | Kabushiki Kaisha Kobe Seiko Sho | Steel ingot for forging and integral crankshaft |
EP2036992A1 (en) * | 2006-06-21 | 2009-03-18 | Kabushiki Kaisha Kobe Seiko Sho | Steel for forging, process for producing the same, and forged article |
JP2016044359A (en) * | 2014-08-27 | 2016-04-04 | 愛知製鋼株式会社 | Crank shaft and steel material for crank shaft |
CN105483557A (en) * | 2014-09-26 | 2016-04-13 | 鞍钢股份有限公司 | Wire rod for 80-grade cord outer winding and manufacturing method thereof |
JP2017155283A (en) * | 2016-03-01 | 2017-09-07 | 大同特殊鋼株式会社 | Non-heat treated steel for hot forging and automobile component |
CN114645208A (en) * | 2022-03-23 | 2022-06-21 | 青海西钢特殊钢科技开发有限公司 | Tellurium-treated steel for non-quenched and tempered fractured connecting rod and production method thereof |
-
2000
- 2000-12-28 JP JP2000400214A patent/JP3491612B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2036992A1 (en) * | 2006-06-21 | 2009-03-18 | Kabushiki Kaisha Kobe Seiko Sho | Steel for forging, process for producing the same, and forged article |
EP2036992A4 (en) * | 2006-06-21 | 2011-01-26 | Kobe Steel Ltd | Steel for forging, process for producing the same, and forged article |
US8057737B2 (en) | 2006-06-21 | 2011-11-15 | Kobe Steel, Ltd. | Forging steel and its manufacturing method, and forged parts |
WO2008120574A1 (en) | 2007-03-29 | 2008-10-09 | Kabushiki Kaisha Kobe Seiko Sho | Steel ingot for forging and integral crankshaft |
JP2016044359A (en) * | 2014-08-27 | 2016-04-04 | 愛知製鋼株式会社 | Crank shaft and steel material for crank shaft |
CN105483557A (en) * | 2014-09-26 | 2016-04-13 | 鞍钢股份有限公司 | Wire rod for 80-grade cord outer winding and manufacturing method thereof |
JP2017155283A (en) * | 2016-03-01 | 2017-09-07 | 大同特殊鋼株式会社 | Non-heat treated steel for hot forging and automobile component |
CN114645208A (en) * | 2022-03-23 | 2022-06-21 | 青海西钢特殊钢科技开发有限公司 | Tellurium-treated steel for non-quenched and tempered fractured connecting rod and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3491612B2 (en) | 2004-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956146B2 (en) | Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts | |
KR100615465B1 (en) | Low-carbon free cutting steel | |
US10370747B2 (en) | Nitrided component | |
KR102127626B1 (en) | Ingot for bearing and production process | |
JP5886119B2 (en) | Case-hardened steel | |
JP4384592B2 (en) | Rolled steel for carburizing with excellent high-temperature carburizing characteristics and hot forgeability | |
WO2016035519A1 (en) | Non-tempered soft-nitrided component | |
JP6561816B2 (en) | Crankshaft and manufacturing method thereof | |
JP4502929B2 (en) | Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics | |
JP5796406B2 (en) | Method for producing case-hardened steel excellent in cold forgeability and ability to suppress grain coarsening | |
JP4507422B2 (en) | Crankshaft steel with excellent machinability and wear resistance | |
JP7464822B2 (en) | Steel for bearing raceways and bearing raceways | |
JP3491612B2 (en) | Crankshaft steel with excellent machinability and wear resistance | |
JP6918229B2 (en) | Steel piston | |
JPH11286746A (en) | Low ductility non-heat treated steel excellent in machinability | |
WO2022065425A1 (en) | Crankshaft | |
WO2005100626A1 (en) | Crankshaft excellent in flexural fatigue strength | |
JP3900690B2 (en) | Age-hardening high-strength bainitic steel and method for producing the same | |
JP7464821B2 (en) | Steel for bearing raceways and bearing raceways | |
JP4066307B2 (en) | Piston ring material and piston ring for internal combustion engines having self-lubricating properties | |
JPH0428845A (en) | Steel for rolling bearing | |
JP7323850B2 (en) | Steel and carburized steel parts | |
WO2022249349A1 (en) | Steel material and crankshaft formed of said steel material | |
JP7273324B2 (en) | Nitrided part blanks and nitrided parts | |
EP3805418B1 (en) | Steel material for steel piston |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071114 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081114 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091114 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101114 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111114 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121114 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131114 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |