Nothing Special   »   [go: up one dir, main page]

JP2001307686A - Battery can, its manufacturing method and battery - Google Patents

Battery can, its manufacturing method and battery

Info

Publication number
JP2001307686A
JP2001307686A JP2000117477A JP2000117477A JP2001307686A JP 2001307686 A JP2001307686 A JP 2001307686A JP 2000117477 A JP2000117477 A JP 2000117477A JP 2000117477 A JP2000117477 A JP 2000117477A JP 2001307686 A JP2001307686 A JP 2001307686A
Authority
JP
Japan
Prior art keywords
battery
peripheral surface
thickness
layer structure
sealing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000117477A
Other languages
Japanese (ja)
Other versions
JP3846154B2 (en
Inventor
Masatoshi Uno
正敏 羽野
Katsuhiko Mori
克彦 森
Akira Hashimoto
彰 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000117477A priority Critical patent/JP3846154B2/en
Publication of JP2001307686A publication Critical patent/JP2001307686A/en
Application granted granted Critical
Publication of JP3846154B2 publication Critical patent/JP3846154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery can that is easy in laser-sealing, can prevent the reduction of pressure-resistant strength of the plug port and can achieve thinning and weight reduction of the can, and to provide a battery that can improve mass-energy density and weight-energy density. SOLUTION: This battery can is formed in a cylindrical shape with a bottom, and its has a two-layer structure in which the materials excluding that used for the circumference of the plug port of the battery can are different metals or alloys. The material of the plug-port circumference is either one of the materials for the two-layer structure excluding the plug-port circumference. The battery can is formed so that the ratio of bottom thickness/flank- circumference thickness may be 1.2 to 5.0. In this way, laser plugging becomes easier, reduction of pressure-resistant strength of the plug port can be prevented, thinning and weight reduction of the battery can may be achieved, and mass- energy density and weight-energy density of the battery can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池缶の構造を改
良することにより、電池の体積エネルギー密度及び重量
エネルギー密度または安全性を向上させた電池缶及びそ
の製造方法と電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery can having improved volume energy density and weight energy density or safety by improving the structure of the battery can, a method for manufacturing the same, and a battery.

【0002】[0002]

【従来の技術】電池を使用する機器、特に携帯電話等の
携帯機器の小型化、軽量化の進展に伴って電池のエネル
ギー密度の向上が要求されている。外形サイズが規格化
されている電池にあっては、同一規格サイズであって
も、より高エネルギー密度で、より軽量であることが望
まれている。電池のエネルギー密度を示す指標として、
電池の小型化の指標となる体積エネルギー密度(Wh/
l)と、電池の軽量化の指標となる重量エネルギー密度
(Wh/kg)とが用いられている。
2. Description of the Related Art As devices using batteries, especially portable devices such as mobile phones, have become smaller and lighter, there is a demand for an improvement in the energy density of batteries. For batteries having a standardized outer size, it is desired that the batteries have a higher energy density and a lighter weight even with the same standard size. As an index indicating the energy density of the battery,
Volume energy density (Wh /
1) and a weight energy density (Wh / kg) which is an index of weight reduction of the battery.

【0003】電池のエネルギー密度を決定する重要な要
素は、正極及び負極の活物質や電解質等により構成され
る発電要素が主であるが、この発電要素を収容する電池
缶が前記体積エネルギー密度及び重量エネルギー密度の
向上に寄与する度合いも少なくない。即ち、電池缶の肉
厚を薄く形成することによって外形寸法が規格化されて
いる電池缶の容積の増加を図ることができ、発電要素の
収容量の増加から電池全体としての体積エネルギー密度
が向上する。また、電池缶の重量の軽減により電池全体
としての重量が減少し、重量エネルギー密度の向上を図
ることができる。電池缶が電池全体の重量に占める重量
比率は、現状ではニッケル水素蓄電池やリチウムイオン
二次電池において、円筒形電池の場合で10〜20wt
%である。角形電池の場合では耐圧強度を得るために電
池缶の肉厚を増加させる必要があるので30〜40wt
%である。この重量比率を軽減させることによって重量
エネルギー密度の向上を図ることができる。
An important factor that determines the energy density of a battery is a power generating element mainly composed of a positive electrode and a negative electrode active material, an electrolyte, and the like. The degree of contribution to the improvement of the weight energy density is not small. That is, by reducing the thickness of the battery can, it is possible to increase the volume of the battery can whose external dimensions are standardized, and to improve the volume energy density of the entire battery due to an increase in the capacity of the power generating element. I do. In addition, the weight of the battery can is reduced by reducing the weight of the battery can, and the weight energy density can be improved. At present, the weight ratio of the battery can to the total weight of the battery is 10 to 20 wt% for a nickel-metal hydride battery or a lithium ion secondary battery in the case of a cylindrical battery.
%. In the case of a prismatic battery, it is necessary to increase the thickness of the battery can in order to obtain pressure resistance, so that 30 to 40 wt.
%. By reducing this weight ratio, the weight energy density can be improved.

【0004】電池缶の薄肉化や軽量化を図るために、電
池缶としての使用材料や加工技術に様々の改良がなされ
ており、角形のリチウムイオン二次電池では電池缶材料
にアルミニウムもしくはアルミニウム合金を用いること
により前記重量比率を20〜30wt%に低減すること
が可能となっている。また、電池缶を有底筒状に加工す
る製造方法として、例えば特公平7−99686号公報
に記載されるように、絞り加工とシゴキ加工とを併用す
るDI(Drawing and Ironing)工
法が用いられ、製造工程の削減による生産性の向上だけ
でなく、より薄肉化が可能となり、アルミキルド鋼(S
PCE材)を用いた場合では、電池の体積エネルギー密
度を2〜5%向上させるまでに至っている。
[0004] In order to reduce the thickness and weight of the battery can, various improvements have been made to the materials and processing techniques used for the battery can. For a rectangular lithium ion secondary battery, aluminum or aluminum alloy is used as the battery can material. It is possible to reduce the weight ratio to 20 to 30% by weight. In addition, as a manufacturing method for processing a battery can into a bottomed cylindrical shape, for example, as described in Japanese Patent Publication No. 7-99686, a DI (Drawing and Ironing) method using a combination of drawing and squeezing is used. In addition to improving productivity by reducing the number of manufacturing processes, it is also possible to reduce the thickness of aluminum-killed steel (S
When PCE material is used, the volume energy density of the battery is improved by 2 to 5%.

【0005】[0005]

【発明が解決しようとする課題】電池の信頼性や安全性
を確保するためには電池缶の強度保持は不可欠な要素で
あり、強度を犠牲にしてエネルギー密度の向上を図るこ
とはできない。一次電池においては長期保存での容量確
保や漏液防止あるいは安定した放電特性を得ること、二
次電池においては一次電池に要求される要素に加えて充
放電のサイクル寿命や安全性あるいは電池内部圧力の上
昇による膨れ変形に対応できる強度を保持していくこと
が必要である。また、電池はその種類によって使用する
電解液の種類が異なるため、電池缶として使用する材料
は電解液に対する耐食性を有するものであることが必要
で、電池缶の形成素材を安易に選定することはできな
い。
In order to ensure the reliability and safety of the battery, maintaining the strength of the battery can is an indispensable element, and the energy density cannot be improved at the expense of the strength. For primary batteries, ensure capacity during long-term storage and prevent liquid leakage or obtain stable discharge characteristics.For secondary batteries, in addition to the elements required for primary batteries, the cycle life and safety of charging and discharging, and the internal pressure of batteries It is necessary to maintain a strength capable of coping with the bulging deformation caused by the rise of the height. In addition, since the type of electrolyte used varies depending on the type of battery, the material used for the battery can must have corrosion resistance to the electrolyte, and it is not easy to select a material for forming the battery can. Can not.

【0006】従って、強度を確保しつつエネルギー密度
の向上を図るためには、強度が高く軽い材料で尚且つ耐
食性に優れた材料が必要となるが、この要求を満たす素
材の開発はいまだなされていない。現在、電池缶として
使用されている材料として、アルミキルド鋼等の鉄鋼板
材料と、アルミニウム合金等のアルミニウム系材料とが
あるが、いずれの場合も電池缶としては一長一短であ
る。即ち、前記アルミキルド鋼はヤング率が約2000
0kgf/mm2であるため電池缶の薄肉化を達成する
ことができ、体積エネルギー密度の向上を図ることはで
きるが、その比重が約7.8であるため電池缶の重量増
加をまねき、重量エネルギー密度を向上させることはで
きない。一方、前記アルミニウム合金の場合は、その比
重は約2.7であるが、ヤング率は約7000kgf/
mm2であるため、軽量化に寄与できるものの剛性が劣
るため、電池缶としての強度を得るには肉厚に形成する
必要があり、体積エネルギー密度が低下し、重量エネル
ギー密度の点でもその軽量さを生かすことができない。
Accordingly, in order to improve the energy density while securing the strength, a material having a high strength, a light weight and a high corrosion resistance is required. However, a material satisfying this requirement is still being developed. Absent. At present, there are iron sheet materials such as aluminum-killed steel and aluminum-based materials such as aluminum alloys as materials used for battery cans, and each has advantages and disadvantages as battery cans. That is, the aluminum-killed steel has a Young's modulus of about 2,000.
Since it is 0 kgf / mm 2 , the thickness of the battery can can be reduced, and the volume energy density can be improved. However, the specific gravity of the battery can is about 7.8, which leads to an increase in the weight of the battery can. Energy density cannot be improved. On the other hand, in the case of the aluminum alloy, its specific gravity is about 2.7, but its Young's modulus is about 7000 kgf /
Because it is mm 2, the rigidity of which can contribute to weight reduction is poor, it is necessary to form the thickness to obtain the strength of the battery can, the volume energy density decreases, also the weight in terms of weight energy density I can't make the most of it.

【0007】そこで、鉄鋼板材料及びアルミニウム系材
料それぞれの特質を生かすために、これらをクラッド材
に形成した材料を電池缶として使用する試みがなされて
おり、特開2000−30673号公報に開示されてい
る。しかし、電池缶全体がクラッド材であるため電池缶
封口部の強度が不十分であったり、レーザー封口を用い
る場合は封口部が異種金属で構成されているため、融解
温度が異なり調整が難しく封口作業が困難であったり
と、クラッド材を用いた有効な電池缶の開発に至ってい
ない状況にある。
[0007] In order to make use of the characteristics of the steel sheet material and the aluminum-based material, attempts have been made to use a material formed of these materials in a clad material as a battery can, as disclosed in Japanese Patent Application Laid-Open No. 2000-30673. ing. However, since the entire battery can is made of clad material, the strength of the battery can sealing portion is insufficient, or when using laser sealing, the sealing portion is made of dissimilar metal, so the melting temperature is different and adjustment is difficult and difficult. Due to difficulties in work, the development of an effective battery can using a clad material has not been achieved.

【0008】本発明の目的とするところは、封口耐圧強
度の低下を防ぎ、また、レーザー封口が容易な電池缶の
薄肉化及び軽量化を図り、電池の体積エネルギー密度及
び重量エネルギー密度を向上させることができる電池缶
及びその製造方法と電池を提供することにある。
It is an object of the present invention to prevent a decrease in sealing pressure resistance, to reduce the thickness and weight of a battery can that can be easily sealed with a laser, and to improve the volume energy density and weight energy density of the battery. The present invention provides a battery can, a method of manufacturing the same, and a battery.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めの本願発明の電池缶は、有底筒状に形成された電池缶
であって、前記電池缶の封口部周面以外の材料は異種金
属あるいは異種合金の2層構造であり、封口部周面材料
は封口部周面以外の2層構造材料のいずれか一方の材料
からなり、底面厚さ/側周面厚さ比が1.2〜5.0と
なるように形成されてなることを特徴とする電池缶であ
る。上記構成によれば、封口部周面以外は異種金属ある
いは異種合金の二層構造材料を用いることにより、相互
の利点が得られ、且つ封口部は異種金属でなくなるため
融解温度の違いによるレーザーの調整が不要となり、レ
ーザー封口が容易となる。電池缶は底面厚さ/側周面厚
さ比が1.2未満であると材料の使用量が増加し実用化
は困難であり、また、5.0以上では必要とされている
形状に加工することができない。このため底面厚さ/側
周面厚さ比は1.2〜5.0が好ましい。
The battery can of the present invention for solving the above-mentioned problems is a battery can formed in a cylindrical shape with a bottom, and the material other than the peripheral surface of the sealing portion of the battery can is used. It has a two-layer structure of a different metal or a different alloy, and the peripheral surface material of the sealing portion is made of any one of the two-layer structure materials other than the peripheral surface of the sealing portion, and the ratio of bottom surface thickness / side peripheral surface thickness is 1. A battery can formed to be 2 to 5.0. According to the above configuration, mutual advantages are obtained by using a two-layer structure material of a dissimilar metal or a dissimilar alloy except for the peripheral surface of the sealing portion. No adjustment is required, and laser sealing becomes easy. When the bottom thickness / side peripheral thickness ratio is less than 1.2, the amount of material used increases and it is difficult to put the battery can to practical use. When the ratio is 5.0 or more, the battery can is processed into a required shape. Can not do it. Therefore, the ratio of the bottom surface thickness / side peripheral surface thickness is preferably 1.2 to 5.0.

【0010】また、2層構造材料の1層にアルミニウム
またはアルミニウム合金を用いることにより、その比重
が約2.7と小さいことから、軽量化に寄与できる。
Further, by using aluminum or an aluminum alloy for one layer of the two-layer structure material, its specific gravity is as small as about 2.7, which can contribute to weight reduction.

【0011】さらにアルミニウム系材料層は、0.5〜
2.5wt%のマンガンを含有させたアルミニウム合金
により形成することによって、製缶性が良好となり、電
池缶の強度も向上する。
Further, the aluminum-based material layer has a thickness of 0.5 to
By forming from an aluminum alloy containing 2.5 wt% of manganese, can-making properties are improved and strength of the battery can is also improved.

【0012】また、2層構造材料の1層に鉄鋼板を用い
ることにより、ヤング率が約20000kgf/mm2
と大きいため電池缶の薄肉化を達成することができる。
また封口部周面材料に鉄鋼板を用いることにより、電池
缶としての強度が特に必要である封口部に鉄鋼板単一材
料で作製された電池缶と同等の強度を得ることができ
る。
Further, by using an iron steel sheet for one layer of the two-layer structure material, the Young's modulus is about 20,000 kgf / mm 2.
Therefore, the thickness of the battery can can be reduced.
In addition, by using an iron steel sheet as the material for the peripheral surface of the sealing portion, it is possible to obtain the same strength as that of a battery can made of a single iron steel sheet material in the sealing portion, which requires particularly high strength as a battery can.

【0013】さらに鉄鋼板材料層は、炭素の含有量が
0.1wt%以下の冷間圧延用炭素鋼とすることによっ
て、製缶性が良好となるため電池缶の製缶不良による電
池不良をなくすことができる。特に、シゴキ加工が円滑
になされるには、0.05wt%以下が好ましい。
Further, since the steel sheet material layer is made of cold-rolled carbon steel having a carbon content of 0.1 wt% or less, the can-making property is improved. Can be eliminated. In particular, 0.05% by weight or less is preferable for smooth squeezing.

【0014】また、SUS304、SUS430等のス
テンレス鋼を2層構造材料の1層として用いることがで
き、これを電池缶の内面側となるように配したときには
電解液に対する耐食性を、電池缶の外面側となるように
配したときには保存時の耐食性を向上させることができ
る。
In addition, stainless steel such as SUS304 and SUS430 can be used as one layer of a two-layer structure material. When the stainless steel is disposed on the inner surface side of the battery can, the corrosion resistance against the electrolytic solution can be reduced. When placed on the side, the corrosion resistance during storage can be improved.

【0015】また、鉄鋼板材料層の両面または片面にニ
ッケル層を設けることにより、鉄鋼板材料と他の金属材
料との間の接合性、特にアルミニウム系材料との接合性
が良くなり、DI加工により安定した品質の電池缶を製
造することができる。また、鉄鋼板材料層の表面にニッ
ケル層が設けられていることにより、アルカリ電解液に
対する耐食性が向上し、鉄鋼板材料を内面側にして電池
缶を製作し、ニッケル水素蓄電池等の電池缶として適用
するのに好適である。
Further, by providing a nickel layer on both sides or one side of the steel sheet material layer, the bondability between the steel sheet material and another metal material, particularly the bondability with an aluminum-based material, is improved, and DI processing is performed. Thus, a battery can of stable quality can be manufactured. In addition, since the nickel layer is provided on the surface of the steel sheet material layer, the corrosion resistance to an alkaline electrolyte is improved, and a battery can is manufactured with the steel sheet material on the inner side, and used as a battery can for a nickel-metal hydride storage battery or the like. Suitable for application.

【0016】さらに、封口部周面と同じ材料が電池缶外
面となる場合は、電池缶内面側が異種金属となるため、
局部電池を構成し自己放電が生じる可能性があることか
ら、この構成を用いる場合は、電解液の這い上がり防止
などの対策を講じる必要がある。そのため封口部周面と
同じ材料が電池缶内面となることが好ましい。
Further, when the same material as the peripheral surface of the sealing portion is used as the outer surface of the battery can, since the inner surface of the battery can is made of a dissimilar metal,
When a local battery is formed and self-discharge is likely to occur, it is necessary to take measures such as preventing the electrolytic solution from climbing up when using this configuration. Therefore, it is preferable that the same material as the peripheral surface of the sealing portion be the inner surface of the battery can.

【0017】なお、電池缶の封口部周面厚さが、他の側
周面より10%以上厚くなるように形成することによ
り、容積の低下をまねくことなく耐圧強度を増加させる
ことができる。
By forming the peripheral surface of the sealing portion of the battery can to be 10% or more thicker than the other peripheral surfaces, the pressure resistance can be increased without lowering the volume.

【0018】また、本願発明の電池缶は、電池缶の封口
部周面以外は鉄鋼板とアルミニウムあるいはアルミニウ
ム合金の2層構造であり、封口部周面材料は封口部周面
以外の2層構造材料のいずれか一方の材料からなり、底
面厚さ/側周面厚さ比が1.2〜5.0となるように形
成された電池缶である。
Further, the battery can of the present invention has a two-layer structure of steel sheet and aluminum or aluminum alloy except for the peripheral surface of the sealing portion of the battery can, and the material of the peripheral surface of the sealing portion is a two-layer structure other than the peripheral surface of the sealing portion. The battery can is made of any one of the materials, and is formed such that the ratio of bottom surface thickness / side peripheral surface thickness is 1.2 to 5.0.

【0019】発電要素を収容する部分はアルミニウム系
材料と鉄鋼板材料を接合した2層構造により形成されて
いるため、アルミニウム系材料の軽量性と鉄鋼板材料の
剛性により、従来の全てが鉄鋼板材料の電池缶、あるい
は全てがアルミニウム系材料の電池缶の同一寸法のもの
と比べ、肉厚が同一でも、軽量且つ強度の高い電池缶を
形成することができる。この軽量化により重量エネルギ
ー密度の向上を図ることができる。また、アルミニウム
系材料と鉄鋼板材料とでは熱膨張係数が異なるため、こ
の電池缶を二次電池に適用した場合、充電時の温度上昇
に伴う内圧の上昇により電池缶に膨れ変形が生じるのを
抑える方向に曲げ応力が作用し、膨れ変形を抑制するの
で側周面を薄く形成しても所要の変形強度を保持するこ
とができる。
Since the portion for accommodating the power generating element is formed by a two-layer structure in which an aluminum-based material and a steel sheet material are joined, all of the conventional steel sheet materials are used due to the lightness of the aluminum-based material and the rigidity of the steel sheet material. Compared to a battery can of the same material or a battery can of the same size, the battery can is formed of a lighter weight and higher strength, even if the thickness is the same. This weight reduction can improve the weight energy density. In addition, since the coefficient of thermal expansion differs between aluminum-based materials and steel sheet materials, when this battery can is applied to a secondary battery, the battery can undergo swelling deformation due to an increase in internal pressure due to a rise in temperature during charging. Bending stress acts in the direction of suppressing the bulging deformation, so that the required deformation strength can be maintained even if the side peripheral surface is formed thin.

【0020】さらに、封口部周面材料を鉄鋼板材料とし
たときには、従来の全てが鉄鋼板材料の電池缶と同等の
封口部の強度が得られる。
Further, when the material of the peripheral surface of the sealing portion is a steel plate material, the strength of the sealing portion is equivalent to that of a conventional battery can made entirely of a steel plate material.

【0021】ここで封口部周面と同じ材料が電池缶外面
となる場合は、電池缶内面側が異種金属となるため、局
部電池を構成し自己放電が生じる可能性があることか
ら、この構成を用いる場合は、電解液の這い上がり防止
などの対策を講じる必要がある。そのため封口部周面と
同じ材料が電池缶内面となることが好ましい。
When the same material as the peripheral surface of the sealing portion is used as the outer surface of the battery can, since the inner surface of the battery can is made of a dissimilar metal, a local battery may be formed and self-discharge may occur. If used, it is necessary to take measures such as preventing the electrolyte solution from climbing up. Therefore, it is preferable that the same material as the peripheral surface of the sealing portion be the inner surface of the battery can.

【0022】このため、アルミニウム系材料を封口部周
面材料にして電池缶を有底筒状に形成した場合には、封
口部周面以外の外面側は鉄系材料となるので、傷つきに
くく耐久性に優れたものとなる。
Therefore, when the battery can is formed in a cylindrical shape with a bottom using an aluminum-based material as the peripheral surface material of the sealing portion, the outer surface other than the peripheral surface of the sealing portion is made of an iron-based material, so that it is hardly damaged and durable. It will be excellent in property.

【0023】以上のことから、鉄鋼板材料層を封口部に
して、鉄鋼板材料が電池缶内面側となるようアルミニウ
ム系材料との2層構造にして電池缶を形成し、望ましく
はその電池缶内面側の鉄鋼板材料層の表面にニッケルメ
ッキを施して電解液に対する耐食性を確保し、電池缶が
電池の負極電極となるように構成することにより、重量
エネルギー密度及び体積エネルギー密度とも大きく、か
つ電池強度も高く、保存時の耐食性に優れた電池を構成
することができる。また、アルミニウム系材料が封口部
周面以外の外面側となるので、電池缶に対する溶接性も
良くなる。
In view of the above, a battery can is formed in a two-layer structure with an aluminum-based material such that the steel sheet material is used as a sealing portion and the steel sheet material is on the inner surface side of the battery can. Nickel plating is applied to the surface of the steel sheet material layer on the inner side to ensure corrosion resistance to the electrolytic solution, and by configuring the battery can to be the negative electrode of the battery, both the weight energy density and the volume energy density are large, and A battery having high battery strength and excellent in corrosion resistance during storage can be formed. In addition, since the aluminum-based material is on the outer surface side other than the peripheral surface of the sealing portion, the weldability to the battery can is improved.

【0024】本願発明の第1の製造方法は、2層構造と
する部分に異種金属を2層貼り合わせて形成した材料を
絞り加工により形成したカップ状中間製品をシゴキ加工
あるいは絞りおよびシゴキ加工することにより作製する
電池缶の製造方法である。
In the first manufacturing method of the present invention, a cup-shaped intermediate product formed by drawing a material formed by bonding two layers of dissimilar metals to a portion having a two-layer structure is subjected to squeezing or drawing and squeezing. This is a method for manufacturing a battery can produced by the above method.

【0025】本願発明の第2の製造方法は、2層構造の
それぞれの金属材料あるいは合金材料を有底筒状に加工
した後はめ込み、シゴキ加工あるいは絞りおよびシゴキ
加工することにより作製する電池缶の製造方法である。
In the second manufacturing method of the present invention, a metal can or a metal alloy material having a two-layer structure is formed into a bottomed cylindrical shape and then fitted, and then subjected to squeezing or drawing and squeezing to form a battery can. It is a manufacturing method.

【0026】有底筒状に形成された電池缶が、異種金属
を必要部分に複数層に形成された材料をプレス機による
絞り加工し、カップ状中間製品に形成するもの、また
は、異種金属をそれぞれ個々にカップ状中間製品に形成
したものを重ねて、絞りダイス及びシゴキダイスを用い
て前記カップ状中間製品をシゴキ加工するDI工法によ
り、底面厚さ/側周面厚さが1.2〜5.0となる有底
筒状に形成されてなることを特徴とする。
A battery can formed in a cylindrical shape with a bottom is formed by drawing a material formed of a plurality of layers at necessary portions of a dissimilar metal by a press machine to form a cup-shaped intermediate product or dissimilar metal. Each of the cup-shaped intermediate products is individually formed on a cup-shaped intermediate product, and the cup-shaped intermediate product is squeezed using a drawing die and a squeezing die. It is characterized in that it is formed in a bottomed cylindrical shape having a thickness of 0.0.

【0027】また、本願発明は上記電池缶に発電要素を
収容してなる電池である。
Further, the present invention is a battery in which a power generation element is housed in the battery can.

【0028】[0028]

【発明の実施の形態】以下、添付図面を参照して本発明
の一実施形態について説明し、本発明の理解に供する。
尚、以下に示す実施形態は本発明を具体化した一例であ
って、本発明の技術的範囲を限定するものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention.
The embodiment described below is an example embodying the present invention, and does not limit the technical scope of the present invention.

【0029】本実施形態に係る電池缶は、発電要素を収
容する電池缶に、鉄鋼板材料とアルミニウム系材料とを
電池缶の必要部分に用いたことを特徴とするもので、そ
の金属あるいは合金の組成を変えた電池缶としての有効
性を検証すると共に、適用する電池の種類及び形状を変
えて、電池缶を形成する適正な構成について検証を行っ
たものである。
The battery can according to the present embodiment is characterized in that a steel plate material and an aluminum-based material are used for a necessary portion of the battery can for accommodating a power generating element. In addition to verifying the effectiveness as a battery can having a different composition, the present invention was conducted to verify the appropriate configuration for forming a battery can by changing the type and shape of a battery to be applied.

【0030】まず、AAサイズのニッケル水素蓄電池を
構成するために、その電池缶を仕上がり外径13.8m
mφ、高さ49.0mmの有底円筒形に形成し、これに
発電要素を収容してニッケル水素蓄電池を形成した第1
の実施形態について説明する。
First, in order to construct an AA size nickel-metal hydride battery, the battery can was finished with an outer diameter of 13.8 m.
mφ, a cylindrical shape with a bottom having a height of 49.0 mm, in which a power generating element is housed to form a nickel-metal hydride storage battery.
An embodiment will be described.

【0031】図1において、ニッケル水素蓄電池1は、
電池缶2内に発電要素3を収容し、電池缶2の開口端を
封口板4で封口して形成される。このニッケル水素蓄電
池1に用いられた前記電池缶2は、封口部周面と缶内面
側は鉄鋼板材料、封口部周面以外の缶外面側はアルミニ
ウム系材料を用いた電池缶で以下に説明するように製造
される。
In FIG. 1, a nickel-metal hydride storage battery 1
The power generation element 3 is accommodated in the battery can 2, and the opening end of the battery can 2 is sealed with a sealing plate 4. The battery can 2 used for the nickel-metal hydride battery 1 is a battery can using a steel plate material on the peripheral surface of the sealing portion and the inner surface of the can, and a battery can using an aluminum-based material on the outer surface of the can except for the peripheral surface of the sealing portion. Manufactured to be.

【0032】図2(a)において両面に厚み2.5μm
のニッケルメッキを施した、厚さ400μm、炭素含有
量:0.04wt%のアルミキルド鋼5(以下、SPC
E材)を外径40mmφに加工し、その中心に深さ20
0μm、直径25mmの穴を加工する。その後この加工
品の中心穴部に厚さ200μm、直径25mmの純アル
ミニウム材6(JIS−A1050相当)を貼り合わせ
電池缶を形成する出発材料とする。
In FIG. 2A, both sides have a thickness of 2.5 μm.
Nickel-plated aluminum-killed steel 5 having a thickness of 400 μm and a carbon content of 0.04 wt% (hereinafter referred to as SPC
E material) to an outer diameter of 40 mmφ and a depth of 20 mm
A hole having a diameter of 0 μm and a diameter of 25 mm is machined. Thereafter, a pure aluminum material 6 (equivalent to JIS-A1050) having a thickness of 200 μm and a diameter of 25 mm is attached to the center hole of this processed product to form a starting material for forming a battery can.

【0033】この出発材料を、図2(b)に示すように
電池缶の外面側に貼り合わせた純アルミニウム材6が出
るようにしてプレス機により絞り加工して、外径21.
5mmφ、高さ15.5mmのカップ状中間製品7に形
成する。この状態では、底面の厚さ、側周面の厚さ共に
出発材料とほとんど変化はない。
This starting material was drawn by a press so that the pure aluminum material 6 bonded to the outer surface side of the battery can was exposed as shown in FIG.
It is formed into a cup-shaped intermediate product 7 having a diameter of 5 mm and a height of 15.5 mm. In this state, the thickness of the bottom surface and the thickness of the side peripheral surface hardly change from the starting material.

【0034】このように形成されたカップ状中間製品7
を、図3に示すようにDI加工工程に送り出し、絞り及
びシゴキにより側周面が所定高さ寸法となる有底円筒形
に成形する。このDI工法は、カップ状中間製品7をパ
ンチ8により絞りダイス9及びシゴキダイス10、10
が一直線上に列設されたダイス列内に押し出すことによ
り、パンチ8の進出方向にその内径が小さくなるように
ダイスが配列された絞りダイス9、各シゴキダイス10
内にカップ状中間製品7が押し込まれる毎に絞り及びシ
ゴキが加えられ、一工程で所定寸法の有底円筒形の電池
缶2に成形される。DI加工がなされた状態では、外径
13.8mmφ、高さ54mmとなり、開口端側は平坦
でなく波打ったような状態になっているので、電池缶2
の設定高さ寸法である49.0mmになるように開口端
側の耳部を切断する。
The cup-shaped intermediate product 7 thus formed
Is sent to a DI processing step as shown in FIG. 3 and formed into a bottomed cylindrical shape having a side peripheral surface having a predetermined height by drawing and squeezing. In this DI method, the cup-shaped intermediate product 7 is drawn by a punch 8 and drawn by a die 9 and a squeeze die 10, 10
Are extruded into a row of dies arranged in a straight line, thereby forming a drawing die 9 in which dies are arranged so that the inner diameter thereof decreases in the advance direction of the punch 8, and each of the squeezing dies 10
Every time the cup-shaped intermediate product 7 is pushed into the inside, a squeezing and squeezing are added, and the battery can 2 is formed into a bottomed cylindrical battery can 2 having a predetermined size in one step. In the state where the DI processing was performed, the outer diameter was 13.8 mmφ and the height was 54 mm, and the opening end side was not flat but wavy.
The ear at the opening end is cut so as to have a set height of 49.0 mm.

【0035】図4は、上記DI工法によって形成された
電池缶2の縦断面形状を示すもので、底面2aの厚さは
400μm、側周面2bの厚さは150μm、封口部周
面2cの厚さは180μmの有底円筒形に形成されてい
る。従って、この電池缶2のDI加工におけるシゴキ率
は63%となる。尚、シゴキ率は、「シゴキ率(%)=
(元の厚さ−シゴキ後の厚さ)×100/元の厚さ」と
定義する。また、底面厚さ/側周面厚さ比は2.67
で、重量は約3.1gである。因みに同形同サイズの電
池缶をSPCE材の単一材料により形成したときの重量
は約3.6gであり、約14%の軽量化が達成されたこ
とになる。
FIG. 4 shows the vertical cross-sectional shape of the battery can 2 formed by the above-mentioned DI method. The thickness of the bottom surface 2a is 400 μm, the thickness of the side peripheral surface 2b is 150 μm, and the peripheral surface 2c of the sealing portion 2c. It is formed in a cylindrical shape with a bottom of 180 μm. Therefore, the squeeze rate in DI processing of the battery can 2 is 63%. In addition, the stiffening rate is expressed as “slashing rate (%) =
(Original thickness−thickness after squeezing) × 100 / original thickness ”. Further, the ratio of the bottom surface thickness / side peripheral surface thickness is 2.67.
And weighs about 3.1 g. Incidentally, when a battery can of the same shape and the same size was formed of a single material of SPCE material, the weight was about 3.6 g, which means that a weight reduction of about 14% was achieved.

【0036】さらに、電池内面側が鉄鋼板材料であるこ
とから電池の内圧が上昇したときの膨れ、封口耐圧に優
れている。
Further, since the inner surface of the battery is made of a steel sheet material, the battery has excellent swelling and sealing pressure resistance when the internal pressure of the battery increases.

【0037】前記封口部周面2cは、この電池缶2内に
発電要素等を収容した後、開口端を封口板で封口する封
口強度を得るために、側周面2bの厚さより約20%厚
く形成されている。電池の内圧が上昇したとき、封口部
位が耐圧強度的に最も弱い部位となるため、側周面2b
より厚く形成することにより封口による耐圧強度をさら
に増強することができる。そして側周面2bの厚さは膨
れ変形が抑制できる必要最小限にすることができる。
尚、封口部周面2cを側周面2bより厚く形成する方法
は、図3(b)に示すように、DI金型におけるパンチ
8の直径を封口部周面2cの位置で、増加させる厚さ相
当分だけ小さく形成しておくことにより、シゴキダイス
10を通過するときに封口部はパンチ8の直径が小さく
なっている内方に押し出されて封口部周面2cが側周面
2bより厚く形成される。
In order to obtain a sealing strength in which the opening end is sealed with a sealing plate after the power generation element or the like is housed in the battery can 2, the sealing portion peripheral surface 2c is about 20% thicker than the side peripheral surface 2b. It is formed thick. When the internal pressure of the battery rises, the sealing portion becomes the weakest portion in terms of pressure resistance, so the side peripheral surface 2b
By forming it thicker, the pressure resistance by the sealing can be further enhanced. Then, the thickness of the side peripheral surface 2b can be minimized so that swelling deformation can be suppressed.
As shown in FIG. 3B, a method of forming the sealing portion peripheral surface 2c thicker than the side peripheral surface 2b is to increase the diameter of the punch 8 in the DI mold at the position of the sealing portion peripheral surface 2c. By forming the sealing portion smaller by a length corresponding to the length, the sealing portion is pushed inward when the diameter of the punch 8 is reduced when passing through the squeeze die 10, and the sealing portion peripheral surface 2c is formed thicker than the side peripheral surface 2b. Is done.

【0038】以上説明したように形成された電池缶2
は、アルミニウム材により軽量化がなされ、封口部周面
材料はすべて鉄鋼板材料であるため、ヤング率の低いア
ルミニウム材を一部使用したクラッド材に見られる封口
耐圧強度の低さを補うことができる。よって、従来の全
てが鉄鋼板材料で形成された同一寸法の電池缶と同じ封
口耐圧が得られる。また、電池缶2を二次電池に適用し
た場合に、充電時の温度上昇に伴う内圧の増加により生
じる電池胴部の膨れ変形は、アルミニウム系材料と鉄鋼
板材料との熱膨張係数の差による曲げ応力が電池缶2の
側周面2bを内側に変形させる応力として作用するた
め、電池缶2の膨れ変形が抑制される効果を得ることが
できる。
The battery can 2 formed as described above
Is made of aluminum material, and the peripheral material of the sealing part is all steel sheet material, so it can compensate for the low sealing pressure strength seen in the cladding material that partially uses aluminum material with low Young's modulus. it can. Therefore, the same sealing pressure as that of a conventional battery can of the same dimensions, which is entirely formed of a steel sheet material, can be obtained. Further, when the battery can 2 is applied to a secondary battery, the swelling deformation of the battery body caused by an increase in internal pressure due to a rise in temperature during charging is caused by a difference in thermal expansion coefficient between the aluminum-based material and the steel sheet material. Since the bending stress acts as a stress for deforming the side peripheral surface 2b of the battery can 2 inward, an effect of suppressing the swelling deformation of the battery can 2 can be obtained.

【0039】上記構成になる電池缶2を用いてニッケル
水素蓄電池を作製するために、以下に示す発電要素を電
池缶2内に収容する。
In order to manufacture a nickel-metal hydride storage battery using the battery can 2 having the above structure, the following power generating elements are housed in the battery can 2.

【0040】まず、正極は、球状の水酸化ニッケル粉末
と酸化亜鉛、酸化コバルト、水酸化コバルト等の添加物
とをペースト状に混合し、スポンジ状のニッケル導電性
多孔体に充填した後、乾燥、加圧、切断により所定の寸
法に形成して正極板とする。
First, the positive electrode is prepared by mixing spherical nickel hydroxide powder and additives such as zinc oxide, cobalt oxide, and cobalt hydroxide into a paste, filling the mixture into a sponge-like nickel conductive porous body, and then drying the mixture. , By pressing and cutting to obtain a positive electrode plate.

【0041】また、負極は、水素吸蔵合金としてAB5
タイプのMmNi3.6Mn0.4Al0.3Co0.7組成の合金
粉末に導電剤や結着剤を添加してペースト状にし、ニッ
ケルメッキした鉄素材のパンチングメタル芯材に塗着
し、乾燥、加圧、切断により所定寸法に形成して負極板
とする。これら正極板と負極板とをスルフォン加工した
ポリプロピレン不織布により作製されたセパレータを介
して巻回し、これを電池缶2内に収容する。このとき、
負極板の最外周面は電池缶2の内面に直接接触させ、正
極板からリードを引き出して封口キャップに設けた正極
端子にスポット溶接する。
The negative electrode was made of AB 5 as a hydrogen storage alloy.
Type MmNi 3.6 Mn 0.4 Al 0.3 Co 0.7 alloy powder with a conductive agent and binder added to form a paste, applied to a nickel-plated iron material punched metal core, dried, pressed and cut To form a negative electrode plate. The positive electrode plate and the negative electrode plate are wound through a separator made of a sulfone-processed polypropylene nonwoven fabric, and housed in the battery can 2. At this time,
The outermost peripheral surface of the negative electrode plate is brought into direct contact with the inner surface of the battery can 2, and the lead is pulled out from the positive electrode plate and spot-welded to the positive electrode terminal provided on the sealing cap.

【0042】次に、電池缶2内に電解液として、水酸化
リチウム(LiOH・H2O)を40g/l溶解させて
比重1.30とした水酸化カリウム(KOH)水溶液を
2.0cc注液する。この後、電池缶2の開口端を封口
キャップにより封口するため、封口部周面2cをカシメ
加工することにより封口キャップを取り付け、電池缶2
内を密閉封口してニッケル水素蓄電池を完成させる。こ
のようにして作製されたAAサイズのニッケル水素蓄電
池の電池重量は約25g、電池容量は1350mAhと
なる。
Next, 2.0 cc of an aqueous potassium hydroxide (KOH) solution having a specific gravity of 1.30 by dissolving 40 g / l of lithium hydroxide (LiOH.H 2 O) as an electrolytic solution in the battery can 2 was injected. Liquid. Thereafter, in order to seal the open end of the battery can 2 with the sealing cap, the sealing cap is attached by caulking the sealing portion peripheral surface 2c.
The inside is hermetically sealed to complete the nickel-metal hydride storage battery. The battery weight of the AA-size nickel-metal hydride battery thus manufactured is about 25 g, and the battery capacity is 1350 mAh.

【0043】上記第1の実施形態として作製した電池缶
2を(電池缶2A)として、この電池缶2Aの適性を考
察するために、組成及び加工方法を変えて同一規格サイ
ズの電池缶2B〜2Gを作製し、各電池缶2B〜2Gに
より同様にニッケル水素蓄電池を作製した。以下、各電
池缶2B〜2Gについて電池缶2Aと比較検証しつつ説
明する。
The battery can 2 manufactured as the first embodiment is referred to as (battery can 2A). In order to consider the suitability of the battery can 2A, the composition and processing method are changed to change the battery cans 2B to 2B of the same standard size. 2G was manufactured, and a nickel-metal hydride storage battery was similarly manufactured using each of the battery cans 2B to 2G. Hereinafter, each of the battery cans 2B to 2G will be described while being compared and verified with the battery can 2A.

【0044】(電池缶2B)電池缶2Bは、構成する材
料の鉄鋼板表面にニッケルメッキを施すことの有効性を
検証するために構成したものである。厚さ400μmの
SPCE材(炭素含有量0.04wt%)と厚さ200
μmの純アルミニウム材(JIS−A1050相当)と
を使用し、電池缶2Aと同様にDI加工して図4に示し
たものと同一サイズに形成した。電池缶2Aと異なるの
は、SPCE材の両面にニッケルメッキが施されていな
いことのみで、その他の構成は同一である。従って、底
面厚さ/側周面厚さ比(2.67)、シゴキ率(63
%)、重量(3.1g)は電池缶2Aとほぼ同等であ
る。
(Battery Can 2B) The battery can 2B is configured to verify the effectiveness of applying nickel plating to the surface of the steel sheet of the constituent material. 400μm thick SPCE material (carbon content 0.04wt%) and thickness 200
Using a pure aluminum material of μm (equivalent to JIS-A1050), DI processing was performed in the same manner as the battery can 2A to form the same size as that shown in FIG. The only difference from the battery can 2A is that both surfaces of the SPCE material are not nickel-plated, and the other configurations are the same. Accordingly, the ratio of the bottom surface thickness / side peripheral surface thickness (2.67) and the squeeze rate (63
%) And weight (3.1 g) are almost the same as those of the battery can 2A.

【0045】上記構成において、電池缶2Bの製缶工程
となるDI加工における絞り及びシゴキ加工が必ずしも
スムーズでなく、電池缶2Aの場合と比較すると、やや
製缶不良が発生しやすいことが判明した。この原因は、
ニッケルメッキ層が無いことによりアルミニウム系材料
と鉄鋼板材料との接合強度が弱くなること、DI金型と
の接触面にニッケルメッキ層が無いことによるものと考
えられる。
In the above configuration, it was found that drawing and squeezing in DI processing, which is a can manufacturing process of the battery can 2B, were not always smooth, and that can manufacturing defects were slightly more likely to occur as compared with the case of the battery can 2A. . This is because
It is considered that the absence of the nickel plating layer weakens the bonding strength between the aluminum-based material and the steel sheet material, and the absence of the nickel plating layer on the contact surface with the DI mold.

【0046】また、電池缶2Bをニッケル水素蓄電池の
ようなアルカリ蓄電池に適用した場合に、ニッケルメッ
キ層が無いことによりアルカリ電解液による腐食の進行
と推察される充電特性、放電特性、サイクル寿命特性、
保存特性の低下が生じた。しかし、有機電解液を使用す
るリチウムイオン二次電池等に適用する場合には全く問
題なく、DI加工の加工性の低下を除けば電池缶として
の有用性はあるといえる。
When the battery can 2B is applied to an alkaline storage battery such as a nickel-metal hydride storage battery, charging characteristics, discharge characteristics, and cycle life characteristics which are presumed to be caused by progress of corrosion by an alkaline electrolyte due to the absence of a nickel plating layer. ,
The storage characteristics deteriorated. However, when applied to a lithium ion secondary battery or the like using an organic electrolyte, there is no problem at all, and it can be said that there is utility as a battery can except for a decrease in workability of DI processing.

【0047】(電池缶2C)電池缶2Cは、構成する鉄
鋼板材料の炭素含有量によるDI工法による製缶加工性
を検証したもので、両面に厚み2.3μmのニッケルメ
ッキを施した、厚さ400μm、炭素含有量:0.11
wt%のSPCE材と厚さ200μmの純アルミニウム
材(JIS−A1050相当)とで、電池缶2Aと同様
にDI加工して図4に示したものと同一サイズに形成し
た。電池缶2Aと同一の底面厚さ/側周面厚さ比(2.
67)、シゴキ率(63%)、重量(3.1g)に形成
したが、炭素含有量が0.1wt%を越えるSPCE材
ではDI加工に難があり、電池缶を製造する加工性に問
題があり、適切な電池缶材料とし得なかった。
(Battery Can 2C) The battery can 2C was obtained by verifying the workability of can making by the DI method based on the carbon content of the steel sheet material constituting the battery can 2C. 400 μm, carbon content: 0.11
In the same manner as the battery can 2A, DI processing was performed with the SPCE material of wt% and a pure aluminum material (equivalent to JIS-A1050) having a thickness of 200 μm to have the same size as that shown in FIG. The same bottom surface thickness / side peripheral surface thickness ratio as that of the battery can 2A (2.
67), squeezing rate (63%), weight (3.1g), but SPCE material with carbon content of more than 0.1wt% has difficulty in DI processing and is problematic in workability for manufacturing battery cans And could not be used as a suitable battery can material.

【0048】(電池缶2D)電池缶2Dは、構成するア
ルミニウム系材料のマンガン含有量によるDI加工性及
び溶接性等を検証したもので、電池缶2Aの純アルミニ
ウム材に代えてマンガン含有量が0.4wt%のアルミ
ニウム合金を使用して電池缶を形成した。他の構成は電
池缶2Aと同一である。この電池缶2Dの構成の場合に
は、マンガンの含有量が少ないことからアルミニウム合
金として硬度が低くなり、DI加工による製缶性に問題
があり、目的とする構成を得るに至らなかった。
(Battery Can 2D) The battery can 2D is obtained by verifying DI workability, weldability, and the like based on the manganese content of the aluminum-based material constituting the battery can 2D. A battery can was formed using a 0.4 wt% aluminum alloy. Other configurations are the same as the battery can 2A. In the case of this battery can 2D, the hardness was low as an aluminum alloy due to the low content of manganese, and there was a problem in the can-making properties by DI processing, and the intended configuration could not be obtained.

【0049】(電池缶2E)電池缶2Eは、前記電池缶
2Dと反対にアルミニウム系材料のマンガン含有量が
2.6wt%と多いアルミニウム合金を使用したもの
で、この場合も製缶性に問題があり、電池組み立て時の
加工や溶接性が悪く、やはり目的とする構成を得るに至
らなかった。
(Battery Can 2E) The battery can 2E uses an aluminum alloy having a high manganese content of 2.6 wt% as opposed to the battery can 2D. However, the workability and weldability at the time of assembling the battery were poor, and the desired configuration could not be obtained.

【0050】(電池缶2F)電池缶2Fは、電池缶2A
で使用した2種類の材料のクラッド材による全クラッド
材の電池缶とを比較するための比較例として構成したも
ので、図4に示した電池缶2と同一形状寸法で同一のD
I加工を行ったものである。製缶性において問題はな
く、電池を構成した場合にも電池缶2Aを用いたものと
同等の性能が得られた。しかし、クラッド材を使用し電
池缶を形成しているため、封口部周面材料がSPCE材
とアルミ材であるため、封口耐圧強度が電池缶2Aと比
べて低下してしまった。
(Battery can 2F) The battery can 2F is a battery can 2A
This is configured as a comparative example for comparing with a battery can of all clad materials using two types of clad materials used in the above, and has the same shape and dimensions as the battery can 2 shown in FIG.
This is the result of I processing. There was no problem in the can-making properties, and the same performance as that using the battery can 2A was obtained even when a battery was formed. However, since the battery can was formed by using the clad material, the sealing portion peripheral surface materials were the SPCE material and the aluminum material, so that the sealing pressure resistance was lower than that of the battery can 2A.

【0051】(電池缶2G)電池缶2Gは、円筒形の底
面厚さ/側周面厚さ比の適正範囲を検証するために、電
池缶2Aと同一構成の材料を用いてDI加工のシゴキ率
を変えて作製した。底面厚さ400μmに対して側周面
厚さを360μmに形成すると、このときの底面厚さ/
側周面厚さ比は1.1、シゴキ率は10%となり、材料
の使用量が増加し実用的でない。また、電池缶内の有効
容積が減少するため、電池缶2Aと比較すると約6%の
体積エネルギー密度の低下をまねくことになる。体積エ
ネルギー密度を増加させるためには、側周面の厚さを薄
く形成することが有効であるので、底面厚さ400μm
に対して側周面厚さを60μmまで薄く形成した電池缶
の作製を試みた。この場合の底面厚さ/側周面厚さ比は
6.7、シゴキ率は85%と大きくなり、必要とされる
形状に加工することは困難であった。検証の結果、底面
厚さ/側周面厚さ比は、1.2以下では電池缶内の有効
容積が減少し、体積エネルギー密度の低下を大きくまね
き、また、5.0以上では必要とされる形状に加工でき
ないことから適正値は1.2〜5.0となった。
(Battery Can 2G) In order to verify the proper range of the cylindrical bottom surface thickness / side peripheral surface thickness ratio, the battery can 2G is made by DI processing using the same material as the battery can 2A. It was produced at different rates. When the side peripheral surface thickness is formed to be 360 μm with respect to the bottom surface thickness of 400 μm, the bottom surface thickness at this time /
The side peripheral surface thickness ratio is 1.1 and the squeeze rate is 10%, which increases the amount of material used and is not practical. Further, since the effective volume in the battery can is reduced, the volume energy density is reduced by about 6% as compared with the battery can 2A. In order to increase the volume energy density, it is effective to reduce the thickness of the side peripheral surface.
An attempt was made to manufacture a battery can having a side peripheral surface thickness as thin as 60 μm. In this case, the ratio of the thickness of the bottom surface to the thickness of the side peripheral surface was 6.7, and the squeeze rate was as large as 85%. As a result of verification, when the ratio of bottom surface thickness / side peripheral surface thickness is 1.2 or less, the effective volume in the battery can is reduced, resulting in a large decrease in volume energy density, and is required at 5.0 or more. The appropriate value was 1.2 to 5.0 because the shape could not be processed.

【0052】上記各態様による電池缶2B〜電池缶2G
の検証から、AAサイズのニッケル水素蓄電池に適用し
た電池缶2として実施例1に示した構成が適正なもので
あることがわかる。従来のクラッド材を使用した電池缶
と比べ、封口部周面材料がSPCE材とアルミ材のクラ
ッド材でなく、すべてがSPCE材であるため、封口耐
圧強度が高く、且つアルミによる軽量化も兼ね備えた電
池缶をDI加工により作製することができる有効性が示
される。
The battery cans 2B to 2G according to the above embodiments.
It can be seen from the verification that the configuration shown in Example 1 is appropriate as the battery can 2 applied to the AA-size nickel-metal hydride storage battery. Compared to conventional battery cans using clad material, the peripheral material of the sealing part is not SPCE material and aluminum clad material, but all are SPCE material, so the sealing pressure resistance is high and the weight is also reduced by aluminum. The effectiveness of being able to produce a battery can by DI processing is shown.

【0053】なお、出発材料には、図5に示すようにそ
れぞれ単一材の外径の異なるカップ状中間製品を使用す
ることもできる。実施例としてSPCE材のカップ状中
間製品11とカップ中間製品11の外径より内径が大と
なるアルミニウム材のカップ状中間製品12をはめ込み
DI加工時に同時に加工することで電池缶2とほぼ同様
のものを得ることができる。
As the starting material, as shown in FIG. 5, cup-shaped intermediate products each having a different outer diameter may be used. As an example, a cup-shaped intermediate product 11 made of SPCE material and a cup-shaped intermediate product 12 made of an aluminum material having an inner diameter larger than the outer diameter of the cup intermediate product 11 are fitted and processed at the same time as DI processing, so that the battery can 2 is substantially the same as the battery can 2. You can get things.

【0054】次に、角形のリチウムイオン二次電池を構
成するために、その電池缶を仕上がり寸法が底面22×
8mm、高さ48.0mmの有底角筒形に形成し、これ
に発電要素を収容してリチウムイオン二次電池を形成し
た第2の実施形態について説明する。
Next, in order to form a prismatic lithium ion secondary battery, the battery can was finished with a bottom size of 22 ×
A second embodiment in which a lithium ion secondary battery is formed in a bottomed square cylindrical shape having a height of 8 mm and a height of 48.0 mm and accommodating a power generation element therein will be described.

【0055】図6において、リチウムイオン二次電池1
3は、電池缶14内に発電要素15を収容し、電池缶1
4の開口端を封口キャップ16で封口して形成される。
このリチウムイオン二次電池13に用いられた前記電池
缶14は、アルミニウム系材料と鉄鋼板材料とで構成さ
れ、以下に説明するように製造される。
In FIG. 6, the lithium ion secondary battery 1
Reference numeral 3 denotes a battery case in which the power generation element 15 is housed in the battery
4 is formed by sealing the open end of the cover 4 with a sealing cap 16.
The battery can 14 used in the lithium ion secondary battery 13 is made of an aluminum-based material and a steel sheet material, and is manufactured as described below.

【0056】厚さ450μmのアルミニウム合金(JI
S−A3003相当)と、両面に3.5μmの厚さにニ
ッケルメッキを施し熱処理した厚さ250μm、炭素含
有量:0.03wt%のSPCE材を採用し、電池缶を
形成する。
An aluminum alloy having a thickness of 450 μm (JI
A battery can is formed by employing an SPCE material having a thickness of 250 μm and a carbon content of 0.03 wt% heat-treated by applying nickel plating to a thickness of 3.5 μm on both surfaces and heat-treating the same.

【0057】アルミニウム合金を円形に切り抜き、その
中心部に深さ250μmの穴を加工する。この加工品の
中心穴部に厚さ250μm、炭素含有量:0.03wt
%のSPCE材を貼り合わせ電池缶2と同様に電池缶1
4を形成する出発材料とする。電池缶14の外面側に貼
り合わせたSPCE材が出るようにしてプレス機により
絞り加工してカップ状の中間製品に形成する。この状態
では、底面厚さ、側面厚さ共に出発材料ほとんど変化は
ない。このように形成されたカップ状の中間製品を、図
3に示したものと同様のDI加工工程に送り出し、絞り
及びシゴキにより所定高さ寸法の有底角筒形に成形す
る。DI加工がなされた状態では、底面サイズ22×8
mm、高さ52mmとなり、開口端側は平坦でなく波打
ったような状態になっているので、電池缶の設定高さ寸
法である48mmになるように開口端側の耳部を切断す
る。
An aluminum alloy is cut out in a circular shape, and a hole having a depth of 250 μm is formed in the center thereof. 250 μm thickness, carbon content: 0.03 wt in the center hole of this processed product
% Of SPCE material, and battery can 1 as well as battery can 2
4 as a starting material. The SPCE material bonded to the outer surface side of the battery can 14 is drawn out by a press machine so that the SPCE material bonded to the battery can 14 is formed to form a cup-shaped intermediate product. In this state, the starting material hardly changes in both the bottom thickness and the side thickness. The cup-shaped intermediate product thus formed is sent to a DI processing step similar to that shown in FIG. 3, and is formed into a bottomed square cylindrical shape having a predetermined height by drawing and squeezing. When DI processing is performed, the bottom size is 22 × 8
mm and the height is 52 mm, and the opening end side is not flat but wavy. Therefore, the ear portion on the opening end side is cut so as to have the set height dimension of the battery can of 48 mm.

【0058】図7は、上記加工方法によって製作された
角形の電池缶14の縦断面形状を示すもので、底面14
aの厚さは450μm、側周面14bの厚さは200μ
mに形成されており、底面厚さ/側周面厚さ比は2.2
5、シゴキ率は56%となっている。また、電池缶14
の封口部周面14cは、側周面14bより30%厚い2
50μmに形成され、封口強度を向上させている。
FIG. 7 shows the vertical cross-sectional shape of the rectangular battery can 14 manufactured by the above-described processing method.
a has a thickness of 450 μm, and the side peripheral surface 14 b has a thickness of 200 μm.
m, and the ratio of bottom surface thickness / side peripheral surface thickness is 2.2.
5. The squeeze rate is 56%. Also, the battery can 14
2 is 30% thicker than the side peripheral surface 14b.
It is formed to a thickness of 50 μm to improve the sealing strength.

【0059】また、底面14aから側周面14bに立ち
上がるコーナー部は、曲率半径0.35mmの曲面に形
成されている。この曲率半径は大きくした方が電池缶1
4の強度を大きくすることができるが、電池缶14内に
収容する発電要素の有効容積を確保するためには曲率半
径は小さい方が望ましく、強度保持と容積確保とを加味
すると0.5mm以下の曲率半径であることが望まし
い。
The corner rising from the bottom surface 14a to the side peripheral surface 14b is formed as a curved surface having a radius of curvature of 0.35 mm. The larger the radius of curvature, the better the battery can 1
4, the curvature radius is desirably small in order to secure the effective volume of the power generating element housed in the battery can 14, and is 0.5 mm or less in consideration of the strength retention and the volume securing. Is desirable.

【0060】上記のように構成された電池缶14を用い
てリチウムイオン二次電池13を製作するために、電池
缶14内に以下に示すような発電要素15を収容する。
In order to manufacture the lithium ion secondary battery 13 using the battery can 14 configured as described above, a power generation element 15 as described below is accommodated in the battery can 14.

【0061】正極は、導電剤であるLiCoO2、アセ
チレンブラック、結着剤であるフッ素樹脂等をペースト
状に混合し、これをアルミニウム箔基板に塗着した後、
乾燥、加圧、切断により所定寸法にして正極板を形成す
る。負極は、球状の黒鉛にスチレンブタジエンラバー結
着剤、カルボキシメチルセルロース増粘剤等を添加して
ペースト状にしたものを銅箔基板に塗着し、乾燥、加
圧、切断により所定寸法にして負極板に形成する。これ
らの正極板と負極板とをポリエチレン微多孔膜で形成し
たセパレータを介して巻回し、電池缶14内に収容し、
リチウムイオン二次電池の負極端子とする封口キャップ
16と負極板とをリードで接続すると共に、正極端子と
なる電池缶14とをリードで接続する。この電池缶14
内に、エチレンカーボネート−ジエチルカーボネートを
モル比で1:3に混合したものに1mol/1の濃度の
六フッ化リン酸リチウムを溶解した電解液を注入し、電
池缶14の開口端に封口キャップ16を配し、電池缶1
4と封口キャップ16との間をレーザー封口により密閉
する。
For the positive electrode, LiCoO 2 as a conductive agent, acetylene black, a fluororesin as a binder and the like are mixed in a paste form, and this is applied to an aluminum foil substrate.
The positive electrode plate is formed to a predetermined size by drying, pressing, and cutting. The negative electrode was prepared by adding a styrene-butadiene rubber binder, a carboxymethylcellulose thickener, etc. to spherical graphite, and then applying the paste to a copper foil substrate. Formed on a plate. The positive electrode plate and the negative electrode plate are wound through a separator formed of a microporous polyethylene film and housed in the battery can 14,
The sealing cap 16 serving as the negative electrode terminal of the lithium ion secondary battery and the negative electrode plate are connected with the lead, and the battery can 14 serving as the positive electrode terminal is connected with the lead. This battery can 14
An electrolytic solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / 1 in a mixture of ethylene carbonate and diethyl carbonate at a molar ratio of 1: 3 was injected into the inside, and a sealing cap was attached to the open end of the battery can 14. 16 and battery can 1
The space between 4 and the sealing cap 16 is sealed by laser sealing.

【0062】このようにして製作されたリチウムイオン
二次電池13は、幅22mm、厚さ8mm、高さ48m
mの角形電池となり、電池重量は約19g、電池容量は
610mAhとなる。この電池の有効性を検証するため
に、従来のクラッド材を用いた電池缶により同一規格の
リチウムイオン二次電池を比較例として製作した。
The lithium ion secondary battery 13 manufactured as described above has a width of 22 mm, a thickness of 8 mm, and a height of 48 m.
m, a battery weight of about 19 g and a battery capacity of 610 mAh. To verify the effectiveness of this battery, a lithium ion secondary battery of the same standard was manufactured as a comparative example using a battery can using a conventional clad material.

【0063】比較例は、電池缶14で使用したのと同様
の2種類の材料のクラッド材を用いて電池缶14と同一
の外径寸法に形成した全クラッド材の電池である。電池
重量としては、クラッド材で電池缶を形成した比較例の
方が有利であるが、レーザー封口などの工程上、本発明
の実施例の電池は加工部が単一金属であるため加工が容
易で、且つ漏液などの安全性も高く、よって電池缶14
を用いた実施例の電池の有効性が明らかとなった。
The comparative example is a battery of an all-cladding material formed with the same outer diameter as the battery can 14 using the same two types of cladding materials as used in the battery can 14. As for the battery weight, the comparative example in which the battery can was formed from the clad material is more advantageous, but the battery of the embodiment of the present invention is easy to process because the processed portion is a single metal in the process such as laser sealing. And high safety such as liquid leakage.
The effectiveness of the battery of the example using was clarified.

【0064】以上説明した各実施形態は、円筒形、角形
それぞれの二次電池に適用した例を示したが、二次電池
は充電等により電池内圧の上昇などによる膨れ変形や封
口部の耐圧強度において最も過酷な条件に曝されるもの
として、これらを適用対象とした。従って、適用条件が
よりゆるやかな一次電池に適用してもよいことは明確で
ある。
Each of the embodiments described above is an example in which the present invention is applied to a cylindrical or prismatic secondary battery. However, the secondary battery swells due to an increase in the internal pressure of the battery due to charging or the like and the pressure resistance of the sealing portion. These were subjected to the most severe conditions, and these were applied. Therefore, it is clear that the present invention may be applied to a primary battery having a more moderate application condition.

【0065】また、電池缶を構成する鉄鋼板材料として
ステンレス鋼を用いることもでき、DI工法における加
工性は各実施形態において採用したSPCE材よりやや
劣るが、耐圧強度や耐食性を向上させることができる。
ステンレス鋼としてはSUS304、SUS430等が
好適である。
In addition, stainless steel can be used as the steel sheet material constituting the battery can. The workability in the DI method is slightly inferior to the SPCE material used in each embodiment, but the pressure resistance and the corrosion resistance can be improved. it can.
SUS304, SUS430 and the like are suitable as stainless steel.

【0066】[0066]

【発明の効果】以上の説明の通り本発明によれば、有底
筒状に形成された電池缶であり、前記電池缶の封口部周
面以外の材料は異種金属あるいは合金の2層構造であ
り、封口部周面材料は、封口部周面以外の2層構造材料
のいずれか一方の材料からなる、底面厚さ/側周面厚さ
比が1.2〜5.0となるように形成されるので、レー
ザー封口が容易となりまた、封口耐圧強度の低下を防
ぎ、電池缶の薄肉化及び軽量化を図ることで、電池の体
積エネルギー密度及び重量エネルギー密度を向上させる
ことができる電池缶を提供することができる。
As described above, according to the present invention, the battery can is formed in a cylindrical shape with a bottom, and the material other than the peripheral surface of the sealing portion of the battery can has a two-layer structure of a dissimilar metal or alloy. The sealing portion peripheral surface material is made of any one of the two-layer structure materials other than the sealing portion peripheral surface so that the bottom surface thickness / side peripheral surface thickness ratio becomes 1.2 to 5.0. Since the battery can is formed, laser sealing is facilitated, and a reduction in the pressure resistance of the sealing is prevented, and the thickness and weight of the battery can are reduced, thereby improving the volume energy density and the weight energy density of the battery can. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係るニッケル水素蓄電池の概
略構成を示す断面図
FIG. 1 is a sectional view showing a schematic configuration of a nickel-metal hydride storage battery according to a first embodiment.

【図2】電池缶の出発材料の構成を示す断面図FIG. 2 is a cross-sectional view showing a configuration of a starting material of a battery can.

【図3】DI工法の構成を示す概略断面図FIG. 3 is a schematic sectional view showing a configuration of a DI method.

【図4】円筒形電池缶の構成を示す断面図FIG. 4 is a sectional view showing a configuration of a cylindrical battery can.

【図5】電池缶の出発材料の構成を示す断面図FIG. 5 is a cross-sectional view showing a configuration of a starting material of a battery can.

【図6】第2の実施形態に係るリチウムイオン二次電池
の概略構成を示す断面図
FIG. 6 is a sectional view showing a schematic configuration of a lithium ion secondary battery according to a second embodiment.

【図7】角形電池缶の構成を示す断面図FIG. 7 is a sectional view showing the configuration of a prismatic battery can.

【符号の説明】[Explanation of symbols]

1 ニッケル水素蓄電池 2 電池缶(円筒形) (a)底面 (b)側周面 (c)封口部周面 3 発電要素 4 封口板 5 アルミキルド鋼 6 純アルミニウム材 7 カップ状中間製品 11 カップ状中間製品(SPCE材) 12 カップ状中間製品(アルミニウム材) 13 リチウムイオンに次電池 14 電池缶(角形) (a)底面 (b)側周面 (c)封口部周面 15 発電要素 16 封口キャップ DESCRIPTION OF SYMBOLS 1 Nickel-metal hydride storage battery 2 Battery can (cylindrical shape) (a) Bottom surface (b) Side peripheral surface (c) Seal peripheral portion peripheral surface 3 Power generation element 4 Sealing plate 5 Aluminum killed steel 6 Pure aluminum material 7 Cup intermediate product 11 Cup intermediate Product (SPCE material) 12 Cup-shaped intermediate product (aluminum material) 13 Lithium ion secondary battery 14 Battery can (square) (a) Bottom surface (b) Side peripheral surface (c) Sealing part peripheral surface 15 Power generation element 16 Sealing cap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 彰 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H011 AA03 CC05 CC10 DD03 KK01 KK02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akira Hashimoto 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H011 AA03 CC05 CC10 DD03 KK01 KK02

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 有底筒状に形成された電池缶であって、
前記電池缶の封口部周面以外の材料は異種金属あるいは
異種合金の2層構造であり、封口部周面材料は封口部周
面以外の2層構造材料のいずれか一方の材料からなり、
底面厚さ/側周面厚さ比が1.2〜5.0となるように
形成されてなることを特徴とする電池缶。
1. A battery can formed in a cylindrical shape with a bottom,
The material other than the peripheral surface of the sealing portion of the battery can has a two-layer structure of a dissimilar metal or a different alloy, and the peripheral material of the sealing portion is made of any one of two-layer structure materials other than the peripheral surface of the sealing portion,
A battery can, formed so that a bottom surface thickness / side peripheral surface thickness ratio is 1.2 to 5.0.
【請求項2】 2層構造材料の1層がアルミニウムまた
はアルミニウム合金である請求項1記載の電池缶。
2. The battery can according to claim 1, wherein one layer of the two-layer structure material is aluminum or an aluminum alloy.
【請求項3】 アルミニウム合金が0.5〜2.5wt
%のマンガンを含有したものである請求項2記載の電池
缶。
3. The aluminum alloy is 0.5 to 2.5 wt.
3. The battery can according to claim 2, wherein the battery can contains manganese.
【請求項4】 2層構造材料の1層が鉄鋼板である請求
項1記載の電池缶。
4. The battery can according to claim 1, wherein one layer of the two-layer structure material is a steel plate.
【請求項5】 鉄鋼板が炭素の含有量が0.1wt%以
下の冷間圧延用炭素鋼である請求項4記載の電池缶。
5. The battery can according to claim 4, wherein the steel sheet is a carbon steel for cold rolling having a carbon content of 0.1 wt% or less.
【請求項6】 鉄鋼板材料層の両面または片面にニッケ
ル層が設けられている請求項4あるいは5記載の電池
缶。
6. The battery can according to claim 4, wherein a nickel layer is provided on both sides or one side of the steel sheet material layer.
【請求項7】 封口部周面材料と電池缶内面材料が同じ
である請求項1から6のいずれかに記載の電池缶。
7. The battery can according to claim 1, wherein the material of the peripheral surface of the sealing portion and the material of the inner surface of the battery can are the same.
【請求項8】 有底筒状に形成された電池缶であり、前
記電池缶の封口部周面以外は鉄鋼板とアルミニウムある
いはアルミニウム合金の2層構造であり、封口部周面材
料は封口部周面以外の2層構造材料のいずれか一方の材
料からなり、底面厚さ/側周面厚さ比が1.2〜5.0
となるように形成されてなることを特徴とする電池缶。
8. A battery can formed in a cylindrical shape with a bottom and a two-layer structure of an iron steel plate and aluminum or an aluminum alloy except for a peripheral portion of a sealing portion of the battery can. It is made of any one of the two-layer structure materials other than the peripheral surface, and the bottom surface thickness / side peripheral surface thickness ratio is 1.2 to 5.0.
A battery can characterized by being formed so that
【請求項9】 2層構造とする部分に異種金属を2層貼
り合わせて形成した材料を絞り加工により形成したカッ
プ状中間製品をシゴキ加工あるいは絞りおよびシゴキ加
工することにより作製したことを特徴とする請求項1か
ら8のいずれかに記載の電池缶の製造方法。
9. A cup-shaped intermediate product formed by drawing a material formed by bonding two layers of different kinds of metal to a portion having a two-layer structure, or by squeezing or drawing and squeezing. The method for producing a battery can according to claim 1.
【請求項10】 2層構造のそれぞれの金属材料あるい
は合金材料を有底筒状に加工した後はめ込み、シゴキ加
工あるいは絞りおよびシゴキ加工することを特徴とする
請求項1から8のいずれかに記載の電池缶の製造方法。
10. The method according to claim 1, wherein each metal material or alloy material having a two-layer structure is worked into a bottomed cylindrical shape and then fitted, and then subjected to squeezing or drawing and squeezing. Of manufacturing a battery can.
【請求項11】 請求項1から8のいずれかに記載の電
池缶に発電要素を収容してなる電池。
11. A battery comprising the battery can according to claim 1 and a power generation element housed therein.
JP2000117477A 2000-04-19 2000-04-19 Battery can, manufacturing method thereof and battery Expired - Fee Related JP3846154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117477A JP3846154B2 (en) 2000-04-19 2000-04-19 Battery can, manufacturing method thereof and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117477A JP3846154B2 (en) 2000-04-19 2000-04-19 Battery can, manufacturing method thereof and battery

Publications (2)

Publication Number Publication Date
JP2001307686A true JP2001307686A (en) 2001-11-02
JP3846154B2 JP3846154B2 (en) 2006-11-15

Family

ID=18628788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117477A Expired - Fee Related JP3846154B2 (en) 2000-04-19 2000-04-19 Battery can, manufacturing method thereof and battery

Country Status (1)

Country Link
JP (1) JP3846154B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114272A (en) * 2004-10-13 2006-04-27 Nec Tokin Tochigi Ltd Electric component and its manufacturing method
JP2007253331A (en) * 2006-03-20 2007-10-04 Neomax Material:Kk Press molding clad material and seamless can press-molded using clad material
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same
WO2009107318A1 (en) * 2008-02-25 2009-09-03 パナソニック株式会社 Battery can, method for manufacturing the same and device for manufacturing the same, and battery using batery can
JP2012006024A (en) * 2010-06-23 2012-01-12 Aida Engineering Ltd Method for manufacturing prismatic container made of stainless steel and device for manufacturing the same
JP2012133904A (en) * 2010-12-20 2012-07-12 Hitachi Vehicle Energy Ltd Secondary battery
JP2016066583A (en) * 2014-09-18 2016-04-28 株式会社神戸製鋼所 Square battery case for on-vehicle battery, and manufacturing method thereof
CN111063834A (en) * 2019-12-27 2020-04-24 东莞市沃泰通新能源有限公司 Battery steel shell structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114272A (en) * 2004-10-13 2006-04-27 Nec Tokin Tochigi Ltd Electric component and its manufacturing method
JP2007253331A (en) * 2006-03-20 2007-10-04 Neomax Material:Kk Press molding clad material and seamless can press-molded using clad material
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same
WO2009107318A1 (en) * 2008-02-25 2009-09-03 パナソニック株式会社 Battery can, method for manufacturing the same and device for manufacturing the same, and battery using batery can
US8202646B2 (en) 2008-02-25 2012-06-19 Panasonic Corporation Battery can with cutting-edge portion higher than cutting start portion, manufacturing method and manufacturing device therefore, and battery using the same
JP2012006024A (en) * 2010-06-23 2012-01-12 Aida Engineering Ltd Method for manufacturing prismatic container made of stainless steel and device for manufacturing the same
JP2012133904A (en) * 2010-12-20 2012-07-12 Hitachi Vehicle Energy Ltd Secondary battery
JP2016066583A (en) * 2014-09-18 2016-04-28 株式会社神戸製鋼所 Square battery case for on-vehicle battery, and manufacturing method thereof
CN106463655A (en) * 2014-09-18 2017-02-22 株式会社神户制钢所 Quadrangular cell case for vehicle cell and method for manufacturing same
CN111063834A (en) * 2019-12-27 2020-04-24 东莞市沃泰通新能源有限公司 Battery steel shell structure

Also Published As

Publication number Publication date
JP3846154B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US6333124B1 (en) Metal outer can for a battery and method of manufacturing same
EP0944119A1 (en) Battery and method of manufacturing the same
JP4210961B1 (en) Battery with battery case and sealing plate
CN211654976U (en) Button type lithium battery without electrode lugs
JP3857818B2 (en) Lithium ion secondary battery
JP2002134071A (en) Flattened square type battery
KR102041131B1 (en) Cylindrical Battery Cell Having Can of Dissimilar Metals
US20060099494A1 (en) Lithium rechargeable battery
JP3630992B2 (en) Battery and method for manufacturing battery can
JP2002203534A (en) Thin-type secondary battery and battery pack
JP2002050322A (en) Sealed square flat cell
JP3846154B2 (en) Battery can, manufacturing method thereof and battery
US12095074B2 (en) Nonaqueous electrolyte secondary battery
JPWO2020129881A1 (en) Square secondary battery
JP2000182573A (en) Secondary battery
JP3302200B2 (en) Sealed rectangular non-aqueous electrolyte battery
JP3174289B2 (en) Degassing method for the first charge of lithium secondary battery
JP2002141028A (en) Sealed cell and manufacturing method of the same
JP4977932B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4505711B2 (en) Flat rectangular battery
JP4204366B2 (en) Nonaqueous electrolyte secondary battery
CN221827993U (en) Cylindrical battery and module
JP2002175785A (en) Cylindrical secondary battery
CN220821857U (en) Y-shaped tab applied to lithium ion battery
JP4035710B2 (en) Flat battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060814

LAPS Cancellation because of no payment of annual fees