Nothing Special   »   [go: up one dir, main page]

JP4204366B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4204366B2
JP4204366B2 JP2003089850A JP2003089850A JP4204366B2 JP 4204366 B2 JP4204366 B2 JP 4204366B2 JP 2003089850 A JP2003089850 A JP 2003089850A JP 2003089850 A JP2003089850 A JP 2003089850A JP 4204366 B2 JP4204366 B2 JP 4204366B2
Authority
JP
Japan
Prior art keywords
negative electrode
plate
sealing body
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089850A
Other languages
Japanese (ja)
Other versions
JP2004296363A (en
Inventor
直哉 中西
広一 佐藤
淳浩 船橋
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003089850A priority Critical patent/JP4204366B2/en
Publication of JP2004296363A publication Critical patent/JP2004296363A/en
Application granted granted Critical
Publication of JP4204366B2 publication Critical patent/JP4204366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、封口体によって封口された負極缶の内部に発電要素なる電極体が収容されている非水電解質二次電池に関し、特に封口体の十分な低抵抗化を図ることによって高出力を得ることが出来る非水電解質二次電池に関するものである。
【0002】
【従来の技術】
従来の円筒型リチウムイオン二次電池は、例えば図5に示す如く、負極缶(10)の開口部に絶縁部材(30)を介して封口体(5)をかしめ固定して、密閉容器を形成し、該密閉容器内に巻き取り電極体(80)を収容して構成されている。尚、負極缶(10)は、負極電位で安定なニッケル、銅、ステンレス鋼などを用いて作製されている。
巻き取り電極体(80)の正極側の端部には集電板(70)が接合され、該集電板(70)に突設したリード片(73)の先端部が封口体(5)の裏面に溶接されている。又、巻き取り電極体(80)の負極側の端部にも同様に集電板(図示省略)が接合され、該集電板が負極缶(10)の底面に接合されている。
【0003】
封口体(5)は、負極缶(10)の内側から外側へ向かって、アルミニウム製の蓋体ケース(51)と、アルミニウム製の薄板からなる安全弁(52)と、鉄製の基体にニッケル鍍金を施してなる蓋キャップ(53)とを重ね合わせ、これらを互いにスポット溶接して一体化したものである(特許文献1参照)。
この様に、巻き取り電極体(80)の正極が接続されるべき封口体(5)の構造において、負極缶(10)の内側の層(蓋体ケース(51))をアルミニウム製とする一方、複数本の電池を直列接続したとき隣接電池の負極缶と接合されるべき外側の層(蓋キャップ(53)の表層部)をニッケル製とした積層構成によれば、直列接続された2本の電池の接合部にて負極缶(10)のニッケル面と封口体(5)のニッケル面とが接触することとなるので、異種金属どうしの接触に起因する電気腐食の問題が回避される。
【0004】
【特許文献1】
特開2000−90892号公報
【特許文献2】
特開2002−198100号公報
【0005】
【発明が解決しようとする課題】
しかしながら、図5に示す集電体(5)は、溶接性の悪いニッケルとアルミニウムの積層構造を有しているため、溶接不良によってニッケル層とアルミニウム層の接合界面で大きな電気抵抗が発生し、この結果、大きな電力損失が生じて、十分に高い出力特性を得ることが出来ない問題があった。
そこで本発明の目的は、封口体の低抵抗化を図ることによって高い出力特性を得ることが出来る非水電解質二次電池を提供することである。
【0006】
【課題を解決する為の手段】
本発明に係る非水電解質二次電池においては、有底筒状を呈する負極缶(1)の開口部に絶縁部材(3)を介して封口体(2)が取り付けられ、該負極缶(1)内に、正極(81)及び負極(82)を積層してなる電極体(8)が収容され、正極(81)は封口体(2)に接続されると共に、負極(82)は負極缶(1)に接続され、封口体(2)と負極缶(1)に設けた正極端子部及び負極端子部から電極体(4)の発生電力を取り出すことが出来る。
ここで、封口体(2)は、負極缶(1)の内側に向けて配置されたアルミニウム製若しくはアルミニウムを主体とする合金からなる内板(21)と、負極缶(1)の外側に向けて配置されると共に少なくとも負極缶(1)の内側と外側を向く両表層部がニッケル製若しくはニッケルを主体とする合金からなる外板(22)と、内板(21)と外板(22)の間に介在する中間板(23)の3層構造を有し、該中間板(23)は、内板(21)及び外板(22)との接合性がアルミニウム−ニッケル間の接合性よりも良好となる金属から形成されている。
そして、内板 (21) の中央部にはガス排出弁となる円形の薄肉部 (24) が形成されると共に、中間板 (23) 及び外板 (22) の中央部には、前記薄肉部 (24) の外径よりも大きな内径を有する貫通孔 (23a)(22a) が開設されている。
具体的には、中間板(23)は、Fe、Cu、Au、Znから選ばれた少なくとも1つの金属を主体として作製され、内板(21)、中間板(23)及び外板(22)がレーザ溶接などによって互いに接合されている。
尚、「主体」とは、合金においてその元素が最も高い比率で含まれていることを意味する。
【0007】
上記本発明の非水電解質二次電池に採用されている封口体(2)においては、アルミニウム製の内板(21)とニッケル製の外板(22)の間に、Fe、Cu、Au或いはZnからなる中間板(23)が介在しているので、内板(21)と中間板(23)の接合界面においては、アルミニウムとFe、Cu、Au或いはZnとが接触し、中間板(23)と外板(22)の接合界面においては、Fe、Cu、Au或いはZnとニッケルとが接触することとなり、これらの互いに接触する金属どうしの溶接性は、従来の封口体におけるアルミニウムとニッケルとの溶接性よりも良好である。
従って、内板(21)と中間板(23)とは互いに良好に溶接されると共に、中間板(23)と外板(22)とは互いに良好に溶接されて、接合界面での電気抵抗が小さなものとなり、封口体(2)の低抵抗化が図られる。
【0008】
【発明の効果】
本発明に係る非水電解質二次電池によれば、封口体(2)の低抵抗化が図られて、封口体(2)では電力損失が殆ど発生しないため、高い出力特性を得ることが出来る。
【0009】
【発明の実施の形態】
以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
図1に示す如く、本発明に係る円筒型リチウムイオン二次電池は、厚さ0.5mmの鉄製の有底筒体にニッケル鍍金を施してなる負極缶(1)を具え、該負極缶(1)の開口部には、絶縁部材(3)を介して後述する封口体(2)がかしめ固定され、該負極缶(1)の内部に巻き取り電極体(8)が収容されている。
【0010】
巻き取り電極体(8)の正極側の端部には、集電板(7)が溶接によって接合され、該集電板(7)はリード片(72)を介して封口体(2)の裏面に接続されている。又、巻き取り電極体(8)の負極側の端部には、集電板(71)が溶接によって接合され、該集電板(71)の背面が負極缶(1)の底面に溶接されている。
又、封口体(2)の表面には、ガス排出孔(41)を有する正極端子(4)が取り付けられている。
【0011】
巻き取り電極体(8)は、図4に示す如く、それぞれ帯状の正極(81)と負極(82)の間に帯状のセパレータ(83)を介在させて、これらを渦巻き状に巻回して構成されている。
図2に示す如く、正極(81)は、アルミニウム箔からなる帯状芯体(84)の両面にリチウム複合酸化物(LiCoO)からなる正極活物質(85)を塗布して構成され、負極(82)は、銅箔からなる帯状芯体(86)の両面に天然黒鉛を含む負極活物質(87)を塗布して構成されている。セパレータ(83)には、非水電解液が含浸されている。
【0012】
図4に示す如く、正極(81)及び負極(82)はそれぞれセパレータ(83)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(8)の巻き軸方向の両端部の内、一方の端部では、セパレータ(83)の端縁よりも外方へ正極(81)の芯体端縁が突出すると共に、他方の端部では、セパレータ(83)の端縁よりも外方へ負極(82)の芯体端縁が突出している。
【0013】
負極側の集電板(7)は、厚さ1.0mmのニッケル板から形成される一方、正極側の集電板(71)は、厚さ1.0mmのアルミニウム板から形成され、これらの集電板(7)(71)はそれぞれ巻き取り電極体(8)の負極側の端縁と正極側の端縁に押し付けられ、レーザ溶接されている。
【0014】
封口体(2)は、図2に示す如く、負極缶(1)の内側から外側に向けて、直径34mm、厚さ0.3mmのアルミニウム製の内板(21)と、直径34mm、厚さ0.1mmのFe、Cu、Au或いはZn製の中間板(23)と、直径34mm、厚さ1.5mmのニッケル製の外板(22)とを重ね合わせ、これらの板(21)(23)(22)に内板(21)側から円周線に沿ってレーザ溶接を施し、一体化したものである。
尚、外板(22)は、全体がニッケル製のものに限らず、その表面側及び内面側の表層部がニッケル製のものを用いることも可能である。
図3に示す如く、封口体(2)を構成する内板(21)の中央部には、外径6mmの薄肉部(24)が形成されて、ガス排出弁を構成している。又、中間板(23)及び外板(22)にはそれぞれ、内径が8mmの貫通孔(23a)(22a)が開設されている。
正極端子(4)は、ニッケル板のプレス成型によってキャップ状に形成されている。
【0015】
尚、封口体(2)を構成するニッケル製の外板(22)の厚さは、電池内圧上昇時の変形防止や封口体の低抵抗化の観点から1.0〜2.0mmが好ましい。1.0mm以下の厚さでは内圧上昇時に変形が発生するため、かしめ固定部の気密性が低下する虞がある。又、2.0mm以上の厚さでは、封口体自身の抵抗が大きくなり、十分な出力特性を確保することが出来ない。
封口体(2)を構成するアルミニウム製の内板(21)の厚さは、溶接を内板(21)側から行なう関係上、溶接時の熱放散を抑えて溶接性を高く維持するために、0.5mm以下が好ましい。
又、封口体(2)を構成する中間板(23)の厚さは、電気抵抗の低減、溶接時の熱放散抑制の観点から、薄いことが好ましいが、0.05mm以下の厚さでは、内板(21)と中間板(23)の間の溶接性や、中間板(23)と外板(22)の間の溶接性に大きな改善が見られないため、0.075mm〜1.50mmの範囲が好ましい。
【0016】
次に、上記本発明のリチウムイオン二次電池の製造工程について説明する。
巻き取り電極体の作製
LiCoOからなる正極活物質と、炭素からなる導電助剤と、ポリフッ化ビニリデン(PVdF)からなるバインダーとを混合して、正極合剤を調製し、該正極合剤を、アルミニウム箔からなる帯状の正極芯体の両面に塗布して、正極(81)を作製する。尚、正極芯体の一方の端部には、正極活物質層の塗布されていない幅10mmの非塗工部を形成する。
【0017】
又、天然黒鉛からなる負極活物質と、ポリフッ化ビニリデン(PVdF)からなるバインダーとを混合して、負極合剤を調製し、該負極合剤を、銅箔からなる帯状の負極芯体の両面に塗布して、負極(82)を作製する。尚、負極芯体の一方の端部には、負極活物質の塗布されていない幅10mmの非塗工部を形成する。
又、多孔性を有するポリエチレン及びポリプロピレンからなる帯状のセパレータ(83)を、正極活物質塗工部及び負極活物質塗工部の幅より若干大きな幅に形成する。
【0018】
その後、正極、セパレータ及び負極を重ね合わせ、これらを渦巻き状に巻き取って、巻き取り電極体(8)を作製する。この際、正極の活物質非塗工部と負極の活物質非塗工部の端縁がセパレータの端縁から外側へ突出する様に重ね合わせる。
【0019】
正極集電板及び負極集電板の作製
厚さ1.0mmのニッケル板からなる負極集電板(7)と、厚さ1.0mmのアルミニウム板からなる正極集電板(71)を作製する。尚、正極集電板(71)の表面にはリード片(72)の基端部が連結されている。
【0020】
封口体の作製
直径34mm、厚さ1.5mmのニッケル板の中央部に直径8mmの貫通孔を開設した外板(22)と、直径34mm、厚さ0.1mmの銅板の中央部に直径8mmの貫通孔を開設した中間板(23)と、直径34mm、厚さ0.3mmのアルミニウム板の中央部に直径6mmの薄肉部からなるガス排出弁を形成した内板(21)とを作製し、これらの板(22)(23)(21)を内板(21)側から円周線に沿ってレーザ溶接し、一体化する。又、封口体(2)の表面にニッケル製の正極端子(4)をレーザ溶接する。
【0021】
電池の組立
巻き取り電極体(8)の負極側の端縁に負極集電板(7)を設置し、該集電板(7)表面へレーザビームを照射して、該端縁に負極集電板(7)を溶接する。又、巻き取り電極体(8)の正極側の端縁に正極集電板(71)を設置し、該集電板(71)の表面へレーザビームを照射して、該端縁に正極集電板(71)を溶接する。
その後、負極缶(1)の内部に巻き取り電極体(8)を収容し、負極集電板(71)を負極缶(1)の底面に抵抗溶接によって接合する。又、正極集電板(71)から伸びるリード片(72)の先端部を、封口体(2)の裏面にレーザー溶接により接合する。その後、負極缶(1)の内部に電解液を注入する。尚、電解液は、エチレンカーボネートとジエチルカーボネートを体積比1:1で混合し、この混合溶媒にLiPF6を1モル/リットルの割合で溶解させたものである。
最後に、負極缶(1)の開口部にポリプロピレン製の絶縁部材(3)を介して封口体(2)をかしめ固定する。これによって、図1に示す円筒型リチウムイオン二次電池が完成する。
【0022】
尚、正極活物質としては、上述のLiCoOに限定されるものではなく、LiNiO、LiMn等を採用することが出来、更に負極活物質としては、上述の天然黒鉛に限定されるものではなく、人造黒鉛、コークス等の他の炭素材料や、リチウムを吸蔵放出可能な種々の材料を採用することが出来る。又、電解液としては、上述のものに限定されるものではなく、ビニレンカーボネート、プロピレンカーボネートなどの有機溶媒や、これらとジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒にLiClO、LiCFSOなどの溶質を0.7〜1.5モル/リットルの割合で溶解させた溶液等を採用することが出来る。封口体(2)の溶接には、レーザ溶接に限らず、抵抗溶接、超音波溶接等の溶接方法を採用することが出来る。
【0023】
実験
封口体(2)として、中間板(23)の材料がFe、Cu、Au、Znである4種類の封口体1〜4を作製した。又、比較例として、中間板(23)を具えない内板(21)及び外板(22)からなる封口体5を作製した。そして、これらの封口体を用いて円筒型リチウムイオン二次電池を組み立て、各電池の交流1kHzにおける電池抵抗値を測定した。その結果を下記表1に示す。
【0024】
【表1】

Figure 0004204366
【0025】
表1から明らかな様に、封口体1〜4においては、封口体5よりも低い電池内部抵抗を示している。これは、アルミニウム製の内板(21)とニッケル製の外板(22)との間にFe、Cu、Au、或いはZnからなる外板(22)を介在させることによって、内板(21)と中間板(23)の間に優れた溶接性が得られると共に、中間板(23)と外板(22)の間にも優れた溶接が得られ、この結果、封口体(2)の低抵抗化が図れたものである。
【図面の簡単な説明】
【図1】本発明に係る円筒型リチウムイオン二次電池の断面図である。
【図2】該円筒型リチウムイオン二次電池の要部を拡大して示す断面図である。
【図3】封口体の分解斜視図である。
【図4】巻き取り電極体の一部展開斜視図である。
【図5】従来の円筒型リチウムイオン二次電池の要部を拡大して示す断面図である。
【符号の説明】
(1) 負極缶
(2) 封口体
(21) 内板
(22) 外板
(23) 中間板
(24) 薄肉部
(3) 絶縁部材
(4) 正極端子
(8) 巻き取り電極体
(7) 集電板
(71) 集電板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery in which an electrode body serving as a power generation element is accommodated in a negative electrode can sealed by a sealing body, and in particular, high output is obtained by sufficiently reducing the resistance of the sealing body. The present invention relates to a non-aqueous electrolyte secondary battery that can be used.
[0002]
[Prior art]
For example, as shown in FIG. 5, a conventional cylindrical lithium ion secondary battery forms a sealed container by caulking and fixing a sealing body (5) to an opening of a negative electrode can (10) via an insulating member (30). The wound electrode body (80) is housed in the sealed container. The negative electrode can (10) is made of nickel, copper, stainless steel or the like that is stable at the negative electrode potential.
A collector plate (70) is joined to the end of the winding electrode body (80) on the positive electrode side, and the tip of the lead piece (73) projecting from the collector plate (70) is the sealing body (5). It is welded to the back side. Similarly, a current collector plate (not shown) is joined to the negative electrode side end of the winding electrode body (80), and the current collector plate is joined to the bottom surface of the negative electrode can (10).
[0003]
The sealing body (5) has an aluminum lid case (51), a safety valve (52) made of a thin aluminum plate, and a nickel plating on an iron base from the inside to the outside of the negative electrode can (10). The lid cap (53) thus formed is superposed and integrated by spot welding to each other (see Patent Document 1).
In this way, in the structure of the sealing body (5) to which the positive electrode of the winding electrode body (80) is to be connected, the inner layer (cover case (51)) of the negative electrode can (10) is made of aluminum. When a plurality of batteries are connected in series, the outer layer (surface layer part of the lid cap (53)) to be joined to the negative electrode can of the adjacent battery is made of nickel. Since the nickel surface of the negative electrode can (10) and the nickel surface of the sealing body (5) are brought into contact with each other at the joint portion of the battery, the problem of electrical corrosion due to the contact between different metals is avoided.
[0004]
[Patent Document 1]
JP 2000-90892 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-198100
[Problems to be solved by the invention]
However, since the current collector (5) shown in FIG. 5 has a laminated structure of nickel and aluminum with poor weldability, a large electrical resistance is generated at the joint interface between the nickel layer and the aluminum layer due to poor welding, As a result, there is a problem that a large power loss occurs and a sufficiently high output characteristic cannot be obtained.
Therefore, an object of the present invention is to provide a nonaqueous electrolyte secondary battery that can obtain high output characteristics by reducing the resistance of the sealing body.
[0006]
[Means for solving the problems]
In the nonaqueous electrolyte secondary battery according to the present invention, a sealing body (2) is attached to an opening of a negative electrode can (1) having a bottomed cylindrical shape via an insulating member (3), and the negative electrode can (1 ) Accommodates an electrode body (8) formed by laminating a positive electrode (81) and a negative electrode (82), the positive electrode (81) is connected to the sealing body (2), and the negative electrode (82) is a negative electrode can. The generated power of the electrode body (4) can be taken out from the positive electrode terminal part and the negative electrode terminal part connected to (1) and provided in the sealing body (2) and the negative electrode can (1).
Here, the sealing body (2) is oriented toward the outside of the negative electrode can (1) and the inner plate (21) made of aluminum or an alloy mainly composed of aluminum and arranged toward the inside of the negative electrode can (1). An outer plate (22) made of nickel or an alloy mainly composed of nickel, and an inner plate (21) and an outer plate (22). The intermediate plate (23) has a three-layer structure interposed between the inner plate (23) and the inner plate (21) and the outer plate (22) are more bonded than the aluminum-nickel. It is formed from a metal that is also good.
A circular thin portion (24) serving as a gas discharge valve is formed in the central portion of the inner plate (21) , and the thin portion is formed in the central portion of the intermediate plate (23) and the outer plate (22). Through holes (23a) and (22a) having an inner diameter larger than the outer diameter of (24) are established.
Specifically, the intermediate plate (23) is made mainly of at least one metal selected from Fe, Cu, Au, and Zn, and the inner plate (21), the intermediate plate (23), and the outer plate (22). Are joined together by laser welding or the like.
The “main body” means that the element is contained in the highest ratio in the alloy.
[0007]
In the sealing body (2) employed in the nonaqueous electrolyte secondary battery of the present invention, Fe, Cu, Au or the like is interposed between the aluminum inner plate (21) and the nickel outer plate (22). Since the intermediate plate (23) made of Zn is interposed, aluminum and Fe, Cu, Au, or Zn are in contact with each other at the bonding interface between the inner plate (21) and the intermediate plate (23), and the intermediate plate (23 ) And the outer interface (22), Fe, Cu, Au or Zn and nickel are in contact with each other. The weldability of these mutually contacting metals is the same as that of aluminum and nickel in the conventional sealing body. It is better than the weldability.
Therefore, the inner plate (21) and the intermediate plate (23) are well welded to each other, and the intermediate plate (23) and the outer plate (22) are well welded to each other, so that the electric resistance at the joint interface is increased. As a result, the resistance of the sealing body (2) is reduced.
[0008]
【The invention's effect】
According to the nonaqueous electrolyte secondary battery according to the present invention, the sealing body (2) is reduced in resistance, and the sealing body (2) generates almost no power loss, so that high output characteristics can be obtained. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention applied to a cylindrical lithium ion secondary battery will be described in detail with reference to the drawings.
As shown in FIG. 1, a cylindrical lithium ion secondary battery according to the present invention includes a negative electrode can (1) obtained by applying nickel plating to a steel bottomed cylinder having a thickness of 0.5 mm. A sealing body (2), which will be described later, is caulked and fixed to the opening of 1) via an insulating member (3), and the winding electrode body (8) is accommodated inside the negative electrode can (1).
[0010]
A current collector plate (7) is joined to the end of the winding electrode body (8) on the positive electrode side by welding, and the current collector plate (7) is connected to the sealing body (2) via a lead piece (72). Connected to the back side. Further, a current collector plate (71) is joined to the negative electrode side end of the winding electrode body (8) by welding, and the back surface of the current collector plate (71) is welded to the bottom surface of the negative electrode can (1). ing.
A positive electrode terminal (4) having a gas discharge hole (41) is attached to the surface of the sealing body (2).
[0011]
As shown in FIG. 4, the take-up electrode body (8) is formed by interposing a strip-shaped separator (83) between a strip-shaped positive electrode (81) and a negative electrode (82) and winding them in a spiral shape. Has been.
As shown in FIG. 2, the positive electrode (81) is configured by applying a positive electrode active material (85) made of a lithium composite oxide (LiCoO 2 ) to both surfaces of a strip-shaped core (84) made of an aluminum foil. 82) is configured by applying a negative electrode active material (87) containing natural graphite to both surfaces of a strip-shaped core (86) made of copper foil. The separator (83) is impregnated with a non-aqueous electrolyte.
[0012]
As shown in FIG. 4, the positive electrode (81) and the negative electrode (82) are superimposed on the separator (83) while being shifted in the width direction, and wound in a spiral shape. As a result, the core body edge of the positive electrode (81) protrudes outward from the edge of the separator (83) at one of the ends in the winding axis direction of the winding electrode body (8). At the other end, the core body edge of the negative electrode (82) protrudes outward from the edge of the separator (83).
[0013]
The current collector plate (7) on the negative electrode side is formed from a nickel plate having a thickness of 1.0 mm, while the current collector plate (71) on the positive electrode side is formed from an aluminum plate having a thickness of 1.0 mm. The current collector plates (7) and (71) are pressed against the negative electrode side edge and the positive electrode side edge of the winding electrode body (8), respectively, and laser-welded.
[0014]
As shown in FIG. 2, the sealing body (2) has an inner plate (21) made of aluminum having a diameter of 34 mm and a thickness of 0.3 mm and a diameter of 34 mm and a thickness from the inside to the outside of the negative electrode can (1). An intermediate plate (23) made of 0.1 mm Fe, Cu, Au or Zn and a nickel outer plate (22) having a diameter of 34 mm and a thickness of 1.5 mm are overlapped, and these plates (21) (23 ) (22) is integrated by laser welding along the circumferential line from the inner plate (21) side.
The outer plate (22) is not limited to nickel as a whole, and the surface layer and inner surface of the outer plate (22) can be made of nickel.
As shown in FIG. 3, a thin portion (24) having an outer diameter of 6 mm is formed in the central portion of the inner plate (21) constituting the sealing body (2) to constitute a gas discharge valve. The intermediate plate (23) and the outer plate (22) have through holes (23a) and (22a) each having an inner diameter of 8 mm.
The positive terminal (4) is formed in a cap shape by press molding of a nickel plate.
[0015]
The thickness of the nickel outer plate (22) constituting the sealing body (2) is preferably 1.0 to 2.0 mm from the viewpoint of preventing deformation when the internal pressure of the battery is increased and reducing the resistance of the sealing body. If the thickness is 1.0 mm or less, deformation occurs when the internal pressure is increased, and thus the airtightness of the caulking fixing portion may be lowered. On the other hand, when the thickness is 2.0 mm or more, the resistance of the sealing body itself increases, and sufficient output characteristics cannot be ensured.
The thickness of the aluminum inner plate (21) that constitutes the sealing body (2) is so that welding is performed from the inner plate (21) side in order to suppress heat dissipation during welding and maintain high weldability. 0.5 mm or less is preferable.
Further, the thickness of the intermediate plate (23) constituting the sealing body (2) is preferably thin from the viewpoint of reducing electric resistance and suppressing heat dissipation during welding, but at a thickness of 0.05 mm or less, Since there is no significant improvement in the weldability between the inner plate (21) and the intermediate plate (23) and the weldability between the intermediate plate (23) and the outer plate (22), 0.075 mm to 1.50 mm. The range of is preferable.
[0016]
Next, the manufacturing process of the lithium ion secondary battery of the present invention will be described.
Preparation of Winding Electrode Body A positive electrode active material made of LiCoO 2 , a conductive auxiliary agent made of carbon, and a binder made of polyvinylidene fluoride (PVdF) were mixed to prepare a positive electrode mixture. Then, it is applied to both surfaces of a strip-like positive electrode core made of aluminum foil to produce a positive electrode (81). In addition, an uncoated part with a width of 10 mm where the positive electrode active material layer is not applied is formed at one end of the positive electrode core.
[0017]
Also, a negative electrode active material made of natural graphite and a binder made of polyvinylidene fluoride (PVdF) are mixed to prepare a negative electrode mixture, and the negative electrode mixture is mixed with both sides of a strip-like negative electrode core made of copper foil. To produce a negative electrode (82). In addition, an uncoated portion having a width of 10 mm where no negative electrode active material is applied is formed at one end of the negative electrode core.
In addition, a strip-shaped separator (83) made of polyethylene and polypropylene having porosity is formed to have a width slightly larger than the widths of the positive electrode active material coating portion and the negative electrode active material coating portion.
[0018]
Then, a positive electrode, a separator, and a negative electrode are overlap | superposed and these are wound up in the shape of a spiral, and a winding electrode body (8) is produced. At this time, the active material non-coated portion of the positive electrode and the active material non-coated portion of the negative electrode are overlapped so as to protrude outward from the edge of the separator.
[0019]
Production of positive electrode current collector plate and negative electrode current collector plate A negative electrode current collector plate (7) made of a nickel plate with a thickness of 1.0 mm and a positive electrode current collector plate (71 with an aluminum plate with a thickness of 1.0 mm) ). The base end portion of the lead piece (72) is connected to the surface of the positive electrode current collector plate (71).
[0020]
Production of sealing body An outer plate (22) having a through hole with a diameter of 8 mm in the center of a nickel plate with a diameter of 34 mm and a thickness of 1.5 mm, and the center of a copper plate with a diameter of 34 mm and a thickness of 0.1 mm An intermediate plate (23) having a through hole with a diameter of 8 mm in the part, and an inner plate (21) with a gas discharge valve formed of a thin part with a diameter of 6 mm in the center of an aluminum plate with a diameter of 34 mm and a thickness of 0.3 mm These plates (22), (23), and (21) are laser welded along the circumferential line from the inner plate (21) side and integrated. Further, a nickel positive electrode terminal (4) is laser-welded to the surface of the sealing body (2).
[0021]
Assembling of the battery A negative electrode current collector plate (7) is installed on the negative electrode side edge of the winding electrode body (8), and the surface of the current collector plate (7) is irradiated with a laser beam so that the end A negative electrode current collector plate (7) is welded to the edge. In addition, a positive electrode current collector plate (71) is installed on the positive electrode side edge of the winding electrode body (8), and a laser beam is irradiated on the surface of the current collector plate (71), so that the positive electrode current collector is applied to the edge. Weld the electrical plate (71).
Thereafter, the wound electrode body (8) is accommodated in the negative electrode can (1), and the negative electrode current collector plate (71) is joined to the bottom surface of the negative electrode can (1) by resistance welding. Further, the tip of the lead piece (72) extending from the positive electrode current collector (71) is joined to the back surface of the sealing body (2) by laser welding. Thereafter, an electrolytic solution is injected into the negative electrode can (1). The electrolytic solution is prepared by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 and dissolving LiPF6 in this mixed solvent at a ratio of 1 mol / liter.
Finally, the sealing body (2) is caulked and fixed to the opening of the negative electrode can (1) through the polypropylene insulating member (3). Thereby, the cylindrical lithium ion secondary battery shown in FIG. 1 is completed.
[0022]
The positive electrode active material is not limited to the above-described LiCoO 2 , and LiNiO 2 , LiMn 2 O 4 and the like can be adopted, and the negative electrode active material is limited to the above-mentioned natural graphite. Instead, other carbon materials such as artificial graphite and coke, and various materials capable of occluding and releasing lithium can be employed. In addition, the electrolytic solution is not limited to the above-described ones, and organic solvents such as vinylene carbonate and propylene carbonate, and low solvents such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, and ethoxymethoxyethane. A solution or the like in which a solute such as LiClO 4 or LiCF 3 SO 4 is dissolved at a rate of 0.7 to 1.5 mol / liter in a mixed solvent with a boiling point solvent can be employed. The welding of the sealing body (2) is not limited to laser welding, and welding methods such as resistance welding and ultrasonic welding can be employed.
[0023]
Experiment As the sealing body (2), four kinds of sealing bodies 1 to 4 in which the material of the intermediate plate (23) was Fe, Cu, Au, and Zn were produced. Further, as a comparative example, a sealing body 5 made of an inner plate (21) and an outer plate (22) without an intermediate plate (23) was produced. And the cylindrical lithium ion secondary battery was assembled using these sealing bodies, and the battery resistance value in alternating current 1kHz of each battery was measured. The results are shown in Table 1 below.
[0024]
[Table 1]
Figure 0004204366
[0025]
As is apparent from Table 1, the sealing bodies 1 to 4 show a lower battery internal resistance than the sealing body 5. This is achieved by interposing an outer plate (22) made of Fe, Cu, Au, or Zn between an aluminum inner plate (21) and a nickel outer plate (22). Excellent weldability is obtained between the intermediate plate (23) and the intermediate plate (23) and the outer plate (22), and as a result, the sealing body (2) is low. The resistance can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylindrical lithium ion secondary battery according to the present invention.
FIG. 2 is an enlarged cross-sectional view showing a main part of the cylindrical lithium ion secondary battery.
FIG. 3 is an exploded perspective view of a sealing body.
FIG. 4 is a partially developed perspective view of a wound electrode body.
FIG. 5 is an enlarged cross-sectional view showing a main part of a conventional cylindrical lithium ion secondary battery.
[Explanation of symbols]
(1) Negative electrode can
(2) Sealing body
(21) Inner plate
(22) Outer plate
(23) Intermediate plate
(24) Thin part
(3) Insulation material
(4) Positive terminal
(8) Winding electrode body
(7) Current collector
(71) Current collector

Claims (4)

有底筒状を呈する負極缶(1)の開口部に絶縁部材(3)を介して封口体(2)が取り付けられ、該負極缶(1)内に、正極(81)及び負極(82)を積層してなる電極体(8)が収容され、正極(81)は封口体(2)に接続されると共に、負極(82)は負極缶(1)に接続され、封口体(2)と負極缶(1)に設けた正極端子部及び負極端子部から電極体(4)の発生電力を取り出すことが可能な非水電解質二次電池において、封口体(2)は、負極缶(1)の内側に向けて配置されたアルミニウム製若しくはアルミニウムを主体とする合金からなる内板 (21)と、負極缶(1)の外側に向けて配置されると共に少なくとも負極缶(1)の内側と外側を向く両表層部がニッケル製若しくはニッケルを主体とする合金からなる外板 (22)と、内板 (21)外板 (22)の間に介在する中間板 (23) とを互いに接合してなる3層構造を有し、該中間板 (23)は、外板 (22)及び内板 (21)との接合性がアルミニウム−ニッケル間の接合性よりも良好となる金属から形成されており、内板 (21) の中央部にはガス排出弁となる円形の薄肉部 (24) が形成されると共に、中間板 (23) 及び外板 (22) の中央部には、前記薄肉部 (24) の外径よりも大きな内径を有する貫通孔 (23a)(22a) が開設されていることを特徴とする非水電解質二次電池。A sealing body (2) is attached to an opening of a negative electrode can (1) having a bottomed cylindrical shape via an insulating member (3). In the negative electrode can (1), a positive electrode (81) and a negative electrode (82) The positive electrode (81) is connected to the sealing body (2), the negative electrode (82) is connected to the negative electrode can (1), and the sealing body (2) is connected to the sealing body (2). In the nonaqueous electrolyte secondary battery in which the generated power of the electrode body (4) can be taken out from the positive electrode terminal portion and the negative electrode terminal portion provided in the negative electrode can (1), the sealing body (2) is formed of the negative electrode can (1). An inner plate (21) made of aluminum or an alloy mainly composed of aluminum and arranged toward the inside of the negative electrode can (1) and at least the inner and outer sides of the negative electrode can (1) The outer plate (22) made of nickel or an alloy mainly composed of nickel and the intermediate plate (23) interposed between the inner plate (21) and the outer plate (22) are joined together. Become Has a three-layer structure, the intermediate plate (23) is joined with the outer plate (22) and an inner plate (21) is aluminum - is formed from a metal which is a better than bondability between nickel, with circular thin portion serving as a gas discharge valve at the central portion of the inner plate (21) (24) is formed at the center portion of the intermediate plate (23) and outer plate (22), the thin portion (24 The non-aqueous electrolyte secondary battery is characterized in that through holes (23a) and (22a) having an inner diameter larger than the outer diameter of ) are opened . 中間板 (23)は、Fe、Cu、Au、Znから選ばれた少なくとも1つの金属、若しくは該金属を主体とする合金から形成されている請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the intermediate plate (23) is made of at least one metal selected from Fe, Cu, Au, and Zn, or an alloy mainly composed of the metal. 中間板Intermediate plate (23)(twenty three) に開設されている貫通孔Through-holes established in (23a)(23a) と外板And skin (22)(twenty two) に開設されている貫通孔Through-holes established in (22a)(22a) は同一の内径を有している請求項1又は請求項2に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the two have the same inner diameter. 内板(21)、中間板(23)及び外板(22)は互いにレーザ溶接されている請求項1乃至請求項3の何れかに記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the inner plate (21), the intermediate plate (23), and the outer plate (22) are laser-welded to each other.
JP2003089850A 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4204366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089850A JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089850A JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004296363A JP2004296363A (en) 2004-10-21
JP4204366B2 true JP4204366B2 (en) 2009-01-07

Family

ID=33403611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089850A Expired - Fee Related JP4204366B2 (en) 2003-03-28 2003-03-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4204366B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351512A (en) * 2005-05-16 2006-12-28 Matsushita Electric Ind Co Ltd Sealed secondary battery and its manufacturing method
JP5116235B2 (en) 2006-01-23 2013-01-09 三洋電機株式会社 Sealed battery
KR20100065670A (en) * 2008-12-08 2010-06-17 삼성에스디아이 주식회사 Rechargeable battery

Also Published As

Publication number Publication date
JP2004296363A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CN107710459B (en) Battery and battery pack
EP3101723B1 (en) Secondary battery and secondary battery production method
JP5583421B2 (en) Square sealed secondary battery and method for manufacturing square sealed secondary battery
KR100675700B1 (en) Non-water electrolyte secondary battery and manufacturing method thereof
JP5558569B2 (en) Battery and battery pack
JP5103489B2 (en) Sealed battery
JP7006683B2 (en) Cylindrical battery
JP5103496B2 (en) Lithium ion secondary battery
JP2011049065A (en) Nonaqueous electrolyte battery and method of manufacturing the same
KR20060097603A (en) Battery and method of manufacturing same
JPWO2014097586A1 (en) Cylindrical secondary battery and manufacturing method thereof
JP6173729B2 (en) Battery manufacturing method
JP3831595B2 (en) Cylindrical secondary battery
US7153606B2 (en) Secondary battery
JPH11307076A (en) Secondary battery
JP5619033B2 (en) Sealed battery and manufacturing method thereof
JP2007134233A (en) Battery terminal structure
JP5985992B2 (en) Rectangular secondary battery, method for manufacturing the same, and method for joining bus bars to external terminals of the prismatic secondary battery
JP4412610B2 (en) Lithium secondary battery
JP5615682B2 (en) Cylindrical secondary battery
JP3759577B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP3707945B2 (en) Cylindrical battery
JP4679046B2 (en) Battery and battery unit using the same
JP2012185912A (en) Cylindrical secondary cell
JP5248210B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees