Nothing Special   »   [go: up one dir, main page]

JP2001291525A - Starting method of solid polymer-type fuel cell and its device - Google Patents

Starting method of solid polymer-type fuel cell and its device

Info

Publication number
JP2001291525A
JP2001291525A JP2000106455A JP2000106455A JP2001291525A JP 2001291525 A JP2001291525 A JP 2001291525A JP 2000106455 A JP2000106455 A JP 2000106455A JP 2000106455 A JP2000106455 A JP 2000106455A JP 2001291525 A JP2001291525 A JP 2001291525A
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
electrolyte fuel
gas
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000106455A
Other languages
Japanese (ja)
Other versions
JP3530458B2 (en
Inventor
Koji Shindo
浩二 進藤
Osamu Tajima
収 田島
Kazuhiro Tajima
一弘 田島
Satoshi Yamamoto
聡史 山本
Akira Fujio
昭 藤生
Taketoshi Ouki
丈俊 黄木
Katsuyuki Makihara
勝行 槇原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000106455A priority Critical patent/JP3530458B2/en
Publication of JP2001291525A publication Critical patent/JP2001291525A/en
Application granted granted Critical
Publication of JP3530458B2 publication Critical patent/JP3530458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a starting method of a solid polymer-type fuel cell wherein energy loss is reduced in starting the fuel cell and in which the total energy efficiency is enhanced, by shifting the operation of the fuel cell into a stable operation state promptly. SOLUTION: In a solid polymer-type fuel cell system which has a fuel cell with a reformer, a gas burner to burn combustible gas generated by the fuel cell and a burner for the reformer, after exhaust gas transited through a fuel electrode is increasingly electrically loaded while burning with the burner, the flow of the exhaust gas is switched to the heating burner of the reformer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改質器を有する固
体高分子型燃料電池と、該固体高分子型燃料電池に接続
される電気負荷と、固体高分子型燃料電池で生じる可燃
ガスを燃焼させて熱エネルギを得るガスバーナと、改質
器の加熱用のバーナ等で構成した固体高分子型燃料電池
システムに使用される固体高分子型燃料電池の起動方法
及び該燃料電池の起動装置に関する。
The present invention relates to a polymer electrolyte fuel cell having a reformer, an electric load connected to the polymer electrolyte fuel cell, and a combustible gas generated in the polymer electrolyte fuel cell. The present invention relates to a method and an apparatus for starting a solid polymer fuel cell used in a solid polymer fuel cell system comprising a gas burner for obtaining thermal energy by burning, a burner for heating a reformer, and the like. .

【0002】[0002]

【従来の技術】燃料電池には、燐酸型の燃料電池と固体
高分子型燃料電池とがあり、固体高分子型燃料電池に
も、燃料ガスとなる水素を水素ボンベ等の水素供給装置
から供給する型のものと、燃焼装置で常時加熱した状態
で、天然ガス、都市ガス、メタノール等の燃料ガスを改
質器等の機器で化学反応させて水素に改質し、これを燃
料電池のガス燃料として供給する型のものとがある。
2. Description of the Related Art There are two types of fuel cells: a phosphoric acid type fuel cell and a polymer electrolyte fuel cell. Hydrogen as a fuel gas is also supplied from a hydrogen supply device such as a hydrogen cylinder to the polymer electrolyte fuel cell. And a fuel gas, such as natural gas, city gas, methanol, etc., which is chemically heated by a reformer or other device to reform hydrogen into hydrogen while the fuel device is constantly heated by a combustion device. There is a type that supplies it as fuel.

【0003】また、燃料電池を含むエネルギ系全体のエ
ネルギの有効利用を図るため、固体高分子型燃料電池を
用いて発電を行なうとともに、発電を行なう際に発生す
る熱や燃焼の排ガスを利用して給湯を行なうコージェネ
システムを形成する固体高分子型燃料電池システムも考
えられている。
Further, in order to effectively use the energy of the entire energy system including the fuel cell, power generation is performed using a polymer electrolyte fuel cell, and heat generated during the power generation and exhaust gas of combustion are used. A polymer electrolyte fuel cell system that forms a cogeneration system that supplies hot water by heating has also been considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、改質器
を有する固体高分子型燃料電池を使用した従来のシステ
ムでは、固体高分子型燃料電池の起動時のエネルギ損失
が避け難い上に、固体高分子型燃料電池の運転が定格安
定出力状態に達するのに時間がかかるといった問題があ
った。
However, in a conventional system using a polymer electrolyte fuel cell having a reformer, energy loss at the time of starting the polymer electrolyte fuel cell is unavoidable, and the solid polymer There is a problem that it takes time for the operation of the molecular fuel cell to reach the rated stable output state.

【0005】本発明の目的は、上述した従来の技術が有
する課題を解決し、できるだけ簡単な機器構成で、すみ
やかに固体高分子型燃料電池の運転を定常運転状態に移
行させ、燃料電池を起動する際のエネルギ損失を少なく
するとともに、システム全体としての総合エネルギ効率
を高くすることができるようにした固体高分子型燃料電
池の起動方法及びその装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to quickly shift the operation of a polymer electrolyte fuel cell to a steady operation state and start the fuel cell with a device configuration as simple as possible. It is an object of the present invention to provide a method and an apparatus for starting a polymer electrolyte fuel cell, which can reduce the energy loss at the time of performing the operation and increase the total energy efficiency of the entire system.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
改質器を有する固体高分子型燃料電池と、該固体高分子
型燃料電池に接続される電気負荷と、固体高分子型燃料
電池で生じる可燃ガスを燃焼させて熱エネルギを得るガ
スバーナと、改質器の加熱用のバーナとを有した固体高
分子型燃料電池システムにおいて、該システム起動後に
前記改質器の機能が安定するまでは前記熱エネルギを得
るガスバーナで改質ガスを燃焼させ、改質器から所定の
質の改質ガスが得られる状態になったら前記固体高分子
型燃料電池の燃料極に改質ガスを流してその排出ガスを
前記熱エネルギを得るガスバーナで燃焼させつつ徐々に
前記電気負荷を増大させ、燃料電池の温度が作動温度に
ほぼ安定したら燃料極からの排出ガスを改質器の加熱バ
ーナで燃焼させるようにしたことを特徴とする固体高分
子型燃料電池の起動方法である。
According to the first aspect of the present invention,
A polymer electrolyte fuel cell having a reformer; an electric load connected to the polymer electrolyte fuel cell; and a gas burner for obtaining heat energy by burning combustible gas generated in the polymer electrolyte fuel cell. In a polymer electrolyte fuel cell system having a burner for heating a reformer, the reformed gas is burned by a gas burner that obtains the heat energy until the function of the reformer is stabilized after the system is started, and the reforming gas is burned. When a reformed gas of a predetermined quality is obtained from the reformer, the reformed gas is flowed through the fuel electrode of the polymer electrolyte fuel cell, and the exhaust gas is gradually burned with a gas burner for obtaining the thermal energy. The electric load is increased, and when the temperature of the fuel cell is substantially stabilized at the operating temperature, the exhaust gas from the fuel electrode is burned by the heating burner of the reformer. It is a method.

【0007】請求項2記載の発明は、改質器を有する固
体高分子型燃料電池と、該固体高分子型燃料電池に接続
される電気負荷と、固体高分子型燃料電池で生じる可燃
ガスを燃焼させて熱エネルギを得るガスバーナと、改質
器の加熱用のバーナとを有し、かつ、該固体高分子型燃
料電池の起動後に前記改質器の機能が安定するまでは前
記熱エネルギを得るガスバーナで改質ガスを燃焼させ、
改質器から所定の質の改質ガスが得られる状態になった
ら前記固体高分子型燃料電池の燃料極に改質ガスを流し
てその排出ガスを前記熱エネルギを得るガスバーナで燃
焼させつつ徐々に前記電気負荷を増大させ、燃料電池が
ほぼ定格安定出力状態に達したら燃料極からの排出ガス
の流れを改質器の加熱バーナ側に切替える機構を有して
いることを特徴とする固体高分子型燃料電池の起動装置
である。
According to a second aspect of the present invention, there is provided a polymer electrolyte fuel cell having a reformer, an electric load connected to the polymer electrolyte fuel cell, and a combustible gas generated in the polymer electrolyte fuel cell. A gas burner that obtains thermal energy by burning, and a burner for heating the reformer, and the heat energy is supplied until the function of the reformer becomes stable after the start of the polymer electrolyte fuel cell. Burn the reformed gas with the obtained gas burner,
When a reformed gas of a predetermined quality is obtained from the reformer, the reformed gas is supplied to the fuel electrode of the polymer electrolyte fuel cell, and the exhaust gas is gradually burned by a gas burner for obtaining the thermal energy. A mechanism for switching the flow of exhaust gas from the fuel electrode to the heating burner side of the reformer when the fuel cell substantially reaches the rated stable output state. It is a starting device for a molecular fuel cell.

【0008】請求項3記載の発明は、請求項2に記載の
固体高分子型燃料電池の電気負荷を増大させる機構が、
該固体高分子型燃料電池の出力電圧を一定以上の電圧に
保ちながら電流を増大させていく電気負荷制御装置であ
ることを特徴とするものである。
According to a third aspect of the present invention, a mechanism for increasing the electric load of the polymer electrolyte fuel cell according to the second aspect is provided.
The present invention is characterized in that the polymer electrolyte fuel cell is an electric load control device that increases the current while maintaining the output voltage at a certain level or more.

【0009】請求項4記載の発明は、請求項2に記載の
固体高分子型燃料電池の電気負荷を増大させる機構が、
該固体高分子型燃料電池の温度と出力電圧との関係とし
てあらかじめ求められた規則に従って電流を増大させて
いく電気負荷制御装置であることを特徴とするものであ
る。
According to a fourth aspect of the present invention, the mechanism for increasing the electric load of the polymer electrolyte fuel cell according to the second aspect is as follows.
The present invention is characterized in that it is an electric load control device that increases the current in accordance with a rule previously determined as the relationship between the temperature and the output voltage of the polymer electrolyte fuel cell.

【0010】請求項5記載の発明は、請求項2乃至4の
いずれかに記載の電気負荷が、該固体高分子型燃料電池
の外の電力系統にインバータを介して連系された負荷で
あることをあることを特徴とするものである。
According to a fifth aspect of the present invention, the electric load according to any one of the second to fourth aspects is a load connected to an electric power system outside the polymer electrolyte fuel cell via an inverter. It is characterized by the following.

【0011】[0011]

【発明の実施の形態】以下、本発明を、ポリマ・エレク
トロライト・フューエル・セル等の固体高分子型燃料電
池(以下燃料電池という)が、家庭用小型電源用の発電
システムGS等に使用された固体高分子型燃料電池シス
テムの実施形態を示す図面に従って説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in which a polymer electrolyte fuel cell (hereinafter, referred to as a fuel cell) such as a polymer electrolite fuel cell is used in a power generation system GS for a small household power supply. An embodiment of the polymer electrolyte fuel cell system will be described with reference to the drawings.

【0012】図1において、符号100は建家を示して
おり、この建家100には低圧電灯線101、電力量計
102、および分電盤103を経て、商用電源から電力
が供給されている。この商用電源の電力は、細線で示し
た第1のケーブル104を経て、エアコン105、その
他の電気機器に供給されている。この実施形態の固体高
分子型燃料電池システムは、後述するように燃料電池6
を用いた発電システムGSのほかに熱回収装置RDを含
んでいる。
In FIG. 1, reference numeral 100 denotes a building, and the building 100 is supplied with electric power from a commercial power supply via a low-voltage lamp 101, a watt-hour meter 102, and a distribution board 103. . The electric power of the commercial power supply is supplied to the air conditioner 105 and other electric devices via the first cable 104 shown by a thin line. The polymer electrolyte fuel cell system according to this embodiment includes a fuel cell 6 as described later.
And a heat recovery device RD in addition to the power generation system GS using the power generation system.

【0013】燃料電池6で発電された電力は、DC/D
Cコンバータ107を経て、180Vにまで昇圧され、
系統連系インバータ108に送られ、分電盤103を経
て、図1に太線で示した第2のケーブル110を通じ
て、照明111、テレビジョン106等の電気機器に供
給されている。この燃料電池発電システムGSは、系統
連系インバータ108を介して商用電源に接続されてい
る。
The electric power generated by the fuel cell 6 is DC / D
It is boosted to 180V via C converter 107,
The electric power is sent to the system interconnection inverter 108, and is supplied to the electric equipment such as the lighting 111 and the television 106 via the distribution board 103 and the second cable 110 shown by a thick line in FIG. 1. This fuel cell power generation system GS is connected to a commercial power supply via a system interconnection inverter 108.

【0014】熱回収装置RDは、貯湯タンク50、熱交
換器32、46、、ポンプ33、47、とを備えた水の
循環路等で連結されている。
The heat recovery device RD is connected to a water circulation path including a hot water storage tank 50, heat exchangers 32 and 46, and pumps 33 and 47.

【0015】このような燃料電池6を用いた固体高分子
型燃料電池システムでは、貯湯タンク50に接続された
水供給管61を通じて、貯湯タンク50内に市水が供給
される。この貯湯タンク50に供給された市水を、例え
ば、燃料電池6による発電の過程で発生する熱や、固体
高分子型燃料電池システムで生じるガスを燃焼して発生
する熱等、得られた熱エネルギや排熱を回収して水を加
熱し、昇温された温水を貯湯タンク50に蓄え、給湯管
62を経て、風呂113や台所114等に供給する等、
燃料電池6に使用される燃料が持つエネルギの有効利用
を図っている。
In the polymer electrolyte fuel cell system using such a fuel cell 6, city water is supplied into the hot water storage tank 50 through a water supply pipe 61 connected to the hot water storage tank 50. The city water supplied to the hot water storage tank 50 is used to generate heat such as heat generated in the process of power generation by the fuel cell 6 or heat generated by burning gas generated in the polymer electrolyte fuel cell system. Energy and waste heat are collected to heat the water, the heated water is stored in the hot water storage tank 50, and supplied to the bath 113, the kitchen 114, and the like via the hot water supply pipe 62.
The energy of the fuel used in the fuel cell 6 is effectively used.

【0016】図2はこのような本発明の固体高分子型燃
料電池システムの実施形態を示す図である。
FIG. 2 is a diagram showing an embodiment of such a polymer electrolyte fuel cell system of the present invention.

【0017】図2において、上記の燃料電池6の燃料ガ
ス供給は、天然ガス、都市ガス、メタノール、LPG、
ブタン等の原燃料が燃料管1を経て脱硫器2に供給さ
れ、ここで原燃料から硫黄成分が除去される。この脱硫
器2を経た原燃料は、昇圧ポンプ10で昇圧して改質器
3に供給される。
In FIG. 2, the fuel gas supplied from the fuel cell 6 is supplied from natural gas, city gas, methanol, LPG,
Raw fuel such as butane is supplied to a desulfurizer 2 via a fuel pipe 1, where sulfur components are removed from the raw fuel. The raw fuel that has passed through the desulfurizer 2 is pressurized by the pressurizing pump 10 and supplied to the reformer 3.

【0018】改質器3における化学反応は吸熱反応であ
るので、加熱しながら化学反応を継続させるためのバー
ナ12を有し、ここには燃料管13を介して燃料が供給
され、ファン14を介して供給された燃焼空気によって
燃焼が行われる。15は、燃料極6aを経た未反応水素
が供給される管路である。
Since the chemical reaction in the reformer 3 is an endothermic reaction, it has a burner 12 for continuing the chemical reaction while heating, in which fuel is supplied via a fuel pipe 13 and a fan 14 is provided. Combustion takes place with the combustion air supplied via. Reference numeral 15 denotes a pipeline to which unreacted hydrogen that has passed through the fuel electrode 6a is supplied.

【0019】又、改質器3の排気系31には、熱交換器
17が接続され、水タンク21の水が、ポンプ22を介
して供給されると、この熱交換器17で水蒸気化する。
この水蒸気は、脱硫器2、ポンプ10を通った原燃料と
混合して改質器3に供給される。
A heat exchanger 17 is connected to the exhaust system 31 of the reformer 3, and when the water in the water tank 21 is supplied via the pump 22, the water is turned into steam in the heat exchanger 17. .
This steam is mixed with the raw fuel that has passed through the desulfurizer 2 and the pump 10 and supplied to the reformer 3.

【0020】この改質器3に供給された原燃料は、ここ
で化学反応をし、水素、二酸化炭素及び一酸化炭素を含
む改質ガスが生成される。この改質ガスは、CO変成器
4に供給され、ここでは燃料ガスに含まれる一酸化炭素
が二酸化炭素に変成される。このCO変成器4を経たガ
スは、CO除去器5に供給され、ここではCO変成器4
を経たガス中の未変成の一酸化炭素が酸化されて二酸化
炭素になる。CO除去器5を経て、一酸化炭素濃度が1
0ppm以下に低減された水素濃度の高いガス(改質ガ
ス)が、固体高分子型の燃料電池6の燃料極6aに供給
される。
The raw fuel supplied to the reformer 3 undergoes a chemical reaction here to produce a reformed gas containing hydrogen, carbon dioxide and carbon monoxide. This reformed gas is supplied to the CO converter 4, where carbon monoxide contained in the fuel gas is converted into carbon dioxide. The gas that has passed through the CO converter 4 is supplied to a CO remover 5, where the CO converter 4
The unmodified carbon monoxide in the gas that has passed through is oxidized to carbon dioxide. After passing through the CO remover 5, the carbon monoxide concentration becomes 1
A gas having a high hydrogen concentration (reformed gas) reduced to 0 ppm or less is supplied to the fuel electrode 6 a of the polymer electrolyte fuel cell 6.

【0021】このとき、水タンク21から改質器3に供
給される処理水の量を調節することによって改質ガスへ
の水分の添加量が調整される。例えば、熱交換器17を
経て改質器3に供給される水蒸気の量と原燃料ガスの量
との比(S/C比)を、従来のS/C比である2乃至3
の値よりも高めの値、例えば、3乃至4のS/C比とな
るように設定すれば、改質器3を出た改質ガスに含まれ
る水分量を増大させることができる。
At this time, the amount of water added to the reformed gas is adjusted by adjusting the amount of treated water supplied from the water tank 21 to the reformer 3. For example, the ratio (S / C ratio) between the amount of steam supplied to the reformer 3 via the heat exchanger 17 and the amount of raw fuel gas is changed to the conventional S / C ratio of 2 to 3
By setting the S / C ratio to a value higher than the value of, for example, 3 to 4, the amount of water contained in the reformed gas exiting the reformer 3 can be increased.

【0022】CO変成器4及びCO除去器5を経る間に
改質ガスから水分が多く失われないように、CO除去器
5を出た改質ガスを直接に燃料電池6に供給するように
してもよいが、高温のままの改質ガスが流入し、燃料電
池6が高温になり過ぎて電池構成材料の機能が低下した
り、電池の固体高分子膜を損傷するおそれがあるとき
は、CO除去器5と燃料電池6との間の管路64に熱交
換器(図示せず)を設け、この熱交換器に水タンク21
の水を流す等して改質ガスと熱交換させ改質ガスの温度
調節をする。
The reformed gas leaving the CO remover 5 is supplied directly to the fuel cell 6 so that a large amount of water is not lost from the reformed gas while passing through the CO converter 4 and the CO remover 5. However, when the reformed gas at a high temperature flows into the fuel cell 6 and the temperature of the fuel cell 6 becomes too high, the function of the battery constituent material may be reduced, or the solid polymer membrane of the battery may be damaged. A heat exchanger (not shown) is provided in a pipe 64 between the CO remover 5 and the fuel cell 6, and a water tank 21 is provided in the heat exchanger.
And heat exchange with the reformed gas by, for example, flowing water to adjust the temperature of the reformed gas.

【0023】S/C比を高めにすると、改質ガス加湿の
ための独立した加湿装置を特別に付設しないでも、燃料
電池の燃料極6aに供給される改質ガスに適度の水分を
与えることができる。
When the S / C ratio is increased, it is possible to provide an appropriate moisture to the reformed gas supplied to the fuel electrode 6a of the fuel cell without specially providing an independent humidifier for humidifying the reformed gas. Can be.

【0024】発電システムGSの起動時には、上述のよ
うに、バーナ12に、原燃料と燃焼空気が供給されて燃
焼が行われ、起動後に、燃料電池6の作動温度が安定し
たときには、燃料管13からの燃料の供給が断たれ、代
わりに管路15を介して、燃料極6aから排出される未
反応水素ガス(オフガス)が燃料として供給されてバー
ナ12の燃焼が継続される。
When the power generation system GS is started, as described above, the raw fuel and the combustion air are supplied to the burner 12 to perform combustion. When the operating temperature of the fuel cell 6 is stabilized after the start, the fuel pipe 13 is used. The supply of fuel from the fuel cell is cut off, and the unreacted hydrogen gas (off-gas) discharged from the fuel electrode 6a is supplied as fuel through the pipe line 15, and the burner 12 continues burning.

【0025】CO変成器4、CO除去器5で行われる化
学反応は発熱反応であるので、例えばCO除去器5で
は、システム起動時のみバーナ(図示せず)を燃焼させ
て燃焼ガスを発生させ、このとき発生した燃焼ガスの熱
でCO除去器5の温度を反応温度まで上昇させる。
Since the chemical reaction performed in the CO converter 4 and the CO remover 5 is an exothermic reaction, for example, in the CO remover 5, a burner (not shown) is burned only when the system is started to generate combustion gas. The temperature of the CO remover 5 is raised to the reaction temperature by the heat of the combustion gas generated at this time.

【0026】その後は、自らの発熱反応の熱により反応
温度が維持される。外部からは、必要に応じてCO変成
器4及びCO除去器5が反応温度以上に昇温しないよう
に冷却制御が行われる。
Thereafter, the reaction temperature is maintained by the heat of its own exothermic reaction. From the outside, cooling control is performed, if necessary, so that the temperature of the CO converter 4 and the CO remover 5 does not rise above the reaction temperature.

【0027】空気極6kへの反応空気の供給は、空気ポ
ンプ11から水タンク21に、空気を供給し、水タンク
21内の水中に反応空気を泡立てつつ気相部53に送出
することによって加湿が行われ、燃料電池6における反
応が適度に維持されるように水分を与えられ反応空気が
管路25を経て燃料電池の空気極6kに供給される。
The reaction air is supplied to the air electrode 6k by supplying air to the water tank 21 from the air pump 11 and sending the reaction air to the gas phase 53 while bubbling the reaction air into the water in the water tank 21. Is performed, water is given so that the reaction in the fuel cell 6 is appropriately maintained, and the reaction air is supplied to the air electrode 6k of the fuel cell via the pipe 25.

【0028】燃料電池6では、燃料極6aに供給された
改質ガス中の水素と、空気ポンプ11、水タンクの気相
部53を経て、空気極6kに供給された空気中の酸素と
の電気化学反応によって発電が行われる一方、この電気
化学反応時の活性化過電圧、濃度過電圧、抵抗過電圧に
より電池自体が反応熱を発生する。
In the fuel cell 6, the hydrogen in the reformed gas supplied to the fuel electrode 6a and the oxygen in the air supplied to the air electrode 6k via the air pump 11 and the gas phase 53 of the water tank are mixed. While power is generated by the electrochemical reaction, the battery itself generates reaction heat due to activation overvoltage, concentration overvoltage, and resistance overvoltage during the electrochemical reaction.

【0029】燃料電池6の冷却部6cは、燃料電池が定
常運転状態に移行した後に、電池自体の反応熱等で燃料
電池6が過熱しないようにするために、燃料電池6の電
極6a、6kに並置された冷却装置であり、冷却部6c
にポンプ48で水タンク21の水を冷却水として循環さ
せ、この冷却水で、燃料電池6内の温度が、発電に適し
た温度、例えば、70℃〜80℃の温度に保たれるよう
に冷却制御している。
The cooling section 6c of the fuel cell 6 is provided with electrodes 6a, 6k of the fuel cell 6 in order to prevent the fuel cell 6 from overheating due to the reaction heat of the cell itself after the fuel cell shifts to a steady operation state. The cooling unit 6c
The water in the water tank 21 is circulated as cooling water by the pump 48 so that the temperature in the fuel cell 6 is maintained at a temperature suitable for power generation, for example, a temperature of 70 ° C. to 80 ° C. by the cooling water. Cooling control.

【0030】改質器3とCO変成器4との間、CO変成
器4とCO除去器5との間には、それぞれ熱交換器1
8、19が接続され、各熱交換器18、19には水タン
ク21から、ポンプ23、24を介して水が循環され、
改質器3、CO変成器4を経たガスがそれぞれ冷却され
る。
A heat exchanger 1 is provided between the reformer 3 and the CO converter 4 and between the CO converter 4 and the CO remover 5, respectively.
8 and 19 are connected, and water is circulated from the water tank 21 to the heat exchangers 18 and 19 via pumps 23 and 24,
The gas that has passed through the reformer 3 and the CO converter 4 is cooled.

【0031】このようにして改質器3、CO変成器4、
CO除去器5及び燃料電池6では、所定の化学反応と発
電が継続される。
Thus, the reformer 3, the CO converter 4,
In the CO remover 5 and the fuel cell 6, predetermined chemical reactions and power generation are continued.

【0032】次に固体高分子型燃料電池システムに用い
られる固体高分子型燃料電池の起動制御について説明を
する。
Next, the startup control of the polymer electrolyte fuel cell used in the polymer electrolyte fuel cell system will be described.

【0033】上述のように、固体高分子型燃料電池シス
テムの起動時には、改質器3、CO変成器4、CO除去
器5を経た改質ガスの組成が安定していないので、組成
が安定するまでは、このガスを燃料電池6に供給するこ
とができない。そこで、改質器3、CO変成器4、CO
除去器5の各反応器の温度が安定するまでは、不安定な
ガス組成状態にある改質ガスを、管路35、開閉弁36
経由でPGバーナ34に導いて燃焼させる。その後、各
反応器の作動が安定した後に、改質ガスを燃料電池6に
導入して発電を開始する。
As described above, when the polymer electrolyte fuel cell system is started, the composition of the reformed gas that has passed through the reformer 3, the CO shift converter 4, and the CO remover 5 is not stable. Until this gas is supplied, the gas cannot be supplied to the fuel cell 6. Therefore, the reformer 3, the CO shift converter 4, the CO
Until the temperature of each reactor of the remover 5 is stabilized, the reformed gas in an unstable gas composition state is passed through the pipe 35 and the on-off valve 36.
The gas is guided to the PG burner 34 via the PG burner 34 for combustion. Then, after the operation of each reactor is stabilized, the reformed gas is introduced into the fuel cell 6 to start power generation.

【0034】改質ガスの導入によって、発電を開始した
燃料電池は直ちに定格安定出力状態になる訳ではない。
燃料電池の温度が低い中は、発電の出力も僅かである。
起動時に燃料電池6で発電に使用されなかった未反応ガ
スは、管路38、開閉弁39経由でPGバーナ34に導
いて燃焼させ、燃料電池6の温度が作動温度(例えば、
70℃〜80℃)近くで安定し、定格出力状態に達した
後は、燃料極6aから排出される未反応ガスの流れを切
替えて、管路15経由、改質器3のバーナ12に導入し
てここで燃焼させるように切替え制御される。
The introduction of the reformed gas does not mean that the fuel cell that has started generating power immediately enters the rated stable output state.
While the temperature of the fuel cell is low, the output of power generation is also small.
Unreacted gas not used for power generation in the fuel cell 6 at the time of startup is guided to the PG burner 34 via the pipe 38 and the opening / closing valve 39 for combustion, and the temperature of the fuel cell 6 becomes the operating temperature (for example,
After the temperature has stabilized near 70 ° C. to 80 ° C. and reached the rated output state, the flow of unreacted gas discharged from the fuel electrode 6 a is switched and introduced into the burner 12 of the reformer 3 via the pipe 15. Then, switching control is performed so as to cause combustion.

【0035】この改質ガスの切替制御は、制御装置95
によって行われる。制御装置95は、固体高分子型燃料
電池システムの起動後、上記の各反応器が温度的に安定
するまでは、開閉弁91を閉じ、開閉弁36を開くよう
に作動する。これによって、不安定な組成の改質ガスは
管路35および開閉弁36を通じてPGバーナ34に供
給されて燃焼し、その熱は熱交換器を循環する水によっ
て、貯湯タンク50に回収される。
The switching control of the reformed gas is performed by the control unit 95.
Done by After the start of the polymer electrolyte fuel cell system, the control device 95 operates to close the on-off valve 91 and open the on-off valve 36 until each of the above reactors is stabilized in temperature. As a result, the reformed gas having an unstable composition is supplied to the PG burner 34 through the pipe 35 and the on-off valve 36 and burns, and the heat is recovered in the hot water storage tank 50 by the water circulating in the heat exchanger.

【0036】各反応器が温度的に安定した場合、制御装
置95は、開閉弁91、39を開き、燃料極6aに改質
ガスを導き入れると共に、開閉弁36、92を閉じる。
改質ガスの流れは、管路35から管路38に切替わる
が、管路38の時と同様にPGバーナ34に供給され、
燃料電池6の温度が安定するまで、ここで燃焼が続けら
れる。
When the temperature of each reactor is stabilized, the control device 95 opens the on-off valves 91 and 39, introduces the reformed gas into the fuel electrode 6a, and closes the on-off valves 36 and 92.
The flow of the reformed gas is switched from the line 35 to the line 38, but is supplied to the PG burner 34 in the same manner as in the line 38,
Here, the combustion is continued until the temperature of the fuel cell 6 is stabilized.

【0037】この過程において、制御装置95は、電池
の温度をセンサ115によって監視しながら、そのとき
の電池温度に応じて取出し電流値を増やす形で、燃料電
池に対する電気負荷を徐々に増大させる。
In this process, the control device 95 gradually increases the electric load on the fuel cell while monitoring the battery temperature with the sensor 115 and increasing the takeout current value according to the battery temperature at that time.

【0038】このような電気負荷の取り出しは、例え
ば、制御装置95が、上述のようにして弁91を開放し
て改質ガスを燃料極6aに流し始め、その後に電池のオ
ープン電圧を確認したら直ちにオープン電圧からインバ
ータ108を介した電力系統への連携の形で行われる。
For example, the controller 95 opens the valve 91 as described above to start flowing the reformed gas to the fuel electrode 6a, and then confirms the open voltage of the battery. Immediately in the form of a link from the open voltage to the power system via the inverter 108.

【0039】制御装置95は、インバータ108を制御
することにより、電池に過大な負荷が掛かって、電池を
損傷しないようにしながら、電池ができるだけ早く定格
安定出力状態になるように、電池が定格安定出力状態の
最適温度に達するまでの間、徐々に電流を増やして負荷
を上げていく負荷昇温の制御を行う。
The control unit 95 controls the inverter 108 to prevent the battery from being overloaded and damaging the battery, and to make the battery into the rated stable output state as soon as possible. Until the output temperature reaches the optimum temperature, the load temperature is controlled so that the current is gradually increased to increase the load.

【0040】制御装置95による燃料電池の負荷昇温の
制御には、この他に燃料電池の出力電圧を一定の電圧
値、例えば、単位セル当たり0.6V以上の電圧に保つ
ように電池の電圧を監視しながら、その範囲で取れる最
大電流を得るように制御装置95でインバータ108を
制御するものや、電池のオープン電圧を確認したら有る
一定の速度で負荷を0%から100%まで機械的に増大
させるようにインバータ108を制御する方法、或い
は、あらかじめその固体高分子型燃料電池システムの燃
料電池の特性として得られたデータを基に発電開始直後
から燃料電池に印加する負荷の量を制御装置95で制御
する方法などがある。
The control of the temperature rise of the load of the fuel cell by the control device 95 is performed by controlling the voltage of the fuel cell such that the output voltage of the fuel cell is maintained at a constant voltage value, for example, a voltage of 0.6 V or more per unit cell. While controlling the inverter 108 with the control device 95 so as to obtain the maximum current that can be taken in the range, or when the open voltage of the battery is confirmed, the load is mechanically increased from 0% to 100% at a certain speed. A method of controlling the inverter 108 so as to increase it, or a control device for controlling the amount of load applied to the fuel cell immediately after the start of power generation based on data obtained in advance as characteristics of the fuel cell of the polymer electrolyte fuel cell system 95, and the like.

【0041】これらは、いずれも、電池発電が開始され
てそのオープン電圧が確認されたら、発電能力が小さい
中から、電気負荷をかけ始め、制御装置95により燃料
電池6を損傷しない範囲での最大負荷を燃料電池に与え
るような形で、電流を増大させ燃料電池6を自己反応熱
加熱によって、電池の温度をできるだけ早く定格安定出
力状態の温度に上げて、すみやかに固体高分子型燃料電
池の運転を定常運転状態に移行させるものであり、これ
により燃料電池を起動する際のエネルギ損失を極限まで
少なくすることができる。
In any of these, when the power generation of the battery is started and the open voltage thereof is confirmed, the electric power is started to be applied from the small power generation capacity, and the maximum value in a range where the fuel cell 6 is not damaged by the control device 95 is determined. In such a manner that a load is applied to the fuel cell, the current is increased, and the temperature of the fuel cell 6 is raised to the rated stable output state as soon as possible by self-reaction heat heating, so that the solid polymer fuel cell The operation is shifted to a steady operation state, whereby the energy loss at the time of starting the fuel cell can be minimized.

【0042】このような形の負荷印加の方法と制御によ
れば、電池の昇温のための加熱用の機器は必要でなくな
り、また、加熱用のエネルギが別途に必要とされるよう
な無駄もなく、直ちに電池に過大な負荷が掛かったり、
電池を損傷しないようにしつつ、燃料電池6を速やかに
定常運転状態に移行できるものである。
According to the load application method and the control in this manner, a heating device for raising the temperature of the battery is not required, and wasteful energy for heating is separately required. No, the battery is immediately overloaded,
The fuel cell 6 can be promptly shifted to a steady operation state without damaging the cell.

【0043】燃料電池6の温度が安定し、連続して定格
発電が行われる(定格安定出力状態)ようになった後
は、改質ガスの大部は発電に使われ、得られた電力は上
述のようにDC/DCコンバータ107経由で電気機器
などの負荷に供給される。
After the temperature of the fuel cell 6 is stabilized and rated power generation is continuously performed (rated stable output state), most of the reformed gas is used for power generation, and the obtained power is As described above, the power is supplied to a load such as an electric device via the DC / DC converter 107.

【0044】このときのガスの流れは、開閉弁91,9
2が開かれたまま、開閉弁36,39が閉じられて、燃
料電池6で電力に変換されなかった未反応ガス(オフガ
ス)は管路15を経てバーナ12に供給され、改質器3
の加熱に使われるように制御装置95によって切替制御
される。
At this time, the gas flow is controlled by the on-off valves 91 and 9.
With the valve 2 open, the on-off valves 36 and 39 are closed, and the unreacted gas (off-gas) not converted into electric power by the fuel cell 6 is supplied to the burner 12 via the pipe 15 and the reformer 3
The switching is controlled by the control device 95 so as to be used for heating the.

【0045】尚、115は、この制御器95に電池6の
温度情報を入力する温度センサである。
A temperature sensor 115 inputs temperature information of the battery 6 to the controller 95.

【0046】このようにして、制御装置95は、固体高
分子型燃料電池6の起動後に前記改質器3から安定した
改質ガスが得られるまでは、ガスバーナ(PGバーナ3
4)で不安定なガス組成の改質ガスを燃焼させて、この
バーナにつながれている熱負荷、例えば、貯湯タンク5
0などに熱エネルギを得るように制御するものである。
As described above, the control device 95 operates the gas burner (PG burner 3) until the stable reformed gas is obtained from the reformer 3 after the start of the polymer electrolyte fuel cell 6.
The reformed gas having an unstable gas composition is burned in 4), and the heat load connected to this burner, for example, the hot water storage tank 5
Control is performed so as to obtain thermal energy at 0 or the like.

【0047】改質器3等の反応器から所定の質の改質ガ
スが得られる状態になったら前記固体高分子型燃料電池
の燃料極6aに改質ガスを流してその排出ガスをガスバ
ーナ(PGバーナ34)で燃焼させつつ、徐々に電流を
増大させるなどして、前記燃料電池の電気負荷量を増大
させ、燃料電池6がほぼ定格安定出力状態に達したら燃
料極6aからのオフガスの流れを改質器の加熱バーナ1
2側に切替えるような制御が制御装置95によって行わ
れる。本発明の固体高分子型燃料電池の起動方法によれ
ば、発電が開始される前のエネルギは、温水に替えて利
用されるようにしつつ、速やかに固体高分子型燃料電池
を定常運転に移行させ、かつ、この電力及び燃料電池で
生じる熱や未利用の燃料ガス、改質ガスなどを熱負荷で
利用するので、燃料電池全体としてのエネルギの有効活
用が図られる。
When a reformed gas of a predetermined quality can be obtained from a reactor such as the reformer 3 or the like, the reformed gas is flowed to the fuel electrode 6a of the polymer electrolyte fuel cell, and the exhaust gas is supplied to a gas burner ( The electric load of the fuel cell is increased by, for example, gradually increasing the current while burning with the PG burner 34). When the fuel cell 6 reaches the rated stable output state, the flow of the off-gas from the fuel electrode 6a To the reformer heating burner 1
Control for switching to the second side is performed by the control device 95. According to the startup method of the polymer electrolyte fuel cell of the present invention, the energy before the start of power generation is promptly shifted to the steady operation while the energy is used instead of hot water. In addition, since the electric power and the heat generated in the fuel cell, the unused fuel gas, the reformed gas, and the like are used for the heat load, the energy of the entire fuel cell can be effectively used.

【0048】また、燃料電池単独の発電効率ばかりでな
く、供給される燃料のエネルギの有効活用に結びついた
固体高分子型燃料電池システム等の形態を取りやすく、
発電と熱利用効果の大きいコージェネレーションシステ
ムを提供することができものである。
In addition to the power generation efficiency of the fuel cell alone, it is easy to take the form of a polymer electrolyte fuel cell system or the like that is linked to the effective use of the energy of the supplied fuel.
The present invention can provide a cogeneration system having a large power generation and heat utilization effect.

【0049】[0049]

【発明の効果】本発明では、固体高分子型燃料電池を組
み込んだ燃料電池システムにおいて、固体高分子型燃料
電池が改質器と、該燃料電池に接続される電気負荷と、
該燃料電池で生じる可燃ガスを燃焼させて熱エネルギを
得るガスバーナと、改質器の加熱用のバーナとを有し、
この固体高分子型燃料電池の起動後に前記改質器の機能
が安定するまでは前記熱エネルギを得るガスバーナで改
質ガスを燃焼させ、改質器から所定の質の改質ガスが得
られる状態になったら前記固体高分子型燃料電池の燃料
極に改質ガスを流してその排出ガスを前記熱エネルギを
得るガスバーナで燃焼させつつ徐々に燃料電池の電気負
荷を増大させ、燃料電池の温度がほぼ作動温度に安定し
たら燃料極からの排出ガスを改質器の加熱バーナに切替
えるようにして固体高分子型燃料電池を起動するように
したので、燃料電池起動に関する機器構成は極めて簡単
になる。
According to the present invention, in a fuel cell system incorporating a polymer electrolyte fuel cell, the polymer electrolyte fuel cell includes a reformer, an electric load connected to the fuel cell,
A gas burner that obtains thermal energy by burning combustible gas generated in the fuel cell, and a burner for heating the reformer,
Until the function of the reformer is stabilized after the start of the polymer electrolyte fuel cell, the reformed gas is burned by a gas burner that obtains the thermal energy, and a reformed gas of a predetermined quality is obtained from the reformer. Then, the reformed gas is passed through the fuel electrode of the polymer electrolyte fuel cell, and the exhaust gas is burned by a gas burner that obtains the thermal energy while gradually increasing the electric load of the fuel cell. When the operating temperature is almost stabilized, the exhaust gas from the fuel electrode is switched to the heating burner of the reformer to start the polymer electrolyte fuel cell, so that the equipment configuration for starting the fuel cell becomes extremely simple.

【0050】また、起動時に燃料電池に過大な負荷をか
けて損傷を与えないようにしつつ、すみやかに固体高分
子型燃料電池の運転を定常運転状態に移行させるので、
燃料電池を起動する際のエネルギ損失を少なくすること
ができる。
Further, the operation of the polymer electrolyte fuel cell is immediately shifted to a steady operation state while preventing the fuel cell from being damaged by applying an excessive load at the time of startup.
Energy loss when starting the fuel cell can be reduced.

【0051】さらに、固体高分子型燃料電池システムの
中に有する給湯装置などの熱負荷で、固体高分子型燃料
電池の起動から定常運転に移行する間に発生する熱や不
安定な成分の改質ガスのエネルギを熱エネルギとして回
収するので、燃料電池を使用したシステム全体としての
総合エネルギ効率を高くした固体高分子型燃料電池シス
テムを提供することができる。
Further, the thermal load of a hot water supply device or the like included in the polymer electrolyte fuel cell system can reduce the heat and unstable components generated during the transition from the startup of the polymer electrolyte fuel cell to the steady operation. Since the energy of the raw gas is recovered as heat energy, it is possible to provide a polymer electrolyte fuel cell system in which the overall energy efficiency of the entire system using the fuel cell is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による固体高分子型燃料電池システムを
家庭に設置した場合の系統図である。
FIG. 1 is a system diagram when a polymer electrolyte fuel cell system according to the present invention is installed at home.

【図2】固体高分子型燃料電池システムの一実施形態を
示す回路図である。
FIG. 2 is a circuit diagram showing one embodiment of a polymer electrolyte fuel cell system.

【符号の説明】[Explanation of symbols]

3 改質器 6 燃料電池 6a 燃料極 12,34 バーナ 13、15、35、38 管路 36、39、91、92 開閉弁 32、46 熱交換器 50 貯湯タンク 95 制御装置 107 DC/DCコンバータ 108 系統連系インバータ 115 温度センサ GS 発電システム RD 熱回収装置 3 Reformer 6 Fuel cell 6a Fuel electrode 12,34 Burner 13,15,35,38 Pipe line 36,39,91,92 Open / close valve 32,46 Heat exchanger 50 Hot water storage tank 95 Controller 107 DC / DC converter 108 Grid-connected inverter 115 Temperature sensor GS Power generation system RD Heat recovery unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 一弘 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山本 聡史 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤生 昭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 黄木 丈俊 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 槇原 勝行 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H026 AA06 5H027 AA06 BA09 KK46 KK54 MM26 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuhiro Tajima 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Satoshi Yamamoto 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Akira Fujio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Prefecture In-house Sanyo Electric Co., Ltd. 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Katsuyuki Makihara 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H026 AA06 5H027 AA06 BA09 KK46 KK54 MM26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 改質器を有する固体高分子型燃料電池
と、該固体高分子型燃料電池に接続される電気負荷と、
固体高分子型燃料電池で生じる可燃ガスを燃焼させて熱
エネルギを得るガスバーナと、改質器の加熱用のバーナ
とを有した固体高分子型燃料電池システムにおいて、該
システム起動後に前記改質器の機能が安定するまでは前
記熱エネルギを得るガスバーナで改質ガスを燃焼させ、
改質器から所定の質の改質ガスが得られる状態になった
ら前記固体高分子型燃料電池の燃料極に改質ガスを流し
てその排出ガスを前記熱エネルギを得るガスバーナで燃
焼させつつ徐々に前記電気負荷を増大させ、燃料電池の
温度が作動温度にほぼ安定したら燃料極からの排出ガス
を改質器の加熱バーナで燃焼させるようにしたことを特
徴とする固体高分子型燃料電池の起動方法。
1. A polymer electrolyte fuel cell having a reformer, an electric load connected to the polymer electrolyte fuel cell,
In a polymer electrolyte fuel cell system having a gas burner that obtains thermal energy by burning combustible gas generated in a polymer electrolyte fuel cell, and a burner for heating the reformer, the reformer Until the function of stabilizes, burn the reformed gas with a gas burner that obtains the thermal energy,
When a reformed gas of a predetermined quality is obtained from the reformer, the reformed gas is supplied to the fuel electrode of the polymer electrolyte fuel cell, and the exhaust gas is gradually burned by a gas burner for obtaining the thermal energy. In the polymer electrolyte fuel cell, the electric load is increased, and when the temperature of the fuel cell is substantially stabilized at the operating temperature, the exhaust gas from the fuel electrode is burned by the heating burner of the reformer. starting method.
【請求項2】 改質器を有する固体高分子型燃料電池
と、該固体高分子型燃料電池に接続される電気負荷と、
固体高分子型燃料電池で生じる可燃ガスを燃焼させて熱
エネルギを得るガスバーナと、改質器の加熱用のバーナ
とを有し、かつ、該固体高分子型燃料電池の起動後に前
記改質器の機能が安定するまでは前記熱エネルギを得る
ガスバーナで改質ガスを燃焼させ、改質器から所定の質
の改質ガスが得られる状態になったら前記固体高分子型
燃料電池の燃料極に改質ガスを流してその排出ガスを前
記熱エネルギを得るガスバーナで燃焼させつつ徐々に前
記電気負荷を増大させ、燃料電池がほぼ定格安定出力状
態に達したら燃料極からの排出ガスの流れを改質器の加
熱バーナ側に切替える機構を有していることを特徴とす
る固体高分子型燃料電池の起動装置。
2. A polymer electrolyte fuel cell having a reformer, an electric load connected to the polymer electrolyte fuel cell,
A gas burner that obtains thermal energy by burning combustible gas generated in the polymer electrolyte fuel cell; and a burner for heating the reformer, and wherein the reformer is activated after the start of the polymer electrolyte fuel cell. Until the function is stabilized, the reformed gas is burned with a gas burner that obtains the heat energy, and when a reformed gas of a predetermined quality is obtained from the reformer, the reformed gas is applied to the fuel electrode of the polymer electrolyte fuel cell. The electric load is gradually increased while flowing the reformed gas and the exhaust gas is burned by a gas burner that obtains the thermal energy. When the fuel cell almost reaches the rated stable output state, the flow of the exhaust gas from the fuel electrode is improved. A starting device for a polymer electrolyte fuel cell, comprising a mechanism for switching to a heating burner side of a porcelain vessel.
【請求項3】前記固体高分子型燃料電池の燃料極に改質
ガスを流してその排出ガスを前記熱エネルギを得るガス
バーナで燃焼させつつ徐々に燃料電池の電気負荷を増大
させる機構が、該固体高分子型燃料電池の出力電圧を一
定以上の電圧に保ちながら電流を増大させていく電気負
荷制御装置であることを特徴とする請求項2に記載の固
体高分子型燃料電池の起動装置。
3. A mechanism for flowing a reformed gas through a fuel electrode of the polymer electrolyte fuel cell and burning the exhaust gas with a gas burner for obtaining the thermal energy, while gradually increasing the electric load of the fuel cell. 3. The starting device for a polymer electrolyte fuel cell according to claim 2, wherein the device is an electric load control device that increases the current while maintaining the output voltage of the polymer electrolyte fuel cell at a certain voltage or higher.
【請求項4】前記固体高分子型燃料電池の燃料極に改質
ガスを流してその排出ガスを前記熱エネルギを得るガス
バーナで燃焼させつつ徐々に燃料電池の電気負荷を増大
させる機構が、該固体高分子型燃料電池の温度と出力電
圧との関係としてあらかじめ求められた規則に従って電
流を増大させていく電気負荷制御装置であることを特徴
とする請求項2に記載の固体高分子型燃料電池の起動装
置。
4. A mechanism for flowing a reformed gas through the fuel electrode of the polymer electrolyte fuel cell and burning the exhaust gas with a gas burner for obtaining the thermal energy, while gradually increasing the electric load of the fuel cell. 3. The polymer electrolyte fuel cell according to claim 2, wherein the polymer electrolyte fuel cell is an electric load control device that increases current according to a rule previously determined as a relationship between the temperature and the output voltage of the polymer electrolyte fuel cell. Starter.
【請求項5】前記固体高分子型燃料電池に接続される電
気負荷が、該固体高分子型燃料電池の外の電力系統にイ
ンバータを介して連系された負荷であることをあること
を特徴とする請求項2乃至4のいずれかに記載の固体高
分子型燃料電池の起動装置。
5. The electric load connected to the polymer electrolyte fuel cell may be a load connected to an electric power system outside the polymer electrolyte fuel cell via an inverter. The starting device for a polymer electrolyte fuel cell according to any one of claims 2 to 4.
JP2000106455A 2000-04-07 2000-04-07 Method and apparatus for starting polymer electrolyte fuel cell Expired - Fee Related JP3530458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106455A JP3530458B2 (en) 2000-04-07 2000-04-07 Method and apparatus for starting polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106455A JP3530458B2 (en) 2000-04-07 2000-04-07 Method and apparatus for starting polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001291525A true JP2001291525A (en) 2001-10-19
JP3530458B2 JP3530458B2 (en) 2004-05-24

Family

ID=18619622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106455A Expired - Fee Related JP3530458B2 (en) 2000-04-07 2000-04-07 Method and apparatus for starting polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3530458B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056403A1 (en) * 2001-01-12 2002-07-18 Sanyo Electric Co., Ltd. Solid high polymer type fuel cell power generating device
JP2003229153A (en) * 2002-02-01 2003-08-15 Mitsubishi Heavy Ind Ltd Fuel supply quantity control device and control method, and power supply system
JP2005071626A (en) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd Fuel battery system
US7108054B2 (en) 2003-09-11 2006-09-19 Honeywell International, Inc. Heat exchanger
KR100723390B1 (en) 2005-12-30 2007-05-30 삼성에스디아이 주식회사 Hydrogen generator having double burners and method of operating the same
JP2011129363A (en) * 2009-12-17 2011-06-30 Eneos Celltech Co Ltd Cogeneration system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056403A1 (en) * 2001-01-12 2002-07-18 Sanyo Electric Co., Ltd. Solid high polymer type fuel cell power generating device
US7052787B2 (en) 2001-01-12 2006-05-30 Sanyo Electric Co., Ltd. Solid high polymer type fuel cell power generating device
JP2003229153A (en) * 2002-02-01 2003-08-15 Mitsubishi Heavy Ind Ltd Fuel supply quantity control device and control method, and power supply system
JP2005071626A (en) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd Fuel battery system
JP4595297B2 (en) * 2003-08-22 2010-12-08 日産自動車株式会社 Fuel cell system
US7108054B2 (en) 2003-09-11 2006-09-19 Honeywell International, Inc. Heat exchanger
KR100723390B1 (en) 2005-12-30 2007-05-30 삼성에스디아이 주식회사 Hydrogen generator having double burners and method of operating the same
JP2011129363A (en) * 2009-12-17 2011-06-30 Eneos Celltech Co Ltd Cogeneration system

Also Published As

Publication number Publication date
JP3530458B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
US20090297900A1 (en) Fuel Cell System
JP2002063927A (en) Control method of fuel cell system and its device
JP3416653B2 (en) Polymer electrolyte fuel cell power generator
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP5033379B2 (en) Starting method of fuel cell power generation system
JP3889553B2 (en) Method and apparatus for controlling fuel cell system
JP3530458B2 (en) Method and apparatus for starting polymer electrolyte fuel cell
JP2008159463A (en) Fuel cell device and its operation method
JP2006024478A (en) Operating method for fuel cell power generating system and fuel cell power generating system
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP2003217623A (en) Solid polymer electrolyte fuel cell generator
JP2008066096A (en) Fuel cell system
JP3448567B2 (en) Polymer electrolyte fuel cell power generator
JP4975259B2 (en) FUEL CELL POWER GENERATION DEVICE, FUEL CELL POWER GENERATION DEVICE OPERATION METHOD, PROGRAM, AND RECORDING MEDIUM
JP3679792B2 (en) Solid polymer fuel cell power generator
JP4052784B2 (en) Combined heat and power fuel cell power generator and method of operating the same
JPH09161832A (en) Fuel cell generating device, and its operation method and operation control method
JP2003217620A (en) Solid polymer electrolyte fuel cell generator
JP2004185941A (en) Method of starting solid high polymer type fuel cell system
JP2004213985A (en) Fuel cell system
JP3561706B2 (en) Polymer electrolyte fuel cell power generator
JP3939333B2 (en) Hot water system
JP3732004B2 (en) Carbon monoxide removal apparatus and operation method thereof
JP2006012656A (en) Fuel cell system
JP2000294264A (en) High polymer electrolyte fuel cell system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20031225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees