JP2001275692A - Method for microbiologically producing glycine with no occurrence of discoloration of glycine - Google Patents
Method for microbiologically producing glycine with no occurrence of discoloration of glycineInfo
- Publication number
- JP2001275692A JP2001275692A JP2000090796A JP2000090796A JP2001275692A JP 2001275692 A JP2001275692 A JP 2001275692A JP 2000090796 A JP2000090796 A JP 2000090796A JP 2000090796 A JP2000090796 A JP 2000090796A JP 2001275692 A JP2001275692 A JP 2001275692A
- Authority
- JP
- Japan
- Prior art keywords
- glycine
- reaction
- ammonia
- glycinonitrile
- microorganism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,グリシンの着色を
防止した微生物学的製造方法に関する。更に詳しくは、
還元性生化学化合物の存在下グリシノニトリル水溶液に
微生物またはその処理物を作用させることを特徴とする
グリシンの着色を防止した微生物学的製造方法に関す
る。得られるグリシンは食品添加物、、洗浄剤、医農薬
合成原料として有用である。本発明の製造法は、有用な
グリシンを効率よく工業的に製造するため利用すること
が出来る。[0001] The present invention relates to a microbiological production method in which glycine is prevented from being colored. More specifically,
The present invention relates to a microbiological production method for preventing the coloration of glycine, wherein a microorganism or a processed product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a reducing biochemical compound. The obtained glycine is useful as a food additive, a detergent, and a raw material for synthesizing medical and agricultural chemicals. The production method of the present invention can be used to produce useful glycine efficiently and industrially.
【0002】[0002]
【従来の技術】グリシノニトリルを弱アルカリ水溶液で
微生物を用いて加水分解しグリシンを得る方法が知られ
ている。特公昭58−15120号明細書にはブレビバ
クテリウム R312株をpH8に維持して用いる方法、特開
平3−62391号明細書にはpH7.2に調整した反
応液にコリネバクテリウムN-774株を用いる方法、また
特開平3−280889号明細書にはpHを7.7付近に調整
した反応液にロドコッカス属、アルスロバクター属、カ
セオバクター属、シュードモナス属、エンテロバクター
属、アシネトバクター属、アルカリゲネス属、コリネバ
クテイリア属、またはストレプトマイセス属の微生物を
用いる方法が開示されている。2. Description of the Related Art There is known a method for obtaining glycine by hydrolyzing glycinonitrile with a weak alkaline aqueous solution using a microorganism. Japanese Patent Publication No. 58-15120 discloses a method of using Brevibacterium R312 strain at a pH of 8, and Japanese Patent Application Laid-Open No. 3-62391 discloses a method wherein Corynebacterium strain N-774 is added to a reaction solution adjusted to a pH of 7.2. And JP-A-3-280889 discloses that a reaction solution having a pH adjusted to about 7.7 contains Rhodococcus, Arthrobacter, Caseobacter, Pseudomonas, Enterobacter, Acinetobacter and Alcaligenes. , Corynebacteria or Streptomyces are disclosed.
【0003】こうした弱アルカリ水溶液中ではグリシノ
ニトリルは不安定であることが知られている。例えばpH
が2.5以上では安定性が悪く、pHが高いほど、温度
が高いほど、および経過時間が長いほど分解や着色等の
変成をし易いことが開示されている(特開昭49−14
420号、特開昭54−46720号、特開昭54−4
6721号明細書)。こうした分解や変成はグリシンの
収率を低下するだけでなく、脱色するには、活性炭や特
殊なイオン交換樹脂を用いた煩雑な処理が必要である
(特開平3−190851号、平4−226949号明
細書)。更に、従来法はグリシンの生成に伴い等量のア
ンモニアが水性溶媒中に蓄積するため、pHは更に高く
なり強アルカリ性となるため、グリシノニトリルの着色
や変成は避けられない問題があった。このように従来の
微生物を用いる方法はグリシン収率の低下、脱色するた
め煩雑な操作が必要で、工業的に実施できるものではな
かった。[0003] It is known that glycinonitrile is unstable in such a weak alkaline aqueous solution. For example, pH
Is 2.5 or more, the stability is poor, and it is disclosed that the higher the pH, the higher the temperature, and the longer the elapsed time, the more easily the metabolism such as decomposition or coloration is easily caused (JP-A-49-14).
No. 420, JP-A-54-47720, JP-A-54-4
6721). Such decomposition or denaturation not only lowers the yield of glycine, but also requires a complicated treatment using activated carbon or a special ion-exchange resin for decolorization (JP-A-3-190851, JP-A-4-226949). Specification). Further, in the conventional method, since an equal amount of ammonia accumulates in the aqueous solvent with the production of glycine, the pH becomes further higher and the alkali becomes more alkaline, so that there is a problem that glycinonitrile is inevitably colored or denatured. As described above, the conventional method using a microorganism requires a complicated operation for lowering the glycine yield and decoloring, and cannot be carried out industrially.
【0004】[0004]
【発明が解決しようとする課題】本発明は、微生物を用
いグリシノニトリルからグリシンを生産するにあたり、
分解や着色反応を伴わず、乾燥菌体当たり、且つ単位時
間当たり高活性であって菌体や培地の多量廃棄を伴わ
ず、反応液のpHを調整するための酸、アルカリまたは緩
衝液の添加や廃棄を伴わず、グリシンとアンモニアが定
量的に生成し、これらの分解および消費を伴わなず、グ
リシンとアンモニアを別々に回収するグリシンの製造法
を提供することを目的とする。SUMMARY OF THE INVENTION The present invention relates to the production of glycine from glycinonitrile using a microorganism.
Addition of acid, alkali or buffer solution to adjust the pH of the reaction solution without decomposing or coloring reaction, high activity per dry cell and per unit time, without large amount of cells and medium wasted It is an object of the present invention to provide a method for producing glycine, in which glycine and ammonia are quantitatively generated without accompanying or discarding the glycine and ammonia separately without decomposing and consuming them.
【0005】[0005]
【課題を解決するための手段】本発明者はこのような工
業的諸問題を解決するため、分解や着色反応を伴わず、
菌体当たり、且つ単位時間当たり高い活性を持ち、反応
系で生成したグリシンやアンモニアを分解または消費せ
ず、グリシンとアンモニアを別々に、定量的に、且つに
容易に回収できる反応系を構築すべく検討を鋭意行っ
た。驚くべき事に、特定の化合物がこうした微生物の活
性を損なわず反応液の着色を抑制し高いグリシン収率が
得られることを見いだし本発明を完成するに至った。In order to solve such industrial problems, the inventor of the present invention does not involve decomposition or coloring reaction,
Construct a reaction system that has high activity per cell and per unit time, does not decompose or consume glycine and ammonia generated in the reaction system, and can collect glycine and ammonia separately, quantitatively and easily. Investigation was carried out earnestly. Surprisingly, they have found that a specific compound does not impair the activity of such microorganisms, suppresses the coloring of the reaction solution, and obtains a high glycine yield, and has completed the present invention.
【0006】即ち、本発明によれば、還元性生化学化合
物の存在下グリシノニトリルに微生物またはその処理物
を作用させることで、好ましくはpHを調整するための
酸、アルカリまたは緩衝液の添加をしない反応条件で、
且つ閉鎖系の反応条件下もしくは生成するアンモニアを
反応と同時に系外に分離する反応条件下で亜硫酸化合物
の存在下グリシノニトリルに微生物またはその処理物を
作用させることで、分解や着色反応を伴わず、乾燥菌体
当たり、且つ単位時間当たり高活性であって菌体や培地
の多量廃棄を伴わず、反応液のpHを調整するための酸、
アルカリまたは緩衝液の添加や廃棄を伴わず、グリシン
とアンモニアが定量的に生成し、これらの分解および消
費を伴わなず、グリシンとアンモニアを別々に回収する
グリシンの製造法が提供される。That is, according to the present invention, a microorganism or a processed product thereof is allowed to act on glycinonitrile in the presence of a reducing biochemical compound, preferably by adding an acid, alkali or buffer for adjusting pH. Under reaction conditions
In addition, by causing the microorganism or the treated product to act on glycinonitrile in the presence of a sulfite compound under the reaction conditions of a closed system or a reaction condition in which generated ammonia is separated out of the system at the same time as the reaction, decomposition and coloring reactions are caused. Acid, for adjusting the pH of the reaction solution without drying the cells and the medium, and having a high activity per unit time and a high amount of activity per unit time.
A method for producing glycine is provided, wherein glycine and ammonia are quantitatively produced without adding or discarding an alkali or a buffer, and without separately decomposing and consuming glycine and ammonia.
【0007】[0007]
【発明の実施の形態】本発明について、以下具体的に説
明する。本発明で用いられるグリシノニトリルは純粋な
グリシノニトリルだけでなくホルムアルデヒドや青酸と
アンモニアの反応物やグリコロニトリルとアンモニアの
反応物など反応条件下でグリシノニトリルを生成しうる
反応物も使用することが出来る。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The glycinonitrile used in the present invention uses not only pure glycinonitrile but also a reactant capable of forming glycinonitrile under reaction conditions such as a reactant of formaldehyde, hydrocyanic acid and ammonia, or a reactant of glycolonitrile and ammonia. You can do it.
【0008】本発明で反応液に共存させる還元性生化学
化合物として制限はないが、例えば、L−アスコルビン
酸、L−アスコルビン酸ステアリン酸エステル等のアス
コルビン酸エステル類、L−アスコルビン酸ナトリウム
等の塩類、グルタチオン、L−システイン、L−システ
イン塩酸塩一水和物等のシステイン塩類、L−システイ
ンエチルエステル塩酸塩やL−システインメチルエステ
ル塩酸塩等のシステインエステル類、またはN−アセチ
ル−L−システイン等のN置換システイン類が用いられ
る。好ましくは、L−アスコルビン酸が用いられる。還
元性生化学化合物の添加量はグリシノニトリルに対し
0.001mol%〜5mol%、好ましくは0.01
mol%から2mol%でよい。[0008] In the present invention, the reducing biochemical compound coexisting in the reaction solution is not limited. For example, ascorbic acid esters such as L-ascorbic acid and L-ascorbic acid stearic acid ester, and sodium L-ascorbate and the like. Cysteine salts such as salts, glutathione, L-cysteine, L-cysteine hydrochloride monohydrate, cysteine esters such as L-cysteine ethyl ester hydrochloride and L-cysteine methyl ester hydrochloride, or N-acetyl-L- N-substituted cysteines such as cysteine are used. Preferably, L-ascorbic acid is used. The amount of the reducing biochemical compound to be added is 0.001 mol% to 5 mol%, preferably 0.01 mol% to glycinonitrile.
It may be from 2 mol% to 2 mol%.
【0009】本発明に使用する微生物としては、例え
ば、アシネトバクター(Accinetobacter)属、コリネバ
クテリウム(Corynebacterium)属やアルカリゲネ(Alc
aligenes)属に属する微生物が適していることが新たに
発見されたが、これに限定されるものではない。本発明
に適した微生物として選択されたアシネトバクターsp.A
K226株(A.sp.AK226)(以下AK226と略称する)、やア
シネトバクターsp.AK227株(A.sp.AK227)(以下AK227
と略称する)は1985年 年5月28日に工業技術院微生
物工業技術研究所に寄託されそれぞれ微工研菌寄第8271
号と 微工研菌寄第8272号の 受託番号を付与されてお
り、微生物学的性質は以下表1に示す通りである。[0009] Examples of the microorganism used in the present invention include the genus Acinetobacter, the genus Corynebacterium, and the genus Alkaline.
aligenes) have been newly found to be suitable, but not limited thereto. Acinetobacter sp.A selected as a microorganism suitable for the present invention
K226 strain (A.sp.AK226) (hereinafter abbreviated as AK226) and Acinetobacter sp.AK227 strain (A.sp.AK227) (hereinafter AK227)
Was abbreviated to the Institute of Microorganisms and Industrial Technology Research Institute on May 28, 1985.
No. and the accession number of Microtechnological Laboratory No. 8272 are given, and the microbiological properties are as shown in Table 1 below.
【0010】[0010]
【表1】 [Table 1]
【0011】菌株の同定に際しては、バージェイズ・マ
ニュアル・オブ・システマティク・バイオテリオロジー
(Bergy's Manual of Determinative Bacteriolog)第
8版(1974)に従って分類した。また、本発明に適した微
生物として選択されたコリネバクテリウム sp. C5
株(以下C5と略称する)は工業技術院微生物工業技術研
究所に寄託され微工研菌寄第8931号の 受託番号を付与
されており、微生物学的性質は、特開昭63−1299
88号公報に示す通りである。[0011] The strains were identified according to the Bergy's Manual of Determinative Bacteriolog, 8th edition (1974). Further, Corynebacterium sp. C5 selected as a microorganism suitable for the present invention.
The strain (hereinafter abbreviated as C5) has been deposited with the Research Institute of Microbial Industry and Technology of the National Institute of Advanced Industrial Science and Technology, and has been accorded the accession number of No. 8931 of Microbiological Research Institute, whose microbiological properties are described in JP-A-63-1299.
No. 88, as shown.
【0012】また、本発明に適した微生物として選択さ
れたコリネバクテリウム ニトリロフィラス ATCC21
419株、アルカリゲネス フェカリス ATCC87
50株も使用することが出来る本発明に使用される微生
物の培養には、通常用いられる炭素源、例えば、グルコ
ース、グリセリン、有機酸、デキストリン、マルトース
等が用いられ、窒素源としてはアンモニアとその塩類、
尿素、硝酸塩および有機窒素源、例えば、酵母エキス、
麦芽エキス、ペプトン、肉エキス等が用いられる。Also, Corynebacterium nitriophilus ATCC21 selected as a microorganism suitable for the present invention.
419 strains, Alcaligenes faecalis ATCC87
For culturing the microorganism used in the present invention, which can also use 50 strains, commonly used carbon sources, for example, glucose, glycerin, organic acids, dextrin, maltose, etc. are used, and ammonia and its salts,
Urea, nitrates and organic nitrogen sources, such as yeast extract,
Malt extract, peptone, meat extract and the like are used.
【0013】また、培地にはリン酸塩、ナトリウム、カ
リウム、鉄、マグネシウム、コバルト、マンガン、亜鉛
等の無機栄養源が適宜添加される。培養はpH5から9、好
ましくはpH6から8、温度20から37℃、好ましくは2
7から32℃で好気的に行われる。本発明の微生物の培養
において、上記の培地に酵素誘導剤を加えても良い、例
えば、ラクタム化合物(γ-ラクタム、δ-ラクタム、ε
-カプロラクタム等)、ニトリル化合物、アミド化合物
等を用いてもよい。本発明の微生物はそのまま工業使用
できるが、適当な変異剤で突然変異を誘発する方法もし
くは遺伝子工学的手法により改良された変異株、例え
ば、酵素を構成的に生産する変異株を育成し用いること
もできる。本発明の菌体とは培養液から採取した菌体ま
たは菌体処理物(菌体の破砕物、菌体破砕物より分離し
た酵素、および菌体または菌体から分離抽出された酵素
を固定化した処理物)である。培養液からの菌体の採取
は公知の方法で行うことが出来る。[0013] In addition, inorganic nutrients such as phosphate, sodium, potassium, iron, magnesium, cobalt, manganese and zinc are appropriately added to the medium. The cultivation is carried out at pH 5 to 9, preferably pH 6 to 8, at a temperature of 20 to 37 ° C, preferably at 2
Performed aerobically at 7 to 32 ° C. In culturing the microorganism of the present invention, an enzyme inducer may be added to the above-mentioned medium, for example, lactam compounds (γ-lactam, δ-lactam, ε
-Caprolactam and the like), nitrile compounds, amide compounds and the like. Although the microorganism of the present invention can be used industrially as it is, it is necessary to grow and use a mutant strain improved by a method for inducing mutation with a suitable mutagen or a genetic engineering technique, for example, a mutant strain that produces an enzyme constitutively. Can also. The cells of the present invention are cells immobilized with cells collected from a culture solution or treated cells (crushed cells, enzymes separated from the cells, and enzymes separated or extracted from the cells). Processed material). Collection of the cells from the culture solution can be performed by a known method.
【0014】本発明においては、上述の方法で分離した
菌体および菌体処理物はグリシノニトリル水溶液に懸濁
することで、速やかに加水分解反応が進行しグリシンを
製造することができる。則ち、通常、前記微生物菌体ま
たは菌体処理物を、例えば0.01から5重量%、基質
のグリシノニトリルを1から30重量%、更にグリシノニ
トリルに対し0.001mol%〜5mol%、好まし
くは0.01mol%から0.2mol%の還元性生化
学化合物を含む水性懸濁液を反応装置に仕込み温度とし
て例えば0から60℃、好ましくは10から50℃にて、反応
時間を例えば1時間ないし24時間、好ましくは3時間か
ら8時間反応させれば良い。In the present invention, the cells isolated by the above-mentioned method and the treated cells are suspended in an aqueous glycinonitrile solution, whereby the hydrolysis reaction proceeds rapidly to produce glycine. That is, usually, the microbial cells or the processed cells are, for example, 0.01 to 5% by weight, the substrate glycinonitrile is 1 to 30% by weight, and the glycinonitrile is 0.001 mol% to 5 mol%. An aqueous suspension containing preferably 0.01 mol% to 0.2 mol% of the reducing biochemical compound is charged into the reactor at a temperature of, for example, 0 to 60 ° C., preferably 10 to 50 ° C., and the reaction time is, for example, The reaction may be performed for 1 hour to 24 hours, preferably 3 hours to 8 hours.
【0015】この場合、グリシノニトリルを薄い濃度で
仕込み経時的に追加添加したり、反応温度を経時的に変
化させても良い。また、反応後の廃棄物を減らす上でp
Hを調整するための緩衝液、酸やアルカリを反応液に添
加しないことが好ましい。また、生成するアンモニアを
回収するため、密閉型の反応容器を用い生成するアンモ
ニアを応容器中に一旦蓄積してもよいが、pHの上昇を
抑えるために生成するアンモニアを反応と同時に分離す
る反応分離装置を付属することが好ましい。こうしたア
ンモニアの反応分離法としてはアンモニアの反応蒸留法
や不活性ガスの流通法で実施することができる。反応蒸
留を行う場合、加水分解反応装置に、アンモニアと同伴
する水を冷却回収する冷却器の付いた単管搭、棚段搭、
または充填塔を備え、反応水溶液の沸騰圧以上、例えば
60℃で20.0kPa以上から0℃で0.6kPa以
上の圧力条件下で、連続的にまたは間欠的に減圧反応蒸
留することが好ましい。In this case, glycinonitrile may be added at a low concentration and added over time, or the reaction temperature may be changed over time. Also, in reducing waste after the reaction,
It is preferable not to add a buffer for adjusting H, an acid or an alkali to the reaction solution. In addition, in order to recover the generated ammonia, the generated ammonia may be temporarily accumulated in the reaction vessel using a closed reaction vessel, but the reaction in which the generated ammonia is separated simultaneously with the reaction in order to suppress a rise in pH is performed. Preferably, a separating device is provided. Such a method of reacting and separating ammonia can be carried out by a reactive distillation method of ammonia or a flow method of an inert gas. When performing reactive distillation, a single-tube tower with a cooler for cooling and recovering water accompanying ammonia, a shelf tower,
Alternatively, it is preferable to provide a packed tower and continuously or intermittently perform reduced-pressure reactive distillation under a pressure condition of not less than the boiling pressure of the reaction aqueous solution, for example, 20.0 kPa or more at 60 ° C. to 0.6 kPa or more at 0 ° C.
【0016】更に好ましくは、12.6kPaから1.
3kPaの圧力条件下で減圧反応蒸留することができ
る。不活性ガスを流通する場合、不活性ガスの吹き込み
ノズルと、アンモニアや同伴する水を不活性ガスから回
収する冷却トラップとを備え、微加圧から減圧条件下で
連続的にまたは間欠的にアンモニアを不活性ガスに同伴
し反応液から分離することができる。更に、アンモニア
分離を促進するため減圧反応蒸留を不活性ガス流通条件
下で行うこともできる。反応方式はバッチ型方式や流通
型反応方式、またはこれらを組み合わせた方式で行うこ
とが出来る。[0016] More preferably, from 12.6 kPa to 1.
Vacuum reactive distillation can be performed under a pressure condition of 3 kPa. When flowing an inert gas, the system is provided with a nozzle for blowing the inert gas and a cooling trap for recovering ammonia and accompanying water from the inert gas. Can be entrained in an inert gas and separated from the reaction solution. Further, in order to promote the separation of ammonia, the reduced pressure reactive distillation can be performed under an inert gas flow condition. The reaction system can be carried out by a batch type system, a flow type reaction system, or a combination thereof.
【0017】かくして、グリシノニトリルは、ほぼ100
%のモル収率で加水分解し、生成するアンモニアの全部
は密閉型反応容器中に一旦グリシンのアンモニウム塩を
含むグリシンの高濃度水溶液として生成蓄積させること
ができる。また、生成するアンモニアの全部または殆ど
は反応と同時に反応蒸留法や不活性ガスの流通法で反応
液から分離し冷却回収される。もし、グリシンアミドが
残存する場合はグリシンアミドの加水分解活性をもつ菌
体もしくは酵素を追添加することにより、完全にグリシ
ンおよびアンモニアに転換することも可能である。グリ
シンのアンモニウム塩を含むグリシンの高濃度水溶液か
らのグリシンの回収は、例えば、反応液から菌体を遠心
濾過、膜分離等によって除いた後、グリシンは晶析法、
イオン交換法または貧性溶媒による分別沈澱法にて回収
できる、またアンモニアは一部の水と一緒に蒸発後、蒸
留や抽出によって回収することができる。本発明を実施
例に基づいて説明するが、本発明はこれらの例に制限さ
れる物ではない。Thus, glycinonitrile is almost 100
% Of the resulting ammonia can be once produced and accumulated in a closed reaction vessel as a high-concentration aqueous solution of glycine containing an ammonium salt of glycine. Further, all or most of the produced ammonia is separated from the reaction solution by a reactive distillation method or an inert gas flow method at the same time as the reaction, and is cooled and recovered. If glycinamide remains, it can be completely converted to glycine and ammonia by additionally adding cells or enzymes having glycinamide hydrolysis activity. Glycine is recovered from a high-concentration aqueous solution of glycine containing an ammonium salt of glycine, for example, after removing cells by centrifugal filtration or membrane separation from the reaction solution, glycine is crystallized,
It can be recovered by an ion exchange method or a fractional precipitation method using a poor solvent, and ammonia can be recovered by distillation or extraction after evaporating together with a part of water. The present invention will be described based on examples, but the present invention is not limited to these examples.
【0018】[0018]
【実施例1】酸素の混入を防ぐため、全ての反応操作は
窒素雰囲気下で行い、反応に用いる全ての水溶液は約5
℃に冷却し窒素ガスで一旦加圧後、再び常圧に戻す操作
を数回繰り返し空気との置換を行った。 (1)グリシノニトリルの合成 窒素雰囲気下でホルマリンに等量の青酸をを作用させて
一旦生成したグリコロニトリル水溶液に、過剰量のアン
モニア水溶液を添加し2時間反応した後、未反応のアン
モニアと過剰の水を減圧除去し30重量%グリシノニト
リル水溶液を得た。波長380nmで水溶液の吸光度を測
定したところグリシノニトリル1mol、10mm石英
セル当たり0.08であった。Example 1 In order to prevent the incorporation of oxygen, all reaction operations were performed under a nitrogen atmosphere, and all aqueous solutions used for the reaction were about 5
The operation of cooling to ° C., pressurizing once with nitrogen gas, and returning to normal pressure again was repeated several times to replace the air. (1) Synthesis of glycinonitrile An excess amount of aqueous ammonia solution was added to an aqueous solution of glycolonitrile once produced by reacting an equal amount of hydrocyanic acid to formalin under a nitrogen atmosphere, and reacted for 2 hours. And excess water were removed under reduced pressure to obtain a 30% by weight glycinonitrile aqueous solution. The absorbance of the aqueous solution measured at a wavelength of 380 nm was 1 mol of glycinonitrile and 0.08 per 10 mm quartz cell.
【0019】(2)菌体の培養 アシネトバクターAK226株を、下記の条件で培養した。 (1)培地 フマル酸 1.0重量% 肉エキス 1.0 ペプトン 1.0 食塩 0.1 ε−カプロラクタム 0.3 リン酸第一カリウム 0.2 硫酸マグネシウム・7水塩 0.02 塩化アンモニウム 0.1 硫酸第二鉄・7水塩 0.003 塩化マンガン・4水塩 0.002 塩化コバルト・6水塩 0.002 pH 7.5 (2)培養条件 30℃/1日(2) Culture of cells The Acinetobacter AK226 strain was cultured under the following conditions. (1) Medium Fumaric acid 1.0% by weight Meat extract 1.0 Peptone 1.0 Salt 0.1 ε-caprolactam 0.3 Potassium phosphate 0.2 Magnesium sulfate ・ 7 hydrate 0.02 Ammonium chloride 0.1 Ferric sulfate ・ 7 hydrate 0.003 Manganese chloride ・ 4 water Salt 0.002 Cobalt chloride hexahydrate 0.002 pH 7.5 (2) Culture conditions 30 ° C / 1 day
【0020】(3)グリシノニトリルの加水分解 菌体は、得られた培養液から遠心分離により集菌し、蒸
留水で洗浄した後、窒素ガスで置換し反応に用いた。窒
素ガスで置換した100mlの硝子オートクレーブに乾燥菌
体量として49mgとL−アスコルビン酸を6.3mg含む
30重量%グリシノニトリル水溶液3mlを17mlの蒸留水
に調合した、20℃にて反応を開始した。反応開始後2
時間後、pHは10に成っていた。この反応液を液体クロ
マトグラフィー法で分析し、グリシノニトリルは無くな
りグリシンが定量的に生成していた。そこで2時間毎に
反応温度を5℃昇温し、上記30重量%グリシノニトリル
水溶液3mlを追加添加し反応液を液体クロマトグラフィ
ー法で分析した。(3) Hydrolysis of glycinonitrile The cells were collected from the obtained culture by centrifugation, washed with distilled water, replaced with nitrogen gas, and used for the reaction. A 100 ml glass autoclave purged with nitrogen gas contains 49 mg of dry cells and 6.3 mg of L-ascorbic acid.
The reaction was started at 20 ° C. by mixing 3 ml of a 30% by weight aqueous glycinonitrile solution with 17 ml of distilled water. After the reaction starts 2
After hours, the pH had reached 10. The reaction mixture was analyzed by liquid chromatography, and glycinonitrile was lost and glycine was quantitatively generated. Then, the reaction temperature was raised by 5 ° C. every 2 hours, and 3 ml of the above 30% by weight glycinonitrile aqueous solution was additionally added, and the reaction solution was analyzed by liquid chromatography.
【0021】この操作を4回切り返し合計10時間反応
を行った。得られた32gの反応液のうち2gを用い、
生成したアンモニアはネスラー法により定量し、原料の
グリシノニトリルと生成したグリシンは液体クロマトグ
ラフィー法で分析し、グリシノニトリルは無くなりグリ
シンとアンモニアが定量的に生成していた。乾燥菌体当
たりのグリシンの生成量は120g/g乾燥菌体であり、
グリシンの生成活性は12g/g・Hrであった。反応
液2mlをrpm10500の遠心分離濾過に15分掛け
菌体を分離し、上澄み液の紫外可視吸収スペクトルを測
定した。波長380nmでの吸光度はグリシン1mol1
cm当たり0.11であった。This operation was repeated four times, and the reaction was carried out for a total of 10 hours. Using 2 g of the obtained reaction solution of 32 g,
The produced ammonia was quantified by the Nessler method, and the raw material glycinonitrile and the produced glycine were analyzed by liquid chromatography. The glycinonitrile disappeared, and glycine and ammonia were produced quantitatively. The amount of glycine produced per dry cell is 120 g / g dry cells,
The production activity of glycine was 12 g / g · Hr. 2 ml of the reaction solution was centrifuged at 10500 rpm for 15 minutes to separate the cells, and the ultraviolet-visible absorption spectrum of the supernatant was measured. Absorbance at a wavelength of 380 nm is 1 mol 1 of glycine
It was 0.11 per cm.
【0022】[0022]
【比較例1】実施例1と同様の反応をL−アスコルビン
酸を添加せずに行った。乾燥菌体当たりのグリシンの生
成量は変わらず120g/g乾燥菌体であり、グリシンの
生成活性は12g/g・Hrであった。遠心濾過後の上
澄み液の吸光度はグリシン1mol1cm当たり0.7
9であった。Comparative Example 1 The same reaction as in Example 1 was carried out without adding L-ascorbic acid. The amount of glycine produced per dry cell was unchanged, 120 g / g dry cells, and the glycine production activity was 12 g / g · Hr. The absorbance of the supernatant after centrifugal filtration was 0.7 g / mol glycine / cm.
Nine.
【0023】[0023]
【実施例2から4】実施例1と同様の培養操作と反応を
菌体および還元性生化学化合物を表2のように変え行っ
た。結果は表2に実施例1や比較例1と合わせ示す。Examples 2 to 4 The same culturing operation and reaction as in Example 1 were carried out by changing the cells and reducing biochemical compounds as shown in Table 2. The results are shown in Table 2 together with Example 1 and Comparative Example 1.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【実施例5】実施例1で合成した30重量%グリシノニ
トリル水溶液を用い、反応方式を代えて実施した。菌体
は、得られた培養液から遠心分離により集菌し、蒸留水
で洗浄した後、窒素ガスで置換し反応に用いた。撹拌器
の付いた1000mlの恒温ジャケット槽型3つ口セパラブル
フラスコに、ドライアイストラップを経て減圧ポンプに
接続した単管型の蒸留塔、圧力センサー、温度計、およ
び液送ポンプに接続したサンプリング管を備えた。Example 5 The reaction was carried out using the 30% by weight aqueous glycinonitrile solution synthesized in Example 1 and changing the reaction system. The cells were collected from the resulting culture by centrifugation, washed with distilled water, replaced with nitrogen gas, and used for the reaction. Sampling connected to a single-tube distillation column connected to a vacuum pump through a dry ice trap, a pressure sensor, a thermometer, and a liquid feed pump in a 1000 ml thermostatic jacket tank type three-neck separable flask with a stirrer. With a tube.
【0026】このセパラブルフラスコを窒素ガスで置換
した後、乾燥菌体量として740mg、L−アスコルビン
酸を63mg含む30重量%グリシノニトリル水溶液30ml
と蒸留水170mlを調合した。減圧ポンプでフラスコ内の
圧力を10kPaに調整し、30℃にて反応を開始した。
反応開始1時間後、この反応液を液体クロマトグラフィ
ー法で分析したところ、グリシノニトリルが消失しグリ
シンが定量的に生成していた。そこで基質の30重量%グ
リシノニトリル水溶液30mlを追加添加した。1時間毎に
この操作を更に3回繰り返し合計5時間反応を行った。
ドライアイストラップには固体が20g回収された。After replacing the separable flask with nitrogen gas, 30 ml of a 30% by weight glycinonitrile aqueous solution containing 740 mg of dry cells and 63 mg of L-ascorbic acid was dried.
And 170 ml of distilled water. The pressure inside the flask was adjusted to 10 kPa with a vacuum pump, and the reaction was started at 30 ° C.
One hour after the start of the reaction, the reaction solution was analyzed by liquid chromatography, and it was found that glycinonitrile had disappeared and glycine had been generated quantitatively. Therefore, 30 ml of a 30% by weight aqueous solution of glycinonitrile as a substrate was additionally added. This operation was repeated three more times every hour, and the reaction was carried out for a total of 5 hours.
20 g of solid was recovered in the dry ice trap.
【0027】固体を50mlの水にとかしネスラー法により
定量したところアンモニアが14g回収されていた。反
応液は300g回収された。この反応液のうち2gを用
い、生成したアンモニアをネスラー法により定量し、原
料のグリシノニトリルと生成したグリシンは液体クロマ
トグラフィー法で分析した。グリシノニトリルは無くな
りグリシンが定量的に生成しトレース量のアンモニアが
残存していた。乾燥菌体当たりのグリシンの生成量は8
1g/g乾燥菌体であり、グリシンの生成活性は16g/
g・Hrであった。反応液2mlをrpm10500の遠
心分離濾過に15分掛け菌体を分離し、上澄み液の紫外
可視吸収スペクトルを測定した。波長380nmでの吸光
度はグリシン1mol1cm当たり0.09であった。When the solid was dissolved in 50 ml of water and quantified by the Nessler method, 14 g of ammonia was recovered. 300 g of the reaction solution was recovered. Using 2 g of the reaction solution, the produced ammonia was quantified by the Nessler method, and glycinonitrile as a raw material and the produced glycine were analyzed by liquid chromatography. Glycinonitrile disappeared, glycine was quantitatively formed, and a trace amount of ammonia remained. The amount of glycine produced per dry cell is 8
1 g / g dry cells and glycine producing activity of 16 g / g
g · Hr. 2 ml of the reaction solution was centrifuged at 10500 rpm for 15 minutes to separate the cells, and the ultraviolet-visible absorption spectrum of the supernatant was measured. The absorbance at a wavelength of 380 nm was 0.09 per 1 cm1 of glycine.
【0028】[0028]
【発明の効果】本発明の製造方法は、還元性生化学化合
物の存在下グリシノニトリルに微生物またはその処理物
を作用させることで、好ましくはpHを調整するための
酸、アルカリまたは緩衝液の添加をしない反応条件で、
且つ閉鎖系の反応条件下もしくは生成するアンモニアを
反応と同時に系外に分離する反応条件下で還元性生化学
化合物の存在下グリシノニトリルに微生物またはその処
理物を作用させることで、分解や着色反応を伴わず、乾
燥菌体当たり、且つ単位時間当たり高活性であって菌体
や培地の多量廃棄を伴わず、反応液のpHを調整するため
の酸、アルカリまたは緩衝液の添加や廃棄を伴わず、グ
リシンとアンモニアが定量的に生成し、これらの分解お
よび消費を伴わなず、グリシンとアンモニアを別々に回
収出来る効果を有する。According to the production method of the present invention, a microorganism or a processed product thereof is allowed to act on glycinonitrile in the presence of a reducing biochemical compound, and preferably an acid, alkali or buffer solution for adjusting pH is prepared. Under reaction conditions without addition,
Decomposition and coloration of glycinonitrile in the presence of reducing biochemical compounds by the action of microorganisms or their processed products under closed-system reaction conditions or reaction conditions in which generated ammonia is separated out of the system simultaneously with the reaction Addition or disposal of acid, alkali or buffer to adjust the pH of the reaction solution without reaction, high activity per dried cell and per unit time, without accompanying large amount of cells and medium. Without this, glycine and ammonia are quantitatively generated, and there is an effect that glycine and ammonia can be separately recovered without accompanying their decomposition and consumption.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:15) C12R 1:15) (C12P 13/04 (C12P 13/04 C12R 1:05) C12R 1:05) (C12N 1/20 (C12N 1/20 A C12R 1:01) C12R 1:01) (C12N 1/20 (C12N 1/20 A C12R 1:15) C12R 1:15) (C12N 1/20 (C12N 1/20 A C12R 1:05) C12R 1:05) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12R 1:15) C12R 1:15) (C12P 13/04 (C12P 13/04 C12R 1:05) C12R 1 : 05) (C12N 1/20 (C12N 1/20 A C12R 1:01) C12R 1:01) (C12N 1/20 (C12N 1/20 A C12R 1:15) C12R 1:15) (C12N 1/20 (C12N 1/20 A C12R 1:05) C12R 1:05)
Claims (8)
トリル水溶液に微生物またはその処理物を作用させるこ
とを特徴とするグリシンの着色を防止した微生物学的製
造法。1. A microbiological production method in which glycine is prevented from being colored, wherein a microorganism or a processed product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a reducing biochemical compound.
あることを特徴とする請求項1記載の方法。2. The method according to claim 1, wherein the reducing biochemical compound is ascorbic acid.
ることを特徴とする請求項1記載の方法。3. The method according to claim 1, wherein the reducing biochemical compound is glutathione.
ことを特徴とする請求項1記載の方法。4. The method according to claim 1, wherein the reducing biochemical compound is cysteine.
青酸、およびアンモニアの反応で得られことを特徴とす
る請求項1ないし請求項4いずれかに記載の方法。5. Glycinonitrile is formaldehyde,
The method according to any one of claims 1 to 4, wherein the method is obtained by a reaction between hydrocyanic acid and ammonia.
er)属、コリネバクテリウム(Corynebacterium)属や
アルカリゲネ(Alcaligenes)属に属する微生物である
ことを特徴とする請求項1ないし請求項5いずれかに記
載の方法。6. The method according to claim 1, wherein the microorganism is Accinetobact.
The method according to any one of claims 1 to 5, wherein the microorganism is a microorganism belonging to the genus er), the genus Corynebacterium, or the genus Alcaligenes.
件がpHを調整するための酸、アルカリまたは緩衝液の添
加をしない反応条件であることを特徴とする請求項1な
いし請求項6いずれかに記載の方法。7. The method according to claim 1, wherein the conditions under which the microorganisms or the processed product thereof act are reaction conditions in which no acid, alkali or buffer for adjusting pH is added. The described method.
アを反応液から分離する反応条件であることを特徴とす
る請求項7記載の方法。8. The method according to claim 7, wherein the reaction conditions are such that ammonia generated in the reaction solution is separated from the reaction solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000090796A JP4544685B2 (en) | 2000-03-29 | 2000-03-29 | Microbiological production method preventing coloring of glycine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000090796A JP4544685B2 (en) | 2000-03-29 | 2000-03-29 | Microbiological production method preventing coloring of glycine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001275692A true JP2001275692A (en) | 2001-10-09 |
JP4544685B2 JP4544685B2 (en) | 2010-09-15 |
Family
ID=18606348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000090796A Expired - Lifetime JP4544685B2 (en) | 2000-03-29 | 2000-03-29 | Microbiological production method preventing coloring of glycine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4544685B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225738A (en) * | 1975-08-07 | 1977-02-25 | Sun Ventures Inc | Method of hydrolysing aromatic nitriles to carboxylic acid |
JPS5446720A (en) * | 1977-09-22 | 1979-04-12 | Showa Denko Kk | Stabilization of aqueous glycinonitrile solution |
JPS5446721A (en) * | 1977-09-22 | 1979-04-12 | Showa Denko Kk | Stabilization of glycinonitrile |
JPH02196766A (en) * | 1989-01-25 | 1990-08-03 | Mitsui Toatsu Chem Inc | Production of aminoacetonitrile |
JPH03280889A (en) * | 1990-03-30 | 1991-12-11 | Nitto Chem Ind Co Ltd | Microorganic production of glycine |
JPH03280895A (en) * | 1990-03-30 | 1991-12-11 | Nitto Chem Ind Co Ltd | Production of d-alpha-phenylglycine |
JPH04304892A (en) * | 1991-03-29 | 1992-10-28 | Nitto Chem Ind Co Ltd | Biological production of glycine |
JPH05310677A (en) * | 1992-05-01 | 1993-11-22 | Asahi Chem Ind Co Ltd | Production of carbamic acid ester |
JPH10179183A (en) * | 1996-12-20 | 1998-07-07 | Daicel Chem Ind Ltd | Production of carboxylic acid |
-
2000
- 2000-03-29 JP JP2000090796A patent/JP4544685B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5225738A (en) * | 1975-08-07 | 1977-02-25 | Sun Ventures Inc | Method of hydrolysing aromatic nitriles to carboxylic acid |
JPS5446720A (en) * | 1977-09-22 | 1979-04-12 | Showa Denko Kk | Stabilization of aqueous glycinonitrile solution |
JPS5446721A (en) * | 1977-09-22 | 1979-04-12 | Showa Denko Kk | Stabilization of glycinonitrile |
JPH02196766A (en) * | 1989-01-25 | 1990-08-03 | Mitsui Toatsu Chem Inc | Production of aminoacetonitrile |
JPH03280889A (en) * | 1990-03-30 | 1991-12-11 | Nitto Chem Ind Co Ltd | Microorganic production of glycine |
JPH03280895A (en) * | 1990-03-30 | 1991-12-11 | Nitto Chem Ind Co Ltd | Production of d-alpha-phenylglycine |
JPH04304892A (en) * | 1991-03-29 | 1992-10-28 | Nitto Chem Ind Co Ltd | Biological production of glycine |
JPH05310677A (en) * | 1992-05-01 | 1993-11-22 | Asahi Chem Ind Co Ltd | Production of carbamic acid ester |
JPH10179183A (en) * | 1996-12-20 | 1998-07-07 | Daicel Chem Ind Ltd | Production of carboxylic acid |
Also Published As
Publication number | Publication date |
---|---|
JP4544685B2 (en) | 2010-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06237789A (en) | Production of optically active alpha-hydroxycarboxylic acid having phenyl group | |
KR100489326B1 (en) | Process for Producing Glycine | |
JP2003199595A (en) | Method for producing optically active mandelic acid derivative | |
JP3154646B2 (en) | Microbial production of glycolic acid | |
FR2461753A1 (en) | PROCESS FOR THE PREPARATION OF A CEPHALOSPORINE BY FERMENTATION AND MICROORGANISM FOR CARRYING OUT SAID METHOD | |
JP2696424B2 (en) | Method for producing R (-)-mandelic acid | |
JP2001275692A (en) | Method for microbiologically producing glycine with no occurrence of discoloration of glycine | |
JP4647059B2 (en) | Microbiological production method that prevents coloring of glycine | |
EP2471939B1 (en) | Method for producing 1-(2-hydroxyethyl) 2,5,5,8a-tetramethyldecahydronaphthalene-2-ol by microbial fermentation | |
JP2001269190A (en) | Microbiological method for production of glycine prevented from discoloration | |
JP4544695B2 (en) | Microbial production of glycine | |
EP2400025B1 (en) | Process for producing microbial fermentation product | |
EP1290208B1 (en) | Method for optically resolving a racemic alpha-substituted heterocyclic carboxylic acid using enzyme | |
JP4497659B2 (en) | Method for microbiologically producing glycine | |
JPH09154589A (en) | Production of erythritol | |
JP4497638B2 (en) | Microbiological production method of glycine using reaction separation of ammonia | |
JPS5923794B2 (en) | Manufacturing method of dihydroxyacetone | |
JP4133822B2 (en) | Method for producing D-alanine | |
JPH04218385A (en) | Production of r(-)-mandelic acid | |
JP4560164B2 (en) | Microbial production of glycine | |
JPH1042860A (en) | Production of inositol and acquirement of hexachlorocyclohexane-resistant strain | |
JP2001340096A (en) | Method for microbiologically producing glycine | |
KR100345847B1 (en) | Process for preparing cefazolin by using immobilized enzyme | |
JPS5816692A (en) | Preparation of l-tryptophan by enzyme | |
JPH1042883A (en) | Production of inositol and collection of strain resistant to 6-halogeno-6-deoxyglucose |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100609 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100629 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4544685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |