Nothing Special   »   [go: up one dir, main page]

JP4647059B2 - Microbiological production method that prevents coloring of glycine - Google Patents

Microbiological production method that prevents coloring of glycine Download PDF

Info

Publication number
JP4647059B2
JP4647059B2 JP2000122454A JP2000122454A JP4647059B2 JP 4647059 B2 JP4647059 B2 JP 4647059B2 JP 2000122454 A JP2000122454 A JP 2000122454A JP 2000122454 A JP2000122454 A JP 2000122454A JP 4647059 B2 JP4647059 B2 JP 4647059B2
Authority
JP
Japan
Prior art keywords
reaction
glycine
glycinonitrile
ammonia
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000122454A
Other languages
Japanese (ja)
Other versions
JP2001299378A (en
Inventor
肇也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2000122454A priority Critical patent/JP4647059B2/en
Publication of JP2001299378A publication Critical patent/JP2001299378A/en
Application granted granted Critical
Publication of JP4647059B2 publication Critical patent/JP4647059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,グリシンの着色を防止した微生物学的製造方法に関する。更に詳しくは、還元性生化学化合物の存在下グリシノニトリル水溶液に微生物またはその処理物を作用させることを特徴とするグリシンの着色を防止した微生物学的製造方法に関する。得られるグリシンは食品添加物、洗浄剤、医農薬合成原料として有用である。本発明の製造法は、有用なグリシンを効率よく工業的に製造するため利用することが出来る。
【0002】
【従来の技術】
グリシノニトリルを弱アルカリ水溶液で微生物を用いて加水分解しグリシンを得る方法が知られている。特公昭58−15120号明細書にはブレビバクテリウム R312株をpH8に維持して用いる方法、特開平3−62391号明細書にはpH7.2に調整した反応液にコリネバクテリウムN-774株を用いる方法、また特開平3−280889号明細書にはpHを7.7付近に調整した反応液にロドコッカス属、アルスロバクター属、カセオバクター属、シュードモナス属、エンテロバクター属、アシネトバクター属、アルカリゲネス属、コリネバクテイリア属、またはストレプトマイセス属の微生物を用いる方法が開示されている。
【0003】
こうした弱アルカリ水溶液中ではグリシノニトリルは不安定であることが知られている。例えばpHが2.5以上では安定性が悪く、pHが高いほど、温度が高いほど、および経過時間が長いほど分解や着色等の変成をし易いことが開示されている(特開昭49−14420号、特開昭54−46720号、特開昭54−46721号明細書)。こうした分解や変成はグリシンの収率を低下するだけでなく、脱色するには、活性炭や特殊なイオン交換樹脂を用いた煩雑な処理が必要である(特開平3−190851号、平4−226949号明細書)。
【0004】
更に、従来法はグリシンの生成に伴い等量のアンモニアが水性溶媒中に蓄積するため、pHは更に高くなり強アルカリ性となるため、グリシノニトリルの着色や変成は避けられない問題があった。このように従来の微生物を用いる方法はグリシン収率の低下、脱色するため煩雑な操作が必要で、工業的に実施できるものではなかった。
【0005】
【発明が解決しようとする課題】
本発明は、微生物を用いグリシノニトリルからグリシンを生産するにあたり、分解や着色反応を伴わず、乾燥菌体当たり、且つ単位時間当たり高活性であって菌体や培地の多量廃棄を伴わず、反応液のpHを調整するための酸、アルカリまたは緩衝液の添加や廃棄を伴わず、グリシンとアンモニアが定量的に生成し、これらの分解および消費を伴わなず、グリシンとアンモニアを別々に回収するグリシンの製造法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者はこのような工業的諸問題を解決するため、分解や着色反応を伴わず、菌体当たり、且つ単位時間当たり高い活性を持ち、反応系で生成したグリシンやアンモニアを分解または消費せず、グリシンとアンモニアを別々に、定量的に、且つに容易に回収できる反応系を構築すべく検討を鋭意行った。驚くべき事に、グリシノニトリル水溶液に微生物またはその処理物を作用させグリシンを製造する際、蟻酸化合物の存在下で反応させることでグリシンの着色が防止出来ることを見いだし、本発明を完成するに至った。即ち、本発明は蟻酸化合物の存在下グリシノニトリル水溶液に微生物またはその処理物を作用させることを特徴とするグリシンの着色を防止した微生物学的製造法である。
【0007】
【発明の実施の形態】
本発明について、以下具体的に説明する。本発明で用いられるグリシノニトリルは純粋なグリシノニトリルだけでなくホルムアルデヒドや青酸とアンモニアの反応物やグリコロニトリルとアンモニアの反応物など反応条件下でグリシノニトリルを生成しうる反応物も使用することが出来る。
本発明で反応液に共存させる蟻酸化合物として制限はないが、例えば、蟻酸、蟻酸アンモニウム等の蟻酸塩類、蟻酸メチル、蟻酸エチル等の蟻酸エステル類が用いられる。好ましくは、蟻酸または蟻酸アンモニウムが用いられる。蟻酸化合物の添加量はグリシノニトリルに対し0.002mol%〜8mol%、好ましくは0.02mol%から4mol%でよい。
【0008】
本発明に使用する微生物としては、例えば、アシネトバクター(Accinetobacter)属、ロドコッカス(Rhodococcus)属、コリネバクテリウム(Corynebacterium)属やアルカリゲネ(Alcaligenes)属に属する微生物が適していることが新たに発見されたが、これに限定されるものではない。具体的には、アシネトバクターエスピ− AK226(FERM BP−2451)、アシネトバクター エスピ− AK227(微工研菌寄第8272号)、ロドコッカスマリス BP−479−9(FERMBP−5219)、コリネバクテリウム エスピー C5(微工研菌寄第8931号)、コリネバクテリウム ニトリロフィラス ATCC 21419、アルカリゲネス フェカリスATCC8750。これらの菌株は、特開平2−84198、特開平7−303496、特開昭63−129988号公報に記載されている。
【0009】
本発明に使用される微生物の培養には、通常用いられる炭素源、例えば、グルコース、グリセリン、有機酸、デキストリン、マルトース等が用いられ、窒素源としてはアンモニアとその塩類、尿素、硝酸塩および有機窒素源、例えば、酵母エキス、麦芽エキス、ペプトン、肉エキス等が用いられる。また、培地にはリン酸塩、ナトリウム、カリウム、鉄、マグネシウム、コバルト、マンガン、亜鉛等の無機栄養源が適宜添加される。培養はpH5から9、好ましくはpH6から8、温度20から37℃、好ましくは27から32℃で好気的に行われる。本発明の微生物の培養において、上記の培地に酵素誘導剤を加えても良い、例えば、ラクタム化合物(γ-ラクタム、δ-ラクタム、ε-カプロラクタム等)、ニトリル化合物、アミド化合物等を用いてもよい。
【0010】
本発明の微生物はそのまま工業使用できるが、適当な変異剤で突然変異を誘発する方法もしくは遺伝子工学的手法により改良された変異株、例えば、酵素を構成的に生産する変異株を育成し用いることもできる。本発明の菌体とは培養液から採取した菌体または菌体処理物(菌体の破砕物、菌体破砕物より分離した酵素、および菌体または菌体から分離抽出された酵素を固定化した処理物)である。培養液からの菌体の採取は公知の方法で行うことが出来る。
【0011】
本発明においては、上述の方法で分離した菌体および菌体処理物は一旦、蒸留水や緩衝液に懸濁して保存することが出来る。この場合、反応後の廃棄物を減らす上で蒸留水を用いることが好ましい。また、保存安定化のためにグリシン等の安定剤を保存液に添加することが出来る。この場合も、反応後の廃棄物を減らす上でグリシンを用いることが好ましい。
【0012】
こうして得られた菌体および菌体処理物の懸濁水溶液にグリシノニトリルを添加するか、または得られた菌体および菌体処理物の懸濁水溶液、あるいは菌体および菌体処理物を直接、グリシノニトリル水溶液に添加するすることで、速やかに加水分解反応が進行しグリシンを製造することができる。則ち、通常、前記微生物菌体または菌体処理物を、例えば乾燥菌体換算で0.01から5重量%、基質のグリシノニトリルを1から30重量%、を反応装置に仕込み温度として例えば0から60℃、好ましくは10から50℃にて、反応時間を例えば1時間ないし24時間、好ましくは3時間から8時間反応させれば良い。
【0013】
この場合、グリシノニトリルを薄い濃度で仕込み経時的に追加添加したり、反応温度を経時的に変化させても良い。こうしてグリシノニトリルが加水分解されグリシンの同時にアンモニアが生成し反応液のpHは反応前に比べ反応後は増加する。このように反応の進行に伴いpHが増加するのを抑えるため反応前に緩衝液を添加したり、反応中に酸またはアルカリを添加することができる。しかし、反応後の廃棄物を減らす上ではこうした緩衝液、酸やアルカリを反応液に添加しないことが好ましい。
【0014】
反応を開放型の反応器で実施する事ができるが、生成するアンモニアの飛散による環境汚染の防止並びに貴重なアンモニアを回収する目的で、密閉型の反応容器を用い閉鎖的反応条件で生成するアンモニアを応容器中に一旦蓄積することが好ましい。この場合、pHの上昇を抑えるために生成するアンモニアを反応と同時に分離する反応分離装置を付属することが更に好ましい。こうしたアンモニアの反応分離法としてはアンモニアの反応蒸留法や不活性ガスの流通法で実施することができる。
【0015】
反応蒸留を行う場合、加水分解反応装置に、アンモニアと同伴する水を冷却回収する冷却器の付いた単管搭、棚段搭、または充填塔を備え、反応水溶液の沸騰圧以上、例えば60℃で20.0kPa以上から0℃で0.6kPa以上の圧力条件下で、連続的にまたは間欠的に減圧反応蒸留することが好ましい。更に好ましくは、12.6kPaから1.3kPaの圧力条件下で減圧反応蒸留することができる。
【0016】
不活性ガスを流通する場合、不活性ガスの吹き込みノズルと、アンモニアや同伴する水を不活性ガスから回収する冷却トラップとを備え、微加圧から減圧条件下で連続的にまたは間欠的にアンモニアを不活性ガスに同伴し反応液から分離することができる。更に、アンモニア分離を促進するため減圧反応蒸留を不活性ガス流通条件下で行うこともできる。反応方式はバッチ型方式や流通型反応方式、またはこれらを組み合わせた方式で行うことが出来る。
【0017】
かくして、グリシノニトリルは、ほぼ100%のモル収率で加水分解し、生成するアンモニアの全部は密閉型反応容器中に一旦グリシンのアンモニウム塩を含むグリシンの高濃度水溶液として生成蓄積させることができる。また、生成するアンモニアの全部または殆どは反応と同時に反応蒸留法や不活性ガスの流通法で反応液から分離し冷却回収される。
【0018】
もし、グリシンアミドが残存する場合はグリシンアミドの加水分解活性をもつ菌体もしくは酵素を追添加することにより、完全にグリシンおよびアンモニアに転換することも可能である。グリシンのアンモニウム塩を含むグリシンの高濃度水溶液からのグリシンの回収は、例えば、反応液から菌体を遠心濾過、膜分離等によって除いた後、グリシンは晶析法、イオン交換法または貧性溶媒による分別沈澱法にて回収できる、またアンモニアは一部の水と一緒に蒸発後、蒸留や抽出によって回収することができる。
本発明を実施例に基づいて説明するが、本発明はこれらの例に制限される物ではない。
【0019】
【実施例1】
酸素の混入を防ぐため、全ての反応操作は窒素雰囲気下で行い、反応に用いる全ての水溶液は約5℃に冷却し窒素ガスで一旦加圧後、再び常圧に戻す操作を数回繰り返し空気との置換を行った。
【0020】
(1)グリシノニトリルの合成
窒素雰囲気下でホルマリンに等量の青酸をを作用させて一旦生成したグリコロニトリル水溶液に、過剰量のアンモニア水溶液を添加し2時間反応した後、未反応のアンモニアと過剰の水を減圧除去し30重量%グリシノニトリル水溶液を得た。波長380nmで水溶液の吸光度を測定したところグリシノニトリル1mol、10mm石英セル当たり0.08であった。
【0021】
(2)菌体の培養
アシネトバクターAK226株を、下記の条件で培養した。
(1) 培地
フマル酸 1.0重量%
肉エキス 1.0
ペプトン 1.0
食塩 0.1
ε−カプロラクタム 0.3
リン酸第一カリウム 0.2
硫酸マグネシウム・7水塩 0.02
塩化アンモニウム 0.1
硫酸第二鉄・7水塩 0.003
塩化マンガン・4水塩 0.002
塩化コバルト・6水塩 0.002
pH 7.5
(2) 培養条件
30℃/1日
【0022】
(3) グリシノニトリルの加水分解
菌体は、得られた培養液から遠心分離により集菌し、蒸留水で洗浄した後、窒素ガスで置換し反応に用いた。窒素ガスで置換した100mlの硝子オートクレーブに乾燥菌体量として58mgと蟻酸を3.3mg含む30重量%グリシノニトリル水溶液3mlを17mlの蒸留水に調合した、30℃にて反応を開始した。反応開始後2時間後、pHは10に成っていた。この反応液を液体クロマトグラフィー法で分析し、グリシノニトリルは無くなりグリシンが定量的に生成していた。
【0023】
そこで2時間毎に上記30重量%グリシノニトリル水溶液3mlを追加添加し反応液を液体クロマトグラフィー法で分析した。この操作を4回切り返し合計10時間反応を行った。得られた32gの反応液のうち2gを用い、生成したアンモニアはネスラー法により定量し、原料のグリシノニトリルと生成したグリシンは液体クロマトグラフィー法で分析し、グリシノニトリルは無くなりグリシンとアンモニアが定量的に生成していた。
【0024】
乾燥菌体当たりのグリシンの生成量は104g/g乾燥菌体であり、グリシンの生成活性は10g/g・Hrであった。反応液2mlをrpm10500の遠心分離濾過に15分掛け菌体を分離し、上澄み液の紫外可視吸収スペクトルを測定した。波長380nmでの吸光度はグリシン1mol1cm当たり0.12であった。
【0025】
【比較例1】
実施例1と同様の反応を蟻酸を添加せずに行った。乾燥菌体当たりのグリシンの生成量は変わらず120g/g乾燥菌体であり、グリシンの生成活性は12g/g・Hrであった。遠心濾過後の上澄み液の吸光度はグリシン1mol1cm当たり0.79であった。
【0026】
【実施例2から
実施例1と同様の培養操作と反応を行い、菌体の種類と蟻酸化合物の種類を変えて行った。菌体の種類や蟻酸化合物の種類は表1に示す通りである。また表1には実施例1や比較例1の結果も合わせ記載した。
【0027】
[参考例]
実施例1で合成した30重量%グリシノニトリル水溶液と菌体を用い、反応方式を代えて実施した。菌体は、得られた培養液から遠心分離により集菌し、蒸留水で洗浄した後、窒素ガスで置換し反応に用いた。撹拌器の付いた1000mlの恒温ジャケット槽型3つ口セパラブルフラスコに、ドライアイストラップを経て減圧ポンプに接続した単管型の蒸留塔、圧力センサー、温度計、および液送ポンプに接続したサンプリング管を備えた。
【0028】
このセパラブルフラスコを窒素ガスで置換した後、乾燥菌体量として740mg、L−アスコルビン酸を63mg含む30重量%グリシノニトリル水溶液30mlと蒸留水170mlを調合した。減圧ポンプでフラスコ内の圧力を10kPaに調整し、30℃にて反応を開始した。反応開始1時間後、この反応液を液体クロマトグラフィー法で分析したところ、グリシノニトリルが消失しグリシンが定量的に生成していた。そこで基質の30重量%グリシノニトリル水溶液30mlを追加添加した。1時間毎にこの操作を更に3回繰り返し合計5時間反応を行った。
【0029】
ドライアイストラップには固体が20g回収された。固体を50mlの水にとかしネスラー法により定量したところアンモニアが14g回収されていた。反応液は300g回収された。この反応液のうち2gを用い、生成したアンモニアをネスラー法により定量し、原料のグリシノニトリルと生成したグリシンは液体クロマトグラフィー法で分析した。グリシノニトリルは無くなりグリシンが定量的に生成しトレース量のアンモニアが残存していた。
【0030】
乾燥菌体当たりのグリシンの生成量は81g/g乾燥菌体であり、グリシンの生成活性は16g/g・Hrであった。反応液2mlをrpm10500の遠心分離濾過に15分掛け菌体を分離し、上澄み液の紫外可視吸収スペクトルを測定した。波長380nmでの吸光度はグリシン1mol1cm当たり0.09であった。
【0031】
【表1】

Figure 0004647059
【0032】
【発明の効果】
本発明の製造方法は、蟻酸化合物の存在下グリシノニトリルに微生物またはその処理物を作用させることで、分解や着色反応を伴わず、乾燥菌体当たり、且つ単位時間当たり高活性であって菌体や培地の多量廃棄を伴わず、反応液のpHを調整するための酸、アルカリまたは緩衝液の添加や廃棄を伴わず、グリシンとアンモニアが定量的に生成し、これらの分解および消費を伴わなず、グリシンとアンモニアを別々に回収出来る効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microbiological production method in which coloring of glycine is prevented. More specifically, the present invention relates to a microbiological production method for preventing glycine coloring, characterized in that a microorganism or a treated product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a reducing biochemical compound. The obtained glycine is useful as a food additive, a detergent, and a raw material for synthetic medicine and agricultural chemicals. The production method of the present invention can be utilized for efficiently industrially producing useful glycine.
[0002]
[Prior art]
A method for obtaining glycine by hydrolyzing glycinonitrile with a weakly alkaline aqueous solution using a microorganism is known. Japanese Patent Publication No. 58-15120 describes a method using Brevibacterium R312 strain maintained at pH 8, Japanese Patent Application Laid-Open No. 3-62391 discloses Corynebacterium N-774 strain in a reaction solution adjusted to pH 7.2. In addition, in JP-A-3-280889, a reaction solution whose pH is adjusted to around 7.7 is added to the genus Rhodococcus, Arthrobacter, Caseobacter, Pseudomonas, Enterobacter, Acinetobacter, Alkagenes. , A method using a microorganism belonging to the genus Corynebacteria or Streptomyces is disclosed.
[0003]
It is known that glycinonitrile is unstable in such weak alkaline aqueous solution. For example, it is disclosed that when pH is 2.5 or more, the stability is poor, and that the higher the pH, the higher the temperature, and the longer the elapsed time, the easier it is to undergo degradation, coloring, etc. 14420, JP 54-46720, JP 54-46721). Such decomposition and modification not only reduce the yield of glycine, but also require complicated treatment using activated carbon or a special ion exchange resin for decolorization (Japanese Patent Application Laid-Open Nos. 3-190851 and 4-226949). Issue description).
[0004]
Furthermore, in the conventional method, since an equal amount of ammonia accumulates in the aqueous solvent as glycine is produced, the pH becomes higher and the alkali becomes strongly alkaline. Therefore, there is a problem that coloring and modification of glycinonitrile cannot be avoided. As described above, the conventional method using microorganisms requires a troublesome operation because of a decrease in glycine yield and decolorization, and it has not been industrially feasible.
[0005]
[Problems to be solved by the invention]
In producing glycine from glycinonitrile using microorganisms, the present invention is not accompanied by decomposition or coloring reaction, is highly active per dry cell and per unit time, and does not involve a large amount of waste of cells or medium. Glycine and ammonia are quantitatively produced without the addition or disposal of acids, alkalis or buffers to adjust the pH of the reaction solution, and glycine and ammonia are recovered separately without their decomposition and consumption. An object of the present invention is to provide a method for producing glycine.
[0006]
[Means for Solving the Problems]
In order to solve such industrial problems, the present inventor has no activity of decomposition or coloring reaction, has high activity per cell and per unit time, and decomposes or consumes glycine and ammonia generated in the reaction system. First, the inventors intensively studied to construct a reaction system that can easily and quantitatively collect glycine and ammonia separately. Surprisingly, when producing glycine by reacting a microorganism or its treated product with an aqueous glycinonitrile solution, it was found that coloring can be prevented by reacting in the presence of a formic acid compound, and the present invention is completed. It came. That is, the present invention is a microbiological production method for preventing coloring of glycine, characterized in that a microorganism or a treated product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a formic acid compound.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below. The glycinonitrile used in the present invention is not only pure glycinonitrile but also a reactant capable of forming glycinonitrile under reaction conditions such as a reaction product of formaldehyde, hydrocyanic acid and ammonia, a reaction product of glycolonitrile and ammonia. I can do it.
Although there is no restriction | limiting in the formic acid compound made to coexist in a reaction liquid by this invention, Formic acid esters, such as formates, such as formic acid and ammonium formate, methyl formate, and ethyl formate, are used, for example. Preferably, formic acid or ammonium formate is used. The addition amount of the formic acid compound may be 0.002 mol% to 8 mol%, preferably 0.02 mol% to 4 mol% with respect to glycinonitrile.
[0008]
The microorganisms used in the present invention, for example, Acinetobacter (Accinetobacter) genus Rhodococcus (Rhodococcus) genus, it is newly discovered that Corynebacterium (Corynebacterium) genus and Arukarigene scan (Alcaligenes) microorganism belonging to the genus is suitable However, the present invention is not limited to this. Specifically, Acinetobacter Espi-AK226 (FERM BP-2451), Acinetobacter Espi-AK227 (Mikken Kenki No. 8272), Rhodococcus mariis BP-479-9 (FERMBP-5219), Corynebacterium sp. C5 ( Microtechnical Laboratories No. 8931), Corynebacterium nitrilophilus ATCC 21419, Alkaligenes faecalis ATCC 8750. These strains are described in JP-A-2-84198, JP-A-7-30396, and JP-A-63-129988.
[0009]
For culturing the microorganisms used in the present invention, commonly used carbon sources such as glucose, glycerin, organic acids, dextrin, maltose and the like are used, and ammonia and its salts, urea, nitrate and organic nitrogen are used as nitrogen sources. Sources such as yeast extract, malt extract, peptone, meat extract and the like are used. In addition, inorganic nutrient sources such as phosphate, sodium, potassium, iron, magnesium, cobalt, manganese, and zinc are appropriately added to the medium. Culturing is carried out aerobically at pH 5 to 9, preferably pH 6 to 8, temperature 20 to 37 ° C, preferably 27 to 32 ° C. In the culture of the microorganism of the present invention, an enzyme inducer may be added to the above medium, for example, lactam compounds (γ-lactam, δ-lactam, ε-caprolactam, etc.), nitrile compounds, amide compounds, etc. may be used. Good.
[0010]
The microorganism of the present invention can be used industrially as it is, but a mutant strain improved by a method of inducing a mutation with an appropriate mutant agent or a genetic engineering technique, for example, a mutant strain that constitutively produces an enzyme should be bred and used. You can also. The microbial cells of the present invention are immobilized microbial cells or treated microbial cells collected from the culture solution (broken microbial cells, enzymes separated from crushed microbial cells, and enzymes separated and extracted from microbial cells or microbial cells) Processed product). Collection of bacterial cells from the culture solution can be performed by a known method.
[0011]
In the present invention, the bacterial cells and the treated bacterial cells separated by the above-described method can be temporarily suspended and stored in distilled water or a buffer solution. In this case, it is preferable to use distilled water in order to reduce waste after the reaction. In addition, a stabilizer such as glycine can be added to the storage solution for storage stabilization. Also in this case, it is preferable to use glycine in order to reduce waste after the reaction.
[0012]
Add glycinonitrile to the suspension of the bacterial cells and treated cells thus obtained, or directly add the suspension of the obtained bacterial cells and treated cells, or the treated cells and cells. By adding to an aqueous glycinonitrile solution, the hydrolysis reaction proceeds rapidly, and glycine can be produced. That is, usually, the microbial cell or the processed microbial cell, for example, 0.01 to 5% by weight in terms of dry cell, 1 to 30% by weight of the substrate glycinonitrile, is charged into the reaction apparatus as a temperature, for example The reaction may be performed at 0 to 60 ° C., preferably 10 to 50 ° C., for example, for 1 to 24 hours, preferably 3 to 8 hours.
[0013]
In this case, glycinonitrile may be added at a low concentration and added over time, or the reaction temperature may be changed over time. In this way, glycinonitrile is hydrolyzed and ammonia is generated at the same time as glycine, and the pH of the reaction solution is increased after the reaction compared to before the reaction. Thus, in order to suppress the increase in pH with the progress of the reaction, a buffer solution can be added before the reaction, or an acid or an alkali can be added during the reaction. However, in order to reduce waste after the reaction, it is preferable not to add such a buffer solution, acid or alkali to the reaction solution.
[0014]
Although the reaction can be carried out in an open reactor, the ammonia produced under closed reaction conditions using a closed reaction vessel in order to prevent environmental pollution due to the scattering of the produced ammonia and to collect valuable ammonia Is preferably temporarily stored in the reaction container. In this case, it is more preferable to attach a reaction separation device that separates ammonia generated at the same time as the reaction in order to suppress an increase in pH. Such a reaction separation method of ammonia can be carried out by a reaction distillation method of ammonia or an inert gas flow method.
[0015]
In the case of performing reactive distillation, the hydrolysis reaction apparatus is provided with a single tube tower, a shelf tower, or a packed tower with a cooler that cools and collects water accompanying ammonia, and is above the boiling pressure of the aqueous reaction solution, for example, 60 ° C. It is preferable to carry out reduced pressure reactive distillation continuously or intermittently under pressure conditions of 20.0 kPa or more to 0 ° C. or more and 0.6 kPa or more. More preferably, the reaction distillation under reduced pressure can be performed under a pressure condition of 12.6 kPa to 1.3 kPa.
[0016]
When circulating an inert gas, it is equipped with an inert gas blowing nozzle and a cooling trap that recovers ammonia and accompanying water from the inert gas. Can be separated from the reaction solution along with an inert gas. In addition, reduced pressure reactive distillation can be performed under inert gas flow conditions to facilitate ammonia separation. The reaction method can be performed by a batch method, a flow reaction method, or a method combining these.
[0017]
Thus, glycinonitrile is hydrolyzed with a molar yield of almost 100%, and all of the ammonia produced can be produced and accumulated as a high-concentration aqueous solution of glycine containing the ammonium salt of glycine once in a sealed reaction vessel. . Also, all or most of the ammonia produced is separated from the reaction solution by the reactive distillation method or inert gas flow method simultaneously with the reaction, and is cooled and recovered.
[0018]
If glycinamide remains, it can be completely converted to glycine and ammonia by adding a cell or enzyme having hydrolytic activity of glycinamide. Recovery of glycine from a high-concentration aqueous solution of glycine containing ammonium salt of glycine, for example, after removing cells from the reaction solution by centrifugal filtration, membrane separation, etc., glycine can be crystallized, ion-exchanged or poor solvent The ammonia can be recovered by distillation or extraction after evaporation together with some water.
The present invention will be described based on examples, but the present invention is not limited to these examples.
[0019]
[Example 1]
In order to prevent oxygen contamination, all reaction operations are performed in a nitrogen atmosphere. All aqueous solutions used for the reaction are cooled to about 5 ° C, pressurized with nitrogen gas, and then returned to normal pressure several times. Was replaced.
[0020]
(1) Synthesis of glycinonitrile An excess amount of an aqueous ammonia solution was added to an aqueous solution of glycolonitrile once produced by allowing an equal amount of hydrocyanic acid to act on formalin in a nitrogen atmosphere and reacted for 2 hours, followed by unreacted ammonia. And excess water was removed under reduced pressure to obtain a 30 wt% aqueous glycinonitrile solution. When the absorbance of the aqueous solution was measured at a wavelength of 380 nm, it was 0.08 per 1 mol of glycinonitrile and 10 mm quartz cell.
[0021]
(2) Culture of bacterial cells Acinetobacter AK226 strain was cultured under the following conditions.
(1) Medium fumaric acid 1.0% by weight
Meat extract 1.0
Peptone 1.0
Salt 0.1
ε-Caprolactam 0.3
Potassium phosphate 0.2
Magnesium sulfate heptahydrate 0.02
Ammonium chloride 0.1
Ferric sulfate, heptahydrate 0.003
Manganese chloride tetrahydrate 0.002
Cobalt chloride hexahydrate 0.002
pH 7.5
(2) Culture conditions 30 ° C / 1 day [0022]
(3) The glycinonitrile hydrolyzed bacterial cells were collected from the obtained culture broth by centrifugation, washed with distilled water, then replaced with nitrogen gas and used for the reaction. The reaction was started at 30 ° C. in a 100 ml glass autoclave purged with nitrogen gas and 3 ml of a 30 wt% glycinonitrile aqueous solution containing 58 mg of dry cell mass and 3.3 mg of formic acid in 17 ml of distilled water. Two hours after the start of the reaction, the pH was 10. This reaction solution was analyzed by liquid chromatography, and glycinonitrile disappeared and glycine was quantitatively produced.
[0023]
Therefore, 3 ml of the above 30% by weight glycinonitrile aqueous solution was added every 2 hours, and the reaction solution was analyzed by liquid chromatography. This operation was repeated four times and the reaction was carried out for a total of 10 hours. Using 2 g of the obtained 32 g reaction solution, the produced ammonia was quantified by the Nessler method, the raw material glycinonitrile and the produced glycine were analyzed by a liquid chromatography method, glycinonitrile disappeared, and glycine and ammonia were It was generated quantitatively.
[0024]
The production amount of glycine per dry cell was 104 g / g dry cell, and the production activity of glycine was 10 g / g · Hr. 2 ml of the reaction solution was subjected to centrifugal filtration at 10500 rpm for 15 minutes to separate the cells, and the UV-visible absorption spectrum of the supernatant was measured. The absorbance at a wavelength of 380 nm was 0.12 per 1 mol / cm of glycine.
[0025]
[Comparative Example 1]
The same reaction as in Example 1 was performed without adding formic acid. The amount of glycine produced per dry cell remained unchanged at 120 g / g dry cell, and the production activity of glycine was 12 g / g · Hr. The absorbance of the supernatant after centrifugal filtration was 0.79 per 1 mol / cm of glycine.
[0026]
[Examples 2 to 5 ]
The same culture operation and reaction as in Example 1 were performed, and the type of bacterial cells and the type of formic acid compound were changed. Table 1 shows the types of cells and the types of formic acid compounds. Table 1 also shows the results of Example 1 and Comparative Example 1.
[0027]
[Reference example]
The reaction was carried out using the 30% by weight glycinonitrile aqueous solution synthesized in Example 1 and the bacterial cells. The cells were collected from the obtained culture broth by centrifugation, washed with distilled water, and then replaced with nitrogen gas for use in the reaction. Sampling connected to a single-tube distillation column, pressure sensor, thermometer, and liquid feed pump connected to a vacuum pump via a dry ice strap in a 1000 ml constant temperature jacketed tank type 3 neck separable flask with a stirrer Equipped with a tube.
[0028]
After replacing the separable flask with nitrogen gas, 30 ml of a 30% by weight glycinonitrile aqueous solution containing 740 mg of dry cells and 63 mg of L-ascorbic acid and 170 ml of distilled water were prepared. The pressure in the flask was adjusted to 10 kPa with a vacuum pump, and the reaction was started at 30 ° C. One hour after the start of the reaction, this reaction solution was analyzed by liquid chromatography. As a result, glycinonitrile disappeared and glycine was quantitatively produced. Therefore, 30 ml of a 30% by weight aqueous glycinonitrile solution was additionally added. This operation was repeated three more times every hour for a total of 5 hours.
[0029]
20 g of solid was recovered in the dry eye strap. The solid was dissolved in 50 ml of water and quantified by the Nessler method, and 14 g of ammonia was recovered. 300 g of the reaction solution was recovered. Using 2 g of the reaction solution, the produced ammonia was quantified by the Nessler method, and the raw material glycinonitrile and the produced glycine were analyzed by a liquid chromatography method. The glycinonitrile disappeared, and glycine was quantitatively produced, and a trace amount of ammonia remained.
[0030]
The production amount of glycine per dry cell was 81 g / g dry cell, and the production activity of glycine was 16 g / g · Hr. 2 ml of the reaction solution was subjected to centrifugal filtration at 10500 rpm for 15 minutes to separate the cells, and the UV-visible absorption spectrum of the supernatant was measured. Absorbance at a wavelength of 380 nm was 0.09 per 1 mol / cm of glycine.
[0031]
[Table 1]
Figure 0004647059
[0032]
【The invention's effect】
In the production method of the present invention, a microorganism or a processed product thereof is allowed to act on glycinonitrile in the presence of a formic acid compound, so that it is free from decomposition or coloring reaction, has high activity per dry cell and per unit time, and has a high activity. Glycine and ammonia are quantitatively produced without the waste of body and medium, and without the addition or disposal of acids, alkalis or buffers to adjust the pH of the reaction solution. However, it has the effect of collecting glycine and ammonia separately.

Claims (7)

蟻酸化合物の存在下グリシノニトリル水溶液に微生物またはその処理物を、pHを調整するための酸、アルカリまたは緩衝液の添加を伴わずに作用させることを特徴とするグリシンの着色を防止した微生物学的製造法。Microbiology that prevents glycine from coloring, characterized by allowing microorganisms or their processed products to act on glycinonitrile aqueous solution in the presence of formic acid compound without adding acid, alkali or buffer to adjust pH Manufacturing method. 蟻酸化合物が蟻酸であることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein the formic acid compound is formic acid. 蟻酸化合物が蟻酸アンモニウムであることを特徴とする請求項1記載の方法。  The method according to claim 1, wherein the formic acid compound is ammonium formate. グリシノニトリルがホルムアルデヒド、青酸、およびアンモニアの反応で得られことを特徴とする請求項1ないし請求項3いずれかに記載の方法。  4. The process according to claim 1, wherein the glycinonitrile is obtained by a reaction of formaldehyde, hydrocyanic acid and ammonia. 微生物がアシネトバクター(Accinetobacter)属、ロドコッカス(Rhodococcus)属、コリネバクテリウム(Corynebacterium)属またはアルカリゲネス(Alcaligenes)属に属する微生物であることを特徴とする請求項1ないし請求項4いずれかに記載の方法。  5. The method according to claim 1, wherein the microorganism belongs to the genus Accinetobacter, Rhodococcus, Corynebacterium, or Alcaligenes. . 微生物を作用させる反応条件が反応液中に生成するアンモニアを反応液から分離する反応条件であることを特徴とする請求項1ないし請求項5いずれかに記載の方法。The method according to any one of claims 1 to 5 , wherein the reaction condition for causing the microorganism to act is a reaction condition for separating ammonia produced in the reaction solution from the reaction solution. アンモニアを反応液から分離する方法が反応蒸留であることを特徴とする請求項6記載の方法。7. The method according to claim 6 , wherein the method for separating ammonia from the reaction solution is reactive distillation.
JP2000122454A 2000-04-24 2000-04-24 Microbiological production method that prevents coloring of glycine Expired - Lifetime JP4647059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122454A JP4647059B2 (en) 2000-04-24 2000-04-24 Microbiological production method that prevents coloring of glycine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122454A JP4647059B2 (en) 2000-04-24 2000-04-24 Microbiological production method that prevents coloring of glycine

Publications (2)

Publication Number Publication Date
JP2001299378A JP2001299378A (en) 2001-10-30
JP4647059B2 true JP4647059B2 (en) 2011-03-09

Family

ID=18632926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122454A Expired - Lifetime JP4647059B2 (en) 2000-04-24 2000-04-24 Microbiological production method that prevents coloring of glycine

Country Status (1)

Country Link
JP (1) JP4647059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153886A1 (en) 2008-06-20 2009-12-23 旭化成ケミカルズ株式会社 PROCESS FOR PRODUCING α-HYDROXY ACID

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1067094A (en) * 1975-08-07 1979-11-27 Sun Ventures Hydrolysis of aromatic nitriles to carboxylic acids
JPS5446720A (en) * 1977-09-22 1979-04-12 Showa Denko Kk Stabilization of aqueous glycinonitrile solution
JPS6039267B2 (en) * 1977-09-22 1985-09-05 昭和電工株式会社 How to stabilize glycinonitrile
JP2642466B2 (en) * 1989-01-25 1997-08-20 三井東圧化学株式会社 Method for producing aminoacetonitrile
JP2950896B2 (en) * 1990-03-30 1999-09-20 三菱レイヨン株式会社 Method for producing D-α-phenylglycine
JPH03280889A (en) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd Microorganic production of glycine
JPH04304892A (en) * 1991-03-29 1992-10-28 Nitto Chem Ind Co Ltd Biological production of glycine
JPH05310677A (en) * 1992-05-01 1993-11-22 Asahi Chem Ind Co Ltd Production of carbamic acid ester
JPH10179183A (en) * 1996-12-20 1998-07-07 Daicel Chem Ind Ltd Production of carboxylic acid

Also Published As

Publication number Publication date
JP2001299378A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
Asano et al. A new enzymatic method of acrylamide production
EP0449648B1 (en) Process for producing R(-)-mandelic acid and derivatives thereof
JP2664648B2 (en) Method for producing L-aspartic acid
JP4651258B2 (en) Method for producing glycine
JP2003199595A (en) Method for producing optically active mandelic acid derivative
JP3154646B2 (en) Microbial production of glycolic acid
JP2696424B2 (en) Method for producing R (-)-mandelic acid
FR2461753A1 (en) PROCESS FOR THE PREPARATION OF A CEPHALOSPORINE BY FERMENTATION AND MICROORGANISM FOR CARRYING OUT SAID METHOD
JP4647059B2 (en) Microbiological production method that prevents coloring of glycine
EP0450885A2 (en) Biological process for preparing glycine
JP4544685B2 (en) Microbiological production method preventing coloring of glycine
JP4544695B2 (en) Microbial production of glycine
JP4596593B2 (en) Microbiological production method in which coloring of glycine is prevented
JP4497659B2 (en) Method for microbiologically producing glycine
JP4497638B2 (en) Microbiological production method of glycine using reaction separation of ammonia
JPH09154589A (en) Production of erythritol
JP4560164B2 (en) Microbial production of glycine
US5382517A (en) Process for the preparation of L-serine by an enzymatic method
JP3705046B2 (en) Preparation of optically active 4-halogeno-1,3-butanediol and its derivatives by microorganisms
JPH04218385A (en) Production of r(-)-mandelic acid
JP2001340096A (en) Method for microbiologically producing glycine
JPH0740951B2 (en) Method for producing hydroxide of nitrogen-containing heterocyclic compound by microorganism
JPWO2004009829A1 (en) Method for producing methionine
JPH0728750B2 (en) Method for producing hydroxide of pyrazinic acid by microorganism
JP2002034584A (en) METHOD FOR PRODUCING AMMONIUM SALT OF alpha-HYDROXYACID

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term