JP2001194621A - Optical device - Google Patents
Optical deviceInfo
- Publication number
- JP2001194621A JP2001194621A JP2000005850A JP2000005850A JP2001194621A JP 2001194621 A JP2001194621 A JP 2001194621A JP 2000005850 A JP2000005850 A JP 2000005850A JP 2000005850 A JP2000005850 A JP 2000005850A JP 2001194621 A JP2001194621 A JP 2001194621A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- light
- incident
- optical
- optical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/435—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
- B41J2/447—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
- B41J2/45—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
- B41J2/451—Special optical means therefor, e.g. lenses, mirrors, focusing means
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Facsimile Heads (AREA)
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電子写真式光プリ
ンタ、デジタル複写機、ファクシミリ等の光書き込みヘ
ッドやスキャナ等の光読取ユニットに用いられるLED
アレイ、ELアレイ或いは光シャッタアレイ等を発光素
子アレイとして備える光学装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LED used for an optical writing head of an electrophotographic optical printer, a digital copying machine, a facsimile or the like, or an optical reading unit such as a scanner.
The present invention relates to an optical device including an array, an EL array, an optical shutter array, or the like as a light emitting element array.
【0002】[0002]
【従来の技術】近年におけるオフィスユースやパーソナ
ルユースの情報機器の発展により、電子写真式光プリン
タやスキャナ等では、より高解像度でコンパクトかつ安
価な装置の需要が高まっている。このような要求を満た
す機器の例としては、例えば、多数のLEDを配列させ
たLEDアレイを用いた電子写真式光プリンタ(LED
プリンタ)がある。この方式のプリンタは、LEDアレ
イを書込み光源とする固体走査型であるため、半導体レ
ーザを用いたラスタスキャニング方式の書込み光学系に
よる場合に比して機器を小型化しやい上に、振動や熱に
よる光学系の変形に強く、かつ、LEDアレイの各LE
Dが並列的に書込みを行うために高速出力化も比較的容
易に図れる等の利点を有する。2. Description of the Related Art With the development of information devices for office use and personal use in recent years, demands for higher resolution, compact and inexpensive devices for electrophotographic optical printers and scanners are increasing. As an example of a device satisfying such a demand, for example, an electrophotographic optical printer (LED) using an LED array in which a large number of LEDs are arranged
Printer). This type of printer is a solid-state scanning type using an LED array as a writing light source. Therefore, compared to a raster scanning type writing optical system using a semiconductor laser, the size of the device can be reduced, and vibration and heat can be reduced. Of the optical system due to the
Since D performs writing in parallel, there is an advantage that high-speed output can be achieved relatively easily.
【0003】従来用いられている光プリンタの書込み系
のドラム状の感光体と光学系を含んだ断面模式図を図7
に示す。LEDアレイ100からの出射光101は、等
倍結像光学系102を経由して、この等倍結像光学系1
02の視野内に入射した光だけが感光体103に集光
し、その感光面103aを露光する。FIG. 7 is a schematic cross-sectional view including a drum-shaped photosensitive member and an optical system of a writing system of a conventionally used optical printer.
Shown in The light 101 emitted from the LED array 100 passes through the same-magnification imaging optical system 102, and
Only the light that has entered the field of view 02 condenses on the photoconductor 103 and exposes the photoconductive surface 103a.
【0004】ここに、等倍結像光学系102は通常レン
ズアレイで構成され、レンズに対する入射角に依存して
収差が変動し、結像面である感光体103の像面がぼけ
たり位置ずれが生じたりする問題がある。LEDアレイ
100からの出射光101は、レンズアレイ(等倍結像
光学系102)のうち各LEDの主光線が通るレンズ
(通常はLEDに最も近いレンズ)とそれに近い複数の
レンズに入射する。このとき、主光線が通るレンズが最
も明るく、かつ、結像性能がよく、このレンズから離れ
るに従い結像性能が悪化し、結像面で像のぼけや位置ず
れ、不要なフレアが生じる。Here, the equal-magnification image forming optical system 102 is usually constituted by a lens array, the aberration varies depending on the incident angle with respect to the lens, and the image surface of the photosensitive member 103 as the image forming surface is blurred or misaligned. There is a problem that occurs. The light 101 emitted from the LED array 100 is incident on a lens (normally the lens closest to the LED) through which the principal ray of each LED passes and a plurality of lenses near the lens in the lens array (the same-magnification imaging optical system 102). At this time, the lens through which the principal ray passes is the brightest and has good image forming performance. As the lens moves away from the lens, the image forming performance deteriorates, and the image is blurred or displaced on the image forming surface, and unnecessary flare occurs.
【0005】このような光学的特性を改善するために、
等倍結像光学系102に入射する光の入射角を規定する
方法が提案されている。レンズアレイ(等倍結像光学系
102)の視野角より光101の入射角を狭めること
で、感光体103上の結像収差が改善されることが実験
的に確認されている。In order to improve such optical characteristics,
There has been proposed a method for defining an incident angle of light incident on the unity magnification imaging optical system 102. It has been experimentally confirmed that the imaging aberration on the photoconductor 103 is improved by making the incident angle of the light 101 narrower than the viewing angle of the lens array (the same magnification imaging optical system 102).
【0006】この方法を実現する構造として、例えば特
開平11−78115号公報に提案されている光源の放
射角を狭める構造を用いることができる。図8にその構
造例を示す。このLEDアレイヘッド110は発光素子
アレイ111の発光素子(LED)112の各々に反射
ミラー113からなる狭化光学系114を設けること
で、発光素子112の光の放射角を狭くかつ有効に等倍
結像光学系115に結合し、感光体の結像面116に結
像される。この時、発光素子112から放射された光は
直接光117aとして、或いは反射ミラー113で反射
された間接光117bとして放射される。この構成によ
れば、光源(発光素子112)の放射角が狭いため、レ
ンズアレイからなる等倍結像光学系115のうち限定さ
れたレンズにだけ光が入射させられるため、結像面11
6での結像劣化が抑制されることとなる。As a structure for realizing this method, for example, a structure for narrowing the radiation angle of a light source proposed in Japanese Patent Application Laid-Open No. H11-78115 can be used. FIG. 8 shows an example of the structure. The LED array head 110 has a narrowing optical system 114 including a reflection mirror 113 for each light emitting element (LED) 112 of the light emitting element array 111, so that the light emission angle of the light emitting element 112 is narrowed and effectively equalized. The light is coupled to the imaging optical system 115 and is imaged on the imaging surface 116 of the photoconductor. At this time, light emitted from the light emitting element 112 is emitted as direct light 117a or indirect light 117b reflected by the reflection mirror 113. According to this configuration, since the radiation angle of the light source (the light emitting element 112) is narrow, light is made to enter only a limited lens of the equal-magnification imaging optical system 115 composed of a lens array.
6 is suppressed.
【0007】一方、光が伝達できる光路に、アスペクト
比の大きな遮光板を並べて不要な角度の光を除去するL
EDアレイヘッド構造が特開平9−58052号公報に
より提案されている。その構造例を図9に示す。このL
EDアレイヘッドにおいては、LEDチップ120上の
LED素子群120aから放射された光は、レンズアレ
イ121のレンズ部121aに入射し、像が反転されて
感光体の結像面122上に結像される。LED素子群1
20aと各レンズ121aとの間には入射角を制限する
光遮光部材123が配置されており、そのため、不要な
方向の光がレンズ部121aに入射することを防止でき
る。On the other hand, a light shielding plate having a large aspect ratio is arranged on an optical path through which light can be transmitted to remove light at an unnecessary angle.
An ED array head structure has been proposed in Japanese Patent Application Laid-Open No. 9-58052. FIG. 9 shows an example of the structure. This L
In the ED array head, light emitted from the LED element group 120a on the LED chip 120 enters the lens portion 121a of the lens array 121, inverts the image, and forms an image on the image forming surface 122 of the photoconductor. You. LED element group 1
The light blocking member 123 for limiting the angle of incidence is disposed between the lens 20a and each lens 121a, so that light in an unnecessary direction can be prevented from entering the lens portion 121a.
【0008】さらに、類似の構造として、マイクロルー
バーを用いた例が特開平9−174932号公報により
提案されている。この提案例のLEDプリントバーは、
物面に並んだLED素子から放射される光の入射角を、
遮光性のマイクロルーバーアレイで制限して、等倍結像
光学系に入射させ、像面にLED素子の像を結像させる
ものである。Further, as a similar structure, an example using a microlouver has been proposed in Japanese Patent Application Laid-Open No. 9-174932. The LED print bar of this proposal example is
The incident angle of the light emitted from the LED elements
The light is limited by a light-shielding microlouver array, is incident on an equal-magnification imaging optical system, and forms an image of an LED element on an image plane.
【0009】[0009]
【発明が解決しようとする課題】ところが、図8に示し
た対応策による場合、従来の発光素子アレイそのままで
は実現できず、個別に狭化光学系114を設けることが
必要となる。即ち、発光素子アレイ自体に変更を要す
る。However, in the case of the countermeasure shown in FIG. 8, the conventional light emitting element array cannot be realized as it is, and it is necessary to separately provide the narrowing optical system 114. That is, the light emitting element array itself needs to be changed.
【0010】また、図9に示した対応策による場合、薄
板で形成された光遮光部材123を用いることにより入
射角を十分限定することができるが、レンズピッチPが
小さくなった場合、例えばP≦1mmの場合、光遮光部
材123の製造が難しくなる。また、このようなレンズ
ピッチの光遮光板からなる構造では、光遮光板の位置に
依存して光学系から見た入射光の入射角の制限特性が変
わり、遮光構造の入射角の変動周期に起因した結像劣化
が生ずる問題もある。In the case of the countermeasure shown in FIG. 9, the incident angle can be sufficiently limited by using the light shielding member 123 formed of a thin plate, but when the lens pitch P becomes small, for example, P When ≦ 1 mm, it becomes difficult to manufacture the light shielding member 123. Further, in the structure including the light shielding plate having such a lens pitch, the limiting characteristic of the incident angle of the incident light viewed from the optical system changes depending on the position of the light shielding plate, and the variation period of the incident angle of the light shielding structure varies. There is also a problem that imaging deterioration is caused.
【0011】特開平9−174932号公報例は、マイ
クロルーバー構造で焦点深度を改善することを目標とし
たものであり、マイクロルーバーアレイ次第で性能が変
わるが、マイクロルーバー構造は入射角制御にばらつき
があり、入射角を安定して狭くするには適した構造とは
言えない。Japanese Patent Application Laid-Open No. 9-174932 aims to improve the depth of focus with a micro louver structure, and the performance changes depending on the micro louver array. Therefore, the structure is not suitable for stably narrowing the incident angle.
【0012】そこで、本発明は、等倍結像光学系を構成
するレンズアレイに生じる、入射角に依存した結像の広
がりを抑制するために、等倍結像光学系に入射する光、
或いは出射される光の入射角を簡単な構造で制御するこ
とができる光書込みヘッド等の光学装置を提供すること
を目的とする。Accordingly, the present invention provides a method for suppressing the spread of an image depending on an incident angle, which is generated in a lens array constituting a unit-magnification imaging optical system.
Another object is to provide an optical device such as an optical writing head that can control the incident angle of emitted light with a simple structure.
【0013】[0013]
【課題を解決するための手段】請求項1記載の発明は、
発光素子アレイからの出射光を等倍結像光学系を介して
結像面に結像させる光学装置において、前記等倍結像光
学系に対する入射角又は前記等倍結像光学系からの出射
角を制御する光フィルタを前記等倍結像光学系の入射側
と出射側との少なくとも一方に配設した。According to the first aspect of the present invention,
In an optical device that forms an outgoing light from a light emitting element array on an image forming surface via an equal-magnification imaging optical system, an incident angle with respect to the equal-magnification imaging optical system or an emission angle from the equal-magnification imaging optical system Is disposed on at least one of the entrance side and the exit side of the same-magnification imaging optical system.
【0014】等倍結像光学系には入射角に依存する収差
が存在するため、入射角(又は、出射角)を制御する光
フィルタを等倍結像光学系と組合せることによって、感
光体面等の結像面上での結像ぼけが改善される。この
際、発光素子アレイ自体には何ら変更を要しない。ちな
みに、等倍結像光学系はレンズアレイで構成される場合
がほとんどであり、発光素子アレイとして通常のLED
アレイから放射される放射角の広い光を、レンズの視野
角内で集光する必要があり、入射角に依存した収差を考
慮して全体の集光性能が下がらないようにレンズが設計
されるが、レンズの球面収差のため、必ずしもレンズの
光軸上で収差が減少するとは限らず、レンズの光軸から
少しずれた入射角で結像性能を最大に設計する場合もあ
る。本発明の光フィルタによる入射角の制御はこのよう
な場合も考慮し、収差が最小になる入射角の光を優先的
に透過させて、等倍結像光学系と組合せて発光素子アレ
イの像を結像面に結像する場合の収差を最小にする。Since the same-magnification image forming optical system has an aberration depending on the incident angle, by combining an optical filter for controlling the incident angle (or the outgoing angle) with the same-magnification image forming optical system, the surface of the photosensitive member can be improved. Is improved on the imaging plane. At this time, no change is required for the light emitting element array itself. Incidentally, in many cases, the same-magnification imaging optical system is constituted by a lens array.
It is necessary to collect light with a wide radiation angle emitted from the array within the viewing angle of the lens, and the lens is designed so that the overall light-collecting performance does not decrease in consideration of the aberration depending on the incident angle. However, due to the spherical aberration of the lens, the aberration is not always reduced on the optical axis of the lens, and the imaging performance may be designed to be the maximum at an incident angle slightly shifted from the optical axis of the lens. The incident angle control by the optical filter of the present invention also takes such a case into consideration, and preferentially transmits light having an incident angle at which the aberration is minimized, and combines the same with an equal-magnification imaging optical system to form an image of a light emitting element array. Is minimized when the image is formed on the image plane.
【0015】請求項2記載の発明は、請求項1記載の光
学装置において、前記等倍結像素子がレンズアレイより
なり、前記光フィルタの制御する入射角が、前記レンズ
アレイの視野角より小さくて、入射位置の依存性を有し
ない。According to a second aspect of the present invention, in the optical device according to the first aspect, the equal-magnification image-forming element comprises a lens array, and an incident angle controlled by the optical filter is smaller than a viewing angle of the lens array. Therefore, there is no dependency on the incident position.
【0016】従来のレンズピッチの光遮光板からなる構
造では、光遮光板の位置に依存して光学系から見た入射
光の入射角の制限特性が変わる問題があったが、本発明
によれば、入射位置にほとんど依存しない特性を持たせ
ているので、等倍結像光学系であるレンズアレイの個々
のレンズから見た光学特性がレンズピッチで変動するこ
とはなく、このため、レンズの真ん中を通る光線と、レ
ンズ周辺を通る光線とが感じる入射角が変わらず、遮光
構造の場合のような入射角の変動周期に起因した結像劣
化が生じない。このように、入射角を制限し等倍結像光
学系の結像性能を向上させる光フィルタが、入射位置に
ほとんど依存せず入射角を制御できるため、取付け位置
精度が低くてよく光学装置の製造工程を簡略化させつ
つ、結像性能を向上させることができる。In the conventional structure comprising a light shielding plate having a lens pitch, there has been a problem that the characteristic of limiting the incident angle of incident light viewed from the optical system changes depending on the position of the light shielding plate. For example, since the lens has characteristics that are almost independent of the incident position, the optical characteristics viewed from the individual lenses of the lens array, which is a unit-magnification imaging optical system, do not fluctuate with the lens pitch. The incident angle perceived by the light passing through the center and the light passing through the periphery of the lens does not change, and the imaging deterioration caused by the fluctuation cycle of the incident angle as in the case of the light shielding structure does not occur. As described above, since the optical filter that limits the incident angle and improves the imaging performance of the unit-magnification imaging optical system can control the incident angle almost independently of the incident position, the mounting position accuracy can be low and the optical device can be used with a low accuracy. The imaging performance can be improved while simplifying the manufacturing process.
【0017】請求項3記載の発明は、請求項2記載の光
学装置において、前記光フィルタが、前記発光素子アレ
イから放射される出射光を前記レンズアレイのうち最近
接レンズだけに入射するようにその角度を制限する。According to a third aspect of the present invention, in the optical device according to the second aspect, the optical filter is configured such that light emitted from the light emitting element array is incident only on the closest lens of the lens array. Limit that angle.
【0018】等倍結像光学系として、一般的にLEDプ
リンタに用いられている屈折率分布型レンズアレイを用
いた場合を考える。屈折率分布型レンズアレイは通常2
列の俵詰み状に配置されており、そのうち隣接する3本
のレンズが、発光素子アレイの発光素子、例えば、LE
Dから見た最近接レンズである。この最近接レンズに入
射した光が最も明るく、最も結像劣化が少ない像を形成
する。本発明では、光フィルタの特性を特にレンズアレ
イのうち最近接レンズだけに入射するように入射角を制
限するようにしているため、非近接レンズを経由した収
差の大きな結像を除去し、結像面の像劣化を抑制するこ
とができる。即ち、レンズアレイのうち最も伝達効率も
結像性能もよいレンズだけを選択的に利用できるため、
伝達効率をそれほど落とさずに結像性能を向上させるこ
とができる。Consider a case where a gradient index lens array generally used in an LED printer is used as an equal magnification imaging optical system. A gradient index lens array is usually 2
The three lenses adjacent to each other are arranged in a bales in a row, and three adjacent lenses are light emitting elements of a light emitting element array, for example, LE.
This is the closest lens seen from D. The light incident on the closest lens forms the brightest image with the least image deterioration. In the present invention, the characteristic of the optical filter is limited to the incident angle so that the light is incident only on the closest lens of the lens array. Image degradation on the image plane can be suppressed. That is, since only the lens having the best transmission efficiency and the best imaging performance in the lens array can be selectively used,
The imaging performance can be improved without significantly lowering the transmission efficiency.
【0019】請求項4記載の発明は、請求項1ないし3
の何れか一に記載の光学装置において、前記光フィルタ
が、前記等倍結像光学系に対して前記発光素子アレイ側
に配設されている。The invention described in claim 4 is the first to third aspects of the present invention.
In the optical device according to any one of the above, the optical filter is disposed on the light emitting element array side with respect to the unit magnification imaging optical system.
【0020】発光素子アレイの発光素子、例えば、LE
Dの放射角は通常ランバート分布をしており、等倍結像
光学系の視野角に比べて十分広い放射特性となってい
る。そのため、光フィルタを入射側に設ける方が、始め
からレンズに不要な光を入射させないという点で望まし
い。等倍結像光学系の出射側に光フィルタを設けて、出
射角を制限してもある程度結像面での像収差を減少させ
ることができるが、入射側に設けることでフレア光を同
時に抑制できる。Light emitting elements of a light emitting element array, for example, LE
The emission angle of D usually has a Lambert distribution, and has emission characteristics that are sufficiently wider than the viewing angle of the 1 × imaging optical system. Therefore, it is desirable to provide an optical filter on the incident side in order to prevent unnecessary light from being incident on the lens from the beginning. An optical filter is provided on the exit side of the unity imaging optical system, and even if the exit angle is restricted, image aberration on the image plane can be reduced to some extent, but by providing it on the entrance side, flare light is suppressed at the same time. it can.
【0021】請求項5記載の発明は、請求項1ないし4
の何れか一記載の光学装置において、前記光フィルタ
が、多層薄膜からなる。[0021] The invention according to claim 5 is the invention according to claims 1 to 4.
In the optical device according to any one of the above, the optical filter includes a multilayer thin film.
【0022】透過率に入射角依存性をもたせた多層薄膜
を用いることにより、光の入射位置に依存せず入射角を
制御する構造が容易に実現できる。また、均一な特性を
容易に実現でき、光フィルタの位置合わせ工程を大幅に
簡略化できる。By using a multilayer thin film having a transmittance that is dependent on the incident angle, a structure for controlling the incident angle independently of the incident position of light can be easily realized. In addition, uniform characteristics can be easily realized, and the alignment process of the optical filter can be greatly simplified.
【0023】請求項6記載の発明は、請求項5記載の光
学装置において、前記等倍結像素子が屈折率分布型レン
ズアレイからなり、前記多層薄膜が前記屈折率分布型レ
ンズアレイの端面に直接積層形成されている。According to a sixth aspect of the present invention, in the optical device according to the fifth aspect, the equal-magnification imaging element is formed of a gradient index lens array, and the multilayer thin film is formed on an end face of the gradient index lens array. It is directly laminated.
【0024】等倍結像光学系である屈折率分布型レンズ
アレイを製造する時に、同時に入射角(又は、出射角)
を限定する多層薄膜をレンズ面に直接成膜することで、
光フィルタとレンズが一体になり、光学装置を製造上も
構造上も簡略化できる。When manufacturing a gradient index lens array which is an equal magnification image forming optical system, an incident angle (or an outgoing angle) is simultaneously determined.
By depositing a multilayer thin film directly on the lens surface,
Since the optical filter and the lens are integrated, the optical device can be simplified both in manufacturing and in structure.
【0025】請求項7記載の発明は、請求項5及び6記
載の光学装置において、前記光フィルタは、垂直入射条
件で、前記発光素子アレイの発光波長の最短波長で膜に
垂直入射した場合に透過率が最大で、長波長になるに従
って単調減少する透過率特性を有する。According to a seventh aspect of the present invention, in the optical device according to the fifth or sixth aspect, the optical filter is arranged such that the light filter is perpendicularly incident on the film at the shortest wavelength of the emission wavelength of the light emitting element array under a vertical incidence condition. It has a transmittance characteristic in which the transmittance is maximum and monotonically decreases as the wavelength becomes longer.
【0026】誘電体の多層薄膜に入射する光が垂直入射
からずれると、垂直入射の透過率の波長依存性が短波長
側にシフトする(多層薄膜から見て入射波長が長波長に
シフトして見える)ために、透過率特性の波長依存性が
長波長になるに従って概ね減衰傾向にあれば、垂直入射
条件の透過率より、斜め入射の透過率が小さくなる。そ
のため、このような透過率の波長依存性を持つ多層薄膜
を用いれば、入射角の制限を行なえる。When the light incident on the dielectric multilayer thin film deviates from normal incidence, the wavelength dependence of the transmittance at normal incidence shifts to a shorter wavelength side (the incident wavelength shifts to a longer wavelength when viewed from the multilayer thin film). (Visible), if the wavelength dependence of the transmittance characteristics is generally attenuated as the wavelength becomes longer, the transmittance at oblique incidence becomes smaller than the transmittance under normal incidence conditions. Therefore, if a multilayer thin film having such a wavelength dependence of transmittance is used, the incident angle can be limited.
【0027】即ち、垂直入射を0度とした入射角θで
は、実際の波長λoに対して多層薄膜から見た見掛け上
の波長λmは概ね λm=λo/cosθ のように長くなる。入射角が0度からθoまで変わるな
ら、多層薄膜から見て入射波長はλoからλo/cosθoま
で変わって見える。つまり、多層薄膜の透過率特性の波
長依存性が、λoからλo/cosθoまで概ね減衰傾向にあ
れば、入射波長λoの入射光に対して、垂直入射で透過
率が高く、角度θoの斜め入射に至るまで透過率が概ね
減少するため、この構成で入射角が制限されることがわ
かる。That is, at the incident angle θ where the normal incidence is 0 °, the apparent wavelength λm as viewed from the multilayer thin film becomes longer as compared with the actual wavelength λo, as in the general case of λm = λo / cosθ. If the incident angle changes from 0 degrees to θo, the incident wavelength looks from λo to λo / cosθo when viewed from the multilayer thin film. In other words, if the wavelength dependence of the transmittance characteristics of the multilayer thin film is generally attenuated from λo to λo / cos θo, the transmittance is high at normal incidence with respect to the incident light of the incident wavelength λo, and the oblique incidence at an angle θo It can be seen that the incidence angle is limited by this configuration because the transmittance is substantially reduced up to.
【0028】多層薄膜から見て最も短波長に見えるのは
垂直入射条件で入射する、発光素子アレイの発光波長の
最短波長の光であり、この波長で透過率を最大にして、
長波長になるに従って透過率が単調減少すれば、考慮し
ている発光素子アレイの波長範囲全域で、垂直入射に対
して斜め入射時の透過率が必ず単調減少し、入射角を制
限できるようになる。The light having the shortest wavelength as viewed from the multilayer thin film is light having the shortest wavelength of the emission wavelength of the light-emitting element array, which is incident under the vertical incidence condition, and the transmittance is maximized at this wavelength.
If the transmittance decreases monotonically as the wavelength becomes longer, the transmittance at oblique incidence with respect to vertical incidence always decreases monotonously over the entire wavelength range of the light emitting element array under consideration so that the incident angle can be limited. Become.
【0029】請求項8記載の発明は、請求項5及び6記
載の光学装置において、前記光フィルタは、前記発光素
子アレイの発光波長範囲内で、異なる波長の透過率の入
射角依存性が、入射角をθ、波長をλ1,λ2、透過率
の入射角依存性をT、波長だけに依存した定数をKとす
ると、 T(θ,λ1)=K(λ1,λ2)T(θ,λ2) なる波長だけに依存した定数倍の関係を有する。According to an eighth aspect of the present invention, in the optical device according to the fifth or sixth aspect, the optical filter has an incident angle dependency of transmittances of different wavelengths within a light emission wavelength range of the light emitting element array. Assuming that the incident angle is θ, the wavelength is λ1, λ2, the incident angle dependence of the transmittance is T, and the constant depending only on the wavelength is K, T (θ, λ1) = K (λ1, λ2) T (θ, λ2 ) It has a constant multiple relationship depending only on the wavelength.
【0030】もし、発光素子アレイの発光波長の範囲内
で、波長が異なることにより入射角依存性が定数倍でな
いならば、ある波長では斜め入射した光が透過率が高
く、それ以外の波長では透過率が低い、という状況が生
じる。等倍結像光学系には入射角に依存した収差が存在
するため、入射角依存性の差に起因した入射波長に依存
した収差の差が生じ、結像面における結像に色収差が生
じることになる。入射角依存性が波長だけに依存した定
数倍の関係ならば、多層薄膜に起因した入射角依存に起
因した色収差を除去できる。If the incident angle dependence is not a constant multiple due to different wavelengths within the range of the emission wavelength of the light emitting element array, obliquely incident light has a high transmittance at a certain wavelength, and has a high transmittance at other wavelengths. A situation arises in which the transmittance is low. Since the same-magnification imaging optical system has an aberration that depends on the incident angle, a difference in the aberration depending on the incident wavelength occurs due to the difference in the incident angle dependence, and chromatic aberration occurs in the image formed on the image plane. become. If the incident angle dependence is a multiple of a constant depending only on the wavelength, chromatic aberration due to the incident angle dependence due to the multilayer thin film can be removed.
【0031】請求項9記載の発明は、請求項8記載の光
学装置において、前記光フィルタは、入射波長に対して
長波長方向に減衰する指数関数型で近似できる透過率の
波長依存性を有する。According to a ninth aspect of the present invention, in the optical device according to the eighth aspect, the optical filter has a wavelength dependence of a transmittance which can be approximated by an exponential function that attenuates in the longer wavelength direction with respect to the incident wavelength. .
【0032】透過率Tの波長λ依存性がT(λ)で表わさ
れるとすると、波長λと入射角θiの関係λ(θi)から、
透過率の入射角依存性はT(λ(θi))となる。もし、波
長が変わっても入射角依存性の比が角度によらない(定
数倍)なら、2つの波長垂直をλa,λbとして、入射角依
存性がλa A(θ)となるので、 T(λa A(θ))/T(λb A(θ))=K(λa,λb) A(θ)=1/cosθ となる。右辺にθ依存性がないので、左辺を微分すると
ゼロでなければならない。そのため、 dT(λa A(θ))/dλ dA/dθ T(λb A(θ))=
T(λa A(θ)) dT(λb A(θ))/dλ dA/dθ が成り立つ。λaとλbの項に分割して dT(λa A(θ))/dλ/T(λa A(θ))=dT(λb
A(θ))/dλ/T(λb A(θ)) がλa,λbによらず成立しなくてはならないから、 dT/dλ/T=α αは波長によらない定数 となり、 T(λ)=C exp(α λ) と、波長スペクトルが指数型の関数形であれば、入射波
長が変わっても、入射角の形状が定数倍条件を保つ。こ
のように長波長方向に減衰する、入射波長に対して指数
関数型で近似できる光フィルタの透過率の波長依存性を
持たせているので、請求項8記載の発明の構造を通常の
発光波長を制御する薄膜の設計で実現できる。Assuming that the wavelength λ dependency of the transmittance T is represented by T (λ), from the relationship λ (θi) between the wavelength λ and the incident angle θi,
The incident angle dependency of the transmittance is T (λ (θi)). If the ratio of the incident angle dependence does not depend on the angle even if the wavelength changes (constant times), the incident angle dependence is λa A (θ), where λa and λb are two wavelength perpendiculars, so T ( λa A (θ)) / T (λb A (θ)) = K (λa, λb) A (θ) = 1 / cos θ Since the right side has no θ dependency, the left side must be zero when differentiated. Therefore, dT (λa A (θ)) / dλ dA / dθ T (λb A (θ)) =
T (λa A (θ)) dT (λb A (θ)) / dλ dA / dθ holds. Divided into terms of λa and λb, dT (λaA (θ)) / dλ / T (λaA (θ)) = dT (λb
A (θ)) / dλ / T (λb A (θ)) must be satisfied irrespective of λa and λb, so that dT / dλ / T = αα is a constant independent of wavelength, and T (λ ) = C exp (α λ), and if the wavelength spectrum is an exponential function type, the shape of the incident angle keeps the constant times condition even if the incident wavelength changes. Since the wavelength dependence of the transmittance of the optical filter, which attenuates in the long wavelength direction and can be approximated exponentially with respect to the incident wavelength, is provided, the structure of the invention according to claim 8 can be used for a normal emission wavelength. Can be realized by designing a thin film that controls
【0033】請求項10記載の発明は、請求項1ないし
9の何れか一に記載の光学装置において、前記結像面を
感光体面とし、前記発光素子アレイは前記感光体面に対
する書込み光を出射する。According to a tenth aspect of the present invention, in the optical device according to any one of the first to ninth aspects, the imaging surface is a photoconductor surface, and the light emitting element array emits writing light to the photoconductor surface. .
【0034】従って、感光体面に対して光書込みを行う
光書込みヘッドの場合に好適に適用できる。Therefore, the present invention can be suitably applied to an optical writing head for performing optical writing on the surface of the photosensitive member.
【0035】[0035]
【発明の実施の形態】本発明の第一の実施の形態を図1
ないし図4に基づいて説明する。本実施の形態の光学装
置は、LEDプリンタ等の光書込みヘッドへの適用例を
示す。FIG. 1 shows a first embodiment of the present invention.
A description will be given with reference to FIG. The optical device of the present embodiment shows an application example to an optical writing head such as an LED printer.
【0036】まず、プリント基板1上に実装された複数
個の面発光型LEDアレイチップ2の上に形成された個
別のLED3を備えるLEDアレイ4が発光素子アレイ
として設けられている。このLEDアレイ4と結像面と
なる感光体面5aを有するドラム状の感光体5との間に
は、多数のロッド状のレンズ6を配列させた等倍結像光
学系であるレンズアレイ7が配設され、さらに、レンズ
アレイ7の入射側(LEDアレイ4側)にはレンズアレ
イ7に対する入射角を制御するための光フィルタ8が配
設されている。First, an LED array 4 having individual LEDs 3 formed on a plurality of surface emitting LED array chips 2 mounted on a printed board 1 is provided as a light emitting element array. Between the LED array 4 and a drum-shaped photoreceptor 5 having a photoreceptor surface 5a serving as an image-forming surface, a lens array 7 which is an equal-magnification image-forming optical system in which a number of rod-shaped lenses 6 are arranged. Further, an optical filter 8 for controlling an incident angle with respect to the lens array 7 is provided on the incident side (the LED array 4 side) of the lens array 7.
【0037】これにより、概略的には、個々のLED3
から放射される光はレンズアレイ7に垂直に近い状態で
入射する光9a,9b等は光フィルタ8で反射されるこ
となくレンズアレイ7に入射して、感光体5の感光体面
5a上の結像位置10に結像する。一方、LED3から
放射される光のうちでその放射角が垂直からずれはじめ
ると、光9cのように光フィルタ8で反射されるので、
レンズアレイ7に入射しなくなる。そのためにレンズア
レイ7の個々のレンズ6に垂直入射しない光を減少させ
ることができ、結像位置10での光の広がりが抑制さ
れ、結像ぼけの少ない画像(潜像)を形成することがで
きる。As a result, roughly, each LED 3
Light 9a, 9b, etc., which is incident on the lens array 7 in a state almost perpendicular to the lens array 7, is incident on the lens array 7 without being reflected by the optical filter 8, and is formed on the photosensitive member surface 5a of the photosensitive member 5. An image is formed at an image position 10. On the other hand, when the emission angle of the light emitted from the LED 3 starts to deviate from the vertical, the light is reflected by the optical filter 8 as light 9c.
The light does not enter the lens array 7. Therefore, light that does not vertically enter the individual lenses 6 of the lens array 7 can be reduced, so that the spread of light at the image forming position 10 is suppressed, and an image (latent image) with less image blur can be formed. it can.
【0038】つづいて、各部分の詳細について説明す
る。LEDアレイチップ2はLED3が約24dot/
mm(=600dpi)なるピッチで並んでおり、LE
D3の発光波長は半値全幅で700nm〜720nmで
ある。等倍結像光学系を構成するレンズアレイ7には、
日本板硝子社製の屈折率分布型の2列のレンズアレイS
LA20Bが用いられており、その作動距離3.5m
m、各レンズ6の直径は0.9mm、レンズ6の視野角
は±22度である。Next, details of each part will be described. The LED array chip 2 has an LED 3 of about 24 dots /
mm (= 600 dpi).
The emission wavelength of D3 is 700 nm to 720 nm in full width at half maximum. The lens array 7 constituting the unity magnification optical system includes:
Nippon Sheet Glass two-row lens array S of refractive index distribution type
LA20B is used and its working distance is 3.5m
m, the diameter of each lens 6 is 0.9 mm, and the viewing angle of the lens 6 is ± 22 degrees.
【0039】光フィルタ8は、図2に示す拡大断面図の
ように、屈折率1.42で厚さ0.2mmの石英基板1
1の片面に反射率2%の無反射膜12を形成し、他方の
片面に透過ピーク波長が700nmに設計されたバンド
パスフィルタである誘電体多層薄膜13を形成してなる
積層構造体よりなる。誘電体多層薄膜13の構成は70
0nmの1/4波長に相当するSiO2膜(屈折率1.
42)とTiO2膜(屈折率2.5)を3ペア、1/2
波長の位相シフトSiO2膜、さらに1/4波長のTi
O2膜とSiO2膜を3ペアを石英基板11上に積層す
る。The optical filter 8 is a quartz substrate 1 having a refractive index of 1.42 and a thickness of 0.2 mm as shown in the enlarged sectional view of FIG.
1 has a laminated structure in which a non-reflective film 12 having a reflectivity of 2% is formed on one surface and a dielectric multilayer thin film 13 which is a bandpass filter designed to have a transmission peak wavelength of 700 nm is formed on the other surface. . The structure of the dielectric multilayer thin film 13 is 70
SiO 2 film corresponding to nm wavelength of 0 nm (refractive index 1.
42) and TiO 2 film (refractive index 2.5) 3 pairs, 1/2
Wavelength phase shift SiO 2 film, and 1/4 wavelength Ti
Three pairs of the O 2 film and the SiO 2 film are laminated on the quartz substrate 11.
【0040】このような構成の光フィルタ8の透過スペ
クトルを図3に示す。今考えている波長は700nmか
ら720nmまでであり、700nmで透過率が最大
で、長波長になるに従って光量が減少する。図3の透過
率は透過率を対数で表わしており、700nm〜720
nmの範囲ではほぼ直線で近似でき、波長に対して指数
関数的に透過率が減少している。そのため、図4に示す
光フィルタ8の角度依存性のように、700nmから7
20nmの範囲で、透過率の入射角依存性がほぼ定数倍
の関係が得られており、波長毎に透過率は変わるが、各
波長について角度依存性がほぼ定数倍なので、入射角に
依存した収差の改善は波長に依存しないことがわかる。FIG. 3 shows a transmission spectrum of the optical filter 8 having such a configuration. The wavelengths under consideration are from 700 nm to 720 nm, and the transmittance is maximum at 700 nm, and the light amount decreases as the wavelength increases. The transmittance in FIG. 3 represents the transmittance in logarithm, and is 700 nm to 720 nm.
In the range of nm, it can be approximated by a substantially straight line, and the transmittance decreases exponentially with respect to the wavelength. For this reason, as shown in FIG.
Within the range of 20 nm, the dependence of the transmittance on the incident angle is almost constant times, and the transmittance changes for each wavelength. However, since the angle dependence for each wavelength is almost a constant times, it depends on the incident angle. It can be seen that the aberration improvement does not depend on the wavelength.
【0041】即ち、垂直入射を0度とした入射角θで
は、実際の波長λoに対して誘電体多層薄膜13から見
た見掛け上の波長λmは概ね λm=λo/cosθ のように長くなる。入射角が0度からθoまで変わるな
ら、誘電体多層薄膜13から見て入射波長はλoからλo
/cosθoまで変わって見える。つまり、誘電体多層薄膜
13の透過率特性の波長依存性が、λoからλo/cosθo
まで概ね減衰傾向にあれば、入射波長λoの入射光に対
して、垂直入射で透過率が高く、角度θoの斜め入射に
至るまで透過率が概ね減少するため、この構成で入射角
が制限されることがわかる。誘電体多層薄膜13から見
て最も短波長に見えるのは垂直入射条件で入射する、L
ED3の発光波長の最短波長の光であり、この波長で透
過率を最大にして、長波長になるに従って透過率が単調
減少すれば、考慮しているLED3の波長範囲全域(7
00nm〜720nm)で、垂直入射に対して斜め入射
時の透過率が必ず単調減少し、入射角を制限できること
となる。That is, at the incident angle θ where the vertical incidence is 0 °, the apparent wavelength λm as viewed from the dielectric multilayer thin film 13 is longer than the actual wavelength λo, as in the general case of λm = λo / cosθ. If the incident angle changes from 0 degree to θo, the incident wavelength is λo to λo as viewed from the dielectric multilayer thin film 13.
/ Cosθo. That is, the wavelength dependence of the transmittance characteristic of the dielectric multilayer thin film 13 is changed from λo to λo / cosθo.
If the incident light has a tendency to attenuate generally, the incident light at the incident wavelength λo has a high transmittance at normal incidence and the transmittance substantially decreases until the oblique incidence at an angle θo, so the incident angle is limited by this configuration. You can see that When viewed from the dielectric multilayer thin film 13, the light having the shortest wavelength is incident under normal incidence conditions.
The light having the shortest wavelength of the emission wavelength of the ED 3. If the transmittance is maximized at this wavelength and the transmittance monotonously decreases as the wavelength becomes longer, the entire wavelength range of the LED 3 under consideration (7
(00 nm to 720 nm), the transmittance at the time of oblique incidence with respect to vertical incidence always decreases monotonously, and the angle of incidence can be limited.
【0042】レンズアレイ7の個々のレンズ6が直径
0.9mmで、レンズ6とLED3までの距離が3.5
mmであるので、最近接レンズを覆う放射角は約±14
度である。図4から分かるように、垂直入射に対して1
4度の入射角では、透過率が概ね60%まで減少する。
そのため、最近接レンズの外に配置されたレンズに斜め
に入射する光は光フィルタ8で弱められ、収差の増加を
抑制できることもわかる。Each lens 6 of the lens array 7 has a diameter of 0.9 mm, and the distance between the lens 6 and the LED 3 is 3.5.
mm, the radiation angle covering the closest lens is about ± 14.
Degrees. As can be seen from FIG. 4, 1 for normal incidence.
At an angle of incidence of 4 degrees, the transmittance decreases to approximately 60%.
Therefore, it can be seen that the light obliquely incident on the lens disposed outside the closest lens is weakened by the optical filter 8 and the increase in aberration can be suppressed.
【0043】本実施の形態では、光フィルタ8は放射角
(レンズアレイ7に対する入射角)を制限するので、光
フィルタ8の位置はLED3とレンズアレイ7の間であ
ればどこでも効果は同じであるが、実際に製造する場合
は、LEDアレイチップ2に重ねてLED3と一体化す
るか、レンズアレイ7に貼り合わせるて一体化すること
で、3つのばらばらのパーツではなく2つのパーツを組
合せるだけで位置合わせができるようにするのが望まし
い。光フィルタ8自身は石英基板11に誘電体多層薄膜
13を形成しただけの簡単な構造であり、LED3から
放射される光9の光軸に対して垂直方向へ位置がずれて
も全く影響ないことから、光フィルタ8の組付けは、位
置合わせ精度を要求しない簡単な工程となる。In the present embodiment, since the optical filter 8 limits the radiation angle (the incident angle with respect to the lens array 7), the effect of the optical filter 8 is the same everywhere between the LED 3 and the lens array 7. However, in the case of actual manufacturing, only two parts are combined instead of three separate parts by superimposing the LED array chip 2 and integrating it with the LED 3 or bonding and integrating the lens array 7 with the lens array 7. It is desirable to be able to perform positioning. The optical filter 8 itself has a simple structure in which the dielectric multilayer thin film 13 is formed on the quartz substrate 11. Even if the optical filter 8 is displaced in the direction perpendicular to the optical axis of the light 9 emitted from the LED 3, it has no effect. Therefore, the assembly of the optical filter 8 is a simple process that does not require alignment accuracy.
【0044】また、光フィルタ8はレンズアレイ7のL
ED3とは反対側(レンズアレイ7の出射側=感光体5
側)に設けても効果が期待できる。不要な入射角の光は
等倍結像光学系であるレンズアレイ7に入射する前に遮
光するのが望ましいが、等倍結像光学系の特性上、入射
したのと同じ角度で光が出射されるので、レンズ6の不
完全さのため等倍条件を満たさない光でない限り、等倍
結像光学系の出射側でも放射角(出射角)を制限するこ
とで、LED3側に設けた場合と同じく、結像系に大き
な角度で入射する光による結像ぼけを抑制することがで
きる。もちろん、レンズアレイ7の入射側と出射側との
両方に光フィルタ8を設けるようにしてもよい。The optical filter 8 is connected to the L of the lens array 7.
Opposite side to ED3 (emission side of lens array 7 = photoconductor 5)
Side), the effect can be expected. It is desirable that the light with an unnecessary incident angle be shielded before entering the lens array 7 which is the same-magnification imaging optical system. However, due to the characteristics of the equal-magnification imaging optical system, the light is emitted at the same angle as the incident light. Therefore, unless the light does not satisfy the same-magnification condition due to imperfection of the lens 6, the emission angle (emission angle) is also restricted on the emission side of the equal-magnification imaging optical system, so that the light is provided on the LED 3 side. Similarly to the above, it is possible to suppress the imaging blur due to the light incident on the imaging system at a large angle. Of course, the optical filters 8 may be provided on both the entrance side and the exit side of the lens array 7.
【0045】本発明の第二の実施の形態を図5に基づい
て説明する。第一の実施の形態で示した部分と同一部分
は同一符号を用いて示し、説明も省略する(以降の実施
の形態でも同様とする)。A second embodiment of the present invention will be described with reference to FIG. The same portions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted (the same applies to the following embodiments).
【0046】本実施の形態では、等倍結像光学系として
屈折率分布型レンズアレイ14が用いられ、この屈折率
分布型レンズアレイ14の端面、ここではLED3側な
る入射側端面に、光フィルタとなる誘電体多層薄膜15
を蒸着法により直接積層形成してなる。誘電体多層薄膜
15自体の構成は誘電体多層薄膜13の場合と同じであ
る。この他の構成は第一の実施の形態の場合と同様であ
る。In this embodiment, a gradient index lens array 14 is used as an equal-magnification image forming optical system, and an end face of the gradient index lens array 14, here, an incident end face on the LED 3 side, is provided with an optical filter. Dielectric multilayer thin film 15
Are directly laminated by an evaporation method. The configuration of the dielectric multilayer thin film 15 itself is the same as that of the dielectric multilayer thin film 13. Other configurations are the same as those in the first embodiment.
【0047】このような構成において、光フィルタであ
る誘電体多層薄膜15により、屈折率分布型レンズアレ
イ14への入射角の制限を行い、入射角の大きな光によ
り画像劣化を抑制しつつ、LEDアレイ4を使う上で配
置や使い方に関して何も変更を要しない利点がある。特
に、本実施の形態によれば、屈折率分布型レンズアレイ
14を製造する時に、同時に入射角を限定する誘電体多
層薄膜15を端面に直接成膜することで、光フィルタと
レンズアレイが一体となるため、光書込みヘッドを製造
上も構造上も簡略化できる。In such a configuration, the dielectric multilayer thin film 15 serving as an optical filter limits the incident angle to the gradient index lens array 14, and suppresses image degradation due to light having a large incident angle, while suppressing LED degradation. The advantage of using the array 4 is that no change is required in the arrangement or usage. In particular, according to the present embodiment, when the gradient index lens array 14 is manufactured, the dielectric filter and the lens array are integrally formed by simultaneously forming the dielectric multilayer thin film 15 for limiting the incident angle directly on the end face. Therefore, the optical writing head can be simplified both in manufacturing and in structure.
【0048】本発明の第三の実施の形態を図6に基づい
て説明する。本実施の形態は、第二の実施の形態におけ
るLEDアレイ4に代えて、端面発光型LEDアレイチ
ップ16を有するLEDアレイ17を発光素子アレイと
して用いたものである。この場合、半導体チップに対し
てLEDの放射方向が変わるため、屈折率分布型レンズ
アレイ14の取り付け方向が変更されており、同一のプ
リント基板18上に実装されている。A third embodiment of the present invention will be described with reference to FIG. In the present embodiment, an LED array 17 having an edge emitting LED array chip 16 is used as a light emitting element array instead of the LED array 4 in the second embodiment. In this case, since the radiation direction of the LED changes with respect to the semiconductor chip, the mounting direction of the gradient index lens array 14 is changed, and the LED array 14 is mounted on the same printed circuit board 18.
【0049】光フィルタの機能をもたらす誘電体多層薄
膜15によるバンドパスフィルタは、図3及び図4に示
したように、LEDの発光波長幅が狭いほど、波長依存
性が少なくなる。本実施の形態では、面発光LEDより
通常発光波長幅が狭いスラブ型導波路構造を持った端面
発光LEDアレイチップ16を用いて、同じ設計のバン
ドパスフィルタでも、LEDの波長範囲全域でより有効
に光量を利用できるようにしている。図4に示したよう
に、発光波長が700nmから720nmまで広がって
いる場合は、その透過率は長波長になるに従って低下
し、720nmでは25%まで減少している。導波路構
造を持たせることで、誘導放出成分が増加するため、L
EDの発光波長が狭まり、例えば700nmから710
nmまでの波長成分が主であるならば、誘電体多層薄膜
15(光フィルタ)の透過率を最小でも50%まで減ら
せるため、光フィルタの光伝達効率が上がり、有効に結
像点10まで光を導波させることができる。As shown in FIGS. 3 and 4, the bandpass filter using the dielectric multilayer thin film 15 having the function of an optical filter has a smaller wavelength dependence as the emission wavelength width of the LED is smaller. In the present embodiment, an edge emitting LED array chip 16 having a slab-type waveguide structure having a light emission wavelength width smaller than that of a surface emitting LED is used, and a bandpass filter of the same design is more effective over the entire wavelength range of the LED. To make use of the amount of light. As shown in FIG. 4, when the emission wavelength extends from 700 nm to 720 nm, the transmittance decreases as the wavelength increases, and decreases to 25% at 720 nm. Since the stimulated emission component is increased by providing the waveguide structure, L
The emission wavelength of the ED is narrowed, for example, from 700 nm to 710
If the wavelength component up to nm is mainly used, the transmittance of the dielectric multilayer thin film 15 (optical filter) can be reduced to at least 50%, so that the light transmission efficiency of the optical filter increases and the image point 10 can be effectively reached. Light can be guided.
【0050】なお、本実施の形態の端面発光LEDアレ
イチップ16に代えて、半導体レーザアレイを用いれ
ば、さらに発光の単色性が増すためより望ましい。It is more desirable to use a semiconductor laser array instead of the edge emitting LED array chip 16 of the present embodiment, since the monochromaticity of light emission is further increased.
【0051】[0051]
【発明の効果】請求項1記載の発明によれば、等倍結像
光学系に対する入射角又は等倍結像光学系からの出射角
を制御する光フィルタを等倍結像光学系の入射側と出射
側との少なくとも一方に配設したので、入射角又は出射
角を制御する光フィルタを等倍結像光学系と組合せるこ
とによって、感光体面等の結像面上での結像ぼけを改善
することができ、このために、発光素子アレイ自体には
何ら変更を要せず簡単な構造で実現できる。According to the first aspect of the present invention, an optical filter for controlling an incident angle with respect to an equal-magnification imaging optical system or an emission angle from the same-magnification imaging optical system is provided on the incident side of the equal-magnification imaging optical system. And at least one of the output side, by combining an optical filter for controlling the incident angle or the output angle with the same-magnification image forming optical system, the image blur on the image forming surface such as the photoreceptor surface is reduced. The light emitting device array itself can be realized with a simple structure without any change.
【0052】請求項2記載の発明によれば、請求項1記
載の光学装置において、等倍結像素子がレンズアレイよ
りなり、入射位置にほとんど依存しない特性を持たせて
いるので、取付け位置精度が低くてよく光学装置の製造
工程を簡略化させつつ、結像性能を向上させることがで
きる。According to the second aspect of the present invention, in the optical device according to the first aspect, since the unity-magnification imaging element is formed of a lens array and has a characteristic which is hardly dependent on the incident position, the mounting position accuracy is improved. The imaging performance can be improved while simplifying the manufacturing process of the optical device.
【0053】請求項3記載の発明によれば、請求項2記
載の光学装置において、光フィルタが、発光素子アレイ
から放射される出射光をレンズアレイのうち最近接レン
ズだけに入射するようにその角度を制限することで、レ
ンズアレイのうち最も伝達効率も結像性能もよいレンズ
だけを選択的に利用できるため、伝達効率をそれほど落
とさずに結像性能を向上させることができる。According to the third aspect of the present invention, in the optical device according to the second aspect, the optical filter is so arranged that the light emitted from the light emitting element array is made to enter only the closest lens of the lens array. By limiting the angle, only the lens having the best transmission efficiency and the best imaging performance in the lens array can be selectively used, so that the imaging performance can be improved without significantly lowering the transmission efficiency.
【0054】請求項4記載の発明によれば、請求項1な
いし3の何れか一に記載の光学装置において、光フィル
タが、等倍結像光学系に対して発光素子アレイ側に配設
されているので、始めからレンズに不要な光を入射させ
ないことができる上に、フレア光を同時に抑制すること
ができる。According to a fourth aspect of the present invention, in the optical device according to any one of the first to third aspects, the optical filter is provided on the light emitting element array side with respect to the unity magnification optical system. Therefore, unnecessary light can be prevented from being incident on the lens from the beginning, and flare light can be suppressed at the same time.
【0055】請求項5記載の発明によれば、請求項1な
いし4の何れか一記載の光学装置において、光フィルタ
として透過率に入射角依存性をもたせた多層薄膜を用い
ることにより、光の入射位置に依存せず入射角を制御す
る構造が容易に実現でき、かつ、均一な特性を容易に実
現でき、光フィルタの位置合わせ工程を大幅に簡略化で
きる。According to the fifth aspect of the present invention, in the optical device according to any one of the first to fourth aspects, by using a multilayer thin film having a transmittance having an incident angle dependence as an optical filter, the optical filter can be used. A structure for controlling the incident angle independently of the incident position can be easily realized, and uniform characteristics can be easily realized, and the alignment process of the optical filter can be greatly simplified.
【0056】請求項6記載の発明によれば、請求項5記
載の光学装置において、等倍結像光学系である屈折率分
布型レンズアレイを製造する時に、同時に入射角を限定
する多層薄膜をレンズ面に直接成膜することで、光フィ
ルタとレンズが一体になり、光学装置を製造上も構造上
も簡略化することができる。According to a sixth aspect of the present invention, in the optical device according to the fifth aspect, when manufacturing a gradient index lens array which is an equal-magnification image forming optical system, a multilayer thin film for simultaneously limiting an incident angle is formed. By forming a film directly on the lens surface, the optical filter and the lens are integrated, and the optical device can be simplified in terms of manufacturing and structure.
【0057】請求項7記載の発明によれば、請求項5及
び6記載の光学装置において、光フィルタが、垂直入射
条件で、発光素子アレイの発光波長の最短波長で膜に垂
直入射した場合に透過率が最大で、長波長になるに従っ
て単調減少する透過率特性を有するので、このような透
過率の波長依存性を持つ多層薄膜を用いることにより、
入射角の制限を行なえる。According to a seventh aspect of the present invention, in the optical device according to the fifth and sixth aspects, the optical filter is arranged such that, under the vertical incidence condition, the optical filter is vertically incident on the film at the shortest wavelength of the emission wavelength of the light emitting element array. Since the transmittance is maximum and has a transmittance characteristic that monotonically decreases as the wavelength becomes longer, by using a multilayer thin film having such a wavelength dependency of the transmittance,
The angle of incidence can be limited.
【0058】請求項8記載の発明は、請求項5及び6記
載の光学装置において、前記光フィルタは、前記発光素
子アレイの発光波長範囲内で、異なる波長の透過率の入
射角依存性が、入射角をθ、波長をλ1,λ2、透過率
の入射角依存性をT、波長だけに依存した定数をKとす
ると、 T(θ,λ1)=K(λ1,λ2)T(θ,λ2) なる波長だけに依存した定数倍の関係を有する。According to an eighth aspect of the present invention, in the optical device according to the fifth or sixth aspect, the optical filter has an incident angle dependency of transmittances of different wavelengths within a light emission wavelength range of the light emitting element array. Assuming that the incident angle is θ, the wavelength is λ1, λ2, the incident angle dependence of the transmittance is T, and the constant depending only on the wavelength is K, T (θ, λ1) = K (λ1, λ2) T (θ, λ2 ) It has a constant multiple relationship depending only on the wavelength.
【0059】請求項9記載の発明によれば、請求項8記
載の光学装置において、光フィルタが、入射波長に対し
て長波長方向に減衰する指数関数型で近似できる透過率
の波長依存性を有するので、請求項8記載の発明の構造
を通常の発光波長を制御する薄膜の設計で実現できる。According to the ninth aspect of the present invention, in the optical device according to the eighth aspect, the optical filter has a wavelength dependence of a transmittance which can be approximated by an exponential function attenuating in the longer wavelength direction with respect to the incident wavelength. Therefore, the structure of the invention described in claim 8 can be realized by designing a thin film for controlling a normal emission wavelength.
【0060】請求項10記載の発明によれば、請求項1
ないし9の何れか一に記載の光学装置において、結像面
を感光体面とし、発光素子アレイは前記感光体面に対す
る書込み光を出射するようにしたので、感光体面に対し
て光書込みを行う光書込みヘッドの場合に好適に適用で
きる。According to the tenth aspect, the first aspect is provided.
10. The optical device according to any one of claims 9 to 9, wherein the imaging surface is a photoconductor surface, and the light emitting element array emits writing light to the photoconductor surface. It can be suitably applied to a head.
【図1】本発明の第一の実施の形態のLEDプリンタの
書込み部構成を示す概略斜視図である。FIG. 1 is a schematic perspective view illustrating a configuration of a writing unit of an LED printer according to a first embodiment of the present invention.
【図2】その光フィルタの構造を示す拡大断面図であ
る。FIG. 2 is an enlarged sectional view showing the structure of the optical filter.
【図3】その光フィルタの透過スペクトルを示す特性図
である。FIG. 3 is a characteristic diagram showing a transmission spectrum of the optical filter.
【図4】光フィルタの透過率の角度依存性を示す特性図
である。FIG. 4 is a characteristic diagram showing the angle dependence of the transmittance of an optical filter.
【図5】本発明の第二の実施の形態のLEDプリンタの
書込み部構成を示す概略側面図である。FIG. 5 is a schematic side view illustrating a configuration of a writing unit of the LED printer according to the second embodiment of the present invention.
【図6】本発明の第三の実施の形態のLEDプリンタの
書込み部構成を示す概略側面図である。FIG. 6 is a schematic side view illustrating a writing unit configuration of an LED printer according to a third embodiment of the present invention.
【図7】LEDプリンタの基本的構成例を示す概略正面
図である。FIG. 7 is a schematic front view showing a basic configuration example of the LED printer.
【図8】第一の従来例の構成例を示す概略側面図であ
る。FIG. 8 is a schematic side view showing a configuration example of a first conventional example.
【図9】第二の従来例の構成例を示す概略側面図であ
る。FIG. 9 is a schematic side view showing a configuration example of a second conventional example.
4 発光素子アレイ 5a 結像面 7 レンズアレイ=等倍結像光学系 8 光フィルタ 13 多層薄膜 14 屈折率分布型レンズアレイ=等倍結像光学系 15 多層薄膜=光フィルタ 17 発光素子アレイ Reference Signs List 4 light emitting element array 5a image forming surface 7 lens array = equal magnification imaging optical system 8 optical filter 13 multilayer thin film 14 refractive index distribution type lens array = equal magnification imaging optical system 15 multilayer thin film = optical filter 17 light emitting element array
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H04N 1/036 Fターム(参考) 2C162 AE28 FA04 FA17 FA43 FA45 FA50 5C051 AA02 CA08 DA03 DB02 DB22 DB23 DB29 DC04 DC05 DC07 FA01 5F041 AA31 CA12 CB22 DB07 EE11 EE22 FF13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H04N 1/036 F term (Reference) 2C162 AE28 FA04 FA17 FA43 FA45 FA50 5C051 AA02 CA08 DA03 DB02 DB22 DB23 DB29 DC04 DC05 DC07 FA01 5F041 AA31 CA12 CB22 DB07 EE11 EE22 FF13
Claims (10)
光学系を介して結像面に結像させる光学装置において、 前記等倍結像光学系に対する入射角又は前記等倍結像光
学系からの出射角を制御する光フィルタを前記等倍結像
光学系の入射側と出射側との少なくとも一方に配設した
ことを特徴とする光学装置。1. An optical device for imaging light emitted from a light-emitting element array onto an image forming surface via an equal-magnification imaging optical system, wherein an incident angle with respect to the equal-magnification imaging optical system or the equal-magnification imaging optics An optical device, wherein an optical filter for controlling an exit angle from a system is disposed on at least one of an entrance side and an exit side of the same-magnification imaging optical system.
り、前記光フィルタの制御する入射角が、前記レンズア
レイの視野角より小さくて、入射位置の依存性を有しな
いことを特徴とする請求項1記載の光学装置。2. The image pickup apparatus according to claim 1, wherein the equal-magnification imaging element is formed of a lens array, and an incident angle controlled by the optical filter is smaller than a viewing angle of the lens array, and has no dependency on an incident position. The optical device according to claim 1.
から放射される出射光を前記レンズアレイのうち最近接
レンズだけに入射するようにその角度を制限することを
特徴とする請求項2記載の光学装置。3. The optical filter according to claim 2, wherein the optical filter limits an angle of the outgoing light emitted from the light emitting element array so as to be incident only on a closest lens of the lens array. Optical device.
に対して前記発光素子アレイ側に配設されていることを
特徴とする請求項1ないし3の何れか一記載の光学装
置。4. The optical device according to claim 1, wherein the optical filter is disposed on the light emitting element array side with respect to the unit magnification imaging optical system.
とを特徴とする請求項1ないし4の何れか一に記載の光
学装置。5. The optical device according to claim 1, wherein the optical filter is formed of a multilayer thin film.
アレイからなり、前記多層薄膜が前記屈折率分布型レン
ズアレイの端面に直接積層形成されていることを特徴と
する請求項5記載の光学装置。6. The image forming apparatus according to claim 5, wherein the equal-magnification image-forming element comprises a gradient index lens array, and the multilayer thin film is formed directly on an end face of the gradient index lens array. Optical device.
記発光素子アレイの発光波長の最短波長で膜に垂直入射
した場合に透過率が最大で、長波長になるに従って単調
減少する透過率特性を有することを特徴とする請求項5
及び6記載の光学装置。7. The transmittance characteristic of the optical filter is such that the transmittance is maximum when vertically incident on the film at the shortest wavelength of the light emission wavelength of the light emitting element array under the vertical incidence condition, and monotonically decreases as the wavelength becomes longer. 6. The method according to claim 5, wherein
7. The optical device according to claim 6.
の発光波長範囲内で、異なる波長の透過率の入射角依存
性が、入射角をθ、波長をλ1,λ2、透過率の入射角
依存性をT、波長だけに依存した定数をKとすると、 T(θ,λ1)=K(λ1,λ2)T(θ,λ2) なる波長だけに依存した定数倍の関係を有することを特
徴とする請求項5及び6記載の光学装置。8. The optical filter according to claim 1, wherein, within the emission wavelength range of the light emitting element array, the incident angle dependence of the transmittance of different wavelengths is such that the incident angle is θ, the wavelength is λ1, λ2, and the transmittance is incident angle dependence. Where T is a property that depends only on the wavelength and K is a constant that depends only on the wavelength, T (θ, λ1) = K (λ1, λ2) T (θ, λ2) The optical device according to claim 5, wherein:
波長方向に減衰する指数関数型で近似できる透過率の波
長依存性を有することを特徴とする請求項8記載の光学
装置。9. The optical device according to claim 8, wherein the optical filter has a wavelength dependence of transmittance that can be approximated by an exponential function type that attenuates in the longer wavelength direction with respect to an incident wavelength.
素子アレイは前記感光体面に対する書込み光を出射する
ことを特徴とする請求項1ないし9の何れか一に記載の
光学装置。10. The optical device according to claim 1, wherein the image forming surface is a photoconductor surface, and the light emitting element array emits writing light to the photoconductor surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000005850A JP2001194621A (en) | 2000-01-07 | 2000-01-07 | Optical device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000005850A JP2001194621A (en) | 2000-01-07 | 2000-01-07 | Optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001194621A true JP2001194621A (en) | 2001-07-19 |
Family
ID=18534471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000005850A Pending JP2001194621A (en) | 2000-01-07 | 2000-01-07 | Optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001194621A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007061638A1 (en) * | 2005-11-22 | 2007-05-31 | 3M Innovative Properties Company | Arrays of optical elements and method of manufacturing same |
JP2008036938A (en) * | 2006-08-04 | 2008-02-21 | Seiko Epson Corp | Line head and image forming apparatus using the same |
JP2008110596A (en) * | 2006-10-03 | 2008-05-15 | Seiko Epson Corp | Line head and image formation device using it |
JP2008132760A (en) * | 2006-10-26 | 2008-06-12 | Seiko Epson Corp | Line head and image formation device using it |
JP2008201123A (en) * | 2007-01-26 | 2008-09-04 | Seiko Epson Corp | Printing head and image forming apparatus using it |
JP2009056796A (en) * | 2007-08-07 | 2009-03-19 | Seiko Epson Corp | Exposure head and image formation apparatus using the same |
JP2009056795A (en) * | 2007-08-07 | 2009-03-19 | Seiko Epson Corp | Image forming device, image forming method, and exposure head |
JP2017177484A (en) * | 2016-03-30 | 2017-10-05 | 株式会社沖データ | Exposure device, image reading device, and image forming device |
-
2000
- 2000-01-07 JP JP2000005850A patent/JP2001194621A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007061638A1 (en) * | 2005-11-22 | 2007-05-31 | 3M Innovative Properties Company | Arrays of optical elements and method of manufacturing same |
JP2008036938A (en) * | 2006-08-04 | 2008-02-21 | Seiko Epson Corp | Line head and image forming apparatus using the same |
JP2008110596A (en) * | 2006-10-03 | 2008-05-15 | Seiko Epson Corp | Line head and image formation device using it |
JP2008132760A (en) * | 2006-10-26 | 2008-06-12 | Seiko Epson Corp | Line head and image formation device using it |
JP2008201123A (en) * | 2007-01-26 | 2008-09-04 | Seiko Epson Corp | Printing head and image forming apparatus using it |
JP2009056796A (en) * | 2007-08-07 | 2009-03-19 | Seiko Epson Corp | Exposure head and image formation apparatus using the same |
JP2009056795A (en) * | 2007-08-07 | 2009-03-19 | Seiko Epson Corp | Image forming device, image forming method, and exposure head |
JP2017177484A (en) * | 2016-03-30 | 2017-10-05 | 株式会社沖データ | Exposure device, image reading device, and image forming device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6047107B2 (en) | Optical scanning device and image forming apparatus having the same | |
JP2001150715A (en) | Optical printing head and image-forming apparatus using the same | |
JP2004126192A (en) | Optical scanner and image forming apparatus using the same | |
JP2002328323A (en) | Optical scanner | |
JP2001194621A (en) | Optical device | |
JP4862905B2 (en) | Condensing element, condensing element array, exposure apparatus, and image forming apparatus | |
JP4817668B2 (en) | Optical scanning device | |
JP2000171741A (en) | Optical scanner | |
JP3495583B2 (en) | Optical device | |
JP5381258B2 (en) | Exposure apparatus and image forming apparatus | |
JP5661507B2 (en) | Scanning optical device and image forming apparatus using the same | |
JP5511226B2 (en) | Scanning optical device and image forming apparatus using the same | |
JP5760550B2 (en) | Exposure apparatus and image forming apparatus | |
JP3365869B2 (en) | Scanning optical system | |
JPH10181089A (en) | Optical apparatus | |
JP2002333585A (en) | Scanning optical device and image forming device using the same | |
JP2002131671A (en) | Optical scanner and image forming apparatus | |
JP4384372B2 (en) | Scanning optical apparatus and image forming apparatus | |
JP3700349B2 (en) | Optical recording device | |
JP2005091966A (en) | Optical scanner and color image forming apparatus using it | |
JP3895123B2 (en) | Image writing apparatus and light source unit thereof | |
JP2002062407A (en) | Image formation element array | |
JPH11160557A (en) | Light source of electrophotogtraphic device and electrophotographic device using the light source | |
JP2006133637A (en) | Optical scanner and image forming apparatus using same | |
US20020044357A1 (en) | Imaging element and image reading apparatus |