JP2000205945A - Infrared line sensor - Google Patents
Infrared line sensorInfo
- Publication number
- JP2000205945A JP2000205945A JP11002328A JP232899A JP2000205945A JP 2000205945 A JP2000205945 A JP 2000205945A JP 11002328 A JP11002328 A JP 11002328A JP 232899 A JP232899 A JP 232899A JP 2000205945 A JP2000205945 A JP 2000205945A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- detection
- detecting element
- infrared detecting
- row
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、複数の赤外線検
出素子を配列して構成される赤外線ラインセンサに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared line sensor constituted by arranging a plurality of infrared detecting elements.
【0002】[0002]
【従来の技術】赤外線ラインセンサとして、例えば熱型
赤外線検出素子を一列に配置して構成されるものが用い
られている。しかしこのような構成では、隣接する赤外
線検出素子の検出領域の間に不検出領域が形成される。
これは以下の理由による。2. Description of the Related Art As an infrared line sensor, for example, a sensor configured by arranging thermal infrared detecting elements in a line is used. However, in such a configuration, a non-detection area is formed between detection areas of adjacent infrared detection elements.
This is for the following reason.
【0003】図7、図8は熱型赤外線検出素子の構造を
示す図である。図7は上面図で、図8は図7におけるA
−A断面の拡大図である。半導体基板1上に、熱伝導性
の低いダイアフラム3が形成されている。ダイアフラム
3上に、サーモパイルとなる8組のp型半導体4とn型
半導体5とが帯状のパターンをもって、2組ずつ並べて
十字型に配設されている。半導体基板のB辺側にある出
力端子9、10と接続される1組のn型半導体とp型半
導体から、隣接するn型半導体とp型半導体が金属電極
7、8によって順次接続されている。内側にある金属電
極7は温接点、外側にある金属電極8は冷接点となる。FIGS. 7 and 8 show the structure of a thermal infrared detecting element. FIG. 7 is a top view, and FIG.
It is an enlarged view of -A section. A diaphragm 3 having low thermal conductivity is formed on a semiconductor substrate 1. Eight sets of p-type semiconductors 4 and n-type semiconductors 5 serving as thermopiles are arranged on the diaphragm 3 in a cross shape by arranging two sets each having a band-like pattern. From a set of n-type semiconductors and p-type semiconductors connected to output terminals 9 and 10 on the side B of the semiconductor substrate, adjacent n-type semiconductors and p-type semiconductors are sequentially connected by metal electrodes 7 and 8. . The inner metal electrode 7 is a hot junction and the outer metal electrode 8 is a cold junction.
【0004】赤外線の検出信号は、温接点と冷接点の温
度差に比例するため、温接点と冷接点の熱分離をよくす
るように、エッチング穴6からエッチングして冷接点下
方の周辺部を除いて半導体基板の一部を除去し、ダイア
フラムを半導体基板から分離する空洞部2が形成されて
いる。赤外線を吸収する赤外線吸収部26が空洞部2よ
り小さく絶縁層11、17を挟んで金属電極7による温
接点をカバーするように形成されている。なお、図7に
おいては、サーモパイルの構造を示すため、赤外線吸収
部26をとり、その位置を仮想線で示している。このよ
うに熱型赤外線検出素子は、構造上熱分離のための空洞
部を有し、赤外線を吸収する赤外線吸収部が空洞部領域
内に設けられるから、赤外線吸収部が占める領域が検出
領域となり、その周辺領域は不検出領域となる。[0004] Since the infrared detection signal is proportional to the temperature difference between the hot junction and the cold junction, it is etched from the etching hole 6 so as to improve the thermal separation between the hot junction and the cold junction. Except for removing a part of the semiconductor substrate, a cavity 2 for separating the diaphragm from the semiconductor substrate is formed. An infrared absorbing portion 26 that absorbs infrared light is formed smaller than the cavity 2 so as to cover the hot junction formed by the metal electrode 7 with the insulating layers 11 and 17 interposed therebetween. In FIG. 7, in order to show the structure of the thermopile, the infrared absorbing portion 26 is taken and its position is shown by a virtual line. As described above, the thermal type infrared detecting element has a cavity for heat separation structurally, and the infrared absorbing section for absorbing infrared light is provided in the cavity area, so that the area occupied by the infrared absorbing section is the detection area. , Its surrounding area becomes a non-detection area.
【0005】[0005]
【発明が解決しようとする課題】このため、各熱型赤外
線検出素子を、赤外線吸収部を有する検出面を同じ面に
揃えて一列に並べ構成される赤外線ラインセンサでは、
その赤外線検出面に、図9の(a)に示すように、隣接
する各赤外線検出素子20の検出領域12の間に周辺領
域27が作る不検出領域Xが形成される。Therefore, in the infrared line sensor in which the thermal infrared detecting elements are arranged in a line with the detecting surfaces having infrared absorbing portions aligned on the same surface,
As shown in FIG. 9A, a non-detection area X formed by the peripheral area 27 between the detection areas 12 of the adjacent infrared detection elements 20 is formed on the infrared detection surface.
【0006】赤外線ラインセンサが列に対して垂直の走
査方向へ走査して赤外線を検出するとき、その走査領域
に、図9の(b)のように、各赤外線検出素子の検出領
域12に対応した走査領域20’からのみ出力信号が得
られ、不検出領域によって、各走査領域20’の間は出
力信号のとれないデッドエリアDとなる。このデッドエ
リアの発生によって、その間の赤外線が検出されなくな
ってしまい、従って所定の面積での検出可能な面積(検
出領域)に限界があり、検出感度を向上できないという
問題を有している。本発明は、上記従来の問題に鑑み、
デッドエリアのない赤外線ラインセンサを提供すること
を目的としている。When the infrared line sensor detects infrared rays by scanning in a scanning direction perpendicular to the column, the scanning area corresponds to the detection area 12 of each infrared detection element as shown in FIG. An output signal is obtained only from the scanned area 20 ', and a dead area D where no output signal is obtained between the scan areas 20' due to the non-detection area. Due to the generation of the dead area, infrared rays are not detected during the dead area. Therefore, the detectable area (detection area) in a predetermined area is limited, and there is a problem that the detection sensitivity cannot be improved. The present invention has been made in view of the above conventional problems,
It is intended to provide an infrared line sensor having no dead area.
【0007】[0007]
【課題を解決するための手段】このため請求項1記載の
発明は、素子の長さよりも短い検出領域を有する複数の
赤外線検出素子を配列した赤外線検出素子列を平行に複
数列設け、前記赤外線検出素子列を走査方向から見たと
き、各赤外線検出素子列における赤外線検出素子間の不
検出領域に、他の赤外線検出素子列の検出領域が位置す
るように、各赤外線検出素子列をずらして配置したもの
とした。According to the present invention, a plurality of infrared detecting element rows in which a plurality of infrared detecting elements having a detecting area shorter than the element length are arranged are provided in parallel, When the detection element rows are viewed from the scanning direction, each infrared detection element row is shifted so that the detection area of another infrared detection element row is located in the non-detection area between the infrared detection elements in each infrared detection element row. It was arranged.
【0008】請求項2記載の発明は、前記赤外線検出素
子列の不検出領域と検出領域の大きさに対応して赤外線
検出素子列数が設定され、各赤外線検出素子列を順次ず
らして配置したものとした。In the invention according to claim 2, the number of infrared detecting element rows is set according to the size of the non-detection area and the detection area of the infrared detecting element row, and the infrared detecting element rows are sequentially shifted. It was taken.
【0009】請求項3記載の発明は、前記走査方向から
見たとき、前記各赤外線検出素子列の検出領域が重なら
ないように、各赤外線素子列における赤外線検出素子間
の間隔を設定したものとした。According to a third aspect of the present invention, the intervals between the infrared detecting elements in each infrared detecting element row are set so that the detection areas of the respective infrared detecting element rows do not overlap when viewed from the scanning direction. did.
【0010】請求項4記載の発明は、半導体基板の表面
に熱伝導性の低いダイアフラムが設けられ、該ダイアフ
ラムの表面に所定の間隔を隔てて複数列の赤外線吸収部
列を並べ、該赤外線吸収部列に対して垂直の走査方向か
ら見たとき、各赤外線吸収部列における赤外線吸収部間
の不検出領域に、他の赤外線吸収部列の赤外線吸収部が
位置し、隣接する前記赤外線吸収部の対向する辺部が同
じ直線上に来るように設定され、前記半導体基板には前
記ダイアフラムの下に前記赤外線吸収部列を包含する空
洞部が形成され、前記ダイアフラム上には赤外線吸収部
側に温接点、空洞部以外の周辺部側に冷接点を位置させ
たサーモパイルが前記走査方向に形成され、前記各赤外
線吸収部の列方向両側には前記空洞部に貫通する貫通穴
が形成されて、前記赤外線吸収部とその両側のサーモパ
イルが1つの赤外線検出素子として構成され、赤外線吸
収部が占める領域を赤外線の検出領域とする複数の赤外
線検出素子を1つの半導体基板に集積したものとした。According to a fourth aspect of the present invention, a diaphragm having low thermal conductivity is provided on the surface of the semiconductor substrate, and a plurality of infrared absorbing sections are arranged at predetermined intervals on the surface of the diaphragm. When viewed from a scanning direction perpendicular to the row, the infrared absorption sections of the other infrared absorption section rows are located in the non-detection areas between the infrared absorption sections in each infrared absorption section row, and the adjacent infrared absorption sections Are set so that opposing sides thereof are on the same straight line, and a cavity is formed in the semiconductor substrate under the diaphragm so as to include the array of infrared absorbing parts. Hot junction, a thermopile having a cold junction located on the peripheral side other than the cavity is formed in the scanning direction, and a through-hole penetrating through the cavity is formed on both sides in the column direction of each of the infrared absorbing sections, Previous Infrared absorption portion and the thermopile on both sides thereof is configured as a single infrared detector, it was that by integrating a plurality of infrared detection elements to a region where the infrared absorbing section occupied the infrared detection region on a single semiconductor substrate.
【0011】請求項5記載の発明は、所定の赤外線検出
素子列を除いて、すべての赤外線検出素子列に、出力の
時間ずれを補正する遅延手段を接続したものとした。According to a fifth aspect of the present invention, a delay means for correcting a time lag of output is connected to all the infrared detecting element rows except for a predetermined infrared detecting element row.
【0012】請求項6記載の発明は、前記所定の赤外線
検出素子列にある所定の赤外線検出素子と同一走査線上
に補正用赤外線検出素子が配置され、該補正用赤外線検
出素子と同一走査線上の所定の赤外線検出素子の出力に
時間ずれを検出する時間ずれ演算手段を接続し、前記遅
延手段は、前記検出された時間ずれに応じて、接続する
赤外線検出素子列と前記所定の赤外線検出素子列との距
離により、補正時間を算出して補正を行なうものとし
た。According to a sixth aspect of the present invention, a correction infrared detecting element is arranged on the same scanning line as a predetermined infrared detecting element in the predetermined infrared detecting element row, and is arranged on the same scanning line as the correcting infrared detecting element. A time lag calculating means for detecting a time lag is connected to an output of the predetermined infrared detecting element, and the delay means is connected to the connected infrared detecting element row and the predetermined infrared detecting element row in accordance with the detected time lag. The correction time is calculated based on the distance between the correction and the correction.
【0013】[0013]
【発明の効果】請求項1記載の発明によれば、赤外線検
出素子間の不検出領域に他の赤外線検出素子の検出領域
が位置するように、不検出領域を補うための赤外線検出
素子列が設けられているから、走査するとき、デッドエ
リアが生じること無く、赤外線の2次元分布を検出する
ことができる。従って、これにより検出感度が向上す
る。According to the first aspect of the present invention, the infrared detection element array for compensating for the non-detection area is provided so that the detection area of another infrared detection element is located in the non-detection area between the infrared detection elements. Since it is provided, a two-dimensional distribution of infrared rays can be detected without causing a dead area when scanning. Accordingly, this improves the detection sensitivity.
【0014】また、請求項2記載の発明においては、請
求項1記載の発明の効果に加えて、赤外線検出素子列に
おける赤外線検出素子間の不検出領域と赤外線検出素子
の検出領域の大きさに対応して赤外線素子列数が設定さ
れ、各赤外線検出素子列を順次ずらして配置するように
したため、不検出領域が大きくても、列を重ねることに
よって不検出領域をカバーすることができる。According to the second aspect of the invention, in addition to the effect of the first aspect, the size of the non-detection area between the infrared detection elements and the size of the detection area of the infrared detection elements in the infrared detection element array is increased. Since the number of infrared element rows is set correspondingly and the infrared detection element rows are sequentially shifted, even if the non-detection area is large, the non-detection area can be covered by overlapping the rows.
【0015】請求項3記載の発明においては、走査方向
から見たとき、前記各赤外線検出素子列の検出領域が重
ならないように、各赤外線素子列における赤外線検出素
子間の間隔を設定したため、赤外線不検出領域をカバー
するのに、必要とする赤外線検出素子列数がもっとも少
なくなる。According to the third aspect of the present invention, the distance between the infrared detecting elements in each infrared detecting element row is set so that the detection areas of the respective infrared detecting element rows do not overlap when viewed from the scanning direction. In order to cover the non-detection area, the number of infrared detection element rows required is the smallest.
【0016】請求項4記載の発明は、各赤外線検出素子
が1つの半導体基板上に形成され、互いに同じ空洞部を
共有するから、各列の赤外線吸収部が走査方向に隙間な
く配列することができ、各列の検出信号の時間ずれがも
っとも少なくなり、補正時の精度が向上する。また各赤
外線吸収部の列方向両側に空洞部に貫通する貫通穴が形
成されるから、赤外線吸収部間の熱伝導が阻止され、赤
外線の検出精度が向上する。According to the fourth aspect of the present invention, since each infrared detecting element is formed on one semiconductor substrate and shares the same cavity, the infrared absorbing sections of each row can be arranged without any gap in the scanning direction. As a result, the time lag of the detection signal of each column is minimized, and the accuracy of correction is improved. In addition, since through holes are formed in both sides of each infrared absorbing portion in the column direction so as to penetrate the hollow portion, heat conduction between the infrared absorbing portions is prevented, and detection accuracy of infrared light is improved.
【0017】また、請求項5記載の発明においては、所
定の赤外線検出素子列を除いて、すべての赤外線検出素
子列に、時間補正を行う遅延手段を接続し、時間ずれを
補正するようにしたので、各赤外線検出素子が同じ列か
ら赤外線を検出するのと同様の効果を得ることが可能に
なる。補正時間は例えば赤外線検出素子列間の距離と走
査速度によって算出するものを用いることができる。Further, in the invention according to claim 5, a delay means for performing time correction is connected to all the infrared detecting element rows except for a predetermined infrared detecting element row to correct a time lag. Therefore, it is possible to obtain the same effect as when each infrared detecting element detects infrared rays from the same row. As the correction time, for example, a value calculated based on the distance between the infrared detection element rows and the scanning speed can be used.
【0018】請求項6記載の発明においては、請求項5
に記載の発明の効果に加えて、補正用赤外線検出素子は
所定の赤外線検出素子と同一走査線上に設けられるの
で、走査時、補正用赤外線検出素子から、所定の赤外線
検出素子と同じ出力信号が得られる。この両出力信号を
比較することによって、信号の時間ずれを検出すること
ができる。信号の時間ずれは両素子間の距離に対応して
いるので、その検出された時間ずれと素子間の距離を用
いて、補正したい赤外線検出素子列と所定の赤外線検出
素子列との距離によって、時間ずれを算出することがで
きる。遅延手段はその時間ずれによって、赤外線検出素
子列間の時間ずれを補正することが可能になる。これに
よって、走査速度が予め分からなくても、時間ずれを補
正することが可能になる。According to the sixth aspect of the present invention, there is provided the fifth aspect.
In addition to the effects of the invention described in the above, since the correction infrared detection element is provided on the same scanning line as the predetermined infrared detection element, during scanning, the same output signal as the predetermined infrared detection element is output from the correction infrared detection element. can get. By comparing these two output signals, the time lag of the signals can be detected. Since the time lag of the signal corresponds to the distance between the two elements, using the detected time lag and the distance between the elements, the distance between the infrared detection element row to be corrected and the predetermined infrared detection element row is The time lag can be calculated. The delay means can correct the time lag between the infrared detecting element arrays due to the time lag. This makes it possible to correct the time lag even if the scanning speed is not known in advance.
【0019】[0019]
【発明の実施の形態】次に、発明の実施の形態について
実施例により説明する。図1は第1の実施例を示す。従
来と同じ構成をもった複数の熱型赤外線検出素子を、所
定の間隔を隔てて2列に並べて、同一基板上に半導体プ
ロセスにより作成する。これを赤外線検出面から見たと
き、図1の(a)に示すように赤外線検出素子列1Aと
2Aは隙間なく隣接し、各列において隣接する赤外線検
出素子20の検出領域12の間に検出領域12の長さと
同じ間隔が形成され、その間隔に隣りの列の検出領域1
2が位置するようになっている。ここで赤外線検出素子
は、列方向長さLの外形を有し、検出領域12の列方向
長さMはLの半分以上になっている。赤外線検出素子列
1Aと2Aの中心間の距離はLである。これによって各
赤外線検出素子は列方向において、検出領域12が重な
ることなく連続する。列に対して垂直方向へ走査させる
とき、図1の(b)に示すように、各赤外線検出素子の
走査領域20’が隙間なく隣接し、デッドエリアのない
走査領域を形成する。Next, embodiments of the present invention will be described with reference to examples. FIG. 1 shows a first embodiment. A plurality of thermal infrared detecting elements having the same configuration as in the related art are arranged in two rows at a predetermined interval, and are formed on the same substrate by a semiconductor process. When this is viewed from the infrared detection surface, as shown in FIG. 1A, the infrared detection element rows 1A and 2A are adjacent to each other without a gap, and are detected between the detection areas 12 of the adjacent infrared detection elements 20 in each row. An interval equal to the length of the area 12 is formed, and the detection area 1 of the adjacent row is formed at the interval.
2 is located. Here, the infrared detecting element has an outer shape having a length L in the column direction, and the length M in the column direction of the detection region 12 is half or more of L. The distance between the centers of the infrared detecting element arrays 1A and 2A is L. As a result, the infrared detection elements are continuous without overlapping the detection areas 12 in the column direction. When the column is scanned in the vertical direction, as shown in FIG. 1B, the scanning regions 20 'of the infrared detecting elements are adjacent to each other without a gap, and form a scanning region having no dead area.
【0020】一方赤外線検出素子列1Aと列2Aは、走
査方向に異なる位置を占めているので、信号出力の時間
ずれが生じる。これを補正するため、前に進む赤外線検
出素子列2Aの各赤外線検出素子の出力端子に遅延手段
としての遅延回路21を接続する。赤外線検出素子列1
Aと列2Aの中心間の距離はLになっているから、この
距離Lと走査速度によって、出力信号の時間ずれの量が
決定される。その計算方法は、走査速度をv[m/se
c]、赤外線吸収部間の距離をL[μm]とすると、時間
ずれt[sec]を下式によって算出する。 t=L×10−6/v この時間ずれtを遅延回路21に設定すれば、前に進む
赤外線検出素子の信号出力が遅延するように補正され
る。On the other hand, since the infrared detecting element rows 1A and 2A occupy different positions in the scanning direction, there is a time lag in signal output. In order to correct this, a delay circuit 21 as a delay means is connected to the output terminal of each infrared detection element of the infrared detection element array 2A which advances. Infrared detector row 1
Since the distance between A and the center of the column 2A is L, the amount of time shift of the output signal is determined by the distance L and the scanning speed. The calculation method is as follows.
c], assuming that the distance between the infrared absorbing parts is L [μm], the time shift t [sec] is calculated by the following equation. t = L × 10 −6 / v If this time lag t is set in the delay circuit 21, the signal output of the infrared detecting element that proceeds forward is corrected so as to be delayed.
【0021】本実施例の赤外線ラインセンサは以上のよ
うに構成され、赤外線検出素子間の不検出領域が他の赤
外線検出素子列の検出領域によって補われる。これによ
り赤外線ラインセンサが走査して、赤外線の2次元分布
を検出するとき、デッドエリアのない検出が可能にな
る。また不検出領域が補われることによって、検出感度
も向上する。The infrared line sensor of this embodiment is configured as described above, and the non-detection area between the infrared detection elements is supplemented by the detection area of another infrared detection element row. Accordingly, when the infrared line sensor scans and detects a two-dimensional distribution of infrared rays, it is possible to perform detection without a dead area. Further, by supplementing the non-detection area, the detection sensitivity is also improved.
【0022】また実施例では、検出領域の長さMは外形
の長さLの半分以上になっているので、1列の赤外線検
出素子を設けることで、完全に補間することができる
が、外形の長さの半分以下になる場合は、1列では、完
全に補間することができなくなる。このような場合は、
図2に示すように、不検出領域と検出領域の大きさに対
応して、例えば列を3列に増やし、列方向に順次ずらし
て配置し不検出領域を補うことができる。各列における
赤外線検出素子間の距離は、実施例と同じように走査方
向に見たときに不検出領域の範囲内に他の列の検出領域
が位置するよう調整する。In the embodiment, since the length M of the detection area is at least half of the length L of the outer shape, complete interpolation can be achieved by providing one row of infrared detecting elements. If the length is less than half the length, it will not be possible to completely interpolate in one column. In such a case,
As shown in FIG. 2, the number of columns can be increased to, for example, three in accordance with the size of the non-detection region and the detection region, and the non-detection region can be supplemented by being sequentially shifted in the column direction. The distance between the infrared detection elements in each row is adjusted so that the detection areas of the other rows are located within the range of the non-detection area when viewed in the scanning direction as in the embodiment.
【0023】走査方向の前方にある赤外線検出素子列3
Aにも各赤外線検出素子に遅延回路31が接続される。
この列の遅延時間は、赤外線検出素子列2Aと同じよう
に、赤外線検出素子列1Aとの距離に応じて算出する。
ここでは、赤外線検出素子が同じ寸法を有するので、赤
外線検出素子列1Aとの距離は2Lになるため、補正時
間を遅延回路21の2倍にすればよい。Infrared detecting element array 3 in front of the scanning direction
A delay circuit 31 is connected to each infrared detection element also at A.
The delay time of this row is calculated according to the distance from the infrared detection element row 1A, similarly to the infrared detection element row 2A.
Here, since the infrared detecting elements have the same dimensions, the distance from the infrared detecting element row 1A is 2L, so that the correction time may be twice as long as that of the delay circuit 21.
【0024】次に、第2の実施例を図3により説明す
る。この実施例では、図1に示す第1の実施例の赤外線
検出素子の配列を用い、赤外線検出素子列2Aの外方に
ある赤外線検出素子20Bと同一走査線K上に、赤外線
検出素子列1Aを挟んで反対側に補正用赤外線検出素子
20Cを設ける。補正用赤外線検出素子20Cは赤外線
検出素子列1Aと密着し、その検出領域12と赤外線検
出素子列1A、2Aの各検出領域12との距離がそれぞ
れL、2Lとなっている。Next, a second embodiment will be described with reference to FIG. In this embodiment, the array of infrared detecting elements of the first embodiment shown in FIG. 1 is used, and the infrared detecting element array 1A is arranged on the same scanning line K as the infrared detecting element 20B outside the infrared detecting element array 2A. The correction infrared detection element 20C is provided on the opposite side with respect to. The correction infrared detection element 20C is in close contact with the infrared detection element row 1A, and the distance between the detection area 12 and each detection area 12 of the infrared detection element row 1A, 2A is L, 2L, respectively.
【0025】補正用赤外線検出素子20Cと赤外線検出
素子20Bに時間ずれ演算手段としての時間ずれ演算装
置50を接続する。赤外線検出素子列2Aの各赤外線検
出素子に、補正時間可変の遅延回路22が接続される。
遅延回路22は時間ずれ演算装置50と接続される。赤
外線検出素子列が走査方向へ走査するとき、赤外線検出
素子20Bと補正用赤外線検出素子20Cが同一走査線
上にあるので、波形の同じ信号を出力する。時間ずれ演
算装置50は、その信号を分析することによって、時間
ずれを検出する。例えば図4に示す信号が得られる場合
は、周囲の成分が同じで強度Eが一致するピーク信号か
ら時間ずれt2を検出することができる。遅延回路22
は、検出された時間ずれt2と、接続する赤外線検出列
2Aと赤外線検出素子1Aの距離に応じて、補正時間を
設定し補正を行う。ここでは、赤外線検出素子1Aに対
する赤外線検出素子列2Aの距離は、補正用赤外線検出
素子20Cの半分のLとなっているから、補正時間をt
2/2に設定すればよい。A time lag calculating device 50 as time lag calculating means is connected to the correction infrared detecting element 20C and the infrared detecting element 20B. A delay circuit 22 with a variable correction time is connected to each infrared detection element of the infrared detection element array 2A.
The delay circuit 22 is connected to the time lag operation device 50. When the infrared detecting element array scans in the scanning direction, the infrared detecting element 20B and the correcting infrared detecting element 20C are on the same scanning line, and therefore, output signals having the same waveform. The time lag calculating device 50 detects the time lag by analyzing the signal. For example, when the signal shown in FIG. 4 is obtained, the time lag t2 can be detected from the peak signal having the same surrounding components and the same intensity E. Delay circuit 22
Performs a correction by setting a correction time according to the detected time lag t2 and the distance between the connected infrared detection row 2A and the infrared detection element 1A. Here, since the distance between the infrared detecting element array 2A and the infrared detecting element 1A is half L of the correcting infrared detecting element 20C, the correction time is set to t.
It may be set to 2/2.
【0026】本実施例は以上のように構成され、赤外線
検出素子列にある1つの赤外線検出素子と同一の走査線
上に補正用赤外線検出素子を設け、この両素子の検出信
号から、時間ずれ演算装置が時間ずれを検出し、遅延回
路が検出された時間ずれに応じて補正時間を設定するよ
うにしたので、走査速度が不明でも、補正が可能であ
る。なお、上記各実施例では、サーモパイルの熱型赤外
線検出素子を用いたが、これに限らず、例えばポロメー
タ型の赤外線検出素子など、検出領域が素子(外形)よ
り小さいものはすべて適用することができる。This embodiment is constructed as described above, and a correction infrared detecting element is provided on the same scanning line as one infrared detecting element in the infrared detecting element row, and a time lag calculation is performed based on the detection signals of these two elements. Since the apparatus detects the time lag and the delay circuit sets the correction time according to the detected time lag, correction is possible even if the scanning speed is unknown. In each of the above embodiments, a thermopile thermal infrared detecting element is used. However, the present invention is not limited to this. For example, a porometer type infrared detecting element such as a porometer type infrared detecting element may be applied to any element whose detection area is smaller than the element (outer shape). it can.
【0027】次に、各赤外線検出素子を1つの半導体基
板上に形成し、時間ずれを最小に抑えたものを第3の実
施例により説明する。図5、図6は、各赤外線検出素子
を集積して構成される赤外線ラインセンサの構造を示す
図である。図5は上面図で、図6は図5におけるB−B
断面図である。半導体基板41の表面に熱伝導性の低い
ダイアフラム43が設けられ、ダイアフラム43の表面
に、赤外線検出素子を形成する領域が設定され、赤外線
吸収部26が図5に示すように2列に並べられている。
赤外線吸収部26の列方向に赤外線吸収部と同じ大きさ
の間隔が形成され、その列と垂直の走査方向に見たとき
その間隔にもう1列の赤外線吸収部が位置し、図上、左
列の各赤外線吸収部26の右辺と右列の各赤外線吸収部
26の左辺が一直線S上にくるようになっている。Next, a description will be given of a third embodiment in which each infrared detecting element is formed on one semiconductor substrate and the time lag is minimized. FIG. 5 and FIG. 6 are views showing the structure of an infrared line sensor configured by integrating respective infrared detection elements. FIG. 5 is a top view, and FIG. 6 is BB in FIG.
It is sectional drawing. A diaphragm 43 having low thermal conductivity is provided on the surface of the semiconductor substrate 41, a region for forming an infrared detecting element is set on the surface of the diaphragm 43, and the infrared absorbing portions 26 are arranged in two rows as shown in FIG. ing.
An interval of the same size as the infrared absorbing section is formed in the column direction of the infrared absorbing section 26, and another row of infrared absorbing sections is located at the interval when viewed in a scanning direction perpendicular to the row. The right side of each infrared absorption section 26 in the row and the left side of each infrared absorption section 26 in the right row are on a straight line S.
【0028】各赤外線検出素子の形成領域において、こ
こでは4組のp型半導体44、n型半導体45が2組ず
つ設定された赤外線吸収部の走査方向両側に配置され
る。各組のp型半導体44、n型半導体45は各々、一
端を金属電極7により接続される。また1組の他端は出
力端子9、10と接続されるとともに、他の組のp型半
導体44、n型半導体45の他端は金属電極8により接
続される。金属電極7は温接点、金属電極8は冷接点と
なり、4組のp型半導体44、n型半導体45はサーモ
パイルを構成する。なお、左右両側の半導体長が異なる
ことにより生じる熱の伝播速度の違いは、短い方の半導
体組数を少なくすることによって調整することができ
る。In the formation region of each infrared detecting element, here, four pairs of p-type semiconductors 44 and n-type semiconductors 45 are arranged on both sides in the scanning direction of the two sets of infrared absorbing portions. One end of each of the p-type semiconductor 44 and the n-type semiconductor 45 of each set is connected by the metal electrode 7. The other end of one set is connected to the output terminals 9 and 10, and the other end of the other set of the p-type semiconductor 44 and the n-type semiconductor 45 is connected by the metal electrode 8. The metal electrode 7 serves as a hot junction, and the metal electrode 8 serves as a cold contact. The four sets of p-type semiconductors 44 and n-type semiconductors 45 constitute a thermopile. The difference in heat propagation speed caused by the difference in semiconductor length between the left and right sides can be adjusted by reducing the number of shorter semiconductor groups.
【0029】ダイアフラム43の上に、絶縁層51、5
3が形成された後、赤外線吸収部26が所定の位置に形
成される。半導体基板41の4隅には、エッチングする
ための穴13、14、が形成されるとともに、列方向に
対して各赤外線吸収部26の間にも赤外線吸収部26に
隣接して直線Sの近くまで、エッチング穴15が形成さ
れている。これらのエッチング穴から、マイクロマシニ
ング技術により、冷接点が位置する周辺部を除いて、各
赤外線吸収部26を包含するように、熱分離するための
空洞部42が形成される。On the diaphragm 43, insulating layers 51, 5
After the formation of 3, the infrared absorbing portion 26 is formed at a predetermined position. Holes 13 and 14 for etching are formed at the four corners of the semiconductor substrate 41, and between the infrared absorbing portions 26 in the column direction and near the straight line S adjacent to the infrared absorbing portion 26. Until the etching hole 15 is formed. From these etching holes, a cavity 42 for thermal separation is formed by micromachining technology so as to cover each infrared absorbing portion 26 except for the peripheral portion where the cold junction is located.
【0030】本実施例は以上のように構成され、各赤外
線検出素子は、同じ半導体基板に形成され、共通の空洞
部をもっているので、形成される赤外線検出素子列と列
の間における赤外線吸収部間の距離がもっとも小さくな
り、走査時の出力信号の時間ずれが少なく、高い補正精
度が得られる。また、エッチング穴が赤外線吸収部の両
側に設けられるから、赤外線吸収部の熱伝導を阻止する
ようになっている。これにより素子間の熱伝導で、影響
しあうことが防止される。The present embodiment is configured as described above. Since each infrared detecting element is formed on the same semiconductor substrate and has a common cavity, the infrared absorbing elements between the rows of the infrared detecting elements are formed. The distance between them becomes the shortest, the time lag of the output signal at the time of scanning is small, and high correction accuracy can be obtained. Further, since the etching holes are provided on both sides of the infrared absorbing section, heat conduction of the infrared absorbing section is prevented. This prevents heat conduction between the elements from affecting each other.
【図1】第1の実施例における赤外線ラインセンサの検
出領域および走査時の走査領域を示す図である。FIG. 1 is a diagram showing a detection region of an infrared line sensor and a scanning region during scanning in a first embodiment.
【図2】赤外線検出素子の検出領域が小さい場合の構成
を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration when a detection area of an infrared detection element is small.
【図3】第2の実施例を示す図である。FIG. 3 is a diagram showing a second embodiment.
【図4】走査方向上同じ位置を有する2つの赤外線検出
素子の検出信号を示す図である。FIG. 4 is a diagram showing detection signals of two infrared detection elements having the same position in the scanning direction.
【図5】第3の実施例を示す赤外線ラインセンサの構成
図である。FIG. 5 is a configuration diagram of an infrared line sensor according to a third embodiment.
【図6】第3の実施例の構成を示す断面図である。FIG. 6 is a sectional view showing a configuration of a third embodiment.
【図7】熱型赤外線検出素子の構成を示す図である。FIG. 7 is a diagram showing a configuration of a thermal infrared detection element.
【図8】熱型赤外線検出素子の構成を示す断面図であ
る。FIG. 8 is a cross-sectional view illustrating a configuration of a thermal infrared detection element.
【図9】従来の赤外線ラインセンサの検出領域および走
査時の走査領域を示す図である。FIG. 9 is a diagram showing a detection area of a conventional infrared line sensor and a scanning area during scanning.
1、41 半導体基板 2、42 空洞部 3、43 ダイアフラム 4、44 P型半導体 5、45 n型半導体 6、13、14、15 エッチング穴 7、8 金属電極 9、10 出力端子 11、17、51、53 絶縁層 12 検出領域 20、20B 赤外線検出素子 20’ 走査領域 21、22、31 遅延回路 26 赤外線吸収部 27 周辺領域 50 時間ずれ演算装置 1A、2A、3A 赤外線検出素子列 20C 補正用赤外線検出素子 D デッドエリア S、K 直線 1, 41 Semiconductor substrate 2, 42 Cavity 3, 43 Diaphragm 4, 44 P-type semiconductor 5, 45 n-type semiconductor 6, 13, 14, 15 Etching hole 7, 8 Metal electrode 9, 10 Output terminal 11, 17, 51 , 53 Insulating layer 12 Detecting area 20, 20B Infrared detecting element 20 'Scanning area 21, 22, 31, Delay circuit 26 Infrared absorbing section 27 Peripheral area 50 Time shift calculating device 1A, 2A, 3A Infrared detecting element array 20C Infrared detecting for correction Element D Dead area S, K Straight line
───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 信一 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 2G065 AB02 BA14 BA15 BA34 CA30 DA05 2G066 BA04 BA13 BA14 BB20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Morita F-term (reference) 2G065 AB02 BA14 BA15 BA34 CA30 DA05 2G066 BA04 BA13 BA14 BB20 in Nissan Motor Co., Ltd. 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa
Claims (6)
複数の赤外線検出素子を配列した赤外線検出素子列を平
行に複数列設け、前記赤外線検出素子列を走査方向から
見たとき、各赤外線検出素子列における赤外線検出素子
間の不検出領域に、他の赤外線検出素子列の検出領域が
位置するように、各赤外線検出素子列をずらして配置し
たことを特徴とする赤外線ラインセンサ。A plurality of infrared detecting element rows in which a plurality of infrared detecting elements having a detection area shorter than the element length are arranged are provided in parallel, and when the infrared detecting element rows are viewed from a scanning direction, each infrared detecting element is detected. An infrared line sensor, wherein each of the infrared detection element rows is shifted so that a detection area of another infrared detection element row is located in a non-detection area between the infrared detection elements in the element row.
出領域の大きさに対応して赤外線検出素子列数が設定さ
れ、各赤外線検出素子列を順次ずらして配置したことを
特徴とする請求項1記載の赤外線ラインセンサ。2. The method according to claim 1, wherein the number of infrared detection element rows is set in accordance with the size of the non-detection area and the detection area of the infrared detection element row, and the infrared detection element rows are sequentially shifted. Item 7. An infrared line sensor according to Item 1.
線検出素子列の検出領域が重ならないように、各赤外線
素子列における赤外線検出素子間の間隔を設定したこと
を特徴とする請求項1または2記載の赤外線ラインセン
サ。3. An interval between the infrared detecting elements in each infrared element row is set so that the detection areas of each infrared detecting element row do not overlap when viewed from the scanning direction. Or the infrared line sensor according to 2.
アフラムが設けられ、該ダイアフラムの表面に所定の間
隔を隔てて複数列の赤外線吸収部列を並べ、該赤外線吸
収部列に対して垂直の走査方向から見たとき、各赤外線
吸収部列における赤外線吸収部間の不検出領域に、他の
赤外線吸収部列の赤外線吸収部が位置し、隣接する前記
赤外線吸収部の対向する辺部が同じ直線上に来るように
設定され、前記半導体基板には前記ダイアフラムの下に
前記赤外線吸収部列を包含する空洞部が形成され、前記
ダイアフラム上には赤外線吸収部側に温接点、空洞部以
外の周辺部側に冷接点を位置させたサーモパイルが前記
走査方向に形成され、前記各赤外線吸収部の列方向両側
には前記空洞部に貫通する貫通穴が形成されて、前記赤
外線吸収部とその両側のサーモパイルが1つの赤外線検
出素子として構成され、赤外線吸収部が占める領域を赤
外線の検出領域とする複数の赤外線検出素子を1つの半
導体基板に集積したことを特徴とする請求項1、2また
は3記載の赤外線ラインセンサ。4. A diaphragm having low thermal conductivity is provided on a surface of a semiconductor substrate, and a plurality of rows of infrared absorbing sections are arranged at predetermined intervals on the surface of the diaphragm, and the infrared absorbing sections are arranged perpendicularly to the infrared absorbing sections. When viewed from the scanning direction, in the non-detection region between the infrared absorbing sections in each infrared absorbing section row, the infrared absorbing sections of the other infrared absorbing section rows are located, and opposing sides of the adjacent infrared absorbing sections are located. The semiconductor substrate is set so as to be on the same straight line, and a cavity is formed in the semiconductor substrate under the diaphragm so as to include the infrared absorption unit row. A thermopile in which a cold junction is located on the peripheral side of the infrared absorbing portion is formed in the scanning direction, and a through hole penetrating the hollow portion is formed on both sides in the column direction of each of the infrared absorbing portions. Both The thermopile on the side is constituted as one infrared detecting element, and a plurality of infrared detecting elements having an area occupied by the infrared absorbing portion as an infrared detecting area are integrated on one semiconductor substrate. 3. The infrared line sensor according to 3.
ての赤外線検出素子列に、出力の時間ずれを補正する遅
延手段を接続したことを特徴とする請求項1、2、3ま
たは4赤外線ラインセンサ。5. An infrared sensor according to claim 1, wherein a delay means for correcting a time lag of an output is connected to all the infrared detecting element rows except for a predetermined infrared detecting element row. Line sensor.
の赤外線検出素子と同一走査線上に補正用赤外線検出素
子が配置され、該補正用赤外線検出素子と同一走査線上
の所定の赤外線検出素子の出力端子に時間ずれを検出す
る時間ずれ演算手段を接続し、前記遅延手段は、前記検
出された時間ずれに応じて、接続する赤外線検出素子列
と前記所定の赤外線検出素子列との距離により、補正時
間を算出して補正を行なうことを特徴とする請求項5記
載の赤外線ラインセンサ。6. A correction infrared detecting element is arranged on the same scanning line as a predetermined infrared detecting element in the predetermined infrared detecting element row, and a predetermined infrared detecting element on the same scanning line as the correction infrared detecting element is provided. The output terminal is connected to a time lag calculating means for detecting a time lag, and the delay means, according to the detected time lag, by a distance between the connected infrared detecting element row and the predetermined infrared detecting element row, 6. The infrared line sensor according to claim 5, wherein the correction is performed by calculating a correction time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00232899A JP3436164B2 (en) | 1999-01-07 | 1999-01-07 | Infrared line sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00232899A JP3436164B2 (en) | 1999-01-07 | 1999-01-07 | Infrared line sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000205945A true JP2000205945A (en) | 2000-07-28 |
JP3436164B2 JP3436164B2 (en) | 2003-08-11 |
Family
ID=11526256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00232899A Expired - Lifetime JP3436164B2 (en) | 1999-01-07 | 1999-01-07 | Infrared line sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3436164B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285892A (en) * | 2006-04-17 | 2007-11-01 | Nippon Ceramic Co Ltd | Thermopile array temperature detector |
EP1184703B1 (en) * | 2000-08-29 | 2010-06-23 | PerkinElmer Singapore Pte. Ltd. | Infrared imaging microscope |
CN104471362A (en) * | 2013-05-17 | 2015-03-25 | 松下电器(美国)知识产权公司 | Thermal image sensor and user interface |
JP2018040791A (en) * | 2016-09-02 | 2018-03-15 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
-
1999
- 1999-01-07 JP JP00232899A patent/JP3436164B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184703B1 (en) * | 2000-08-29 | 2010-06-23 | PerkinElmer Singapore Pte. Ltd. | Infrared imaging microscope |
JP2007285892A (en) * | 2006-04-17 | 2007-11-01 | Nippon Ceramic Co Ltd | Thermopile array temperature detector |
CN104471362A (en) * | 2013-05-17 | 2015-03-25 | 松下电器(美国)知识产权公司 | Thermal image sensor and user interface |
JP2015222260A (en) * | 2013-05-17 | 2015-12-10 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Thermal image sensor and air conditioner |
JP5853110B2 (en) * | 2013-05-17 | 2016-02-09 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Thermal image sensor and air conditioner |
US9939164B2 (en) | 2013-05-17 | 2018-04-10 | Panasonic Intellectual Property Corporation Of America | Thermal image sensor and user interface |
JP2018077256A (en) * | 2013-05-17 | 2018-05-17 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Thermal image sensor, and user interface |
US10641509B2 (en) | 2013-05-17 | 2020-05-05 | Panasonic Intellectual Property Corporation Of America | Thermal image sensor and user interface |
US11320162B2 (en) | 2013-05-17 | 2022-05-03 | Panasonic Intellectual Property Corporation Of America | Thermal image sensor and user interface |
JP2018040791A (en) * | 2016-09-02 | 2018-03-15 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
JP7019347B2 (en) | 2016-09-02 | 2022-02-15 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
JP3436164B2 (en) | 2003-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0733199B1 (en) | Infrared radiation imaging array with compound sensors forming each pixel | |
EP1041371B1 (en) | Infrared solid state image sensing device | |
US7405403B2 (en) | Bolometric detector, device for detecting infrared radiation using such a detector and method for producing this detector | |
US6441372B1 (en) | Infrared focal plane array detector and method of producing the same | |
JPH0431231B2 (en) | ||
WO2017129965A1 (en) | An ir detector array device | |
JPH07218337A (en) | Emission detector and preparation of device thereof | |
JP2000205945A (en) | Infrared line sensor | |
JP2006343229A (en) | Image sensor | |
JP3377041B2 (en) | Thermal infrared detector with thermal separation structure | |
JP2000230857A (en) | Thermal type infrared sensor and thermal type infrared array element | |
US20210305312A1 (en) | Solid state imaging device | |
JP4456385B2 (en) | Infrared array sensor | |
JP2656145B2 (en) | Infrared imaging device | |
JP2806972B2 (en) | Thermal image creation device | |
US20210190366A1 (en) | Infrared imaging element and air conditioner equipped with same | |
JPH09318442A (en) | Infrared detector | |
JP3147856B2 (en) | Linear infrared detector | |
JPS6166128A (en) | Two-dimensional pyroelectric type image sensor | |
JP2005308551A (en) | Thermopile type infrared sensor | |
JPH06236986A (en) | Solid-state infrared imaging device | |
JP3987379B2 (en) | Infrared solid-state image sensor | |
JPH04332812A (en) | Infrared ray sensor array | |
JPS5848456A (en) | Pattern detector | |
JP2003069006A (en) | Solid-state imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030506 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080606 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140606 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |