JP2000295201A - Optical frequency mutliplexing device - Google Patents
Optical frequency mutliplexing deviceInfo
- Publication number
- JP2000295201A JP2000295201A JP11101673A JP10167399A JP2000295201A JP 2000295201 A JP2000295201 A JP 2000295201A JP 11101673 A JP11101673 A JP 11101673A JP 10167399 A JP10167399 A JP 10167399A JP 2000295201 A JP2000295201 A JP 2000295201A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- wavelength
- light
- wave
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、波長の変動によっ
て隣接する光変調波間の妨害が問題となるような高密度
な光周波数多重光伝送システムにおいて、二重の多波長
化技術を駆使することで、送信用光源の数を減らし、光
周波数間隔制御を不要にした光周波数多重装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-density optical frequency multiplexing optical transmission system in which interference between adjacent optically modulated waves becomes a problem due to wavelength fluctuations, and to use dual multi-wavelength technology. Thus, the present invention relates to an optical frequency multiplexing apparatus that reduces the number of transmission light sources and does not require optical frequency interval control.
【0002】[発明の概要]本発明は、光周波数分割多
重(以下単に「光周波数多重」とする)により複数の信
号が伝送される光伝送システムで、複数の光波の中から
1つの光波を選択受信する際にコヒーレント光検波を必
要とする程度に光分波が困難な狭い周波数間隔Fで光波
が光周波数多重される場合において、単一光源から光周
波数間隔∧の光側波帯もしくはそれに類する多波長の光
波(以下、この光側波帯あるいは多波長光波を発生させ
るために施す光位相変調などの操作を「多波長化」とい
い、多波長化された光源を「多波長光源」とする)を発
生させて分波し、それぞれの光波から別の多波長化によ
り光周波数間隔λの光側波帯を発生させて分波し、それ
ぞれの光波を送信対象となる電気信号で変調した後、全
ての光変調波信号を合成するようにしたもので、周波数
間隔Λとλを適切に選ぶことにより、光フィルタや光分
波器では分離の困難である狭く、かつ等しい光周波数間
隔の光変調波信号を、光周波数間隔制御を用いることな
く配列した光信号を生成するものである。SUMMARY OF THE INVENTION The present invention is an optical transmission system in which a plurality of signals are transmitted by optical frequency division multiplexing (hereinafter, simply referred to as "optical frequency multiplexing"). In the case where light waves are optically frequency-multiplexed at a narrow frequency interval F for which optical demultiplexing is difficult to the extent that coherent optical detection is required for selective reception, an optical sideband at an optical frequency interval ∧ or a Multi-wavelength light waves (hereinafter, operations such as optical phase modulation performed to generate optical sidebands or multi-wavelength light waves are referred to as "multi-wavelength", and a multi-wavelength light source is referred to as a "multi-wavelength light source." Is generated and demultiplexed. From each lightwave, another sideband with an optical frequency interval of λ is generated by another multi-wavelength generation and demultiplexed, and each lightwave is modulated with an electric signal to be transmitted. After that, all the light modulated wave signals By appropriately selecting the frequency intervals Λ and λ, it is possible to combine optical modulated wave signals with narrow and equal optical frequency intervals, which are difficult to separate with an optical filter or optical demultiplexer. This is to generate optical signals arranged without using control.
【0003】[0003]
【従来の技術】従来、図3に示すような光周波数多重を
用いた信号分配システムが知られている。2. Description of the Related Art A signal distribution system using optical frequency multiplexing as shown in FIG. 3 is conventionally known.
【0004】この信号分配システムでは、光送信機(第
1光送信機101-1〜第k光送信機101-k)のそれぞ
れが光合成分配器102に接続される一方、光受信機
(第1光受信機103-1〜第n光受信機103-n)のそ
れぞれも光合成分配器102に接続される構成となって
いる。各光送信機101は、光源と外部光変調器とを備
え、光源光を送信信号で変調して光信号を生成して光合
成分配器102に出力する。また、各光受信機103は
光波選択器と受光器とを備え、光合成分配器102から
供給される光信号のうち所望の光信号を選択して受光
し、受信信号を再生する。In this signal distribution system, each of the optical transmitters (first optical transmitter 101-1 to k-th optical transmitter 101-k) is connected to the optical combiner / distributor 102, while the optical receiver (first Each of the optical receivers 103-1 to 103-n) is configured to be connected to the optical combiner / distributor 102. Each optical transmitter 101 includes a light source and an external optical modulator, modulates the light source light with a transmission signal, generates an optical signal, and outputs the optical signal to the photosynthetic distributor 102. Each of the optical receivers 103 includes a lightwave selector and a photodetector, selects and receives a desired optical signal from the optical signals supplied from the photosynthetic distributor 102, and reproduces the received signal.
【0005】上記信号分配システムにおいて、波長多重
方式を採用した場合には、各光受信機103で希望の光
波を選択する前記光波選択器としてチューナブル光フィ
ルタが用いられる。この波長多重方式では、波長間隔が
広いので、厳しい波長管理は要求されない。これに対
し、上記信号分配システムにおいて、局発光源を用いた
コヒーレント受信方式を採用した場合には、波長多重よ
りも狭い波長、つまり、光周波数間隔で配列した光波を
選択受信できる。但し、この場合には、光波間で妨害が
発生しないようにするため、各光送信機101の光周波
数の厳しい管理が必要である。In the above-described signal distribution system, when the wavelength multiplexing system is adopted, a tunable optical filter is used as the lightwave selector for selecting a desired lightwave in each optical receiver 103. In this wavelength multiplexing method, since the wavelength interval is wide, strict wavelength management is not required. On the other hand, in the above signal distribution system, when a coherent reception method using a local light source is adopted, it is possible to selectively receive wavelengths narrower than wavelength multiplexing, that is, light waves arranged at optical frequency intervals. However, in this case, strict management of the optical frequency of each optical transmitter 101 is required to prevent interference between light waves.
【0006】光送信機の光周波数を管理する一手法とし
て、図4に示すように、送信光源の光周波数を絶対光周
波数標準(アセチレンガスなど)等を基準に個別に制御
する方法が既知である(例えば、Electron.Lett.,Vol.2
5,No.9,pp.574-576(1989))。As one method of managing the optical frequency of an optical transmitter, as shown in FIG. 4, a method of individually controlling the optical frequency of a transmission light source based on an absolute optical frequency standard (such as acetylene gas) is known. (For example, Electron. Lett., Vol. 2
5, No. 9, pp. 574-576 (1989)).
【0007】図4に示すように、この従来例は、それぞ
れ波長λ1〜λkの光波を生成する半導体レーザ111-1
〜111-kと、これらの半導体レーザ111-1〜111
-kの駆動制御及び光周波数制御を実行する各別のドライ
バ及び光周波数制御器112-1〜112-kと、半導体レ
ーザ111-1〜111-kで発光された波長λ1〜λkの各
レーザ光をそれぞれ入力して光を生成する光周波数標準
装置113-1〜113-kと、半導体レーザ111-1〜1
11-kから出力される波長λ1〜λkの光波を入力して所
定の送信信号で変調する外部変調器114-1〜114-k
と、各外部変調器114-1〜114-kから出力される光
変調波信号を合成した光信号を光伝送系へ出力する光合
波器115とを備えている。そして、光に基づき半導体
レーザ111-1〜111-kを制御して波長λ1〜λkの光
波を生成し、これら波長λ1〜λkの光波を所定の送信信
号で変調して光変調波信号を生成した後、これら光変調
波信号を合成した光信号を生成して光伝送系へ出力す
る。As shown in FIG. 4, this prior art example has a semiconductor laser 111-1 which generates light waves of wavelengths λ1 to λk.
To 111-k and these semiconductor lasers 111-1 to 111-111.
-k drive control and optical frequency control to execute optical frequency control and optical frequency controllers 112-1 to 112-k, and lasers of wavelengths λ1 to λk emitted from semiconductor lasers 111-1 to 111-k, respectively. Optical frequency standard devices 113-1 to 113-k for inputting light and generating light, and semiconductor lasers 111-1 to 111-1
External modulators 114-1 to 114-k for inputting light waves having wavelengths λ1 to λk output from 11-k and modulating them with a predetermined transmission signal
And an optical multiplexer 115 that outputs an optical signal obtained by synthesizing optical modulation wave signals output from the external modulators 114-1 to 114-k to an optical transmission system. Then, the semiconductor lasers 111-1 to 111-k are controlled based on the light to generate lightwaves having wavelengths λ1 to λk, and the lightwaves having wavelengths λ1 to λk are modulated by a predetermined transmission signal to generate a light modulation wave signal. After that, an optical signal obtained by combining these optical modulation wave signals is generated and output to the optical transmission system.
【0008】しかしながら、この方法は、各波長毎に光
源となる半導体レーザが必要であり、また、各光源に対
し光周波数標準装置113と光周波数制御器112とに
よる光周波数制御を必要とし、装置構成が複雑で大掛か
りになるという欠点を有している。However, this method requires a semiconductor laser to be a light source for each wavelength, and requires optical frequency control by an optical frequency standard device 113 and an optical frequency controller 112 for each light source. There is a disadvantage that the configuration is complicated and large-scale.
【0009】一方、一つの光源から周波数間隔の等しい
複数の光波を発生させる多波長光源の技術も知られてい
る。この技術は、モードロックレーザ(例えば、K.Sat
o,K.Wakita,I.Kotaka,I.Kondo,and M.Yamamoto,“Mon
olithic strained−InGaAsPmultiple-quantum-well las
ers with integrated electroabsorption modulators f
or active mode locking,”Appl.Phys.Lett.,Vol.65,N
o.1,pp.1-3(1994))あるいは光周波数コム発生器(例え
ば,M.Kourogi,K.Nakagawa,and M.ohtsu,“Wide-span o
ptical frequency comb generator for accurate optic
al frequency differency measurement,”IEEE J.Quant
um Electron.,Vol.29,No.10,pp.2693−2701(1993))によ
り実現されている。On the other hand, a technique of a multi-wavelength light source for generating a plurality of light waves having the same frequency interval from one light source is also known. This technology uses a mode-locked laser (eg, K. Sat
OK. Wakita, I. Kotaka, I. Kondo, and M. Yamamoto, “Mon
olithic strained-InGaAsP multiple-quantum-well las
ers with integrated electroabsorption modulators f
or active mode locking, ”Appl.Phys.Lett., Vol.65, N
o.1, pp. 1-3 (1994)) or an optical frequency comb generator (eg, M. Kourogi, K. Nakagawa, and M. ohtsu, “Wide-span o
ptical frequency comb generator for accurate optic
al frequency differency measurement, ”IEEE J.Quant
um Electron., Vol. 29, No. 10, pp. 2693-2701 (1993)).
【0010】これらのモードロックレーザあるいは光周
波数コム発生器によって得られる多波長光を分波して、
それぞれの光波を送信信号で変調した後に合波すること
により、ひとつの光源から複数の信号を送出でき、かつ
周波数間隔制御を不要とすることができる。[0010] The multi-wavelength light obtained by these mode-locked lasers or optical frequency comb generators is demultiplexed,
By modulating each lightwave with a transmission signal and then multiplexing, a plurality of signals can be transmitted from one light source, and frequency interval control can be eliminated.
【0011】例えば、モードロックレーザを使用した例
としては、図5に示すように、基準レーザ121の注入
同期により固有の発振光周波数が基準レーザ121に同
調した状態にあるモードロックレーザ122の出力光
(光側波帯信号)をアレイ導波路回折格子(AWG)1
23により50GHz間隔の16波に分波して、各波長
λ1〜λ16毎に設けられたLN光強度変調器124-1〜
124-16で変調して送出する伝送実験が行われている
(八坂洋、手島光啓、三条広明、吉国裕三、“光波ネッ
トワーク用基準波長・等光周波数間隔多波長光源、”1
997年電子情報通信学会総合大会SC−4−3)。For example, as an example in which a mode-locked laser is used, as shown in FIG. 5, the output of a mode-locked laser 122 in a state in which a specific oscillation light frequency is tuned to the reference laser 121 by injection locking of the reference laser 121. Light (optical sideband signal) is converted into an arrayed waveguide diffraction grating (AWG) 1
The LN light intensity modulators 124-1 through 12-1 are divided into 16 waves at intervals of 50 GHz by 23 and provided for each of the wavelengths λ1 through λ16.
Transmission experiments with modulation and transmission at 124-16 have been conducted (Yasaka Yasaka, Mitsuhiro Teshima, Hiroaki Sanjo, Yuzo Yoshikuni, "Multiwavelength light source with equal wavelength and reference wavelength for lightwave networks," 1
997 IEICE General Conference SC-4-3).
【0012】また、1つの多波長光源の光波を各送信点
に分配し、それぞれの送信点で異なる波長を抜き出して
送信信号で変調した後に合波する方法も提案されている
(岩下克、石田修、高知尾昇、“波長多重技術を用いた
光波ネットワーク、”電子情報通信学会光通信システム
研究会OCS95−33(1995))。A method has also been proposed in which light waves of one multi-wavelength light source are distributed to respective transmission points, different wavelengths are extracted at each transmission point, modulated with a transmission signal, and then combined (Katsu Iwashita, Ishida) Osamu, Noboru Kochio, "Lightwave Network Using Wavelength Division Multiplexing Technology," Institute of Electronics, Information and Communication Engineers Optical Communication Systems Study Group OCS95-33 (1995)).
【0013】しかしながら、1段階の多波長光源を利用
した場合、送信信号で外部変調を施せるように1光波の
抽出が必要であるが、上記の方法では光分波器の選択度
よりも狭い周波数間隔で光波を配列することはできな
い。However, when a one-stage multi-wavelength light source is used, it is necessary to extract one lightwave so that external modulation can be performed on the transmission signal. In the above-mentioned method, however, the frequency is narrower than the selectivity of the optical demultiplexer. Light waves cannot be arranged at intervals.
【0014】周波数利用効率を倍にする試みとして、2
つの光源を用意し、等しい周波数間隔で多波長化し、2
つの多波長光源の出力波長が多重後にインタリーブする
ように配列する報告がある(R.Monnard,A.K.Srivastav
a,C.R.Doerr,R.-J.Essiambre,C.H.Joyner,L.W.Stulz,M.
Zirngibl,Y.Sun,J.W.Sulhoff,J.L.Zyskind,and C.Wol
f,“Demonstration of A 16×10Gb/s Long-Haul Transm
ission with 50-GHz Channel Spacing Using Two Multi
frequency Lasers,”ECOC'98,20-24 September 1998,Ma
drid,Spain, pp.193-194))。As an attempt to double the frequency utilization efficiency, 2
Prepare two light sources, multi-wavelength at equal frequency intervals, 2
There is a report that the output wavelengths of two multi-wavelength light sources are arranged to be interleaved after multiplexing (R. Monnard, AKSrivastav
a, CRDoerr, R.-J.Essiambre, CHJoyner, LWStulz, M.
Zirngibl, Y. Sun, JWSulhoff, JLZyskind, and C.Wol
f, “Demonstration of A 16 × 10Gb / s Long-Haul Transm
ission with 50-GHz Channel Spacing Using Two Multi
frequency Lasers, ”ECOC'98,20-24 September 1998, Ma
drid, Spain, pp.193-194)).
【0015】しかしながら、この方法でも、2組の多波
長光源の周波数間隔を制御しなければならないという欠
点がある。However, this method also has a disadvantage that the frequency interval between the two sets of multi-wavelength light sources must be controlled.
【0016】周波数間隔制御が不要で、かつ、光分波器
を用いずに変調した光波を配列する方式として、副搬送
波多重伝送技術(例えば、R.Olshansky,V.A.Lanzisera,
andP.M.HiIl,“ Subcarrier multiplexed lightwave sy
stems for broadband distribution,”J.Lightwave.Tec
hnol.,Vol.7,No.9,pp.1329-1342(1989))が利用できる。As a method of arranging light waves modulated without using frequency division control and without using an optical demultiplexer, subcarrier multiplex transmission techniques (for example, R. Olshansky, VALanzisera,
andP.M.HiIl, “Subcarrier multiplexed lightwave sy
stems for broadband distribution, ”J.Lightwave.Tec
hnol., Vol. 7, No. 9, pp. 1329-1342 (1989)).
【0017】図6に示す従来例では、光周波数fOのレ
ーザ光源131の出力光を光変調器132により周波数
fl及びf2の正弦波電気信号を多重した変調信号で光変
調するとともに生成された変調側波帯の片側を利用する
ようにしている。正弦波に電気信号による変調を施して
おけば、光側波帯をそのまま光周波数多重された光変調
波とみなすことができる。この例として、電気段で変調
されたQPSK変調波2波を周波数多重した信号で光位
相変調した信号波を局発光とヘテロダイン同期検波を施
した事例(例えば、P.M.Hill,and R.Olshansky,“8Gb/s
Subcarrier multiplexed coherent lightwave syste
m,”IEEE Photon.Technol.Lett.,Vol.3,No.8,pp.764-76
6(1991))がある。In the conventional example shown in FIG. 6, the output light of the laser light source 131 of the optical frequency f0 is optically modulated by the optical modulator 132 with the modulation signal obtained by multiplexing the sine wave electric signals of the frequencies fl and f2, and the modulation generated. One side of the sideband is used. If the sine wave is modulated by an electric signal, the optical sideband can be regarded as an optical frequency multiplexed optically modulated wave. As an example of this, a signal wave optically phase-modulated with a signal obtained by frequency-multiplexing two QPSK modulated waves modulated by an electric stage is subjected to local oscillation and heterodyne synchronous detection (for example, PMHill, and R. Olshansky, “8Gb / s
Subcarrier multiplexed coherent lightwave syste
m, ”IEEE Photon.Technol.Lett., Vol.3, No.8, pp.764-76
6 (1991)).
【0018】しかしながら、光源または外部光変調器の
変調帯域による制限のため広波長域の光周波数多重がで
きないことや、変調ひずみの発生を抑える必要から光変
調度の大きさに制限があるため、光周波数や光波エネル
ギーの利用効率が悪い欠点がある。However, since optical frequency multiplexing in a wide wavelength range cannot be performed due to the limitation by the modulation band of the light source or the external optical modulator, and the magnitude of the optical modulation degree is limited due to the need to suppress the generation of modulation distortion. There is a disadvantage that the use efficiency of light frequency and light wave energy is poor.
【0019】さらに、複数の光波を用いて光周波数多重
を拡張する場合、図6に示すように、片側の光側波帯
(例えば、上側波帯)のみを光フィルタ等で抜出して利
用する必要があるので、限られた周波数帯域の中で信号
多重数を増やすと急峻な分波特性を有する光フィルタを
新たに必要とする。Further, when optical frequency multiplexing is extended by using a plurality of light waves, as shown in FIG. 6, it is necessary to extract and use only one optical sideband (for example, upper sideband) with an optical filter or the like. Therefore, when the number of multiplexed signals is increased in a limited frequency band, an optical filter having a steep demultiplexing characteristic is newly required.
【0020】[0020]
【発明が解決しようとする課題】このように、上述した
各従来技術では、厳しい周波数制御を必要としたり、多
数の光源を必要としたり、あるいは、光周波数や光波エ
ネルギーの利用効率が悪いなどといった不具合を有して
おり、本発明と類似する公知技術は存在しない。As described above, in each of the above-described prior arts, strict frequency control is required, a large number of light sources are required, or the use efficiency of the optical frequency and the light wave energy is poor. There is a defect, and there is no known technique similar to the present invention.
【0021】本発明は上記事情に鑑み、光周波数間隔制
御を用いることなく、コヒーレント光伝送で期待される
ような分波が困難な狭い周波数間隔で、光変調波信号を
配列することを可能とする光周波数多重光伝送装置を提
供することを目的としている。The present invention has been made in view of the above circumstances, and makes it possible to arrange optically modulated wave signals at narrow frequency intervals where demultiplexing is difficult as expected in coherent optical transmission without using optical frequency interval control. It is an object of the present invention to provide an optical frequency multiplexing optical transmission device.
【0022】[0022]
【課題を解決するための手段】上記の目的を達成するた
めに本発明は、光周波数多重された複数の光波の中から
1つの光波を選択受信する際にコヒーレント光検波が必
要となる程度に光分波が困難な狭い周波数間隔Fで多重
された光信号を生成する光周波数多重装置であって、単
一の光源から多波長化により等周波数間隔Λの多波長光
を発生させる第1多波長化手段と、多波長化された等周
波数間隔Λの多波長光を各光波に分波する第1分波手段
と、分波された各光波毎にそれぞれ多波長化を行って等
周波数間隔λ(λ≠Λ)の多波長光を生成する第2多波
長化手段と、多波長化を施して得られた等周波数間隔λ
の多波長光を各光波にそれぞれ分波する第2分波手段
と、分波された各光波を送信信号で変調する変調手段
と、変調によって得られた光変調波信号を合成してそれ
ぞれの光波が前記光周波数間隔Fで交互に光波多重され
た光信号を生成する光信号生成手段とを備えたことを特
徴としている。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an optical frequency division multiplexed optical wave to the extent that coherent optical detection is required when selectively receiving one optical wave from a plurality of optical waves. An optical frequency multiplexing apparatus for generating an optical signal multiplexed at a narrow frequency interval F in which optical demultiplexing is difficult, wherein a first light source generates a multi-wavelength light having an equal frequency interval に よ り from a single light source by multi-wavelength conversion. Wavelength converting means, first demultiplexing means for demultiplexing the multi-wavelength multi-wavelength light having the same frequency interval に into each light wave, and performing multi-wavelength conversion on each of the demultiplexed light waves to obtain the same frequency interval. a second multi-wavelength generating means for generating multi-wavelength light of λ (λ と), and an equal frequency interval λ obtained by performing multi-wavelength conversion.
Second demultiplexing means for demultiplexing the multi-wavelength light into each lightwave, a modulation means for modulating each demultiplexed lightwave with a transmission signal, and an optical modulation wave signal obtained by the modulation, and An optical signal generating means for generating an optical signal in which light waves are alternately light-wave multiplexed at the light frequency interval F.
【0023】上記の構成によれば、単一光源に対して多
波長化と分波を2重に行って、送信したい電気信号で変
調した後に合成することにより、光周波数間隔制御を用
いることなく、コヒーレント光伝送で期待されるような
分波が困難な狭い周波数間隔で光変調波信号を配列す
る。According to the above configuration, the multi-wavelength and demultiplexing are performed twice for a single light source, modulated by an electric signal to be transmitted, and then combined, so that optical frequency interval control is not used. The optically modulated wave signals are arranged at narrow frequency intervals in which demultiplexing is difficult as expected in coherent optical transmission.
【0024】[0024]
【発明の実施の形態】図1は本発明による光周波数多重
装置の実施の形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of an optical frequency multiplexing apparatus according to the present invention.
【0025】この光周波数多重装置は、多波長光源1
と、第1光分波器2と、多波長化装置3(3-1,3-2,
…,3-k)と、第2光分波器4(4-1,4-2,…,4-
k)と、光変調器5(5-11,5-12,…,5-km)と、光
合波器6(6-1,6-2,…,6-k)と、合分配器7とを
備えている。また、多波長化装置3と、第2光分波器4
と、光変調器5と、光合波器6とはこれらを一式として
全部でk式が設けられており、これらは各送信点毎に配
設されているものとする。そして、光周波数多重により
複数の信号を伝送する光伝送システムで、光波多重され
た複数の光波の中から1つの光波を選択受信する時にコ
ヒーレント光検波が必要となる程度に光分波が困難な狭
い周波数間隔Fで光波が多重される場合において、単一
の光源から多波長化により発生させた等周波数間隔Λの
光側波帯を第1光分波器2で分波し、それぞれの抜出し
た光波に対して多波長化装置3によって追加の多波長化
を施し、得られた等周波数間隔λ(λ≠Λ)の光側波帯
を第2光分波器4で分波し、送信したい電気信号を変調
する光搬送波として利用することにより、すべての光変
調波信号を合成したときにそれぞれの光側波帯が光周波
数間隔Fで交互に光波多重されるように適切な周波数間
隔∧及びλで二重の多波長化を施すようにしている。This optical frequency multiplexing apparatus has a multi-wavelength light source 1
, A first optical demultiplexer 2, and a multi-wavelength device 3 (3-1, 3-2,
, 3-k) and the second optical demultiplexer 4 (4-1, 4-2, ..., 4-
k), an optical modulator 5 (5-11, 5-12,..., 5-km), an optical multiplexer 6 (6-1, 6-2,..., 6-k), And Further, the multi-wavelength device 3 and the second optical demultiplexer 4
, The optical modulator 5 and the optical multiplexer 6 are provided as a set, and a total of k types are provided, and these are provided for each transmission point. Then, in an optical transmission system that transmits a plurality of signals by optical frequency multiplexing, optical demultiplexing is difficult to the extent that coherent photodetection is required when selectively receiving one lightwave from a plurality of lightwaves multiplexed. In the case where light waves are multiplexed at a narrow frequency interval F, the optical sidebands of equal frequency interval 波 generated from a single light source by multi-wavelength separation are split by the first optical splitter 2 and extracted. The obtained lightwave is subjected to additional multiwavelength processing by the multiwavelength conversion device 3, and the obtained optical sidebands at equal frequency intervals λ (λ ≠ Λ) are demultiplexed by the second optical demultiplexer 4 and transmitted. By using an electric signal to be modulated as an optical carrier, an appropriate frequency interval is set so that each optical sideband is alternately optically multiplexed at an optical frequency interval F when all the optically modulated wave signals are combined. And multiple wavelengths are applied by λ
【0026】多波長光源1は、モードロックレーザで構
成され、周波数間隔Λ=70GHzの多波長光λ1,λ
2,…,λkを生成し、この多波長光を光ファイバを介し
て第1分波器2に出力する。The multi-wavelength light source 1 is composed of a mode-locked laser and has multi-wavelength lights λ 1 and λ with a frequency interval Λ = 70 GHz.
, .Lambda.k, and outputs this multi-wavelength light to the first demultiplexer 2 via an optical fiber.
【0027】第1光分波器2は、アレイ導波路回折格子
(AWG)で構成され、多波長光源1から光ファイバを
介して供給される多波長光(λ1,λ2,…,λk)を波
長λ1、波長λ2、波長λkの光波にそれぞれ分波して各
別の多波長化装置3(3-1,3-2,…,3-k)に供給す
る。The first optical demultiplexer 2 is composed of an arrayed waveguide diffraction grating (AWG), and outputs multi-wavelength light (λ1, λ2,..., Λk) supplied from the multi-wavelength light source 1 via an optical fiber. The light beams having the wavelengths λ1, λ2, and λk are respectively demultiplexed and supplied to the respective multi-wavelength converting devices 3 (3-1, 3-2,..., 3-k).
【0028】多波長化装置3は、それぞれ光周波数コム
発生器で構成され、多波長化装置3-1は、波長λ1を中
心として、その前後に周波数間隔がλ=25GHzであ
る多波長化された多波長光を生成し、多波長化装置3-k
は波長λkを中心として、その前後に周波数間隔がλ=
25GHzである多波長化された多波長光を生成する。
多波長化された各多波長光は、各別に設けられた第2分
波器4(4-1,4-2,…,4-k)に供給される。The multi-wavelength converting devices 3 are each constituted by an optical frequency comb generator, and the multi-wavelength converting device 3-1 has a multi-wavelength device having a wavelength interval of λ = 25 GHz around the wavelength λ1. Multi-wavelength light generated by the multi-wavelength conversion device 3-k
Is the center of the wavelength λk and the frequency interval before and after that is λ =
The multi-wavelength light having a wavelength of 25 GHz is generated.
Each of the multi-wavelength lights having the multi-wavelengths is supplied to a second demultiplexer 4 (4-1, 4-2,..., 4-k) provided separately.
【0029】各第2光分波器4は、第1光分波器2と同
様、アレイ導波路回折格子(AWGで構成され、第2光
分波器4-1は、多波長化装置3-1で多波長化された光波
を周波数間隔λの光波に分波して各分波別に設けられた
光変調器5-11,…,5-1mに出力する。また、第2光分
波器4-2は、多波長化装置3-2で多波長化された光波を
周波数間隔λの光波に分波して各分波別に設けられた光
変調器5-21,…,5-2mに出力する。さらに、第2光分
波器4-kは、多波長化装置3-kで多波長化された光波を
周波数間隔λの光波に分波して各分波別に設けられた光
変調器5-k1,…,5-kmに出力する。Each of the second optical demultiplexers 4 is, similarly to the first optical demultiplexer 2, composed of an arrayed waveguide diffraction grating (AWG), and the second optical demultiplexer 4-1 is a multi-wavelength conversion device 3 The multi-wavelength lightwave divided by -1 is divided into lightwaves having a frequency interval of λ and output to optical modulators 5-11,..., 5-1m provided for the respective demultiplexers. The optical modulator 4-2 splits the lightwave multi-wavelength-converted by the multiwavelength converting device 3-2 into lightwaves having a frequency interval of λ, and optical modulators 5-21,. Further, the second optical demultiplexer 4-k demultiplexes the lightwave multi-wavelength-converted by the multi-wavelength conversion device 3-k into lightwaves having a frequency interval λ, and the light provided for each demultiplexing. Output to modulators 5-k1, ..., 5-km.
【0030】光変調器5-11,…,5-1mは、第2光分波
器4-1から供給される波長λ1を中心とした各光波を入
力するとともに電気信号で変調して光変調波信号を生成
するもので、生成された光変調波信号は光合波器6-1に
供給される。また、光変調器5-21,…,5-2mは、第2
光分波器4-2から供給される波長λ2を中心とした各光
波を入力するとともに電気信号で変調して光変調波信号
を生成するもので、生成された光変調波信号は光合波器
6-2に供給される。さらに、光変調器5-k1,…,5-km
は、第2光分波器4-kから供給される波長λkを中心と
した各光波を入力するとともに電気信号で変調して光変
調波信号を生成するもので、生成された光変調波信号は
光合波器6-kに供給される。The optical modulators 5-11,..., 5-1m receive the respective optical waves centered on the wavelength λ1 supplied from the second optical demultiplexer 4-1 and modulate them with electric signals to perform optical modulation. A wave signal is generated, and the generated optical modulation wave signal is supplied to the optical multiplexer 6-1. Also, the optical modulators 5-21,.
Each of the light waves centered on the wavelength λ2 supplied from the optical demultiplexer 4-2 is input and modulated by an electric signal to generate a light modulated wave signal. The generated light modulated wave signal is an optical multiplexer. 6-2. Further, the optical modulators 5-k1,..., 5-km
Is for inputting each light wave centered on the wavelength λk supplied from the second optical demultiplexer 4-k and modulating it with an electric signal to generate a light modulated wave signal. Is supplied to the optical multiplexer 6-k.
【0031】各光合波器6-1は、各光変調器5-11,
…,5-1mから供給される各光変調波信号を入力して合
成し、その合成光信号を合分配器7に出力する。また、
光合波器6-2は、各光変調器5-21,…,5-2mから供給
される各光変調波信号を入力して合成し、その合成光信
号を合分配器7に出力する。さらに、光合波器6-kは、
各光変調器5-k1,…,5-kmから供給される各光変調波
信号を入力して合成し、その合成光信号を合分配器7に
出力する。Each optical multiplexer 6-1 is connected to each optical modulator 5-11,
,... 5-1m are input and combined, and the combined optical signal is output to the combiner / distributor 7. Also,
The optical multiplexer 6-2 inputs and combines the respective optical modulation wave signals supplied from the respective optical modulators 5-21,..., 5-2m, and outputs the combined optical signal to the multiplexer / distributor 7. Further, the optical multiplexer 6-k is
Each of the optical modulators 5-k1,..., And 5-km is input and combined, and the combined optical signal is output to the combiner / distributor 7.
【0032】合分配器7は、各合波器6-1,6-2,…,
6-kから供給される合成光信号を全て多重し、多重され
た光信号を光ネットワークに出力する。なお、この合分
配器7に代えてこれを合波器と分配器とで構成すること
もできる。The multiplexer / demultiplexer 7 includes multiplexers 6-1, 6-2,.
All the combined optical signals supplied from 6-k are multiplexed, and the multiplexed optical signal is output to the optical network. It should be noted that, in place of the multiplexer / distributor 7, this can be constituted by a multiplexer and a distributor.
【0033】次に、この実施の形態の作用について説明
する。Next, the operation of this embodiment will be described.
【0034】多波長光源1では、周波数間隔∧、波長λ
1,λ2,…,λkの光波が生成され、この多波長光源1
の各出力光波は第1光分波器2に供給される。第1光分
波器2では、多波長光(λ1,λ2,…,λk)が波長λ
1、波長λ2、波長λkの光波にそれぞれ分波されて各別
の多波長化装置3に供給される。In the multi-wavelength light source 1, the frequency interval ∧, the wavelength λ
1, .lambda.2,..., .Lambda.k are generated.
Are supplied to the first optical demultiplexer 2. In the first optical demultiplexer 2, the multi-wavelength light (λ1, λ2,.
The light is demultiplexed into lightwaves having wavelengths of 1, λ2, and λk, and supplied to the respective multiple wavelength converting devices 3.
【0035】多波長化装置3では、再度の多波長化が実
行される。このとき波長λ1の光波から周波数間隔λで
発生した波長λxの光波は、波長λ2の光波から同様に発
生した波長λyの光波との位置関係が合分配器7の出力
時に、図2(d)に示すスペクトルのように隣り合い、
周波数間隔Fで配列される。これは、多波長化装置3の
各出力のプロファイルが重なり合うことを利用してい
る。同様に波長λ3から発生した波長λzの光波は、さら
に波長λyの光波に周波数間隔Fで隣接する。このた
め、各光波は光フィルタで分波可能でありながら、光周
波数多重後はより狭い光周波数間隔で多重される。In the multi-wavelength conversion device 3, the multi-wavelength conversion is performed again. At this time, the lightwave of wavelength λx generated at a frequency interval λ from the lightwave of wavelength λ1 has a positional relationship with the lightwave of wavelength λy similarly generated from the lightwave of wavelength λ2 when the output of the combiner / distributor 7 is shown in FIG. Side by side like the spectrum shown in
They are arranged at frequency intervals F. This utilizes the fact that the profiles of the outputs of the multiple wavelength converting device 3 overlap. Similarly, the light wave of the wavelength λz generated from the wavelength λ3 is further adjacent to the light wave of the wavelength λy at the frequency interval F. For this reason, each optical wave can be split by an optical filter, but after optical frequency multiplexing, is multiplexed at a narrower optical frequency interval.
【0036】この実施の形態では、前述したように、初
段の多波長光源1をモードロックレーザ、2段目の多波
長化装置3を光周波数コム発生器を使用するものとし
て、以下に具体例を挙げて説明する。In this embodiment, as described above, the first example of the multi-wavelength light source 1 uses a mode-locked laser, and the second-stage multi-wavelength device 3 uses an optical frequency comb generator. This will be described.
【0037】第1光分波器2及び第2光分波器4をAW
Gで構成した場合、現在のAWG技術を考慮して2段目
の周波数間隔λを25GHzとする。例えば、図2に示
すように、初段の周波数間隔Λを70GHzとした場
合、光波の重なり合わせを考慮して2段目の多波長化装
置3で発生させる光波数は最大14波ずつとすることが
できる。ここで、周波数間隔∧及びλは第1、第2光分
波器2、4により分波可能な光周波数間隔である。図2
は、初段を3波として示した例である。分波された波長
λx、λy及びλzの各光波は、第2光分波器4により分
波できない光周波数間隔F(=5GHz)で隣接多重さ
れるのである。The first optical splitter 2 and the second optical splitter 4 are AW
In the case of G, the second-stage frequency interval λ is set to 25 GHz in consideration of the current AWG technology. For example, as shown in FIG. 2, when the frequency interval 初 of the first stage is set to 70 GHz, the number of light waves generated by the second-stage multiwavelength device 3 is set to a maximum of 14 waves in consideration of the overlapping of light waves. Can be. Here, the frequency intervals ∧ and λ are optical frequency intervals that can be split by the first and second optical splitters 2 and 4. FIG.
Is an example in which the first stage is shown as three waves. The demultiplexed light waves of wavelengths λx, λy, and λz are adjacently multiplexed at an optical frequency interval F (= 5 GHz) that cannot be demultiplexed by the second optical demultiplexer 4.
【0038】なお、この場合、初段を32波(約17n
mの範囲)まで出力できるとすると、最終段で最大44
8波の光波を周波数間隔5GHzに各波長を管理した状
態で使用できる。これらの光波は、ハイビジョン1チャ
ンネル相当、1.485Gbpsの伝送速度を持つ光D
BPSK波を光周波数多重する光搬送波に適用できる
(前田幹夫ほか「位相ダイバーシティ方式DPSKコヒ
ーレント光伝送実験」、電子情報通信学会光通信システ
ム研究会、OCS96−126、1997)。In this case, the first stage has 32 waves (about 17n).
m range), assuming that a maximum of 44
Eight light waves can be used in a state where each wavelength is managed at a frequency interval of 5 GHz. These light waves are equivalent to one channel of Hi-Vision, and are optical D having a transmission rate of 1.485 Gbps.
It can be applied to an optical carrier that optically multiplexes a BPSK wave (Mikio Maeda et al., "Experiment on DPSK coherent optical transmission using a phase diversity scheme", IEICE Technical Committee on Optical Communication Systems, OCS 96-126, 1997).
【0039】ところで、上記実施形態ではλ<Λの場合
について説明したが、λ>Λの場合についても同様の目
的を達成できることは明らかである。In the above embodiment, the case where λ <Λ has been described. However, it is clear that the same object can be achieved when λ> Λ.
【0040】[0040]
【発明の効果】以上説明したように本発明によれば、光
周波数間隔制御を用いることなく、コヒーレント光伝送
で期待されるような分波が困難な狭い周波数間隔で、光
変調波信号を配列することが可能となる。As described above, according to the present invention, without using optical frequency interval control, an optically modulated wave signal is arranged at a narrow frequency interval in which demultiplexing is difficult as expected in coherent optical transmission. It is possible to do.
【図1】本発明による光周波数多重装置の実施の形態を
示すブロック図である。FIG. 1 is a block diagram showing an embodiment of an optical frequency multiplexing device according to the present invention.
【図2】本発明の実施の形態で生成される光波の配列例
を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of an arrangement of light waves generated in an embodiment of the present invention.
【図3】従来から知られている光伝送システムの構成を
示すブロック図である。FIG. 3 is a block diagram illustrating a configuration of a conventionally known optical transmission system.
【図4】従来の光周波数多重装置の一例を示すブロック
図である。FIG. 4 is a block diagram illustrating an example of a conventional optical frequency multiplexing device.
【図5】モードロックレーザを用いて多波長光源を実現
する従来例の光周波数多重装置を示すブロック図であ
る。FIG. 5 is a block diagram showing a conventional optical frequency multiplexing apparatus for realizing a multi-wavelength light source using a mode-locked laser.
【図6】副搬送波多重伝送技術を用いた光周波数多重装
置の従来例を示すブロック図である。FIG. 6 is a block diagram showing a conventional example of an optical frequency multiplexing apparatus using a subcarrier multiplex transmission technique.
1 多波長光源 2 第1光分波器 3(3-1〜3-k) 多波長化装置 4(4-1〜4-k) 第2光分波器 5(5-11〜5-km) 光変調器 6(6-1〜6-k) 光合波器 7 合分配器 Reference Signs List 1 multi-wavelength light source 2 first optical demultiplexer 3 (3-1 to 3-k) multi-wavelength conversion device 4 (4-1 to 4-k) second optical demultiplexer 5 (5-11 to 5-km) ) Optical modulator 6 (6-1 to 6-k) Optical multiplexer 7 Multiplexer
Claims (1)
1つの光波を選択受信する際にコヒーレント光検波が必
要となる程度に光分波が困難な狭い周波数間隔Fで多重
された光信号を生成する光周波数多重装置であって、 単一の光源から多波長化により等周波数間隔Λの多波長
光を発生させる第1多波長化手段と、 多波長化された等周波数間隔Λの多波長光を各光波に分
波する第1分波手段と、 分波された各光波毎にそれぞれ多波長化を行って等周波
数間隔λ(λ≠Λ)の多波長光を生成する第2多波長化
手段と、 多波長化を施して得られた等周波数間隔λの多波長光を
各光波にそれぞれ分波する第2分波手段と、 分波された各光波を送信信号で変調する変調手段と、 変調によって得られた光変調波信号を合成してそれぞれ
の光波が前記光周波数間隔Fで交互に光波多重された光
信号を生成する光信号生成手段と、 を備えたことを特徴とする光周波数多重装置。1. An optical signal multiplexed at a narrow frequency interval F in which optical demultiplexing is difficult to the extent that coherent optical detection is required when one optical wave is selectively received from a plurality of optical frequency multiplexed optical waves. An optical frequency multiplexing apparatus that generates multi-wavelength light having an equal frequency interval に よ り from a single light source by multi-wavelength generation; and a multi-wavelength equal frequency interval Λ multi-wavelength device. A first demultiplexing unit for demultiplexing the wavelength light into each light wave, and a second demultiplexing unit for performing multi-wavelength generation for each demultiplexed light wave to generate multi-wavelength light having an equal frequency interval λ (λ ≠ Λ). Wavelength demultiplexing means; second demultiplexing means for demultiplexing the multi-wavelength light having the same frequency interval λ obtained by performing multi-wavelength division into respective light waves; and modulation for modulating each demultiplexed light wave with a transmission signal. Means for synthesizing an optically modulated wave signal obtained by the modulation so that each light wave is An optical frequency multiplexing apparatus, comprising: an optical signal generating unit that generates an optical signal that is alternately light-wave multiplexed at several intervals F.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10167399A JP3971049B2 (en) | 1999-04-08 | 1999-04-08 | Optical frequency multiplexer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10167399A JP3971049B2 (en) | 1999-04-08 | 1999-04-08 | Optical frequency multiplexer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000295201A true JP2000295201A (en) | 2000-10-20 |
JP3971049B2 JP3971049B2 (en) | 2007-09-05 |
Family
ID=14306893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10167399A Expired - Fee Related JP3971049B2 (en) | 1999-04-08 | 1999-04-08 | Optical frequency multiplexer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3971049B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7113702B2 (en) | 2001-08-06 | 2006-09-26 | Nippon Telegraph And Telephone Corporation | Wavelength division multiplexing optical transmission system and transmission method |
US7127168B2 (en) | 2001-06-13 | 2006-10-24 | Nippon Telegraph And Telephone Corporation | Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter |
US7206510B2 (en) | 2001-10-09 | 2007-04-17 | Nippon Telegraph And Telephone Corporation | Ring network using multi-wavelength generator |
JP2009124700A (en) * | 2007-10-24 | 2009-06-04 | Nippon Telegr & Teleph Corp <Ntt> | Optical orthogonal frequency division multiplexing transmission circuit |
JP2010171789A (en) * | 2009-01-23 | 2010-08-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical signal transmission method, optical communication system, optical transmitter, and optical receiver |
JP2010226389A (en) * | 2009-03-23 | 2010-10-07 | Nippon Telegr & Teleph Corp <Ntt> | Light focusing apparatus and light focusing method |
CN102546078A (en) * | 2011-12-31 | 2012-07-04 | 中兴通讯股份有限公司 | Ultra-dense wavelength division multiplexing system and method |
-
1999
- 1999-04-08 JP JP10167399A patent/JP3971049B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7127168B2 (en) | 2001-06-13 | 2006-10-24 | Nippon Telegraph And Telephone Corporation | Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter |
US7113702B2 (en) | 2001-08-06 | 2006-09-26 | Nippon Telegraph And Telephone Corporation | Wavelength division multiplexing optical transmission system and transmission method |
US7206510B2 (en) | 2001-10-09 | 2007-04-17 | Nippon Telegraph And Telephone Corporation | Ring network using multi-wavelength generator |
JP2009124700A (en) * | 2007-10-24 | 2009-06-04 | Nippon Telegr & Teleph Corp <Ntt> | Optical orthogonal frequency division multiplexing transmission circuit |
JP2010171789A (en) * | 2009-01-23 | 2010-08-05 | Nippon Telegr & Teleph Corp <Ntt> | Optical signal transmission method, optical communication system, optical transmitter, and optical receiver |
JP2010226389A (en) * | 2009-03-23 | 2010-10-07 | Nippon Telegr & Teleph Corp <Ntt> | Light focusing apparatus and light focusing method |
CN102546078A (en) * | 2011-12-31 | 2012-07-04 | 中兴通讯股份有限公司 | Ultra-dense wavelength division multiplexing system and method |
WO2013097384A1 (en) * | 2011-12-31 | 2013-07-04 | 中兴通讯股份有限公司 | Ultra-dense wavelength-division multiplexing system and method |
CN102546078B (en) * | 2011-12-31 | 2018-05-01 | 中兴通讯股份有限公司 | A kind of ultra dense wavelength division multiple system and method |
Also Published As
Publication number | Publication date |
---|---|
JP3971049B2 (en) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2209228B1 (en) | An optical line terminal, a remote node unit, an optical transimission method and system thereof | |
US9106359B2 (en) | Optical network system, optical multiplexing apparatus, and receiving apparatus | |
US20170346445A1 (en) | Dense Wavelength-Division Multiplexing (DWDM) Network and Method | |
KR20140027502A (en) | Migratable wavelength division multiplexing passive optical network | |
WO2012065460A1 (en) | Passive optical network system and method, optical line terminal and wavelength routing unit | |
JP5204024B2 (en) | Optical / wireless transmission equipment | |
US20030165173A1 (en) | Multiple modulated wavelengths in a compact laser | |
US6829438B2 (en) | Add/drop multiplexing in WDM optical networks | |
KR20110053973A (en) | Wdm pon rf/video braodcast overlay | |
JP2763167B2 (en) | Optical switching network | |
US20150086200A1 (en) | Space To Wavelength Superchannel Conversion | |
JP3971049B2 (en) | Optical frequency multiplexer | |
JPH11186970A (en) | Optical network | |
JP3593291B2 (en) | WDM network | |
JP4006210B2 (en) | Optical wavelength division multiplexing network group | |
JP2001177505A (en) | Method and device for wavelength multiple two-way optical transmission | |
JP3860760B2 (en) | Optical wavelength division multiplexing ring network | |
US7016614B1 (en) | Optical wavelength division multiplexing transmission suppressing four-wave mixing and SPM-GVD effects | |
JP4230934B2 (en) | Multi-channel optical modulator and multi-channel optical transmitter | |
JPH0779212A (en) | Light wavelength multiplex optical transmitter | |
JP3860759B2 (en) | Optical wavelength division multiplexing ring network | |
KR20030014020A (en) | A wavelength converting apparatus using optical source having fixed wavelength and an optical cross connecting system adapting thereof | |
JP4029515B2 (en) | Wavelength converter and wavelength converter | |
US6611639B2 (en) | Optical module for multi-channel wavelength multiplexing | |
JP3987447B2 (en) | Optical carrier generator, optical modulator, optical signal transmitter / receiver, and optical communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070529 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140615 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |