JP2000286104A - Manufacture of positive temperature coefficient thermistor - Google Patents
Manufacture of positive temperature coefficient thermistorInfo
- Publication number
- JP2000286104A JP2000286104A JP8874799A JP8874799A JP2000286104A JP 2000286104 A JP2000286104 A JP 2000286104A JP 8874799 A JP8874799 A JP 8874799A JP 8874799 A JP8874799 A JP 8874799A JP 2000286104 A JP2000286104 A JP 2000286104A
- Authority
- JP
- Japan
- Prior art keywords
- temperature coefficient
- positive temperature
- coefficient thermistor
- mixed
- thermistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電流制御用スイッチ
ング素子や温風ヒータ等の定温発熱体として利用される
正特性サーミスタの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a positive temperature coefficient thermistor used as a constant temperature heating element such as a current control switching element or a hot air heater.
【0002】[0002]
【従来の技術】従来の正特性サーミスタの製造方法は、
BaCO3、TiO2、PbO、CaCO3、Y2O3、S
iO2、Al2O3、Mn(NO3)2などを所定の組成と
なるように配合し、全ての原材料を同時に混合し、仮焼
したものを粉砕し造粒後成形し、その成形体を焼成した
焼結体に電極を形成していた。従って、同一材料で素子
の比抵抗を下げる場合、焼成条件を変えたり又は素子の
厚みを薄くするなどの方法により目的の比抵抗を得てい
た。2. Description of the Related Art A conventional method of manufacturing a positive temperature coefficient thermistor is as follows.
BaCO 3 , TiO 2 , PbO, CaCO 3 , Y 2 O 3 , S
iO 2 , Al 2 O 3 , Mn (NO 3 ) 2, etc. are blended so as to have a predetermined composition, all the raw materials are mixed at the same time, the calcined material is pulverized, granulated, formed after granulation, and formed into a compact. An electrode was formed on the sintered body obtained by firing the above. Therefore, when lowering the specific resistance of the element with the same material, the desired specific resistance has been obtained by changing the firing conditions or reducing the thickness of the element.
【0003】[0003]
【発明が解決しようとする課題】前記従来の方法によ
り、焼成温度、焼成時間および冷却速度など焼成条件を
変えて低い比抵抗を得た場合、素子のR−T特性(抵抗
値の温度特性)が変化してしまい所定のR−T特性を得
ることが困難であった。また、素子厚みを薄くし低い比
抵抗を得た場合は素子の耐電圧が低くなるという問題点
があった。When a low specific resistance is obtained by changing the firing conditions such as the firing temperature, the firing time and the cooling rate by the above-mentioned conventional method, the RT characteristic (temperature characteristic of resistance value) of the device is obtained. Changed, and it was difficult to obtain a predetermined RT characteristic. Further, when the element thickness is reduced to obtain a low specific resistance, there is a problem that the withstand voltage of the element is reduced.
【0004】本発明は前記問題点を解決するもので、R
−T特性や耐電圧を損することなく低い比抵抗の正特性
サーミスタを得ることを目的とする。[0004] The present invention solves the above-mentioned problems.
An object of the present invention is to obtain a positive temperature coefficient thermistor having a low specific resistance without deteriorating the -T characteristic or withstand voltage.
【0005】[0005]
【課題を解決するための手段】この目的を達成するため
に本発明は、正特性サーミスタの原材料の配合・混合に
おいて、まず半導体化元素を純水に混合してスラリーと
し、次にその他の原材料と共に混合し、仮焼したものを
粉砕し造粒後成形し、その後成形体を焼成した焼結体に
電極を形成する方法であり、これにより、R−T特性や
耐電圧を損することなく低い比抵抗の正特性サーミスタ
を得ることができる。これは半導体化元素の分散性が向
上し半導体化元素イオンの微視的な不均一分布が平均化
され、その結果粒子のバルク内に均一に固溶しやすくな
り比抵抗を低くできるものと考えられる。In order to achieve this object, the present invention relates to a method of mixing and mixing raw materials for a positive temperature coefficient thermistor, which comprises first mixing a semiconducting element with pure water to form a slurry, and then mixing other raw materials. Is a method of forming electrodes after calcination, pulverizing and calcining the calcined material, and thereafter sintering the molded body, thereby forming an electrode on the sintered body without impairing the RT characteristics and withstand voltage. A positive temperature coefficient thermistor having a specific resistance can be obtained. This is thought to be because the dispersibility of the semiconducting element is improved and the microscopic non-uniform distribution of the semiconducting element ions is averaged, and as a result, the solid solution is easily uniformly dissolved in the bulk of the particles and the specific resistance can be reduced. Can be
【0006】[0006]
【発明の実施の形態】本発明の請求項1に記載の正特性
サーミスタの製造方法は、チタン酸バリウム及び酸化イ
ットリウム等の半導体化元素などからなる正特性サーミ
スタの配合・混合工程にて、まず半導体化元素を純水に
混合してスラリーとし、次にその他の原材料と共に混合
し、仮焼したものを粉砕し造粒後成形し、その成形体を
焼成した焼結体に電極を形成するものである。これによ
り、半導体化元素の分散性が向上し比抵抗を容易に下げ
ることができ、焼成条件や素子の厚み等を変えることな
く所期の目的を達成することができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of manufacturing a positive temperature coefficient thermistor according to claim 1 of the present invention comprises the steps of first mixing and mixing a positive temperature coefficient thermistor comprising a semiconductor element such as barium titanate and yttrium oxide. A semiconductor element is mixed with pure water to form a slurry, then mixed with other raw materials, then calcined, pulverized, granulated and formed, and the formed body is sintered to form an electrode on a sintered body. It is. As a result, the dispersibility of the semiconductor element is improved, the specific resistance can be easily reduced, and the intended purpose can be achieved without changing the firing conditions, the thickness of the element, and the like.
【0007】本発明の請求項2に記載の正特性サーミス
タの製造方法は、チタン酸バリウム及び酸化イットリウ
ム等の半導体化元素などからなる正特性サーミスタの配
合・混合工程にて、まず半導体化元素と共にその他の原
材料の一部を混合してスラリーとし、次にその他の原材
料と共に混合し、仮焼したものを粉砕し造粒後成形し、
その成形体を焼成した焼結体に電極を形成するものであ
る。これにより、同一材料で正特性サーミスタの焼成条
件または形状を変えることなく比抵抗を容易に下げるこ
とができる。According to a second aspect of the present invention, there is provided a method for manufacturing a positive temperature coefficient thermistor, comprising the steps of mixing and mixing a positive temperature coefficient thermistor made of a semiconductor element such as barium titanate and yttrium oxide together with a semiconductor element. A part of other raw materials are mixed to form a slurry, then mixed with other raw materials, and calcined, pulverized, granulated, and shaped,
An electrode is formed on a sintered body obtained by firing the formed body. This makes it possible to easily lower the specific resistance without changing the firing conditions or the shape of the positive temperature coefficient thermistor using the same material.
【0008】本発明の請求項3に記載の正特性サーミス
タの製造方法は、チタン酸バリウム及び酸化イットリウ
ム等の半導体化元素などからなる正特性サーミスタの配
合・混合工程にて、まず半導体化元素を混合した後乾燥
させて粉末の状態にし、次にその他の原材料と共に配合
・混合し、仮焼したものを粉砕し造粒後成形し、その成
形体を焼成した焼結体に電極を形成するものである。こ
れにより、同一材料で正特性サーミスタの焼成条件また
は形状を変えることなく比抵抗を容易に下げることがで
きる。According to a third aspect of the present invention, there is provided a method of manufacturing a positive temperature coefficient thermistor, wherein a positive temperature coefficient thermistor comprising barium titanate and yttrium oxide or the like is mixed and mixed. Mixing and drying to form a powder, then blending and mixing with other raw materials, pulverizing and calcining the calcined product, forming the product, and forming the electrode on a sintered body obtained by firing the formed product It is. This makes it possible to easily lower the specific resistance without changing the firing conditions or the shape of the positive temperature coefficient thermistor using the same material.
【0009】(実施の形態1)以下、本発明の一実施の
形態について説明する。(Embodiment 1) An embodiment of the present invention will be described below.
【0010】市販のBaCO3、TiO2、PbO、Ca
CO3、Y2O3、SiO2、Al2O3、Mn(NO3)2を
(化1)の組成となるように秤量する。次に、秤量した
Y2O3をポリポットに入れ純水200ccと直径5mm
のジルコニアボール200gとを加え、3時間湿式混合
を行った。Commercially available BaCO 3 , TiO 2 , PbO, Ca
CO 3 , Y 2 O 3 , SiO 2 , Al 2 O 3 , and Mn (NO 3 ) 2 are weighed so as to have the composition shown in Chemical Formula 1. Next, the weighed Y 2 O 3 was placed in a polypot, and 200 cc of pure water was added thereto.
And 200 g of zirconia balls were added and wet-mixed for 3 hours.
【0011】[0011]
【化1】 Embedded image
【0012】次に、Y2O3以外の原材料を1リットルの
ポットに入れ純水500ccと直径5mmのジルコニア
ボール600gとを加え、更にポリポットで混合したY
2O3スラリーを入れて3時間湿式混合を行った。その
後、前記混合材料を1100℃の温度で2時間仮焼後、
仮焼粉を1リットルのポットに入れ純水500ccと直
径5mmのジルコニアボール600gとを加え3時間湿
式粉砕し、乾燥を行った。Next, raw materials other than Y 2 O 3 were put in a 1-liter pot, 500 cc of pure water and 600 g of zirconia balls having a diameter of 5 mm were added, and Y was mixed in a polypot.
The 2 O 3 slurry was added and wet-mixed for 3 hours. Then, after calcining the mixed material at a temperature of 1100 ° C. for 2 hours,
The calcined powder was placed in a 1-liter pot, 500 cc of pure water and 600 g of zirconia balls having a diameter of 5 mm were added, wet-ground for 3 hours, and dried.
【0013】次に、得られた粉砕粉に5%ポリビニルア
ルコール水溶液を10wt%加え、ライカイ機で5分間
造粒した後、20メッシュのフルイを通過させ造粒粉を
作製した。その後、造粒粉を1000kgf/cm2の
圧力で成形し、その成形体を焼成炉中で昇温速度250
℃/hr、最高温度1250℃で2時間焼成した後、冷
却速度200℃/hrで室温まで徐冷した。得られた焼
結体の両面にアルミニウム電極を溶射し正特性サーミス
タを作製した後、室温での比抵抗値及びR−T特性を測
定し、その結果と従来工法による正特性サーミスタと比
較し(表1)に示した。Next, 10% by weight of a 5% aqueous solution of polyvinyl alcohol was added to the obtained pulverized powder, and the mixture was granulated with a raikai machine for 5 minutes, and then passed through a 20-mesh sieve to prepare granulated powder. Thereafter, the granulated powder is formed at a pressure of 1000 kgf / cm 2 , and the formed body is heated in a firing furnace at a heating rate of 250 kgf / cm 2.
After calcination at a maximum temperature of 1250 ° C. for 2 hours, the mixture was gradually cooled to room temperature at a cooling rate of 200 ° C./hr. An aluminum electrode is sprayed on both surfaces of the obtained sintered body to produce a positive temperature coefficient thermistor. Then, the resistivity and RT characteristics at room temperature are measured, and the results are compared with the positive temperature coefficient thermistor by the conventional method ( The results are shown in Table 1).
【0014】尚、従来の正特性サーミスタの製造は、市
販のBaCO3、TiO2、PbO、CaCO3、Y
2O3、SiO2、Al2O3、Mn(NO3)2を本発明と
同じ(化1)の組成となるように秤量し、全ての原材料
を同時に1リットルのポットに入れ純水500ccと直
径5mmのジルコニアボール600gとを加え、3時間
湿式混合を行った。The conventional PTC thermistor is manufactured using commercially available BaCO 3 , TiO 2 , PbO, CaCO 3 , Y
2 O 3 , SiO 2 , Al 2 O 3 , and Mn (NO 3 ) 2 were weighed so as to have the same composition as in the present invention, and all the raw materials were simultaneously placed in a 1-liter pot and 500 cc of pure water. And 600 g of a zirconia ball having a diameter of 5 mm were added and wet-mixed for 3 hours.
【0015】その後、混合材料を1100℃の温度で2
時間仮焼後、この仮焼粉を1リットルのポットに入れ純
水500ccと直径5mmのジルコニアボール600g
とを加え3時間湿式粉砕し、乾燥を行った。Thereafter, the mixed material is heated at a temperature of 1100 ° C. for 2 hours.
After calcining for one hour, the calcined powder is put into a 1-liter pot, and 500 cc of pure water and 600 g of zirconia balls having a diameter of 5 mm are placed.
And wet-pulverized for 3 hours, followed by drying.
【0016】次に、得られた粉砕粉に5%ポリビニルア
ルコール水溶液を10wt%加え、ライカイ機で5分間
造粒した後、20メッシュのフルイを通過させ造粒粉を
作製した。その後、造粒粉を1000kgf/cm2の
圧力で成形し、その後この成形体を焼成条件を変えずに
焼成炉中で昇温速度250℃/hr、最高温度1250
℃で2時間焼成した後、冷却速度200℃/hrで室温
まで徐冷したものを従来例に示した。また従来例にお
いて比抵抗を下げるために焼成条件を変え焼成炉中で昇
温速度250℃/hr、最高温度1250℃で1時間焼
成した後、冷却速度250℃/hrで室温まで徐冷した
ものを従来例に示した。Next, 10% by weight of a 5% aqueous polyvinyl alcohol solution was added to the obtained ground powder, and the mixture was granulated for 5 minutes with a raikai machine, and then passed through a 20-mesh sieve to prepare granulated powder. Thereafter, the granulated powder is formed at a pressure of 1000 kgf / cm 2 , and then the formed body is heated in a firing furnace at a heating rate of 250 ° C./hr and a maximum temperature of 1250 without changing the firing conditions.
After calcination for 2 hours at a temperature of 200 ° C. and then gradually cooled to room temperature at a cooling rate of 200 ° C./hr, a conventional example is shown. Further, in the conventional example, the firing conditions were changed to lower the specific resistance, the firing was performed in a firing furnace at a heating rate of 250 ° C./hr and a maximum temperature of 1250 ° C. for 1 hour, and then gradually cooled to room temperature at a cooling rate of 250 ° C./hr. Is shown in the conventional example.
【0017】[0017]
【表1】 [Table 1]
【0018】(表1)に示すように、従来例において
は所定のR−T特性を得ることができるが比抵抗値が高
く、従来例においては低い比抵抗値を得ることができ
たがR−T特性においてスイッチング温度(25℃で測
定された抵抗値の2倍の抵抗値が得られる温度)が変化
し、また抵抗温度係数(温度変化に対する抵抗値の変化
量)等が変化し所定の特性を得ることが困難であった。
一方、本発明の実施の形態1によると比抵抗が低くスイ
ッチング温度、抵抗温度係数も従来例から顕著な変化
がみられず所定の値を得ることができた。As shown in Table 1, in the conventional example, a predetermined RT characteristic could be obtained, but the specific resistance was high, and in the conventional example, a low specific resistance could be obtained. In the −T characteristic, the switching temperature (the temperature at which a resistance value twice as large as the resistance value measured at 25 ° C. is obtained) changes, and the resistance temperature coefficient (the amount of change in the resistance value with respect to temperature change) changes. It was difficult to obtain the characteristics.
On the other hand, according to the first embodiment of the present invention, the specific resistance was low, and the switching temperature and the temperature coefficient of resistance were not significantly changed from the conventional example, and the predetermined values could be obtained.
【0019】(実施の形態2)以下、本発明の他の実施
の形態について説明する。(Embodiment 2) Hereinafter, another embodiment of the present invention will be described.
【0020】実施の形態1と同様に市販のBaCO3、
TiO2、PbO、CaCO3、Y2O 3、SiO2、Al2
O3、Mn(NO3)2を(化1)の組成となるように秤
量する。次に、秤量したY2O3、SiO2、Al2O3及
びBaCO3の一部をポリポットに入れ純水200cc
と直径5mmのジルコニアボール200gとを加え3時
間湿式混合を行った。As in the first embodiment, a commercially available BaCOThree,
TiOTwo, PbO, CaCOThree, YTwoO Three, SiOTwo, AlTwo
OThree, Mn (NOThree)TwoIs weighed so that it has the composition of Chemical Formula 1.
Weigh. Next, the weighed YTwoOThree, SiOTwo, AlTwoOThreePassing
And BaCOThree200cc pure water
And 200 g of zirconia balls with a diameter of 5 mm
Wet mixing was performed.
【0021】次に、残りの原材料を1リットルポットに
入れ純水500ccと直径5mmのジルコニアボール6
00gとを加え、更にポリポットで混合したY2O3、S
iO 2、Al2O3及びBaCO3のスラリーを入れて3時
間湿式混合を行った。以下本発明の実施の形態1と同様
の方法で作製した。得られた焼結体の両面にアルミニウ
ム電極を溶射し正特性サーミスタを作製した後、室温抵
抗値及びR−T特性を測定し、その結果を(表1)の実
施の形態2に示した。Next, the remaining raw materials are placed in a 1 liter pot.
500cc of pure water and 5mm diameter zirconia ball 6
00g and further mixed in a polypot.TwoOThree, S
iO Two, AlTwoOThreeAnd BaCOThree3 o'clock with the slurry
Wet mixing was performed. Hereinafter, the same as Embodiment 1 of the present invention
It was produced by the method described above. Aluminum on both sides of the obtained sintered body
After producing a positive temperature coefficient thermistor by spraying the
The resistance value and the RT characteristic were measured, and the results were obtained as shown in Table 1.
This is shown in the second embodiment.
【0022】(表1)に示すように、本発明の実施の形
態2の正特性サーミスタは、R−T特性を変えることな
く比抵抗が従来例の正特性サーミスタに比べて低くで
きることがわかる。As shown in Table 1, it can be seen that the positive temperature coefficient thermistor according to the second embodiment of the present invention can have a lower specific resistance than the conventional positive temperature coefficient thermistor without changing the RT characteristics.
【0023】(実施の形態3)以下、本発明のさらに他
の実施の形態について説明する。(Embodiment 3) Hereinafter, still another embodiment of the present invention will be described.
【0024】Y2O3100gをポリポットに入れ純水2
00ccと直径5mmのジルコニアボール200gとを
加え3時間湿式混合した後乾燥し、Y2O3の混合粉末と
した。次に市販のBaCO3、TiO2、PbO、CaC
O3、SiO2、Al2O3、Mn(NO3)2及びY2O3の
混合粉末を(化1)の組成となるように秤量する。そし
て、これらの原材料を1リットルポットに入れ純水50
0ccと直径5mmのジルコニアボール600gとを加
え3時間湿式混合を行った。以下本発明の実施の形態1
と同様の方法で作製した。100 g of Y 2 O 3 is placed in a polypot and pure water 2
00 cc and 200 g of zirconia balls having a diameter of 5 mm were added and wet-mixed for 3 hours, followed by drying to obtain a mixed powder of Y 2 O 3 . Next, commercially available BaCO 3 , TiO 2 , PbO, CaC
A mixed powder of O 3 , SiO 2 , Al 2 O 3 , Mn (NO 3 ) 2, and Y 2 O 3 is weighed so as to have a composition represented by the following chemical formula 1. Then, put these raw materials in a 1 liter pot and add 50
0 cc and 600 g of zirconia balls having a diameter of 5 mm were added and wet-mixed for 3 hours. First Embodiment of the Present Invention
It was prepared in the same manner as described above.
【0025】得られた焼結体の両面にアルミニウム電極
を溶射し正特性サーミスタを作製した後、室温抵抗値及
びR−T特性を測定し、その結果を(表1)に示した。An aluminum electrode was sprayed on both surfaces of the obtained sintered body to produce a positive temperature coefficient thermistor, and then the room temperature resistance and the RT characteristic were measured. The results are shown in Table 1.
【0026】(表1)に示すように、本発明の実施の形
態3の正特性サーミスタは、R−T特性を顕著に変化さ
せることなく比抵抗が従来例の正特性サーミスタに比
べて低くできることがわかる。As shown in Table 1, the positive temperature coefficient thermistor according to the third embodiment of the present invention can have a lower specific resistance than the conventional positive temperature coefficient thermistor without significantly changing the RT characteristic. I understand.
【0027】前記に記載した通り本発明の実施の形態1
〜3によると、素子の厚みを薄くすることが無いため耐
電圧を劣化させること無く、また、R−T特性の顕著な
変化がなく比抵抗を低くすることができる。As described above, Embodiment 1 of the present invention
According to Nos. 1 to 3, it is possible to lower the specific resistance without deteriorating the withstand voltage because the thickness of the element is not reduced, and there is no remarkable change in the RT characteristic.
【0028】(表2)には本発明の実施の形態1〜3の
模擬サンプル及び従来例のY2O3の沈降試験を行い分散
性を評価した結果を示す。まず本発明の実施の形態の試
料として、あらかじめ純水と混合攪拌しその後乾燥させ
る前処理を行ったY2O3の粉末を準備し、また、従来例
の試料として前記前処理を行わないものを準備した。次
に前記の試料を水の入った試験管の中に一定量を入れ攪
拌を行い、所定の時間放置した後に試験管の底に沈殿し
たY2O3の高さを測定し沈降高さとして記録した。この
時の沈降高さが低いものあるいは沈殿する時間が遅いも
のが分散性がすぐれている。したがって、本発明の実施
の形態の模擬試料と比較すると従来例はY2O3の平均粒
径がほぼ同径であるが、沈降高さは本発明の実施の形態
の模擬試料の方が低くY2O3の粒径を変えずに分散性が
向上しており、分散性を向上することでR−T特性を損
することなく低い比抵抗を得ることができたものと考え
られる。Table 2 shows the results of the sedimentation test of the simulated samples according to the first to third embodiments of the present invention and the Y 2 O 3 of the conventional example, and evaluation of the dispersibility. First, as the embodiment sample of the present invention, to prepare a powder of Y 2 O 3 was pretreated drying stirring and mixing with a previously purified water then also not performed the pretreatment as a sample of the conventional example Was prepared. Next, a predetermined amount of the sample was placed in a test tube containing water, and the mixture was stirred. After standing for a predetermined time, the height of Y 2 O 3 precipitated at the bottom of the test tube was measured, and the height was set as the sedimentation height. Recorded. At this time, those having a low sedimentation height or those having a long sedimentation time have excellent dispersibility. Therefore, as compared with the simulated sample according to the embodiment of the present invention, the average particle diameter of Y 2 O 3 is almost the same in the conventional example, but the sedimentation height is lower in the simulated sample according to the embodiment of the present invention. It is considered that the dispersibility was improved without changing the particle size of Y 2 O 3 , and it was considered that a low specific resistance could be obtained without impairing the RT characteristics by improving the dispersibility.
【0029】[0029]
【表2】 [Table 2]
【0030】尚、本発明の実施の形態では半導体化元素
をY2O3としているが、Nb、Laなどその他の半導体
化元素でも同様の効果が得られる。In the embodiment of the present invention, the semiconductor element is Y 2 O 3 , but the same effect can be obtained with other semiconductor elements such as Nb and La.
【0031】[0031]
【発明の効果】以上のように本発明によれば、正特性サ
ーミスタの配合・混合において、まず半導体化元素を混
合してスラリーあるいは粉末状にし、次にその他の原材
料を配合・混合する際に添加することにより、R−T特
性や耐電圧を損することなく低い比抵抗の正特性サーミ
スタを得ることができ、また、焼成条件や素子の厚みな
どの形状を変えることなく比抵抗を容易に下げることが
可能となる。As described above, according to the present invention, when compounding and mixing a positive temperature coefficient thermistor, first, a semiconductor element is mixed to form a slurry or powder, and then, when other raw materials are mixed and mixed, By adding the compound, a positive temperature coefficient thermistor having a low specific resistance can be obtained without impairing the RT characteristic and the withstand voltage, and the specific resistance can be easily reduced without changing the shape such as the firing conditions and the thickness of the element. It becomes possible.
Claims (3)
等の半導体化元素などからなる正特性サーミスタの配合
・混合工程にて、まず半導体化元素を純水に混合してス
ラリーとし、次にその他の原材料と共に混合し、仮焼し
たものを粉砕し造粒後成形し、その成形体を焼成した焼
結体に電極を形成する正特性サーミスタの製造方法。1. In a compounding / mixing step of a positive temperature coefficient thermistor composed of a semiconducting element such as barium titanate and yttrium oxide, first, a semiconducting element is mixed with pure water to form a slurry, and then mixed with other raw materials. A method for producing a positive temperature coefficient thermistor in which a mixture is calcined, pulverized, granulated, molded, and then sintered to form an electrode on a sintered body.
等の半導体化元素などからなる正特性サーミスタの配合
・混合工程にて、まず半導体化元素と共にその他の原材
料の一部を混合してスラリーとし、次にその他の原材料
と共に混合し、仮焼したものを粉砕し造粒後成形し、そ
の成形体を焼成した焼結体に電極を形成する正特性サー
ミスタの製造方法。2. In a compounding / mixing step of a positive temperature coefficient thermistor composed of a semiconducting element such as barium titanate and yttrium oxide, first, a part of other raw materials are mixed together with the semiconducting element to form a slurry, A method for producing a positive temperature coefficient thermistor in which a mixture is mixed with other raw materials, calcined, pulverized, granulated, and molded, and an electrode is formed on a sintered body obtained by calcining the molded body.
等の半導体化元素などからなる正特性サーミスタの配合
・混合工程にて、まず半導体化元素を混合した後乾燥さ
せて粉末の状態にし、次にその他の原材料と共に配合・
混合し、仮焼したものを粉砕し造粒後成形し、その成形
体を焼成した焼結体に電極を形成する正特性サーミスタ
の製造方法。3. In a compounding / mixing step of a positive temperature coefficient thermistor made of a semiconducting element such as barium titanate and yttrium oxide, the semiconducting element is first mixed, dried to form a powder, and then the other elements are mixed. Combined with raw materials
A method for producing a positive temperature coefficient thermistor in which a mixture is calcined, pulverized, granulated, molded, and then sintered to form an electrode on a sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8874799A JP2000286104A (en) | 1999-03-30 | 1999-03-30 | Manufacture of positive temperature coefficient thermistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8874799A JP2000286104A (en) | 1999-03-30 | 1999-03-30 | Manufacture of positive temperature coefficient thermistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000286104A true JP2000286104A (en) | 2000-10-13 |
Family
ID=13951512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8874799A Pending JP2000286104A (en) | 1999-03-30 | 1999-03-30 | Manufacture of positive temperature coefficient thermistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000286104A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011506127A (en) * | 2007-12-05 | 2011-03-03 | エプコス アクチエンゲゼルシャフト | Injection molded PTC ceramic |
US9034210B2 (en) | 2007-12-05 | 2015-05-19 | Epcos Ag | Feedstock and method for preparing the feedstock |
-
1999
- 1999-03-30 JP JP8874799A patent/JP2000286104A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011506127A (en) * | 2007-12-05 | 2011-03-03 | エプコス アクチエンゲゼルシャフト | Injection molded PTC ceramic |
US9034210B2 (en) | 2007-12-05 | 2015-05-19 | Epcos Ag | Feedstock and method for preparing the feedstock |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH075363B2 (en) | PTC porcelain composition and method for producing the same | |
JP2000286104A (en) | Manufacture of positive temperature coefficient thermistor | |
JP4058140B2 (en) | Barium titanate semiconductor porcelain | |
JP2000264726A (en) | Semiconductor porcelain | |
JPH07297009A (en) | Positive temperature coefficient thermistor and manufacturing method thereof | |
JP2679449B2 (en) | Semiconductor porcelain having positive temperature coefficient of resistance and manufacturing method thereof | |
JPH10152372A (en) | Barium titanate-based semiconductor porcelain and its production | |
JP2000086336A (en) | Production of positive temperature coefficient thermistor | |
JP3598177B2 (en) | Voltage non-linear resistor porcelain | |
WO2004110952A1 (en) | Barium titanate based semiconductor porcelain composition | |
JPH11292622A (en) | Semiconductor ceramic and semiconductor ceramic element | |
JPS5948521B2 (en) | Method for manufacturing positive characteristic semiconductor porcelain | |
JPH11139870A (en) | Barium titanate-base semiconductor porcelain | |
JP2000003803A (en) | Positive temperature coefficient thermistor and production method thereof | |
JPH07183104A (en) | Manufacture of barium titanate semiconductor porcelain | |
JPH1072254A (en) | Production of barium titanate-base semiconductor porcelain | |
JPH07335404A (en) | Manufacture of positive temperature coefficient thermistor | |
JPH0684605A (en) | Positive characteristic thermister and production thereof | |
JPH1070008A (en) | Manufacture of positive temperature coefficient thermistor | |
JPH10218660A (en) | Barium titanate/based semiconductor porcelain material and production of semiconductor porcelain by using the same | |
JPH05326206A (en) | Barium titanate semiconductor ceramic and production thereof | |
JPH05291004A (en) | Manufacture of ptc thermistor | |
JPH05251204A (en) | Manufacturing method of positive temperature coefficient thermistor ceramics | |
JPH09246015A (en) | Preparation of positive characteristic semiconductor ceramic | |
JPH09162008A (en) | Manufacture of positive temperature coefficient thyristor |