Nothing Special   »   [go: up one dir, main page]

JP2000187221A - Production of liquid crystal element and production apparatus thereof - Google Patents

Production of liquid crystal element and production apparatus thereof

Info

Publication number
JP2000187221A
JP2000187221A JP36483998A JP36483998A JP2000187221A JP 2000187221 A JP2000187221 A JP 2000187221A JP 36483998 A JP36483998 A JP 36483998A JP 36483998 A JP36483998 A JP 36483998A JP 2000187221 A JP2000187221 A JP 2000187221A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
manufacturing
substrate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36483998A
Other languages
Japanese (ja)
Inventor
Yoshimasa Saito
好正 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP36483998A priority Critical patent/JP2000187221A/en
Publication of JP2000187221A publication Critical patent/JP2000187221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve alignment processing speed, embody stable liquid crystal molecule alignment and obtain high productivity by forming a light reaction type alignment layer on one side of a substrate and subjecting the reaction type alignment layer to optical irradiation, while heating the layer, thereby imparting liquid crystal alignment controllability to the optical reaction type alignment layer. SOLUTION: A heating stage 18 forms a space part 30, bored in the lower side of a substrate 17 loading section. Hot wind 21 formed by a hot wind heater 19, disposed in the space part 30, is introduced into the space part from the inside wall surfaces on four sides, with which the substrate 17 provided with the alignment layer is heated. As a result, UV irradiation light 13 enters the inside of the bored space part 30, and therefore, the reflection at the rear surface of the substrate 17 is eliminated. A UV reaction type alignment layer is formed as the light reaction type alignment layer and is subjected to the irradiation with UV rays, while the layer is preferably heated to 45 to 75 deg.C. A polyimide type aligning agent, etc., may be used as the material of the UV reaction type alignment layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶ディスプレイ
等の液晶素子の製造方法及びその製造装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal element such as a liquid crystal display and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】一般に液晶素子は、ガラス等からなる一
対の基板間の間隙内に液晶分子が封入され、基板の内面
に形成された配向膜に、液晶分子と基板との接触角であ
るプレチルト角を設定する配向処理を施すことにより、
液晶分子の配向性を高めている。
2. Description of the Related Art In general, a liquid crystal element has liquid crystal molecules sealed in a gap between a pair of substrates made of glass or the like, and an alignment film formed on the inner surface of the substrate has a pretilt which is a contact angle between the liquid crystal molecules and the substrate. By performing orientation processing to set the angle,
The orientation of liquid crystal molecules is enhanced.

【0003】このような液晶を用いたディスプレイ(液
晶表示素子)は、例えば図5及び図6に概略的に示すよ
うなセル構造1からなっている。即ち、ガラスなどの透
明な基板2aの内面上に、ITO(indium tin oxide :
インジウムにスズをドープした導電性酸化物)などの透
明電極層3a、及び液晶配向膜として高コントラスト良
好なドメインを実現する例えばSiO斜方蒸着層4aを
順次積層した積層体1Aと;これと同様に、基板2bの
内面上に、透明電極層3b、例えばSiO斜方蒸着層4
bを順次積層した積層体1Bと;を、液晶配向膜である
例えばSiO斜方蒸着層4a、4bが互いに対向するよ
うに配し、所定のセルギャップdを実現するための粒状
のスペーサ5を挟むことにより液晶セルを構成し、その
セルギャップに液晶6を注入し、周囲を接着剤7で封じ
た構造を有している。
A display (liquid crystal display element) using such a liquid crystal has a cell structure 1 as schematically shown in FIGS. 5 and 6, for example. That is, an indium tin oxide (ITO) is formed on the inner surface of a transparent substrate 2a such as glass.
A laminated body 1A in which a transparent electrode layer 3a such as a conductive oxide in which tin is doped into indium) and a SiO obliquely deposited layer 4a that realizes a high-contrast good domain as a liquid crystal alignment film are sequentially laminated; On the inner surface of the substrate 2b, a transparent electrode layer 3b, for example, a SiO oblique deposition layer 4
and a laminated body 1B in which b are sequentially laminated are disposed so that, for example, SiO oblique deposition layers 4a and 4b which are liquid crystal alignment films face each other, and a granular spacer 5 for realizing a predetermined cell gap d is provided. A liquid crystal cell is formed by sandwiching the liquid crystal, the liquid crystal 6 is injected into the cell gap, and the periphery is sealed with an adhesive 7.

【0004】上記した液晶配向膜4a、4bとしては、
例えばSiO等を用いた斜方蒸着膜や、ポリイミド等を
用いたラビング膜等が、従来使用されていた。特にラビ
ング膜は、生産性が良く、大面積化も容易である点か
ら、液晶表示素子の配向膜として実用的に広く使用され
ている。
The above-mentioned liquid crystal alignment films 4a and 4b include:
For example, an oblique deposition film using SiO or the like, a rubbing film using polyimide or the like has been conventionally used. In particular, a rubbing film is practically and widely used as an alignment film of a liquid crystal display element because of its good productivity and easy area enlargement.

【0005】しかし、ラビング膜には、ラビング時にダ
ストが発生し、画素の欠陥が生じ易く、ゴミや静電気が
発生するため、ラビング法に代わる液晶分子配向制御方
法として紫外線光配向制御技術が検討されている。この
方法によれば、基板と非接触で液晶分子配向を誘発する
ことが可能である。
However, since the rubbing film is liable to generate dust during rubbing, which is likely to cause pixel defects, and generates dust and static electricity, an ultraviolet light alignment control technique has been studied as a liquid crystal molecule alignment control method which can replace the rubbing method. ing. According to this method, it is possible to induce liquid crystal molecule alignment without contacting the substrate.

【0006】従って、ラビング時の発塵による汚染、特
にTFT(薄膜トランジスタ)素子が搭載されている基
板に対し、摩擦による静電ダメージを回避して歩留まり
の低下を防止できること、また微細領域の液晶配向を容
易に行うことが可能であることから実用化が有望視され
ている。
Accordingly, contamination due to dusting during rubbing, in particular, it is possible to avoid electrostatic damage due to friction on a substrate on which a TFT (thin film transistor) element is mounted, thereby preventing a reduction in yield, and a liquid crystal alignment in a fine region. Since it can be easily performed, its practical application is expected.

【0007】この紫外線配向制御法は、一例として図7
に示すように、図7(c)の如く液晶分子7の配向方向
が2種類(領域Aはα1 、領域Bはα2 )混在する場
合、最初は図7(a)に示すように、一方の基板25a
上に形成された配向膜26a面に対して、マスク28a
を用いて偏光紫外線29aを斜方照射して領域Aの配向
膜26aにα1 のプレチルト角を設定し、次いで図7
(b)に示すように、マスク28bを用いて偏光紫外線
29bを斜方照射して領域Bの配向膜2にα2 のプレチ
ルト角を設定する。
[0007] This ultraviolet alignment control method is shown in FIG.
As shown in FIG. 7 (c), when the orientation directions of the liquid crystal molecules 7 are mixed (α 1 in the area A and α 2 in the area B) as shown in FIG. 7 (c), first, as shown in FIG. One substrate 25a
A mask 28a is formed on the surface of the alignment film 26a formed thereon.
Set the pretilt angle of alpha 1 in the alignment film 26a in the region A polarized ultraviolet rays 29a and obliquely irradiated with, then 7
As shown in (b), the pre-tilt angle of α 2 is set on the alignment film 2 in the region B by obliquely irradiating polarized ultraviolet rays 29b using the mask 28b.

【0008】次いで、図7(c)に示すように、上記と
同様にして配向膜26bに2種類のプレチルト角
(α1 、α2 )を設定した他方の基板25bを、上記し
た一方の基板25aに所定間隙で対向配置し、液晶を注
入することにより、図7(c)に示すように液晶分子が
配向膜26a、26bに設定されたプレチルト角α1
α2に従って配向する液晶パネルを得ることができる。
Next, as shown in FIG. 7 (c), the other substrate 25b in which two types of pretilt angles (α 1 and α 2 ) are set in the alignment film 26b in the same manner as described above, By injecting liquid crystal at a predetermined gap to the liquid crystal molecules 25a, liquid crystal molecules are set to the pretilt angles α 1 , α 1 ,
it is possible to obtain a liquid crystal panel oriented according alpha 2.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うに、配向方向が複数種類混在する分割配向パネルを作
製することはできるが、良好な液晶分子の配向を実現す
るための紫外光照射による配向処理時間が非常に長く、
そのためディスプレイを製造する際の紫外線照射装置の
スループットが悪くなり、量産化に対する大きな障壁と
なっていた。
However, as described above, it is possible to manufacture a divided alignment panel in which a plurality of types of alignment directions are mixed, but an alignment treatment by irradiating ultraviolet light to realize good alignment of liquid crystal molecules. The time is very long,
For this reason, the throughput of the ultraviolet irradiation device when manufacturing the display is deteriorated, which has been a great barrier to mass production.

【0010】そこで本発明の目的は、配向膜の配向処理
速度を向上させ、安定した液晶分子配向を実現すると共
に、生産性の高い液晶素子の製造方法及びその製造装置
を提供することにある。
It is an object of the present invention to provide a method of manufacturing a liquid crystal element with high productivity while improving the alignment processing speed of an alignment film and realizing stable liquid crystal molecular alignment, and an apparatus for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】即ち、本発明は、電極及
び配向膜がこの順に積層された一対の基体が前記配向膜
の側で所定間隙を置いて互いに対向して配置され、液晶
が前記間隙内に配されている液晶素子の製造に際し、前
記基体の少なくとも一方に光反応型配向膜を形成し、こ
の光反応型配向膜を加熱しつつ光照射して、前記光反応
型配向膜に液晶配向制御能を付与する液晶素子の製造方
法(以下、本発明の製造方法と称する。)に係るもので
ある。
That is, according to the present invention, a pair of substrates in which an electrode and an alignment film are laminated in this order are arranged facing each other with a predetermined gap on the side of the alignment film, and In producing the liquid crystal element disposed in the gap, a photo-reactive alignment film is formed on at least one of the substrates, and the photo-reactive alignment film is irradiated with light while being heated. The present invention relates to a method for producing a liquid crystal element having liquid crystal alignment control ability (hereinafter, referred to as a production method of the present invention).

【0012】本発明の製造方法によれば、基体に形成し
た光反応型配向膜を加熱しながら、この配向膜を光照射
してこの配向膜に液晶配向制御能を付与するので、加熱
によるエネルギーで光照射時の配向膜分子が動き易くな
って、配向膜分子を任意の方向に揃え易く、配向膜の液
晶配向制御能の付与を促進させることができる。その結
果、所望の配向方向を得るための配向処理速度が向上す
ると共に液晶の安定した液晶分子配向が可能になり、生
産性の高い液晶素子の製造方法を提供することができ
る。
According to the manufacturing method of the present invention, while the photo-reactive alignment film formed on the substrate is heated, the alignment film is irradiated with light to impart liquid crystal alignment control capability to the alignment film. Thus, the molecules of the alignment film at the time of light irradiation can be easily moved, and the alignment film molecules can be easily aligned in an arbitrary direction, so that the alignment film can be provided with the ability to control the liquid crystal alignment. As a result, the alignment processing speed for obtaining a desired alignment direction is improved, and stable alignment of liquid crystal molecules of the liquid crystal is enabled, so that a method of manufacturing a liquid crystal element with high productivity can be provided.

【0013】また、本発明は、電極及び配向膜がこの順
に積層された一対の基体が所定間隙を置いて対向配置さ
れ、液晶が前記間隙内に配されている液晶素子を製造す
る装置において、前記基体に形成された光反応型配向膜
に光を照射する光照射手段と、この光照射中に前記光反
応型配向膜を加熱する加熱手段とを有することを特徴と
する液晶素子の製造装置(以下、本発明の製造装置と称
する。)に係るものである。
Further, the present invention relates to an apparatus for manufacturing a liquid crystal element in which a pair of substrates in which an electrode and an alignment film are laminated in this order are arranged facing each other with a predetermined gap therebetween, and a liquid crystal is arranged in the gap. An apparatus for manufacturing a liquid crystal device, comprising: a light irradiating unit for irradiating light to a photoreactive alignment film formed on the substrate; and a heating unit for heating the photoreactive alignment film during the light irradiation. (Hereinafter, referred to as a manufacturing apparatus of the present invention).

【0014】本発明の製造装置によれば、光反応型配向
膜を照射する光照射手段とこの配向膜を加熱する加熱手
段とが設けられているので、前記した製造方法を容易に
実行可能な液晶素子の製造装置を提供することができ
る。
According to the manufacturing apparatus of the present invention, since the light irradiating means for irradiating the photoreactive type alignment film and the heating means for heating the alignment film are provided, the above manufacturing method can be easily performed. An apparatus for manufacturing a liquid crystal element can be provided.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0016】本発明の製造方法及び製造装置において
は、図2及び図3に示すように基板17を加熱ステージ
18上に載置して、前記光反応型配向膜を形成した前記
基体を加熱しつつ、図1(加熱ステージ18は図示省
略)に示すように、光反応型配向膜の形成面に対して光
照射を行うことが望ましい。
In the manufacturing method and apparatus according to the present invention, as shown in FIGS. 2 and 3, the substrate 17 is placed on a heating stage 18 and the substrate on which the photoreactive alignment film is formed is heated. Meanwhile, as shown in FIG. 1 (the heating stage 18 is not shown), it is desirable to irradiate light on the surface on which the photoreactive alignment film is formed.

【0017】この場合、図2及び図3に示すように、気
体を媒体とした温風によって前記加熱を行い加熱媒体に
空気又は不活性ガスを用いて、加熱時に基体の配向膜非
形成面に温風を吹きつけることが望ましい。そして、こ
の加熱ステージ18は例えば図2及び図3に示すよう
に、基板17載置部の下方がくり抜かれて空間部30と
なされ、この空間部へ、四方の内壁面からそこに内設さ
れた温風ヒーター(図示省略)19による温風21が導
入され、これによって、配向膜17aを設けた基板17
を加熱するように構成する。これにより図1に示す紫外
線照射光13は、くり抜かれた空間部30内に入るた
め、基板裏面での反射をなくすことができる。
In this case, as shown in FIGS. 2 and 3, the heating is performed by warm air using a gas as a medium, and air or an inert gas is used as a heating medium. It is desirable to blow hot air. As shown in FIGS. 2 and 3, for example, the heating stage 18 is hollowed out below the mounting portion of the substrate 17 to form a space portion 30. The space portion 30 is provided inside the space portion from four inner wall surfaces. Warm air 21 is introduced by a heated hot air heater (not shown) 19, whereby the substrate 17 provided with the alignment film 17 a is provided.
Is configured to be heated. Thus, the ultraviolet irradiation light 13 shown in FIG. 1 enters the hollow space 30, so that reflection on the back surface of the substrate can be eliminated.

【0018】本発明に用いる加熱の熱源としては、上記
の温風が好適であるが、これ以外にも赤外線ランプ、ハ
ロゲンランプ等の熱線照射手段、ITOを用いた抵抗加
熱手段などがあり、この抵抗加熱手段の場合は基板の配
向膜非形成面側に接触させて設ければよい。この場合、
ITOは透過性で屈折率が大きいため、照射する紫外光
を基板裏面で反射しないようにできる。従って、前記基
体の配向膜非形成面側に空間又は非光反射面を設けるこ
とが望ましい。
As the heat source for heating used in the present invention, the above-mentioned hot air is suitable. In addition to these, there are heat ray irradiation means such as an infrared lamp and a halogen lamp, and resistance heating means using ITO. In the case of the resistance heating means, it may be provided in contact with the side of the substrate on which the alignment film is not formed. in this case,
Since ITO is transparent and has a large refractive index, it is possible to prevent the irradiated ultraviolet light from being reflected on the back surface of the substrate. Therefore, it is desirable to provide a space or a non-light reflecting surface on the side of the substrate on which the alignment film is not formed.

【0019】また、前記光反応型配向膜として紫外線反
応型配向膜を形成し、これを40℃以上、85℃以下更
に好ましくは45℃〜75℃に加熱しつつ紫外線照射を
行うことが望ましい。紫外線反応型配向膜の材料として
は、公知のポリイミド型光配向剤等を用いることができ
るが、紫外線照射によりオリエンテーションを発現し、
かつプレチルト角を発現する特性を持つものであればよ
い。
Also, it is desirable to form an ultraviolet-reactive alignment film as the photoreactive-type alignment film and to irradiate the ultraviolet light while heating the film to 40 ° C. or more and 85 ° C. or less, more preferably 45 ° C. to 75 ° C. As a material for the ultraviolet-reactive alignment film, a known polyimide-type photoalignment agent or the like can be used, but the orientation is exhibited by irradiation with ultraviolet light,
What is necessary is just to have the characteristic which expresses a pretilt angle.

【0020】この場合、例えば図1に示すように、紫外
線光源であるランプユニット11から照射される紫外線
13を偏光ユニット15に通し、更に低波長(例えば3
00nm以下)の紫外光をガラスプレート16で除去し
た上で、偏光された紫外線13を基板上に形成した紫外
線反応型配向膜面に照射する。光源としては紫外線ラン
プのほかレーザー光線等が使用可能である。
In this case, as shown in FIG. 1, for example, ultraviolet light 13 emitted from a lamp unit 11 as an ultraviolet light source is passed through a polarizing unit 15 to further reduce the wavelength (for example, 3).
After the ultraviolet light (less than 00 nm) is removed by the glass plate 16, polarized ultraviolet light 13 is irradiated on the surface of the ultraviolet-sensitive alignment film formed on the substrate. As a light source, a laser beam or the like can be used in addition to an ultraviolet lamp.

【0021】そして、上記した如き加熱下で紫外光照射
を行った後、光源に対する前記基体の相対的位置を変更
し、再び前記加熱下で前記光照射を行うことが好ましい
が、前記基体を所定角度回転させることにより前記相対
的位置を変更することができる。図1においては、紫外
線13の偏光軸14に対して基板17の配向膜の配向方
位22を直交して図示しているが、この方位は上記の光
照射を再度行うことにより任意に変位可能である。
After the irradiation with ultraviolet light under heating as described above, it is preferable to change the relative position of the substrate with respect to the light source and perform the light irradiation again under the heating. The relative position can be changed by rotating the angle. In FIG. 1, the orientation direction 22 of the orientation film of the substrate 17 is shown orthogonal to the polarization axis 14 of the ultraviolet light 13, but this orientation can be arbitrarily displaced by performing the above-mentioned light irradiation again. is there.

【0022】上記した本実施の形態により、例えば対角
線長さが0.55インチ以上の前記基体を用い、11.
3万ドット以上の画素数を有する高温成長(成長温度6
00〜650℃)ポリシリコン薄膜トランジスタ型に構
成するか、或いは対角線長さが2.5インチ以上の前記
基体を用い、18万ドット以上の画素数を有する低温成
長(成長温度400〜450℃)ポリシリコン薄膜トラ
ンジスタ型に構成することが可能になる。
According to the above-described embodiment, for example, the base having a diagonal length of 0.55 inches or more is used.
High temperature growth with a number of pixels of 30,000 dots or more (growth temperature 6
(200-650 ° C.) Polysilicon thin film transistor type or a low-temperature grown (growth temperature of 400-450 ° C.) poly, using the above-described substrate having a diagonal length of 2.5 inches or more and having a pixel number of 180,000 dots or more. It becomes possible to configure a silicon thin film transistor type.

【0023】[0023]

【実施例】以下、本発明の実施例を詳細に説明するが、
本発明が以下の実施例に限定されるものでないことは勿
論である。
Hereinafter, embodiments of the present invention will be described in detail.
It goes without saying that the present invention is not limited to the following embodiments.

【0024】<実施例1>まず、本実施例に用いた製造
装置を図1〜図3により説明する。
<Embodiment 1> First, the manufacturing apparatus used in this embodiment will be described with reference to FIGS.

【0025】この製造装置は図1で概略的に示すよう
に、ランプユニット11の下部に配置された紫外線ラン
プ(図示省略)及びこの照射位置を調製するライトバル
ブ12と、更にこの下方に偏光ユニット15、その下方
に低波長光をカットするガラスプレート16が配され、
照射位置に配置する基板17を照射するように構成され
ている。
As shown schematically in FIG. 1, the manufacturing apparatus includes an ultraviolet lamp (not shown) disposed below a lamp unit 11, a light valve 12 for adjusting the irradiation position, and a polarizing unit further below the lamp. 15, a glass plate 16 for cutting low-wavelength light is disposed below the glass plate,
It is configured to irradiate the substrate 17 disposed at the irradiation position.

【0026】そして、ライトバルブ12の操作によりラ
ンプユニット11の反射鏡11aに紫外線ランプから紫
外光を照射し、その反射光13を所定の角度に所定の紫
外線強度で照射することができる。また、照射する紫外
線13は偏光ユニット15により偏光軸を調製し、更に
300nm以下の低波長の紫外光はガラスプレート16
で除去することができる。
By operating the light valve 12, the reflecting mirror 11a of the lamp unit 11 is irradiated with ultraviolet light from an ultraviolet lamp, and the reflected light 13 can be irradiated at a predetermined angle at a predetermined ultraviolet intensity. The irradiation unit 13 adjusts the polarization axis of the ultraviolet light 13 by the polarization unit 15, and further transmits the ultraviolet light having a low wavelength of 300 nm or less to the glass plate 16.
Can be removed.

【0027】図1における基板17は、図2及び図3に
示す加熱ステージ18上に載置されるが図1ではこの加
熱装置は図示省略した。
The substrate 17 in FIG. 1 is mounted on a heating stage 18 shown in FIGS. 2 and 3, but this heating device is not shown in FIG.

【0028】即ち、この加熱ステージ18は図2に示す
ように、基板17サイズより大きい方形の匡体の内壁に
抵抗加熱源を用いた温風ヒーター19(図示省略)が内
設され、この温風(加熱空気)21が四方の内壁面に設
けたスリット状の吹き出し口20から吹き出る構造にな
っている。従って、図3(図2のIII −III 線断面図)
に示すように、加熱ステージ18上の所定位置に載置し
た基板17の配向膜非形成面を加熱する。
That is, as shown in FIG. 2, the heating stage 18 is provided with a warm air heater 19 (not shown) using a resistance heating source on the inner wall of a rectangular housing larger than the substrate 17 size. The structure is such that wind (heated air) 21 blows out from slit-shaped outlets 20 provided on the inner wall surfaces on all sides. Therefore, FIG. 3 (cross-sectional view taken along the line III-III in FIG. 2)
As shown in (2), the surface on which the alignment film is not formed of the substrate 17 placed at a predetermined position on the heating stage 18 is heated.

【0029】上記の製造装置を用い、対角線長さが5.
6インチのガラス基板に以下の処理を施して低温成長多
結晶シリシリコントランジスターを形成した。ドット数
はVGA(Video Graphics Arra
y)対応フルカラー921,600ドットである。対向
側の基板にカラーフィルター上に透明電極をコートした
ガラス基板を用いた。
The diagonal length is set to 5.
The following process was performed on a 6-inch glass substrate to form a low-temperature-grown polycrystalline silicon transistor. The number of dots is VGA (Video Graphics Array)
y) Corresponding full color 921,600 dots. A glass substrate having a transparent electrode coated on a color filter was used as the substrate on the opposite side.

【0030】上記の各基板に既知の方法でポリイミド型
光配向剤を基板17のTFT(図示省略)形成面に塗布
した後、80℃で30分仮乾燥し、190℃で60分焼
成を行った。その後図4(a)に示すように、基板17
の配向膜面に対し、第1段階の照射として仰角80°の
位置からP偏光紫外線13を照射し、引き続き図4
(b)に示すように、第2段階の照射として基板17を
90°回転させ、仰角80°からP偏光紫外線13を照
射した。
A polyimide type photo-alignment agent is applied to each of the above substrates by a known method on the surface of the substrate 17 on which a TFT (not shown) is formed, and then temporarily dried at 80 ° C. for 30 minutes and baked at 190 ° C. for 60 minutes. Was. Thereafter, as shown in FIG.
4 is irradiated with P-polarized ultraviolet light 13 from a position at an elevation angle of 80 ° as a first stage irradiation.
As shown in (b), as the second stage irradiation, the substrate 17 was rotated by 90 ° and the P-polarized ultraviolet light 13 was irradiated from an elevation angle of 80 °.

【0031】この第1段階の照射により、模式的な図4
(a)に示すように、配向膜17aによる液晶分子23
が所定のプレチルト角で偏光軸Pと直交して配列され
る。更に、この基板を90度回転させて第2段階の照射
を行うことにより、図4(b)に示すように、破線で示
した第1段階の照射による配向方向の液晶分子23が破
線から実線で示すプレチルト角で配向方向を変化する。
By the irradiation of the first stage, a schematic diagram of FIG.
As shown in (a), the liquid crystal molecules 23 formed by the alignment film 17a are formed.
Are arranged orthogonal to the polarization axis P at a predetermined pretilt angle. Further, by rotating the substrate by 90 degrees and performing the second stage irradiation, as shown in FIG. 4B, the liquid crystal molecules 23 in the alignment direction by the first stage irradiation indicated by the broken line are changed from the broken line to the solid line. The orientation direction changes at the pretilt angle shown by.

【0032】このような配向処理は、図2に示した加熱
ステージ18による加熱下でなされるが、加熱によるエ
ネルギーで紫外線照射による配向膜分子の配列、即ち液
晶分子の配列を促進し、配列処理の速度を高めることが
可能になる。従って、第1段階目の照射のみによっても
所望の配向処理が可能であり、第1段階目の照射で所望
の配向が得られない場合には、一旦揃えた配向を第2段
階目の照射により所望の方向に変えることができる。な
お、後述する照射エネルギー値や偏光度の第1段階照射
と第2段階照射との比を調製することによって、液晶配
向方向を任意に制御することができる。しかも、場所的
に異なる配向方向を実現しようとする場合、図7で示し
た方法と比べて、紫外線照射の光学系を何ら偏光するこ
となしに例えば第2段階照射時に所定パターンのマスク
を用いればよいので、マスクを複数回用いる必要もな
く、簡単に行うことができる。
Such alignment processing is performed under heating by the heating stage 18 shown in FIG. 2. The energy of the heating promotes the alignment of alignment film molecules by ultraviolet irradiation, that is, the alignment of liquid crystal molecules. Speed can be increased. Therefore, the desired alignment treatment can be performed only by the first-stage irradiation, and if the desired alignment cannot be obtained by the first-stage irradiation, the aligned alignment is changed by the second-stage irradiation. It can be changed to a desired direction. The liquid crystal alignment direction can be arbitrarily controlled by adjusting the irradiation energy value and the ratio of the first-step irradiation to the second-step irradiation of the degree of polarization described below. In addition, when trying to realize different orientation directions in place, compared with the method shown in FIG. 7, if a mask having a predetermined pattern is used at the second stage irradiation, for example, without polarizing the optical system for ultraviolet irradiation at all, Since the mask is good, it is not necessary to use the mask a plurality of times, and it can be easily performed.

【0033】そして、対向側基板に対しても、上記と同
様の偏光紫外線照射を行った。但し、液晶分子の配向方
位を直交させるため、偏光方向を双方の基板で直交する
よう調製した。これは特にツイステッドネマチック(T
N)液晶を用いるときに有利であるが、両基板での配向
方向は反平行など、種々に変えてよい。
Then, the same polarized ultraviolet irradiation as described above was applied to the opposing substrate. However, in order to make the orientation directions of the liquid crystal molecules orthogonal, the polarization directions were adjusted to be orthogonal on both substrates. This is especially true for twisted nematic (T
N) It is advantageous when a liquid crystal is used, but the alignment directions on both substrates may be variously changed, such as antiparallel.

【0034】本実施例のポリイミド型光配向膜は、米国
特許第5,731,405号に示されたポリアミック酸
系高分子材料を使用した。そして、図1に示した紫外線
ランプは市販のフージョン社製無電極UVランプ(”
H”Bulp)を用い、300nm以下はガラスプレー
ト16によりカットした。なお、図2に示した加熱ステ
ージによる基板の加熱温度を約67℃となるよう設定し
た。
For the polyimide type photo-alignment film of this embodiment, a polyamic acid-based polymer material disclosed in US Pat. No. 5,731,405 was used. The UV lamp shown in FIG. 1 is a commercially available electrodeless UV lamp manufactured by Fusion (""
Using H "Bulp", the glass substrate 16 was cut by 300 mm or less using the glass plate 16. The heating temperature of the substrate by the heating stage shown in FIG.

【0035】そして、図4に示した第1照射と第2照射
のエネルギー値は5:1とし、また偏光子をランプの前
面に配し、偏光度は、約10:1とした。基板上の紫外
線強度は、測定の結果100±10mW/cm2 であ
り、良好な液晶分子配向が得られた紫外線照射エネルギ
ー量は28J/cm2 であった。
The energy values of the first irradiation and the second irradiation shown in FIG. 4 were set to 5: 1, a polarizer was arranged on the front surface of the lamp, and the degree of polarization was set to about 10: 1. As a result of the measurement, the ultraviolet intensity on the substrate was 100 ± 10 mW / cm 2 , and the energy of ultraviolet light irradiation for obtaining good liquid crystal molecular alignment was 28 J / cm 2 .

【0036】光配向処理を行った一対の基板は、引き続
き2枚の基板を90°回転させ、3.5μmのギャップ
で貼り合わせた後液晶を注入しTN液晶セルを作製し、
偏光板配置は、配向軸に偏光軸を平行とし、ノーマリホ
ワイト配置とした。
The pair of substrates subjected to the photo-alignment treatment is then rotated by 90 °, the two substrates are bonded together at a gap of 3.5 μm, and then liquid crystal is injected to form a TN liquid crystal cell.
The polarizing plate arrangement was such that the polarization axis was parallel to the alignment axis, and was a normally white arrangement.

【0037】<実施例2>本実施例においては、上記し
た実施例1と同様の照射方法で紫外線を照射し、実施例
1と同様に紫外線照射中配向処理基板を加熱した。但
し、加熱媒体にはN2 ガスを温風として使用し、液晶パ
ネルを試作したところ、良好な配向特性を得るために、
20J/cm2 の紫外線照射エネルギーを要した。
<Example 2> In this example, ultraviolet rays were irradiated by the same irradiation method as in Example 1 described above, and the alignment-treated substrate was heated during the irradiation of ultraviolet rays in the same manner as in Example 1. However, when a liquid crystal panel was prototyped using N 2 gas as warm air as a heating medium, in order to obtain good alignment characteristics,
Ultraviolet irradiation energy of 20 J / cm 2 was required.

【0038】<比較例1>また、上記した各実施例との
比較のために、実施例1と同様の照射方法で紫外線を照
射し、基板の加熱処理を行わずに液晶パネルを試作した
ところ、良好な配向特性を得るためには、紫外線照射エ
ネルギー量60J/cm2 要した。
<Comparative Example 1> For comparison with each of the above-described examples, a liquid crystal panel was prototyped by irradiating with ultraviolet rays in the same manner as in Example 1 and without performing heat treatment on the substrate. In order to obtain good alignment characteristics, an ultraviolet irradiation energy amount of 60 J / cm 2 was required.

【0039】上記した各実施例及び比較例の所要エネル
ギーを次表に示す。
The required energy of each of the above Examples and Comparative Examples is shown in the following table.

【0040】上記の表1から明らかなように、空気を媒
体とした温風による加熱の実施例1は加熱を伴わない比
較例1に対し、積算光量及び照射時間はいずれもほぼ1
/2、窒素ガスを媒体とした温風による加熱の実施例2
は比較例1のほぼ1/3であることから、紫外線照射に
よる配向膜の配向処理時に基板を加熱することによりプ
レチルト角の配向が促進され、少ない紫外線照射エネル
ギー量を短時間の照射で配向処理が可能であることが分
かる。そして、温風の媒体としては空気よりも窒素ガス
の方が熱を逃しにくいためより効果的であることが証明
できる。
As is clear from Table 1 above, in Example 1 in which heating was performed using warm air using air as the medium, the accumulated light amount and the irradiation time were almost 1 in comparison with Comparative Example 1 in which heating was not performed.
/ 2, Example 2 of heating with warm air using nitrogen gas as medium
Is approximately one-third of that of Comparative Example 1, the orientation of the pretilt angle is promoted by heating the substrate at the time of the alignment treatment of the alignment film by the irradiation of ultraviolet rays, and the alignment treatment can be performed by irradiating a small amount of ultraviolet irradiation energy for a short time. It turns out that is possible. And it can be proved that nitrogen gas is more effective as a medium for warm air because it is less likely to release heat than air.

【0041】上述した各実施例によれば、紫外線照射に
より紫外線反応型配向膜の照射時にその基板を加熱しな
がら照射することによって、液晶分子が所望のプレチル
ト角で配向するように配向膜の処理を促進することがで
きる。更に加熱媒体として窒素ガスを用いれば、一層効
果を高めることができる。従って、プレチルト角の配向
処理速度の向上を図ることができることに加え、第1段
階の照射で所望のプレチルト角及び配向方向が得られな
い場合には基板を所定角度回転させて第2段階の照射を
行うと共に、第1段階と第2段階とのエネルギー値又は
偏光度の比を調整することによって所望の配向処理を行
うことができるので、スループットの改善を図ることが
できる。
According to each of the embodiments described above, when the ultraviolet-sensitive alignment film is irradiated with the ultraviolet light while irradiating the substrate while heating the substrate, the alignment film is processed so that the liquid crystal molecules are aligned at a desired pretilt angle. Can be promoted. Further, the effect can be further enhanced by using nitrogen gas as the heating medium. Therefore, in addition to improving the pre-tilt angle orientation processing speed, if the desired pre-tilt angle and orientation direction cannot be obtained by the first stage irradiation, the substrate is rotated by a predetermined angle to perform the second stage irradiation. And the desired alignment process can be performed by adjusting the energy value or the ratio of the degree of polarization between the first stage and the second stage, so that the throughput can be improved.

【0042】しかも、所定面積の基板上に形成された高
密度画素を有する高温成長又は低温成長のポリシリコン
薄膜トランジスタ型を構成する液晶素子においても、安
定した液晶分子の配向が得られ、高性能な液晶素子を作
製することができる。
Moreover, even in a liquid crystal element constituting a high-temperature or low-temperature-grown polysilicon thin film transistor having high-density pixels formed on a substrate having a predetermined area, stable alignment of liquid crystal molecules can be obtained and high performance can be obtained. A liquid crystal element can be manufactured.

【0043】上述した本実施例は、本発明の技術的思想
に基づいて種々変形が可能である。
The above-described embodiment can be variously modified based on the technical idea of the present invention.

【0044】例えば、図4に示した照射は、第1段階又
は第2段階の照射時に部分的にマスク掛けして選択照射
し、マスク掛けと照射角度を変えて配向膜に複数種類の
プレチルト角を形成することも可能である。また、第1
段階の照射のみによって一方向に配向処理をしてもよ
い。また、使用する配向膜の材料や液晶分子の種類など
は種々選択できる。
For example, the irradiation shown in FIG. 4 is performed by partially masking and selectively irradiating at the first or second stage irradiation, and changing the masking and irradiation angle to change the plurality of types of pretilt angles on the alignment film. It is also possible to form Also, the first
Orientation treatment may be performed in one direction only by step irradiation. Further, the material of the alignment film and the type of the liquid crystal molecules to be used can be variously selected.

【0045】[0045]

【発明の作用効果】上述した如く、本発明は、電極及び
配向膜がこの順に積層された一対の基体が前記配向膜の
側で所定間隙を置いて互いに対向して配置され、液晶が
前記間隙内に配されている液晶素子の製造に際し、前記
基体の少なくとも一方に光反応型配向膜を形成し、この
光反応型配向膜を加熱しつつ光照射して、前記光反応型
配向膜に液晶配向制御能を付与するので、加熱によって
配向膜の液晶配向制御能の付与を促進することができ、
その結果、光反応型液晶配向を所望な方向に配向処理す
る速度が向上し、液晶の安定した液晶分子配向が可能に
なると共に、生産性を高くすることができる。
As described above, according to the present invention, a pair of substrates in which an electrode and an alignment film are laminated in this order are arranged facing each other with a predetermined gap on the alignment film side, and the liquid crystal is disposed in the gap. When manufacturing a liquid crystal element disposed in the photo-reactive alignment film, a light-reactive alignment film is formed on at least one of the substrates, and the photo-reactive alignment film is irradiated with light while being heated. Since the orientation control ability is provided, it is possible to promote the provision of the liquid crystal orientation control ability of the alignment film by heating,
As a result, the speed of aligning the photoreactive liquid crystal alignment in a desired direction is improved, and stable liquid crystal molecule alignment of the liquid crystal becomes possible, and productivity can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による液晶製造装置の概略図で
ある。
FIG. 1 is a schematic view of a liquid crystal manufacturing apparatus according to an embodiment of the present invention.

【図2】同、製造装置における加熱ステージの概略斜視
図である。
FIG. 2 is a schematic perspective view of a heating stage in the manufacturing apparatus.

【図3】図2の III−III 線断面概略図である。FIG. 3 is a schematic sectional view taken along line III-III of FIG. 2;

【図4】同、製造装置による紫外線照射方式を示し、
(a)は第1段階照射、(b)は第2段階照射を示す模
式図である。
FIG. 4 shows an ultraviolet irradiation method by the manufacturing apparatus,
(A) is a schematic diagram which shows a 1st stage irradiation, (b) is a schematic diagram which shows a 2nd stage irradiation.

【図5】液晶素子の一例を示す断面図である。FIG. 5 is a cross-sectional view illustrating an example of a liquid crystal element.

【図6】液晶素子の一例を示す平面図である。FIG. 6 is a plan view illustrating an example of a liquid crystal element.

【図7】従来例による紫外線照射の配向処理の概略図を
示し、(a)はマスク掛けによる一方向への選択照射、
(b)は他のマスク掛けによる他方向への選択照射、
(c)は液晶分子の配列を示す図である。
FIGS. 7A and 7B are schematic diagrams of an alignment process of ultraviolet irradiation according to a conventional example, and FIG. 7A shows selective irradiation in one direction by masking;
(B) is selective irradiation in other directions by applying another mask,
(C) is a diagram showing an arrangement of liquid crystal molecules.

【符号の説明】[Explanation of symbols]

11…ランプユニット、12…ライトバルブ、13…照
射光、14、P…偏光軸、15…偏光ユニット、16…
ガラスプレート、17…基板、17a…紫外線反応配向
膜、18…加熱ステージ、19…温風ヒーター、20…
吹き出し口、21…温風、22…配向方位、23…液晶
分子、30…空間部、α1 、α2 …プレチルト角
11: lamp unit, 12: light valve, 13: irradiation light, 14, P: polarization axis, 15: polarization unit, 16 ...
Glass plate, 17: substrate, 17a: UV-reactive alignment film, 18: heating stage, 19: warm air heater, 20 ...
Outlet, 21 ... hot air, 22 ... alignment direction, 23 ... liquid crystal molecules, 30 ... space, alpha 1, alpha 2 ... pretilt angle

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 電極及び配向膜がこの順に積層された一
対の基体が前記配向膜の側で所定間隙を置いて互いに対
向して配置され、液晶が前記間隙内に配されている液晶
素子の製造に際し、前記基体の少なくとも一方に光反応
型配向膜を形成し、この光反応型配向膜を加熱しつつ光
照射して、前記光反応型配向膜に液晶配向制御能を付与
する、液晶素子の製造方法。
1. A liquid crystal device comprising: a pair of substrates in which an electrode and an alignment film are laminated in this order; a pair of substrates arranged opposite to each other at a predetermined gap on the side of the alignment film; and a liquid crystal disposed in the gap. At the time of manufacture, a liquid crystal element that forms a photoreactive alignment film on at least one of the substrates, irradiates the photoreactive alignment film with light while heating, and imparts a liquid crystal alignment control capability to the photoreactive alignment film. Manufacturing method.
【請求項2】 前記光反応型配向膜を形成した前記基体
を加熱しつつ、前記光照射を行う、請求項1に記載した
液晶素子の製造方法。
2. The method according to claim 1, wherein the light irradiation is performed while heating the substrate on which the photoreactive alignment film is formed.
【請求項3】 気体を媒体とした温風によって前記加熱
を行う、請求項1に記載した液晶素子の製造方法。
3. The method for manufacturing a liquid crystal device according to claim 1, wherein the heating is performed by hot air using a gas as a medium.
【請求項4】 前記加熱媒体に空気又は不活性ガスを用
いる、請求項3に記載した液晶素子の製造方法。
4. The method according to claim 3, wherein air or an inert gas is used as the heating medium.
【請求項5】 前記加熱時に前記基体の配向膜非形成面
に前記温風を吹きつける、請求項3に記載した液晶素子
の製造方法。
5. The method for manufacturing a liquid crystal element according to claim 3, wherein the hot air is blown onto the surface of the base on which the alignment film is not formed during the heating.
【請求項6】 前記基体の配向膜非形成面側に空間又は
非光反射面を設ける、請求項1に記載した液晶素子の製
造方法。
6. The method for manufacturing a liquid crystal device according to claim 1, wherein a space or a non-light-reflecting surface is provided on the side of the substrate on which the alignment film is not formed.
【請求項7】 前記光反応型配向膜として紫外線反応型
配向膜を形成し、これを40℃以上、85℃以下に加熱
しつつ紫外線照射を行う、請求項1に記載した液晶素子
の製造方法。
7. The method for manufacturing a liquid crystal device according to claim 1, wherein an ultraviolet-ray-reactive alignment film is formed as the light-reactive-type alignment film, and ultraviolet irradiation is performed while heating the film to 40 ° C. or more and 85 ° C. or less. .
【請求項8】 紫外線光源からの紫外線を偏光板に通
し、偏光された紫外線を照射する、請求項7に記載した
液晶素子の製造方法。
8. The method for manufacturing a liquid crystal element according to claim 7, wherein the ultraviolet light from the ultraviolet light source is passed through a polarizing plate and irradiated with polarized ultraviolet light.
【請求項9】 前記加熱下で前記光照射を行った後、光
源に対する前記基体の相対的位置を変更し、再び前記加
熱下で前記光照射を行う、請求項1に記載した液晶素子
の製造方法。
9. The liquid crystal device according to claim 1, wherein after performing the light irradiation under the heating, the relative position of the base with respect to the light source is changed, and the light irradiation is performed again under the heating. Method.
【請求項10】 前記基体を所定角度回転させることに
より前記相対的位置を変更する、請求項9に記載した液
晶素子の製造方法。
10. The method according to claim 9, wherein the relative position is changed by rotating the base by a predetermined angle.
【請求項11】 対角線長さが0.55インチ以上の前
記基体を用い、11.3万ドット以上の画素数を有する
高温成長ポリシリコン薄膜トランジスタ型に構成する
か、或いは対角線長さが2.5インチ以上の前記基体を
用い、18万ドット以上の画素数を有する低温成長ポリ
シリコン薄膜トランジスタ型に構成する、請求項1に記
載した液晶素子の製造方法。
11. A high-temperature-grown polysilicon thin film transistor having a pixel number of 113,000 dots or more, using the substrate having a diagonal length of 0.55 inches or more, or a diagonal length of 2.5 inches or more. 2. The method for manufacturing a liquid crystal element according to claim 1, wherein the substrate is configured as a low-temperature-grown polysilicon thin film transistor having 180,000 dots or more using the substrate having a size of 2 inches or more.
【請求項12】 電極及び配向膜がこの順に積層された
一対の基体が前記配向膜の側で所定間隙を置いて互いに
対向して配置され、液晶が前記間隙内に配されている液
晶素子を製造する装置において、前記基体に形成された
光反応型配向膜に光を照射する光照射手段と、この光照
射中に前記光反応型配向膜を加熱する加熱手段とを有す
ることを特徴とする、液晶素子の製造装置。
12. A liquid crystal device in which a pair of substrates in which an electrode and an alignment film are laminated in this order are arranged facing each other with a predetermined gap on the side of the alignment film, and a liquid crystal is arranged in the gap. In the manufacturing apparatus, a light irradiating unit that irradiates light to the photoreactive alignment film formed on the substrate and a heating unit that heats the photoreactive alignment film during the light irradiation are provided. , Liquid crystal element manufacturing equipment.
【請求項13】 前記加熱手段が前記光反応型配向膜を
形成した前記基体を加熱する、請求項12に記載した液
晶素子の製造装置。
13. The apparatus for manufacturing a liquid crystal element according to claim 12, wherein the heating means heats the substrate on which the photoreactive alignment film is formed.
【請求項14】 前記加熱手段が気体を媒体とした温風
を供給する請求項12に記載した液晶素子の製造装置。
14. An apparatus for manufacturing a liquid crystal element according to claim 12, wherein said heating means supplies warm air using a gas as a medium.
【請求項15】 前記加媒体に空気又は不活性ガスが用
いられる、請求項14に記載した液晶素子の製造装置。
15. The apparatus for manufacturing a liquid crystal device according to claim 14, wherein air or an inert gas is used as the additional medium.
【請求項16】 前記加熱手段によって前記基体の配向
膜非形成面に前記温風が吹きつけられる、請求項14に
記載した液晶素子の製造装置。
16. The apparatus for manufacturing a liquid crystal element according to claim 14, wherein the warm air is blown onto the surface of the substrate on which the alignment film is not formed by the heating means.
【請求項17】 前記基体の配向膜非形成面側に空間又
は非光反射面が設けられている、請求項12に記載した
液晶素子の製造装置。
17. The apparatus for manufacturing a liquid crystal element according to claim 12, wherein a space or a non-light reflecting surface is provided on the side of the substrate on which the alignment film is not formed.
【請求項18】 前記光反応型配向膜としての紫外線反
応型配向膜が前記加熱手段により40℃以上、85℃以
下に加熱され、前記光照射手段として紫外線照射用光学
系が用いられる、請求項12に記載した液晶素子の製造
装置。
18. The ultraviolet-sensitive alignment film as the light-reactive alignment film is heated to 40 ° C. or higher and 85 ° C. or less by the heating unit, and an ultraviolet irradiation optical system is used as the light irradiation unit. 13. The apparatus for manufacturing a liquid crystal element according to item 12.
【請求項19】 前記紫外線照射手段が紫外線光源と偏
光板とからなる、請求項12に記載した液晶素子の製造
装置。
19. The apparatus for manufacturing a liquid crystal device according to claim 12, wherein said ultraviolet irradiation means comprises an ultraviolet light source and a polarizing plate.
【請求項20】 光源に対する前記基体の相対的位置を
変更する位置変更手段を更に有する、請求項12に記載
した液晶素子の製造装置。
20. The apparatus for manufacturing a liquid crystal element according to claim 12, further comprising a position changing means for changing a relative position of said base with respect to a light source.
【請求項21】 前記位置変更手段が前記基体を所定角
度回転させるように構成されている、請求項20に記載
した液晶素子の製造装置。
21. The liquid crystal device manufacturing apparatus according to claim 20, wherein the position changing means is configured to rotate the base by a predetermined angle.
【請求項22】 対角線長さが0.55インチ以上の前
記基体を有し、11.3万ドット以上の画素数を有する
高温成長ポリシリコン薄膜トランジスタ型の液晶素子、
或いは対角線長さが2.5インチ以上の前記基体を有
し、18万ドット以上の画素数を有する低温成長ポリシ
リコン薄膜トランジスタ型の液晶素子を製造する、請求
項12に記載した液晶素子の製造装置。
22. A high-temperature-grown polysilicon thin film transistor type liquid crystal device having the base having a diagonal length of 0.55 inches or more and having a pixel number of 113,000 dots or more;
13. The apparatus for manufacturing a liquid crystal element according to claim 12, wherein the low-temperature grown polysilicon thin film transistor type liquid crystal element having the base having a diagonal length of 2.5 inches or more and having a number of pixels of 180,000 dots or more is manufactured. .
JP36483998A 1998-12-22 1998-12-22 Production of liquid crystal element and production apparatus thereof Pending JP2000187221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36483998A JP2000187221A (en) 1998-12-22 1998-12-22 Production of liquid crystal element and production apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36483998A JP2000187221A (en) 1998-12-22 1998-12-22 Production of liquid crystal element and production apparatus thereof

Publications (1)

Publication Number Publication Date
JP2000187221A true JP2000187221A (en) 2000-07-04

Family

ID=18482795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36483998A Pending JP2000187221A (en) 1998-12-22 1998-12-22 Production of liquid crystal element and production apparatus thereof

Country Status (1)

Country Link
JP (1) JP2000187221A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082336A (en) * 2000-09-08 2002-03-22 Jsr Corp Liquid crystal alignment processing method and liquid crystal display element
JP2009069821A (en) * 2007-08-20 2009-04-02 Fujifilm Corp Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
KR20100072682A (en) * 2008-12-22 2010-07-01 삼성전자주식회사 Alignment substrate for aligning liquid crystal molecules, liquid crystal display panel having the same and method of manufacturing the alignment substrate
KR101267528B1 (en) * 2007-03-21 2013-05-23 엘지디스플레이 주식회사 Method of fabricating of an alignment layer
KR101333592B1 (en) * 2007-04-05 2013-11-26 엘지디스플레이 주식회사 Method of forming alignment layer of liquid crystal display device
KR101450877B1 (en) * 2007-11-20 2014-10-14 엘지디스플레이 주식회사 Liquid crystal display device and method of fabricating the same
CN104280915A (en) * 2013-07-01 2015-01-14 东芝照明技术株式会社 Manufacturing device and manufacturing method for liquid crystal panels

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082336A (en) * 2000-09-08 2002-03-22 Jsr Corp Liquid crystal alignment processing method and liquid crystal display element
KR101267528B1 (en) * 2007-03-21 2013-05-23 엘지디스플레이 주식회사 Method of fabricating of an alignment layer
US8580356B2 (en) 2007-03-21 2013-11-12 Lg Display Co., Ltd. Method of fabricating alignment layer for liquid crystal display device
KR101333592B1 (en) * 2007-04-05 2013-11-26 엘지디스플레이 주식회사 Method of forming alignment layer of liquid crystal display device
JP2009069821A (en) * 2007-08-20 2009-04-02 Fujifilm Corp Optical compensation film, method of producing the same, and polarizing plate and liquid crystal display device using the same
KR101450877B1 (en) * 2007-11-20 2014-10-14 엘지디스플레이 주식회사 Liquid crystal display device and method of fabricating the same
US9151990B2 (en) 2007-11-20 2015-10-06 Lg Display Co., Ltd. Liquid crystal display device and manufacturing method thereof
JP2010146008A (en) * 2008-12-22 2010-07-01 Samsung Electronics Co Ltd Alignment substrate and liquid crystal display panel including the same, and method of manufacturing the alignment substrate
JP2015092291A (en) * 2008-12-22 2015-05-14 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Method of manufacturing alignment substrate
KR20100072682A (en) * 2008-12-22 2010-07-01 삼성전자주식회사 Alignment substrate for aligning liquid crystal molecules, liquid crystal display panel having the same and method of manufacturing the alignment substrate
US9229274B2 (en) 2008-12-22 2016-01-05 Samsung Display Co., Ltd. Alignment substrate for aligning liquid crystal molecules, liquid crystal display panel having the same, and method of manufacturing the alignment substrate
KR101612480B1 (en) * 2008-12-22 2016-04-27 삼성디스플레이 주식회사 Alignment substrate for aligning liquid crystal molecules, liquid crystal display panel having the same and method of manufacturing the alignment substrate
TWI578071B (en) * 2008-12-22 2017-04-11 三星顯示器公司 Alignment substrate for aligning liquid crystal molecules, liquid crystal display panel having the same, and method of manufacturing the alignment substrate
CN104280915A (en) * 2013-07-01 2015-01-14 东芝照明技术株式会社 Manufacturing device and manufacturing method for liquid crystal panels

Similar Documents

Publication Publication Date Title
JP2872628B2 (en) Manufacturing method of liquid crystal display element
US7911696B1 (en) Large scale polarizer and polarizer system employing it
JP3075917B2 (en) Liquid crystal display device, its manufacturing method and its manufacturing device
JP2693368B2 (en) Liquid crystal display device and method of manufacturing the same
US6593986B2 (en) Method for manufacturing a multi-domain liquid crystal cell
JP4129846B2 (en) Pretilt control method for liquid crystal cell
JP2914851B2 (en) Liquid crystal display device and method of manufacturing the same
EP0632311B1 (en) Method of orienting liquid crystal molecules in a multi-domain liquid crystal display cell
JP2996897B2 (en) Liquid crystal alignment control method and apparatus, and liquid crystal display device having alignment film formed by the method
JPH10232400A (en) Optical orienting composition, alignment layer formed from that composition, and liquid crystal display element equipped with that alignment layer
JPS6060624A (en) Liquid crystal display panel and its production
JP3054076B2 (en) Manufacturing method of liquid crystal display element
KR101023730B1 (en) Method of forming an alignment layer for liquid crystal display device, and method of fabricating liquid crystal display device using the same
JP2000187221A (en) Production of liquid crystal element and production apparatus thereof
CN103620487B (en) Light directional illumination device
JPH11202336A (en) Method and device for radiating light and method and device for producing high molecular alignment layer
JP2000227595A (en) Production of liquid crystal display device
KR101097537B1 (en) fabrication method for in-plane switching mode LCD
JP4046427B2 (en) Polarizer with large area polarizing plate
US5626995A (en) Method for manufacturing liquid crystal displays
TWI376554B (en) Liquid crystal display device
JP2001117101A (en) Liquid crystal display element and its manufacturing method
JP2001318373A (en) Liquid crystal display device
JP2001108976A (en) Liquid crystal display panel and manufacturing method
JP2004029180A (en) Ultra-violet light polarizing light source device and manufacturing method of liquid crystal orientation film using it