JP2000172829A - 領域抽出手法 - Google Patents
領域抽出手法Info
- Publication number
- JP2000172829A JP2000172829A JP10347005A JP34700598A JP2000172829A JP 2000172829 A JP2000172829 A JP 2000172829A JP 10347005 A JP10347005 A JP 10347005A JP 34700598 A JP34700598 A JP 34700598A JP 2000172829 A JP2000172829 A JP 2000172829A
- Authority
- JP
- Japan
- Prior art keywords
- region
- area
- condition
- feature amount
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 124
- 238000000605 extraction Methods 0.000 claims abstract description 77
- 238000001514 detection method Methods 0.000 claims description 79
- 238000012545 processing Methods 0.000 abstract description 59
- 238000010586 diagram Methods 0.000 description 16
- 238000012937 correction Methods 0.000 description 5
- 238000009499 grossing Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 102100028780 AP-1 complex subunit sigma-2 Human genes 0.000 description 1
- 101100055680 Homo sapiens AP1S2 gene Proteins 0.000 description 1
- 101100257194 Homo sapiens SMIM8 gene Proteins 0.000 description 1
- 102100024789 Small integral membrane protein 8 Human genes 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
いる際に使用する拡張条件を容易に求めることができる
領域抽出方法を提供することにある。 【解決手段】指定した位置の近傍の所定の領域にある画
素の濃度値から特徴量を検出し、この特徴量を用いて領
域拡張を行い、拡張された領域について新たに特徴量を
検出し、拡張された領域が収束条件を満たすときの特徴
量によって拡張条件を決定する。ここで、特徴量は、例
えば、指定した位置を含む周囲の画素の濃度値の最小・
最大値および隣接する画素との濃度差の平均誤差若しく
は最大誤差である。
Description
特に、3次元的に撮像された断層像を用い、個別臓器や
病巣(以下、「関心領域」と称する)などを抽出する領
域抽出方法に係り、特に、関心領域を抽出するためのパ
ラメータを自動的に検出する領域抽出方法に関する。
ず、その関心領域を画像データから抽出しておくことが
必要である。関心領域の抽出の一般的な方法としては、 関心領域の輪郭を追跡していく方法 画素値の度数グラフを用いて関心領域の濃度しきい値
を設定して領域抽出する方法 関心領域の内部の点から領域拡張を行う方法 等が知られている。この中で、関心領域の内部の点か
ら領域拡張を行う方法は、一般的には、リージョン・グ
ローイング(Region Growing)と称されており、関心領
域内のある一点を選び、次いでそれに連結している点を
隣接画素の中から探しだし、その連結点を取り込んで領
域を拡大することにより関心領域を抽出するものであ
り、最も信頼性が高いものである。関心領域の内部の
点から領域拡張を行う方法については、例えば、アズリ
ール・ローゼンフェルド(Azriel Rosenfeld)著(長尾
真訳),「ディジタル・ピクチャー・プロセッシング
(Digital Picture Processing)」,p.335に記載
されている。また、3次元データによる関心領域抽出法
の例として、電子情報通信学会論文誌,D-II No.2 Vol.
J76- D-II(1993年2月),pp.350−358
に記載されている。
誌,D-II No.2 Vol.J76- D-II(1993年2月),p
p.350−358では、「リージョングローイングを
ベースにした対話型3次元領域抽出法」として、領域の
連結性の判定基準を大域的変化と局所的変化とからなる
拡張条件を設定して領域抽出を行うようにしている。
てはユーザが試行錯誤で行っているため、最適な拡張条
件を得るために、多大な労力を要するという問題があっ
た。
いて、領域拡張法を用いる際に使用する拡張条件を容易
に求めることができる領域抽出方法を提供することにあ
る。
るために、本発明は、元画像データの画素の濃度値の局
所的変化と大域的変化の拡張条件を用いて領域拡張し、
関心領域を抽出する領域抽出方法において、指定した位
置の近傍の所定の領域にある画素の濃度値から特徴量を
検出し、この特徴量を用いて拡張条件を決定するように
したものである。かかる方法により、拡張条件を容易に
求め得るものとなる。
上記特徴量は、指定した位置を含む周囲の画素の濃度値
の最小・最大値および隣接する画素との濃度差の平均誤
差若しくは最大誤差であり、この特徴量を用いて領域拡
張を行い、拡張された領域について新たに特徴量を検出
し、拡張された領域が収束条件を満たすときの特徴量に
よって拡張条件を決定するようにしたものである。かか
る方法により、順次領域を拡張しながら、特徴量を求
め、拡張条件を求めるようにしているため、拡張条件を
容易に求め得るものとなる。
上記特徴量は、指定した位置を含む周囲の画素の濃度値
の最小・最大値および隣接する画素との濃度差の平均誤
差若しくは最大誤差であり、この特徴量を用いて関心領
域の境界点を求め、この境界点に基づいて設定された拡
張サイズの領域ついて新たに特徴量を検出し、拡張サイ
ズに変化がないときの領域の特徴量によって拡張条件を
決定するようにしたものである。かかる方法により、境
界点を用いて領域を拡張しながら、特徴量を求め、拡張
条件を求めるようにしているため、拡張条件を容易に求
め得るものとなる。
指定した位置を通る少なくとも1つの直線上の画素の濃
度値の変化を用いて拡張条件を決定するようにしたもの
である。かかる方法により、拡張条件を容易に求め得る
ものとなる。
拡張条件の複数の検出パラメータを設定し、それぞれの
検出パラメータ毎に拡張条件を検出し、任意の検出パラ
メータを選択可能としたものである。かかる方法によ
り、検出パラメータの設定が容易となるものである。
明の第1の実施形態による領域抽出方法について説明す
る。最初に、図1を用いて、本実施形態による領域抽出
方法を実施するための領域抽出システムの構成について
説明する。
/O装置10と、メモリ11と、CPU12と、CRT
13とから構成されている。I/O装置10は、X線C
T,MRIなどの断層イメージング装置とメモリ11間
での画像のやり取りを行うものである。メモリ11は、
I/O装置10より入力した断層像を格納する。この
時、各々の断面画像をそれぞれの位置関係を正確に保ち
ながら重ねあわせることにより、3次元データとして格
納する。また、メモリ11は、拡張条件や領域抽出した
結果を格納する。
次元データに対して、拡張条件設定断面画像を指定して
拡張条件を検出し、メモリ11に格納する。次に、CP
U12は、メモリ11の3次元データから拡張条件によ
り領域抽出を行い、抽出結果をメモリ11に格納する。
さらに、メモリ11の3次元データと抽出結果を用いて
特定領域の3次元画像を作成する。CRT13は、CP
U12によって作成された3次元画像を表示する。ま
た、原データのチェック,拡張条件を検出過程のチェッ
ク,領域抽出過程のチェックを行うためにも用いられ
る。
域抽出方法を実施する領域抽出システムの処理手順につ
いて説明する。なお、以下の実施形態においては、頭部
のMRI像を用い、疾患部領域を抽出するものとする。
図2は、本発明の第1の実施形態による領域抽出システ
ムによって領域抽出方法を実施する際の処理手順を示す
フローチャートである。
RIによって撮像された複数枚の断面画像データを、I
/O装置10を介してメモリ11に積み上げる。これに
より、メモリ11上でのデータは、3次元構造を有する
ことになる。次に、ステップ21において、オペレータ
は、メモリ11の断面画像データの各断面画像を参照し
ながら、拡張条件を設定する断面画像(1枚または複数
枚)を指定する。ここで、指定する断面画像は、抽出す
べき疾患部のある断面画像である。次に、ステップ22
において、オペレータは、ステップ21で指定した断面
画像データを参照して、抽出すべき疾患部の内部の点
(1点または複数点)の座標を指定する。ここで、指定
した点が、拡張条件検出および領域拡張の開始点とな
る。
は、ステップ22で指定した各断面画像の開始点に関連
した画素値の特徴量を求めて疾患部領域の境界点を検出
し、この境界点を用いて拡張条件検出領域を設定し、局
所・大域パラメータの拡張条件を検出して、メモリ11
上に登録する。ここで、領域を開始点から拡張する際の
領域の連結性の判定基準としては、大域的変化と、局所
的変化がある。大域的変化とは、同じ領域内では、各画
素の濃度値はある濃度範囲に属することである。また、
局所的変化とは、隣接点同士の濃度差は小さいことこと
である。大域的変化を判定する基準が大域パラメータで
あり、局所的変化を判定する基準が局所パラメータであ
る。なお、ステップ22の処理が、本実施形態による領
域抽出の際のパラメータである拡張条件を検出処理であ
り、その詳細については、図3以降を用いて、後述す
る。
は、ステップ22で指定した開始点から、ステップ23
で検出した局所・大域パラメータの拡張条件を領域拡張
の制約条件として領域抽出を行い、疾患部を抽出して、
メモリ11上に登録する。
プ23における拡張条件検出処理の手順について説明す
る。図3は、本実施形態による拡張条件検出処理の処理
手順を示すフローチャートであり、図4は、拡張条件検
出処理の対象となる画像データにおける各領域等の説明
図である。
指定した断面画像を、指定したサイズにより周囲の画素
値を加算し、平均値を算出した平滑化処理をして、メモ
リ11に格納する。
2は、関心領域120内の開始点121を中心に、予め
指定した初期サイズ122を用いて初期領域123を設
定し、平滑化画像を用いて初期領域123内における濃
度値の最小・最大値および隣接画素の誤差の平均値(平
均誤差)に重み係数を掛けたものを、特徴量として算出
する。ここで、重み係数としては、例えば、2.0を用
いる。また、隣接画素の誤差の平均値に重み係数を掛け
たものに代えて、隣接画素の最大誤差値を特徴量として
算出するようにしてもよいものである。
期サイズ122,初期領域123について説明する。図
5は、本発明の第1の実施形態による拡張条件検出処理
に用いる開始点,初期サイズ,初期領域の概念説明図で
ある。
あり、座標によってそれぞれの画素を特定することがで
きる。例えば、図5に示す例において、開始点121
を、座標(j,k)の画素とする。ここで、初期サイズ
122を、例えば、9ドットとすると、初期領域123
は、座標(j+4,k+4)と、座標(j+4,k−
4)と、座標(j−4,k+4)と、座標(j−4,k
−4)とによって囲まれた領域であり、81ドットの画
素から構成されることになる。
ば、入力データが12ビットの場合、濃度値Gは、212
階調のグレイスケールの値を有している。なお、入力デ
ータとしては、10ビットでも、8ビットでもよいもの
である。
画素の濃度を、G(j+4,k+4),…,G(j+4,k-4),…,G
(j-4,k+4),…,G(j-4,k-4)とすると、これらの濃度値
の最大値Gmx及び最小値Gmnを求めることにより、これ
らの値は、初期領域123全体の傾向を示すものである
ため、初期領域123内の大域的変化を判定するための
初期的な基準値となる。
素の濃度G(j+4,k+4),…,G(j+4,k-4),…,G(j-4,k
+4),…,G(j-4,k-4)に対して、隣接画素間の誤差を求
めることにより、局所的な変化を判定することができる
ので、これらの誤差の平均値(平均誤差)に重みを掛け
た値Geによって、局所的変化を判定するための初期的
な基準値となる。
2は、開始点121を領域拡張のためのスタートポイン
トとして、ステップ111において求めた特徴量を用い
て、領域拡張の処理を行い、領域を抽出する。
要について説明する。図6は、本発明の第1の実施形態
による拡張条件検出処理における領域拡張処理の概要の
説明図である。
張をスタートすると、最初に、座標(j,k)の4方向
に隣接する4つの画素(j+1,k),(j,k+
1),(j,k−1),(j−1,k)の濃度値G(j
+1,k),G(j,k+1),G(j,k−1),G
(j−1,k)が、特徴量である濃度値の最大値Gmx及
び最小値Gmnの範囲内にあるか否かを判定する。また、
元の画素(j,k)と判定対象の画素(j+1,k),
(j,k+1),(j,k−1),(j−1,k)の差
が、特徴量である平均誤差Ge以内であるか否かを判定
する。そして、これらの両方の特徴量の条件を満たす場
合に、それらの画素(j+1,k),(j,k+1),
(j,k−1),(j−1,k)まで、領域が拡張され
る。
1),(j,k−1),(j−1,k)を、それぞれ基
準として、隣接する画素まで領域が拡張可能か否かを判
定する。即ち、画素(j+1,k)に対しては、画素
(j+2,k),(j+1,k+1)及び(j+1,k
−1)が隣接する画素となるので、これらの濃度Gが、
特徴量である濃度値の最大値Gmx及び最小値Gmnの範囲
内にあるか否か、また、基準となる画素(j+1,k)
との間で、特徴量である平均誤差Ge以内であるか否か
を判定して、領域を拡張するか否かを判定する。同様に
して、基準となる(j,k+1),(j,k−1),
(j−1,k)の画素についても、これらに隣接する画
素(j+1,k+1),(j,k+2),(j−1,k
+1),(j−2,k),(j−1,k−1),(j,
k−2),(j+1,k−1)に対しても、特徴量であ
る濃度値の最大値Gmx及び最小値Gmnの範囲内にあるか
否か、基準となる画素との間で、特徴量である平均誤差
Ge以内であるか否かを判定して、領域を拡張するか否
かを判定する。
例えば、図4に示した領域拡張によって抽出された領域
124を得る。そして、特徴量である濃度値の最大値G
mx及び最小値Gmnの範囲内になく、また、隣接する画素
との間で、特徴量である平均誤差Ge以内でない場合に
は、領域を拡張しないものとして、領域拡張を終了す
る。
2は、ステップ112で抽出した領域の周辺画素が、関
心領域120内に含まれる画素か判定し、判定を満たす
画素を抽出して領域を拡張する。関心領域120内の画
素の判定方法について、以下に説明する。最初に、次の
ようにして、前処理を行う。即ち、ステップ112で領
域拡張の処理時に拡張される画素が関心領域の場合、拡
張する画素との画素値の差の絶対値を累積し、平均値を
算出して平均誤差を検出する。平均誤差が1より小さい
時は、平均誤差を1に補正する。
た時、関心領域120内の画素と判定する。 1)ステップ112で抽出した画素が対象画素の隣接し
た画素中に在る画素数を検出し、予め指定した画素数よ
り検出された画素数が多い場合。 例えば、予め指定した画素数を2とする。図6に示す例
において、例えば、画素(j+1,k+1)が抽出した
画素である場合、その隣接する画素中にある画素は、
(j+1,k)と(j,k+1)であり、その個数は2
個である。従って、この場合は、条件1)を満たすもの
とする。しかし、画素(j,k+2)の場合には、隣接
する画素は(j,k+1)のみであり、1個であるた
め、条件1)を満たさないと判断する。なお、予め指定
した画素数は、通常1としておくことにより、隣接する
画素は全て抽出できる。通常は、指定した画素数を1と
しておくことにより、条件1)はクリアできる。
象画素の画素値との差の絶対値を算出し、予め指定した
重み係数に該平均誤差を乗じた値より算出した絶対値が
小さい場合。である。
2は、ステップ112及びステップ113で抽出された
領域から、改めて特徴量を算出する。即ち、ステップ1
12及びステップ113の領域拡張処理により、領域
は、少なくとも、初期領域123よりも広くなってい
る。そこで、この拡張された領域に対して、改めて、濃
度値の最大値Gmx及び最小値Gmn及び隣接画素間の誤差
の平均値(平均誤差)に重みを掛けた値Geからなる特
徴量を算出することにより、この特徴量は、拡張された
領域を表す特徴量に変更されることになる。
2は、収束条件を満すか否かを判定する。満たさない場
合には、ステップ112に戻り、ステップ112,11
3,114を繰り返すことにより、さらに、領域を拡張
する。
る。収束条件は、以下の条件を組み合わせて行う。ただ
し、ステップ112で領域拡張の処理を行って領域を拡
張した画素数を、抽出画素数とする。
同じ場合。 対象となる画像の画素の濃度の中で、境界が明確な病巣
のような関心領域の場合には、関心領域とその外側の領
域の間で、濃度の変化が大きいため、この境界まで領域
が拡張されると、それ以上の領域の拡張が行われないた
め、「(1)抽出画素数が、前回の抽出画素数と同じ場
合」の条件を満たすため、これを第1の収束条件とす
る。一方、関心領域とその隣接領域の境界が明確でない
場合には、領域拡張処理は、収束するよりは発散してい
く傾向がある。そこで、以下の(2)〜(4)の条件に
より、発散傾向にあるかどうかを判定し、発散傾向にあ
るときは、適当な位置で、収束と見なすようにしてい
る。
め指定した重み係数を乗じた値を超えた場合。 (3)抽出画素数と前回抽出画素数の差が、前回抽出画
素数と前前回抽出画素数の差に予め指定した重み係数を
乗じた値よりを超えた場合。 (4)前抽出画素数の差を抽出画素数差の履歴として保
存し、今回抽出画素数と前回の抽出画素数の差が前回ま
での予め指定した抽出画素数差の平均に予め指定した重
み係数を乗じた数を超えた場合。
(4)のいずれかの条件を満たす場合に収束条件を満た
すと判定する。 [組み合わせ例1](1)若しくは(2)が成立する時
収束条件とする。この判定条件は、関心領域の境界で抽
出画素数の変化が大き時に有効であるとともに、処理が
簡単に行えるものである。 [組み合わせ例2](1)若しくは(3)が成立する時
収束条件とする。この判定条件は、関心領域内で抽出画
素数の変化が大き時に有効である。 [組み合わせ例3](1)若しくは(4)が成立する時
収束条件とする。この判定条件は、関心領域内で抽出画
素数の変化にバラツキがある時に有効である。
2は、収束条件を満たした直前の特徴量を用いて領域拡
張を行い、領域拡張による抽出された拡張領域120内
から最終的な拡張条件を決定する。
ば、初期領域の特徴量に基づいて領域を拡張し、拡張さ
れた領域について新たに特徴量を求め、再び、新たな特
徴量に基づいて領域を拡張し、拡張された領域が収束条
件を満たすときに、求められた特徴量を、拡張条件とす
ることにより、領域拡張法を用いる際に使用する拡張条
件を容易に求めることができる。
2の実施形態による領域抽出方法について説明する。な
お、本実施形態による領域抽出方法を実施するための領
域抽出システムの構成は、図1に示したものと同様であ
る。また、本実施形態による領域抽出システムによって
領域抽出方法を実施する際の全体的な処理手順は、図2
に示したフローチャートと同様である。図7は、図2の
ステップ23における拡張条件検出処理の本実施形態に
よる処理手順を示すフローチャートであり、図8は、拡
張条件検出処理の対象となる画像データにおける各領域
等の説明図である。
置を中心に予め指定したサイズの領域を対象に特徴量を
検出し、検出した特徴量にもとづいて上下左右に関心領
域の境界点を検出し、検出した境界点を用いたひし形領
域を用いて拡張条件を決定するようにしている。
2は、指定した断面画像を指定したサイズにより周囲の
画素値を加算し、平均値を算出した平滑化処理をして、
メモリ12に格納する。次に、ステップ41において、
CPU12は、図8に示した指定した初期サイズ32
を、最初の拡張サイズとして設定する。ここで、初期サ
イズ32は、例えば、5ドットとする。次に、ステップ
42において、CPU12は、図8に示すように、関心
領域30内に開始点31を指定する。そして、この開始
点31を中心に、拡張サイズ35を用いて、ひし形の検
出領域33を設定する。ステップ40において得られた
平滑化画像を用いて、検出領域33内における濃度値の
最小・最大値Gmn,Gmxおよび隣接画素の最大誤差値G
eを、特徴量として算出する。
は、図8に示すように、ステップ42で算出した特徴量
を用いて、検出ライン36に沿って、境界点34を検出
する。ここで、検出ライン36は、図8に示すように、
直交する2軸方向,即ち、4方向に設定されている。従
って、境界点34の検出は、この検出ライン36に沿っ
て行われるため、例えば、図5に示す例でいうと、開始
点の画素(j,k)から開始すると、画素(j+4,
k)の方向に並んでいる画素,画素(j,k+4)の方
向に並んでいる画素,画素(j,k−4)の方向に並ん
でいる画素,画素(j−4,k)の方向に並んでいる画
素のみが対象となる。なお、(j+4,k+4)や、
(j+4,k−4)や、(j−4,k+4)や、(j−
4,k−4)などの画素は対象とならないため、対象画
素の個数が少なくなり、処理が容易になるものである。
界点34を検出する方法を説明する。境界点は、以下の
境界点検出方法を、単独あるいは組み合わせて行う。
る。
と濃度差画素間隔bを与え、境界点判定画素の濃度値G
iと濃度差画素間隔bだけ先の濃度値Gi+1の誤差値|G
i−Gi+1|が、検出された特徴量の平均誤差または最大
誤差値Geに、濃度差重みaを乗じた値(a・Ge)を
超えた時、境界点とする。
境界点を検出する。
を与え、検出された特徴量の濃度最小Gmnを、濃度補正
値cで補正して、補正された特徴量の最小値Gmnaを求
める。
を与え、検出された特徴量の濃度最大Gmxを、濃度補正
値cで補正して、補正された特徴量の最大値Gmxaを求
める。
補正した濃度最小・最大値(Gmna,Gmxa)の範囲外に
なった時、境界点とする。
み合わせて、境界点を検出する。 [組み合わせ例1](1)と(2)が両方成立する点を
境界点とする。この境界点検出条件は、対象領域内の濃
度差が大きく、境界が不明瞭な場合に有効である。 [組み合わせ例2](1)と(2)のどちらかが成立す
る点を境界点とする。この境界点検出条件は、対象領域
内の濃度差が大きく、境界が明瞭な場合に有効である。 [組み合わせ例3](1)が成立する時は除外し、
(2)が成立する点を境界点とする。この境界点検出条
件は、対象領域内の濃度差が小さく、境界が不明瞭な場
合に有効である。 [組み合わせ例4](2)が成立する時は除外し、
(1)が成立する点を境界点とする。この境界点検出条
件は、対象領域内の濃度差が小さく、境界が明瞭な場合
に有効である。
は、ステップ43で検出した境界点34の中から開始点
31から最短の境界点34を選んで拡張サイズ35に設
定する。即ち、4方向の検出ライン36に沿って境界点
34を求めることにより、4個の境界点34が求められ
るので、開始点31からの距離が最も短い境界点を選択
した上で、その境界点までの距離を新しい拡張サイズ3
5とする。
は、新たな拡張サイズ35が、前回検出した値と異なる
か否かを判定して、異なる場合には、ステップ42に戻
り、ステップ42,43,44の処理を繰り返す。
に変更がない場合には、ステップ46において、CPU
12は、断面画像の検出領域33内における濃度値の最
小・最大値および隣接画素の最大誤差値を、最終的な拡
張条件として決定する。
よれば、初期の特徴量に基づいて境界点を検出して領域
を拡張し、拡張された領域について新たに特徴量を求
め、再び、新たな特徴量に基づいて境界点を求めて領域
を拡張し、拡張された領域が収束条件を満たすときに、
求められた特徴量を、拡張条件とすることにより、領域
拡張法を用いる際に使用する拡張条件を容易に求めるこ
とができる。
第3の実施形態による領域抽出方法について説明する。
なお、本実施形態による領域抽出方法を実施するための
領域抽出システムの構成は、図1に示したものと同様で
ある。また、本実施形態による領域抽出システムによっ
て領域抽出方法を実施する際の全体的な処理手順は、図
2に示したフローチャートと同様である。図9は、図2
のステップ23における拡張条件検出処理の本実施形態
による処理手順を示すフローチャートであり、図10
は、拡張条件検出処理の対象となる画像データにおける
各領域等の説明図である。なお、本実施形態において
は、指定した位置を中心に予め指定したサイズの領域を
対象に特徴量を検出し、検出した特徴量にもとづいて放
射線上に関心領域の境界点を検出して拡張条件を決定す
るようにしている。
2は、指定した断面画像を指定したサイズにより周囲の
画素値を加算し、平均値を算出した平滑化処理をして、
メモリ12に格納する。次に、ステップ51において、
CPU12は、図10に示したように、関心領域30内
に開始点31を指定し、開始点31を中心に初期サイズ
32を用いて矩形の検出領域33を設定し、平滑化画像
を用いて検出領域33内における濃度値の最小・最大値
および隣接画素の最大誤差値を特徴量として算出する。
は、ステップ51で算出した特徴量を用いて、放射線状
の検出ライン37に沿って境界点34を検出する。次
に、ステップ53において、CPU12は、ステップ5
1で検出した各検出ラインの境界点までの断面画像の画
素を用いて、濃度値の最小・最大値および隣接画素の最
大誤差値を拡張条件として検出する。
よれば、初期の特徴量に基づいて境界点を検出して領域
を拡張し、拡張された領域について新たに特徴量を求
め、拡張条件とすることにより、領域拡張法を用いる際
に使用する拡張条件を容易に求めることができる。
抽出方法について説明する。なお、本実施形態による領
域抽出方法を実施するための領域抽出システムの構成
は、図1に示したものと同様である。また、本実施形態
による領域抽出システムによって領域抽出方法を実施す
る際の全体的な処理手順は、図2に示したフローチャー
トと同様である。さらに、図2のステップ23における
拡張条件検出処理の本実施形態による処理手順は、図9
に示すフローチャートと同様である。なお、本実施形態
においては、図9のステップ52における境界点の検出
処理を、一部変更している。
の外側の領域との境界が不明瞭な場合には、境界点が、
関心領域よりも外側に検出される場合も生じてくる。そ
こで、図9のステップ52の処理において、CPU12
は、ステップ51で算出した特徴量を用いて、放射線状
の検出ライン37に沿って複数の境界点34を検出す
る。これらの複数の境界点の内、所定の境界点のデータ
を除いくようにする。例えば、図10に示した例では、
8本の検出ライン37を用いるため、8カ所の境界点3
4が検出されるが、これらの境界点の内、開始点31か
らの距離が遠い,例えば、2つの境界点を削除し、残り
の6個の境界点について、ステップ53の処理を行うよ
うにする。これによって、検出ライン上の境界領域が不
明瞭で、その検出ライン上で求められた境界点が、他の
境界点よりも離れた位置に検出されたような場合でも、
他の境界点を用いて、ステップ53において、より正確
に、濃度値の最小・最大値および隣接画素の最大誤差値
を拡張条件として検出することができる。
よれば、関心領域の境界が不明瞭な場合でも、容易に拡
張条件を求めることができる。
抽出方法について説明する。なお、本実施形態による領
域抽出方法を実施するための領域抽出システムの構成
は、図1に示したものと同様である。また、本実施形態
による領域抽出システムによって領域抽出方法を実施す
る際の全体的な処理手順は、図2に示したフローチャー
トと同様である。さらに、図2のステップ23における
拡張条件検出処理の本実施形態による処理手順は、図9
に示すフローチャートと同様である。
る濃度値の領域が複数ある場合、濃度値の領域毎に開始
点を指定して、断面画像の画素を用いて濃度値の最小・
最大値および隣接画素の最大誤差値を算出し、各開始点
で算出した最大濃度値の最大の値を拡張条件の濃度最大
値に、また各開始点で算出した最小濃度値の最小の値を
拡張条件の濃度最小値に、また各開始点で算出した隣接
画素の最大誤差値の最大の値を拡張条件の隣接画素の最
大誤差値として検出する。以上説明したように、本実施
形態の方法によれば、関心領域内に異なる濃度値の領域
が複数ある場合でも、拡張条件を検出することができ
る。
第6の実施形態による領域抽出方法について説明する。
なお、本実施形態による領域抽出方法を実施するための
領域抽出システムの構成は、図1に示したものと同様で
ある。また、本実施形態による領域抽出システムによっ
て領域抽出方法を実施する際の全体的な処理手順は、図
2に示したフローチャートと同様である。図11は、図
2のステップ23における拡張条件検出処理の本実施形
態による処理手順を示すフローチャートであり、図12
は、拡張条件検出処理の対象となる画像データにおける
各領域等の説明図であり、図13は、抽出領域を抽出す
るための原理説明図である。なお、本実施形態において
は、指定した位置を通る直線上の画素値の変化を用いて
拡張条件を決定するようにしている。
タは、図12に示すように、指定した断面画像の関心領
域60内に、開始点61を指定する。次に、ステップ7
1において、CPU12は、開始点61を通る検出ライ
ン62の画素値のラインプロファイル63を検出し、C
RT13上に表示する。ここで、ラインプロファイル6
3は、例えば、図13に示すように、横軸が開始点61
を含む検出ライン62上の各点を示し、縦軸が各画素の
濃度値を表すものとなる。
は、検出されたラインプロファイル63を用い、抽出領
域64を指定し、分離する。即ち、図13に示すような
ラインプロファイル64を見て、開始点61を含む領域
の濃度値のレベルよりも高いレベル(若しくは低いレベ
ル)にスライスレベルを設けた考え、このスライスレベ
ルと濃度値のラインプロファイル63が交差する位置の
範囲内を、視覚的に判断して、抽出領域64として指定
する。次に、ステップ73において、CPU12は、抽
出領域64内の濃度値を用い、領域内の濃度値の最小・
最大値および隣接画素の最大誤差値を算出して、特徴量
である拡張条件を検出する。
は、拡張条件を用いて、開始点61より拡張処理を行
い、抽出画像を作成し、表示する。次に、ステップ75
において、オペレータは、ステップ74によって抽出さ
れた抽出画像と、関心領域60とをCRT13上で比較
し、正しく抽出されていなければ、ステップ72に戻
り、ステップ72,73,74を繰り返す。
よれば、ラインプロファイルを用いて視覚的に抽出領域
を指定できるので、拡張条件を容易に求めることができ
る。
抽出方法について説明する。なお、本実施形態による領
域抽出方法を実施するための領域抽出システムの構成
は、図1に示したものと同様である。また、本実施形態
による領域抽出システムによって領域抽出方法を実施す
る際の全体的な処理手順は、図2に示したフローチャー
トと同様である。さらに、図2のステップ23における
拡張条件検出処理の本実施形態による処理手順は、図1
1に示すフローチャートと同様である。なお、本実施形
態においては、図11のステップ71におけるラインプ
ロファイルの検出処理を、一部変更している。
開始点61を通る検出ライン62の画素値のラインプロ
ファイル63を検出する際に、検出ライン62内の各画
素の濃度値Giを用いて、以下の式(5)に基づいて指
定した長さLen(例えば、9ドット分)毎の平均値G
aを求める。
基づいて、分散値Gdを算出し、算出した分散値のライ
ンプロファイル63を、CRT13上に表示する。
ラインプロファイル63を用いて抽出領域64を分離す
る。
よれば、ラインプロファイルの分散値を用いて、容易に
拡張条件を求めることができる。
の第8の実施形態による領域抽出方法について説明す
る。なお、本実施形態による領域抽出方法を実施するた
めの領域抽出システムの構成は、図1に示したものと同
様である。また、本実施形態による領域抽出システムに
よって領域抽出方法を実施する際の全体的な処理手順
は、図2に示したフローチャートと同様である。図14
は、図2のステップ23における拡張条件検出処理の本
実施形態による処理手順を示すフローチャートである。
なお、本実施形態においては、指定した位置を通る複数
の直線上の画素値の変化を用いて拡張条件を決定するよ
うにしている。
タは、図12に示すように、指定した断面画像の関心領
域60内に、開始点61を指定する。次に、ステップ8
1において、CPU12は、図12に示すように、開始
点61を中心に放射線状に複数の検出ライン62を設定
する。
は、開始点61を通る検出ライン62の濃度値のライン
プロファイル63を検出する。次に、ステップ83にお
いて、オペレータは、図11のステップ72と同様にし
て、検出されたラインプロファイル63を用い、抽出領
域64を分離する。
は、抽出領域64内の濃度値を用い、領域内の濃度値の
最小・最大値および隣接画素の最大誤差値を算出して、
特徴量である拡張条件を検出する。
は、未処理の検出ライン62があるか否かを判断して、
あればステップ82に戻り、ステップ82,83,84
を繰り返して、全ての検出ライン62について、拡張条
件を検出する。次に、ステップ86において、CPU1
2は、検出された複数の拡張条件を用いて拡張処理を行
い、それぞれの拡張条件に対する抽出画像を作成し、表
示する。オペレータは、表示された抽出画像の中から関
心領域に近い、最適な拡張条件を選択する。
よれば、複数の検出ラインを用いて、複数の拡張条件を
検出し、それらの中から抽出画像を用いて、容易に適切
な拡張条件を求めることができる。
の第9の実施形態による領域抽出方法について説明す
る。なお、本実施形態による領域抽出方法を実施するた
めの領域抽出システムの構成は、図1に示したものと同
様である。また、本実施形態による領域抽出システムに
よって領域抽出方法を実施する際の全体的な処理手順
は、図2に示したフローチャートと同様である。図15
は、図2のステップ23における拡張条件検出処理の本
実施形態による処理手順を示すフローチャートである。
なお、本実施形態においては、検出ライン37の画素値
を用いて濃度ヒストグラムを作成し、濃度ヒストグラム
用いて拡張条件を決定するようにしている。
タは、図10に示すように、指定した断面画像の関心領
域30内に、開始点31を指定する。次に、ステップ9
1において、CPU12は、図10に示すように、開始
点31を複数の検出ライン37の画素の濃度値を用い
て、濃度ヒストグラムを作成する。
は、濃度ヒストグラムを、予め指定したサイズ毎に、平
滑化処理する。次に、ステップ93において、CPU1
2は、ステップ92で作成した濃度ヒストグラムの開始
点31の位置より、度数の極小の位置を探して濃度最小
・最大値を検出する。
は、ステップ93で検出した濃度最小・最大値を用い
て、検出ライン37の境界点34を検出する。次に、ス
テップ95において、CPU12は、境界点34間の画
素の濃度値を用いて、領域内の濃度値の最小・最大値お
よび隣接画素の最大誤差値を算出して、特徴量である拡
張条件を検出する。
よれば、濃度ヒストグラムを用いて、拡張条件を容易に
求めることができる。
実施形態による領域抽出方法について説明する。なお、
本実施形態による領域抽出方法を実施するための領域抽
出システムの構成は、図1に示したものと同様である。
また、本実施形態による領域抽出システムによって領域
抽出方法を実施する際の全体的な処理手順は、図2に示
したフローチャートと同様である。図16は、図2のス
テップ23における拡張条件検出処理の本実施形態によ
る処理手順を示すフローチャートである。なお、本実施
形態においては、複数の拡張条件検出パラメータを用い
て拡張条件を決定するようにしている。
ータは、式(1)や式(2)に用いられている濃度差重
みaや濃度補正値bの拡張条件検出パラメータを、複数
個設定する。例えば、濃度差重みaとして、a=2.
0,a=3.0,a=4.0のように、複数個設定す
る。次に、ステップ211において、オペレータは、指
定した断面画像の関心領域60内に開始点61を指定す
る。
2は、設定された内の1つの拡張条件検出パラメータを
用い、抽出対象領域を指定する。次に、ステップ213
において、CPU12は、抽出対象領域より、対象画素
の濃度値を用いて、領域内の濃度値の最小・最大値およ
び隣接画素の最大誤差値を算出して、特徴量である拡張
条件を検出する。
2は、設定された全ての拡張条件検出パラメータについ
て、処理が終了したか否かを判定し、未処理の拡張条件
検出パラメータがあれば、ステップ212に戻り、ステ
ップ212,213,214の処理を繰り返して、それ
ぞれ、設定された全ての拡張条件検出パラメータ毎の拡
張条件を検出する。次に、ステップ215において、C
PU12は、全ての拡張条件を提示し、オペレータは、
その中から最適な拡張条件を選択する。
よれば、複数の拡張条件検出パラメータに対する拡張条
件を検出することにより、最適な拡張条件を容易に求め
ることができる。
の第11の実施形態による領域抽出方法について説明す
る。なお、本実施形態による領域抽出方法を実施するた
めの領域抽出システムの構成は、図1に示したものと同
様である。また、本実施形態による領域抽出システムに
よって領域抽出方法を実施する際の全体的な処理手順
は、図2に示したフローチャートと同様である。図17
は、図2のステップ23における拡張条件検出処理の本
実施形態による処理手順を示すフローチャートであり、
図12は、拡張条件検出処理の対象となる画像データに
おける各領域等の説明図である。なお、本実施形態にお
いては、指定した位置を通る直線上の画素値の変化を用
いて拡張条件を決定するようにしている。
12は、図18に示すように、指定された断面画像22
0の関心領域内221に指定された開始点222に対し
て、拡張条件を検出する。拡張条件の検出方法として
は、上述した第1〜第10実施形態のいずれの方法を用
いてもよいものである。次に、ステップ231におい
て、CPU12は、直前に検出した拡張条件を用い、図
18に示すように、断面画像220の上に位置する断面
画像において、開始点222の真上の位置の点(開始点
同一座標点)223の画素が拡張可能か検出する。
12は、拡張が不可能かどうかを判定する。不可能であ
れば、ステップ235にジャンプする。
おいて、CPU12は、さらに、上の断面画像の指定位
置の真上の位置の点(開始点同一座標点)223を指定
し、対象領域を設定して、抽出対象領域より、対象画素
の濃度値を用いて、領域内の濃度値の最小・最大値およ
び隣接画素の最大誤差値を算出して、特徴量である拡張
条件を検出する。
2は、上の断面画像が最上位断層像であるか否かを判定
する。最上位の断層像でなければ、ステップ231に戻
り、ステップ231,232,233の処理を繰り返
し、最上位断層像まで、それぞれの拡張条件を検出す
る。そして、ステップ235において、CPU12は、
断層像の関心領域抽出処理を、各々の拡張条件を用いて
行う。なお、以上の処理を、下側の断面画像についても
同じように行う。
よれば、3次元の断層画像についても、拡張条件を容易
に求めることができる。
に使用する拡張条件を容易に求めることができる。
実施するための領域抽出システムの構成を示すシステム
構成図である。
ムによって領域抽出方法を実施する際の処理手順を示す
フローチャートである。
中の拡張条件検出処理を実施する際の処理手順を示すフ
ローチャートである。
中の拡張条件検出処理の対象となる画像データにおける
各領域等の説明図である。
理に用いる開始点,初期サイズ,初期領域の概念説明図
である。
理における領域拡張処理の概要の説明図である。
理の処理手順を示すフローチャートである。
理の対象となる画像データにおける各領域等の説明図で
ある。
理の処理手順を示すフローチャートである。
処理の対象となる画像データにおける各領域等の説明図
である。
処理の処理手順を示すフローチャートである。
処理の対象となる画像データにおける各領域等の説明図
である。
処理における抽出領域を抽出するための原理説明図であ
る。
処理の処理手順を示すフローチャートである。
処理の処理手順を示すフローチャートである。
出処理の処理手順を示すフローチャートである。
出処理の処理手順を示すフローチャートである。
出処理の対象となる画像データにおける各領域等の説明
図である。
Claims (5)
- 【請求項1】元画像データの画素の濃度値の局所的変化
と大域的変化の拡張条件を用いて領域拡張し、関心領域
を抽出する領域抽出方法において、 指定した位置の近傍の所定の領域にある画素の濃度値か
ら特徴量を検出し、この特徴量を用いて拡張条件を決定
することを特徴とする領域抽出方法。 - 【請求項2】請求項1記載の領域抽出方法において、 上記特徴量は、指定した位置を含む周囲の画素の濃度値
の最小・最大値および隣接する画素との濃度差の平均誤
差若しくは最大誤差であり、 この特徴量を用いて領域拡張を行い、拡張された領域に
ついて新たに特徴量を検出し、拡張された領域が収束条
件を満たすときの特徴量によって拡張条件を決定するこ
とを特徴とする領域抽出方法。 - 【請求項3】請求項1記載の領域抽出方法において、 上記特徴量は、指定した位置を含む周囲の画素の濃度値
の最小・最大値および隣接する画素との濃度差の平均誤
差若しくは最大誤差であり、 この特徴量を用いて関心領域の境界点を求め、この境界
点に基づいて設定された拡張サイズの領域ついて新たに
特徴量を検出し、拡張サイズに変化がないときの領域の
特徴量によって拡張条件を決定することを特徴とする領
域抽出方法。 - 【請求項4】請求項1記載の領域抽出方法において、 指定した位置を通る少なくとも1つの直線上の画素の濃
度値の変化を用いて拡張条件を決定することを特徴とす
る領域抽出方法。 - 【請求項5】請求項1記載の領域抽出方法において、 拡張条件の複数の検出パラメータを設定し、それぞれの
検出パラメータ毎に拡張条件を検出し、任意の検出パラ
メータを選択可能としたことを特徴とする領域抽出方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34700598A JP4219456B2 (ja) | 1998-12-07 | 1998-12-07 | 領域抽出方法及び領域抽出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34700598A JP4219456B2 (ja) | 1998-12-07 | 1998-12-07 | 領域抽出方法及び領域抽出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000172829A true JP2000172829A (ja) | 2000-06-23 |
JP4219456B2 JP4219456B2 (ja) | 2009-02-04 |
Family
ID=18387283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34700598A Expired - Fee Related JP4219456B2 (ja) | 1998-12-07 | 1998-12-07 | 領域抽出方法及び領域抽出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4219456B2 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002002002A1 (fr) * | 2000-06-30 | 2002-01-10 | Hitachi Medical Corporation | Dispositif d'assistance au diagnostic par image |
JP2003033349A (ja) * | 2001-07-23 | 2003-02-04 | Hitachi Medical Corp | 臓器の特定領域抽出表示方法及び装置 |
JP2003265462A (ja) * | 2002-03-19 | 2003-09-24 | Hitachi Ltd | 関心領域抽出方法及び画像処理サーバ |
JP2003339644A (ja) * | 2002-05-24 | 2003-12-02 | Hitachi Medical Corp | 臓器の切除領域抽出表示装置 |
JP2004057340A (ja) * | 2002-07-26 | 2004-02-26 | Ge Medical Systems Global Technology Co Llc | 血栓部画像抽出方法、画像処理装置およびx線ctシステム |
JP2004081394A (ja) * | 2002-08-26 | 2004-03-18 | Ge Medical Systems Global Technology Co Llc | 組織内脂肪評価方法、画像処理装置およびx線ctシステム |
JP2005028123A (ja) * | 2003-06-19 | 2005-02-03 | Saraya Kk | エコーを用いた血管径測定方法およびその装置 |
JP2005065936A (ja) * | 2003-08-22 | 2005-03-17 | Ge Medical Systems Global Technology Co Llc | 空間フィルタリング方法および空間フィルタ並びに超音波診断装置 |
WO2005087111A1 (ja) * | 2004-03-15 | 2005-09-22 | Hitachi Medical Corporation | 医用画像診断装置及び医用画像診断方法 |
JP2006345893A (ja) * | 2005-06-13 | 2006-12-28 | Aloka Co Ltd | 超音波診断装置 |
JP2007035020A (ja) * | 2005-06-22 | 2007-02-08 | Konica Minolta Medical & Graphic Inc | 領域抽出装置、領域抽出方法及びプログラム |
JP2007164592A (ja) * | 2005-12-15 | 2007-06-28 | Konica Minolta Medical & Graphic Inc | モデリング装置、領域抽出装置およびプログラム |
JP2007537812A (ja) * | 2004-05-18 | 2007-12-27 | メディックサイト ピーエルシー | 結節境界の検出方法 |
JP2008503294A (ja) * | 2004-06-23 | 2008-02-07 | メディックサイト ピーエルシー | 識別方法、コンピュータプログラム及びコンピュータプログラム装置 |
JP2008113850A (ja) * | 2006-11-06 | 2008-05-22 | Ge Medical Systems Global Technology Co Llc | X線ct画像処理方法および装置 |
JP2011087760A (ja) * | 2009-10-22 | 2011-05-06 | Toshiba Corp | 画像処理装置 |
JP2012090747A (ja) * | 2010-10-27 | 2012-05-17 | Hitachi Medical Corp | 医用画像処理装置及び医用画像処理方法 |
JP2014050457A (ja) * | 2012-09-05 | 2014-03-20 | Hitachi Medical Corp | 画像処理装置及び領域抽出方法 |
JP2018501917A (ja) * | 2015-01-20 | 2018-01-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像データセグメンテーション及び表示 |
JP2020075340A (ja) * | 2018-11-08 | 2020-05-21 | 株式会社東芝 | 作動システム、制御装置、およびプログラム |
-
1998
- 1998-12-07 JP JP34700598A patent/JP4219456B2/ja not_active Expired - Fee Related
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002325761A (ja) * | 2000-06-30 | 2002-11-12 | Hitachi Medical Corp | 画像診断支援装置 |
WO2002002002A1 (fr) * | 2000-06-30 | 2002-01-10 | Hitachi Medical Corporation | Dispositif d'assistance au diagnostic par image |
JP4688361B2 (ja) * | 2001-07-23 | 2011-05-25 | 株式会社日立メディコ | 臓器の特定領域抽出表示装置及びその表示方法 |
JP2003033349A (ja) * | 2001-07-23 | 2003-02-04 | Hitachi Medical Corp | 臓器の特定領域抽出表示方法及び装置 |
JP2003265462A (ja) * | 2002-03-19 | 2003-09-24 | Hitachi Ltd | 関心領域抽出方法及び画像処理サーバ |
JP2003339644A (ja) * | 2002-05-24 | 2003-12-02 | Hitachi Medical Corp | 臓器の切除領域抽出表示装置 |
JP2004057340A (ja) * | 2002-07-26 | 2004-02-26 | Ge Medical Systems Global Technology Co Llc | 血栓部画像抽出方法、画像処理装置およびx線ctシステム |
JP2004081394A (ja) * | 2002-08-26 | 2004-03-18 | Ge Medical Systems Global Technology Co Llc | 組織内脂肪評価方法、画像処理装置およびx線ctシステム |
JP2005028123A (ja) * | 2003-06-19 | 2005-02-03 | Saraya Kk | エコーを用いた血管径測定方法およびその装置 |
JP2005065936A (ja) * | 2003-08-22 | 2005-03-17 | Ge Medical Systems Global Technology Co Llc | 空間フィルタリング方法および空間フィルタ並びに超音波診断装置 |
WO2005087111A1 (ja) * | 2004-03-15 | 2005-09-22 | Hitachi Medical Corporation | 医用画像診断装置及び医用画像診断方法 |
US8047989B2 (en) | 2004-03-15 | 2011-11-01 | Hitachi Medical Corporation | Medical imaging diagnosis apparatus and medical imaging diagnosis method |
JP4755085B2 (ja) * | 2004-03-15 | 2011-08-24 | 株式会社日立メディコ | 医用画像診断装置、医用画像診断装置の作動方法、医用画像診断装置を作動するための機能をコンピュータに実行させるためのプログラム |
JP2007537812A (ja) * | 2004-05-18 | 2007-12-27 | メディックサイト ピーエルシー | 結節境界の検出方法 |
JP2008503294A (ja) * | 2004-06-23 | 2008-02-07 | メディックサイト ピーエルシー | 識別方法、コンピュータプログラム及びコンピュータプログラム装置 |
JP4634872B2 (ja) * | 2005-06-13 | 2011-02-16 | アロカ株式会社 | 超音波診断装置 |
JP2006345893A (ja) * | 2005-06-13 | 2006-12-28 | Aloka Co Ltd | 超音波診断装置 |
JP2007035020A (ja) * | 2005-06-22 | 2007-02-08 | Konica Minolta Medical & Graphic Inc | 領域抽出装置、領域抽出方法及びプログラム |
JP2007164592A (ja) * | 2005-12-15 | 2007-06-28 | Konica Minolta Medical & Graphic Inc | モデリング装置、領域抽出装置およびプログラム |
JP4720478B2 (ja) * | 2005-12-15 | 2011-07-13 | コニカミノルタエムジー株式会社 | モデリング装置、領域抽出装置およびプログラム |
JP2008113850A (ja) * | 2006-11-06 | 2008-05-22 | Ge Medical Systems Global Technology Co Llc | X線ct画像処理方法および装置 |
JP2011087760A (ja) * | 2009-10-22 | 2011-05-06 | Toshiba Corp | 画像処理装置 |
JP2012090747A (ja) * | 2010-10-27 | 2012-05-17 | Hitachi Medical Corp | 医用画像処理装置及び医用画像処理方法 |
JP2014050457A (ja) * | 2012-09-05 | 2014-03-20 | Hitachi Medical Corp | 画像処理装置及び領域抽出方法 |
JP2018501917A (ja) * | 2015-01-20 | 2018-01-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 画像データセグメンテーション及び表示 |
JP2020075340A (ja) * | 2018-11-08 | 2020-05-21 | 株式会社東芝 | 作動システム、制御装置、およびプログラム |
JP7034971B2 (ja) | 2018-11-08 | 2022-03-14 | 株式会社東芝 | 作動システム、制御装置、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
JP4219456B2 (ja) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000172829A (ja) | 領域抽出手法 | |
KR101899866B1 (ko) | 병변 경계의 오류 검출 장치 및 방법, 병변 경계의 오류 수정 장치 및 방법 및, 병변 경계의 오류 검사 장치 | |
JP6564018B2 (ja) | 放射線画像の肺野セグメンテーション技術及び骨減弱技術 | |
US20160117797A1 (en) | Image Processing Apparatus and Image Processing Method | |
US10991102B2 (en) | Image processing apparatus and image processing method | |
US9396549B2 (en) | Apparatus and method for correcting lesion in image frame | |
JP4964171B2 (ja) | 対象領域抽出方法および装置ならびにプログラム | |
KR101482247B1 (ko) | 기도 추출 방법 및 그 장치 | |
US9547906B2 (en) | System and method for data driven editing of rib unfolding | |
US7689018B2 (en) | Anomaly detection in volume data structure information | |
JP2009517163A (ja) | 画像内の参照構造に関連付けられた構造をセグメント化する方法、システム及びコンピュータ・プログラム | |
WO2018088055A1 (ja) | 画像処理装置、画像処理方法、画像処理システム及びプログラム | |
US10588581B2 (en) | Cross-sectional image generating apparatus, cross-sectional image generating method, and recording medium | |
CN111986205A (zh) | 血管树生成及病变识别方法、装置、设备及可读存储介质 | |
Lin et al. | Model-based graph cut method for segmentation of the left ventricle | |
JP2009045286A (ja) | 医用画像処理装置、医用画像診断装置、及びプログラム | |
US20090310883A1 (en) | Image processing apparatus, method, and program | |
JP2008146278A (ja) | 細胞輪郭抽出装置、細胞輪郭抽出方法およびプログラム | |
JP4708740B2 (ja) | 画像処理装置及び画像処理方法 | |
JP2011054062A (ja) | 画像処理装置、画像処理方法及びプログラム | |
JP6973024B2 (ja) | 画像処理装置及び画像処理方法 | |
JP4379706B2 (ja) | 領域抽出方法 | |
JP6731753B2 (ja) | 画像処理装置、画像処理方法、画像処理システムおよびプログラム | |
US8897547B2 (en) | Precision improving device for three dimensional topographical data, precision improving method for three dimensional topographical data and recording medium | |
JP2017148438A (ja) | 医用画像処理装置、超音波診断装置、及び医用画像処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |