JP2000086368A - Nitride ceramic substrate - Google Patents
Nitride ceramic substrateInfo
- Publication number
- JP2000086368A JP2000086368A JP10261177A JP26117798A JP2000086368A JP 2000086368 A JP2000086368 A JP 2000086368A JP 10261177 A JP10261177 A JP 10261177A JP 26117798 A JP26117798 A JP 26117798A JP 2000086368 A JP2000086368 A JP 2000086368A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- copper plate
- copper
- nitride
- aln
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/51—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
- C04B41/5105—Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the noble metals or copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00844—Uses not provided for elsewhere in C04B2111/00 for electronic applications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、パワートランジス
タモジュールなどの半導体装置用として主に使用され
る、セラミックス板と銅板とを接合したセラミックス基
板、特にそのセラミックス板が窒化物焼結体である窒化
物セラミックス基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic substrate which is mainly used for a semiconductor device such as a power transistor module and the like, in which a ceramic plate and a copper plate are joined together. The present invention relates to a ceramic substrate.
【0002】[0002]
【従来の技術】大容量のパワートランジスタ、絶縁ゲー
トバイポーラトランジスタ(以下IGBTと記す)等を
モジュール化したパワーモジュールには、絶縁と放熱と
の機能をもつ基板としてセラミックス基板が使われてい
る。セラミックスとしては、絶縁性が良好であり熱伝導
率が比較的大きく、強度も高いことから、従来は酸化ア
ルミニウム(以下Al2 O3 と記す)が広く使用されて
きた。近年、パワーモジュールの小型化、高機能化に向
けて放熱性改善のために、さらに熱伝導率が高い絶縁材
料として窒化アルミニウム(以下AlNと記す)や窒化
けい素(以下Si 3 N4 と記す)などの窒化物セラミッ
クスが使用されてきている。2. Description of the Related Art Large-capacity power transistors and insulating gates
Bipolar transistor (hereinafter referred to as IGBT)
The modularized power module has insulation and heat dissipation
Ceramic substrates are used as substrates with
You. As a ceramic, it has good insulation and heat conduction
Rate is relatively large and the strength is high.
Luminium (hereinafter AlTwoOThreeIs widely used
Came. In recent years, power modules have become smaller and more sophisticated.
Insulation material with even higher thermal conductivity to improve heat dissipation
Aluminum nitride (hereinafter referred to as AlN) or nitriding
Silicon (Si ThreeNFourNitride) ceramics such as
Boxes have been used.
【0003】セラミックス板を半導体用の基板として用
いる場合、セラミックス板に回路導体や冷却体としての
金属板を接合する必要がある。接合する金属材料として
は電気伝導性、熱伝導性、価格の点から一般に銅が使用
されている。AlN板と金属板との接合方法としては、
チタン、ジルコニウム、ハフニウムなどの活性金属を
含む銀−銅系ロウ材を使って銅板を接合する活性金属
法、あらかじめAlN表面を酸化させ銅と酸素の共晶
反応を利用して直接銅板を接合する直接接合法、銀、
銀―パラジウム、銀―白金、銅などの粉末を含むペース
トを印刷し加熱して付ける厚膜法、高融点金属である
タングステンやモリブデンとAlNとを同時焼結して接
合する同時焼結法などが知られている。When a ceramic plate is used as a substrate for a semiconductor, it is necessary to bond a circuit conductor or a metal plate as a cooling body to the ceramic plate. Copper is generally used as the metal material to be joined in view of electric conductivity, heat conductivity, and price. As a method of joining the AlN plate and the metal plate,
An active metal method that joins copper plates using silver-copper brazing material containing active metals such as titanium, zirconium, and hafnium, and directly joins copper plates by oxidizing the AlN surface in advance and using the eutectic reaction between copper and oxygen Direct bonding, silver,
Thick film method of printing and heating paste containing powder of silver-palladium, silver-platinum, copper, etc., simultaneous sintering method of simultaneously sintering and joining AlN with tungsten or molybdenum, which is a high melting point metal, etc. It has been known.
【0004】一般には、窒化物セラミックス板と銅板と
を接合する時には、の活性金属法、の直接接合法が
多く用いられている。の活性金属法では、熱処理によ
りAlN表面付近の窒素原子がロウ材のチタン、ジルコ
ニウム、ハフニウムなどの活性金属と反応して、界面に
窒化チタン、窒化ジルコニウム、窒化ハフニウムができ
る。そのためAlN板と銅板とが強固に接合される。In general, when joining a nitride ceramic plate and a copper plate, a direct joining method using an active metal method is often used. In the active metal method, nitrogen atoms near the AlN surface react with the active metal such as titanium, zirconium, and hafnium of the brazing material by heat treatment to form titanium nitride, zirconium nitride, and hafnium nitride at the interface. Therefore, the AlN plate and the copper plate are firmly joined.
【0005】図4は、活性化金属法で作製した銅貼りA
lN基板の断面図である。AlN板1の上に活性ロウ材
層4で銅板2が接合されている。の直接接合法におい
ては、あらかじめ表面を熱酸化させたAlN板を用い
る。そして、銅板との界面に銅と亜酸化銅との共晶相の
溶融層が形成されてAlN板と銅板とが強固に接合され
るものである。FIG. 4 shows a copper-clad A prepared by an activated metal method.
It is sectional drawing of an 1N board | substrate. The copper plate 2 is joined on the AlN plate 1 with an active brazing material layer 4. In the direct bonding method, an AlN plate whose surface has been thermally oxidized in advance is used. Then, a molten layer of a eutectic phase of copper and cuprous oxide is formed at the interface with the copper plate, and the AlN plate and the copper plate are firmly joined.
【0006】図5は、直接接合法で作製したAlN基板
の断面図である。AlN板1の上に銅板2が共晶層6に
より直接接合されている。FIG. 5 is a sectional view of an AlN substrate manufactured by a direct bonding method. The copper plate 2 is directly joined to the AlN plate 1 by the eutectic layer 6.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記の
従来の接合方法による窒化物セラミックス板と銅板との
接合方法にはそれぞれ欠点があった。そもそも、銅の熱
膨張率は17×10-6/Kであるのに対し、AlNやS
i3N4 などの窒化物セラミックスでは4×10-6/K
であり両者に大きな差がある。そして、の活性金属法
の接合温度は、780℃以上、の直接接合法では10
50℃以上の高温が必要である。このような高温で窒化
物セラミックス板と銅板とを接合すると、その熱膨張差
により大きな接合応力が発生して、室温付近で使用する
場合には大きな残留歪みや残留応力が残る。However, each of the above-mentioned conventional joining methods for joining a nitride ceramic plate and a copper plate has disadvantages. Originally, the coefficient of thermal expansion of copper was 17 × 10 −6 / K, whereas AlN and S
4 × 10 -6 / K for nitride ceramics such as i 3 N 4
There is a big difference between the two. The bonding temperature of the active metal method is 780 ° C. or higher, and 10
A high temperature of 50 ° C. or higher is required. When a nitride ceramic plate and a copper plate are joined at such a high temperature, a large joining stress is generated due to a difference in thermal expansion between them, and a large residual strain or residual stress remains when used near room temperature.
【0008】そのため、接合物が大きく反ったり、ま
た、低強度で破壊してしまったりして、その信頼性に問
題があった。詳細は、発明の実施の形態の項の比較実験
で記載したのでそちらを参照されたい。の厚膜法で接
合した場合には、窒化物セラミックス板と厚膜導体との
接合力が弱く、厚膜導体に半導体をはんだ接合した時に
窒化物セラミックスと厚膜導体間で剥離してしまうとい
う問題があった。[0008] Therefore, the joint is largely warped or broken at a low strength, and there is a problem in its reliability. For details, refer to the comparative experiment described in the embodiment of the invention. When the thick film method is used for bonding, the bonding strength between the nitride ceramic plate and the thick film conductor is weak, and when the semiconductor is soldered to the thick film conductor, the nitride ceramic and the thick film conductor are separated from each other. There was a problem.
【0009】の同時焼結法は、窒化物セラミックスと
高融点金属との熱膨張係数の差による残留応力、また、
それによるセラミックスの割れや接合体の反りがあり、
その信頼性に問題があった。このような状況に鑑み本発
明は、窒化物セラミックス板と銅板とを強固に接合し、
しかも接合による残留応力を極力抑えて、信頼性の高い
窒化物セラミックス基板を提供することを目的とする。In the simultaneous sintering method, the residual stress due to the difference in thermal expansion coefficient between the nitride ceramic and the high melting point metal,
As a result, there are cracks in the ceramics and warpage of the joined body,
There was a problem with its reliability. In view of such a situation, the present invention strongly bonds a nitride ceramic plate and a copper plate,
Moreover, it is an object of the present invention to provide a highly reliable nitride ceramic substrate by minimizing residual stress due to bonding.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に本発明は、窒化物セラミックス板と銅板とを接合した
窒化物セラミックス基板において、窒化物セラミックス
板と銅板との間にはんだ層を有するものとする。具体的
には、窒化物セラミックス板に活性金属を含む銅系、銀
系、または銅―銀系のろう材層を形成し、ろう材層と銅
板とをはんだにより接合するものとする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a nitride ceramics substrate in which a nitride ceramics plate and a copper plate are joined, wherein a solder layer is provided between the nitride ceramics plate and the copper plate. Shall be. Specifically, a copper-based, silver-based, or copper-silver-based brazing material layer containing an active metal is formed on a nitride ceramic plate, and the brazing material layer and the copper plate are joined by soldering.
【0011】窒化物セラミックス板と下地銅板とを、活
性金属を含む銅系、銀系、または銅―銀系のろう材層に
より接合し、その下地銅板と下地銅板より厚い銅板とを
はんだにより接合してもよい。窒化物セラミックス板と
銅板とを活性金属を含む銅系、銀系、または銅―銀系の
ろう材により接合すると、両者の熱膨張の差により大き
な残留応力を生じたが、間にはんだを挟み、あるいは薄
い下地銅板とはんだを挟むことにより、応力が緩和され
たと考えられる。回路導体として必要な厚さの銅は、は
んだにより例えば350℃以下の低温で接合するので、
熱膨張による差が小さく、発生する応力は小さい。A nitride ceramic plate and a base copper plate are joined by a copper-based, silver-based, or copper-silver-based brazing material layer containing an active metal, and the base copper plate and a copper plate thicker than the base copper plate are joined by soldering. May be. When a nitride ceramic plate and a copper plate were joined with a copper-based, silver-based, or copper-silver-based brazing filler metal containing active metal, a large residual stress was generated due to the difference in thermal expansion between the two. It is considered that the stress was alleviated by sandwiching the solder with a thin copper base plate. Copper of a thickness required as a circuit conductor is joined by solder at a low temperature of, for example, 350 ° C. or less.
The difference due to thermal expansion is small, and the generated stress is small.
【0012】特に、下地銅板の厚さが0.03〜0.1
5mmの範囲にあることが重要である。そのような範囲
であれば、クラックの発生が見られなかった。また、ろ
う材層中の活性金属が チタン、ジルコニウム、ハフニ
ウムのいずれかであるものとする。In particular, the thickness of the base copper plate is 0.03 to 0.1
It is important to be in the range of 5 mm. In such a range, no crack was observed. It is also assumed that the active metal in the brazing material layer is any of titanium, zirconium, and hafnium.
【0013】そのような金属であれば、窒化物セラミッ
クスと反応して窒化チタン、窒化ジルコニウム、窒化ハ
フニウムを生じて、強固な接合が得られる。窒化物セラ
ミックス板と下地銅板とを、直接接合法により接合し、
その下地銅板と下地銅板より厚い銅板とをはんだにより
接合してもよいこの場合も、薄い下地銅板を挟むことに
より、応力が緩和される。If such a metal is used, it reacts with the nitride ceramic to produce titanium nitride, zirconium nitride, and hafnium nitride, and a strong bond can be obtained. The nitride ceramic plate and the underlying copper plate are joined by a direct joining method,
The base copper plate and the copper plate thicker than the base copper plate may be joined by soldering. Also in this case, the stress is reduced by sandwiching the thin base copper plate.
【0014】特に、下地銅板の厚さが0.03〜0.1
5mmの範囲にあれば、クラックの発生が抑えられる。
窒化物セラミックス板が窒化アルミニウムまたは窒化け
い素を主成分とする焼結体であるものとする。窒化アル
ミニウムまたは窒化けい素を主成分とする焼結体は、熱
伝導率が大きく、入手も容易であり、窒化物セラミック
ス基板の材料として適当である。In particular, the thickness of the base copper plate is 0.03-0.1.
When it is within the range of 5 mm, the occurrence of cracks can be suppressed.
It is assumed that the nitride ceramic plate is a sintered body containing aluminum nitride or silicon nitride as a main component. A sintered body containing aluminum nitride or silicon nitride as a main component has a high thermal conductivity, is easily available, and is suitable as a material for a nitride ceramic substrate.
【0015】[0015]
【発明の実施の形態】以下、本発明にいたるまでの実験
およびその結果、ならびに比較のための従来法による実
験の経過およびその結果を詳細に説明する。 [実験1]図1は本発明の第1の方法によりAlN板に
銅板を接合したAlN基板の断面図である。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the experiments and results up to the present invention, and the progress and results of experiments by a conventional method for comparison will be described in detail. [Experiment 1] FIG. 1 is a sectional view of an AlN substrate in which a copper plate is joined to an AlN plate according to the first method of the present invention.
【0016】AlN板1の上に活性ロウ材層4が設けら
れ、その上に銅板2がはんだ層3で接合されている。図
1のAlN基板は、次のような工程で作製した。まず、
寸法が30mm×60mmで厚さ0.635mmのAl
N板1の表面に、チタンを2重量%含み銀が70重量
%、銅が28重量%である銀−銅−チタン系ロウ材のペ
ーストをAlN板1の周囲1mmを除く28mm×58
mmの範囲にスクリーン印刷により、厚さ30μm塗布
した。それを大気中で120℃で10分間乾燥し、1×
10-2Paより低圧の真空中で450℃で30分間加熱
脱脂し、さらにそのまま1×10-2Paより低圧の真空
中で850℃で10分間熱処理した。そうしてAlN板
1の上に強固に接合したロウ材層4を形成した。なお、
この時点でロウ材層4の厚さは約10μm、反りは10
μm以下であった。An active brazing material layer 4 is provided on an AlN plate 1, and a copper plate 2 is joined thereon with a solder layer 3. The AlN substrate of FIG. 1 was manufactured by the following steps. First,
Al with dimensions of 30mm x 60mm and thickness of 0.635mm
A silver-copper-titanium-based brazing material paste containing 2% by weight of titanium, 70% by weight of silver, and 28% by weight of copper was coated on the surface of the N plate 1 in a size of 28 mm × 58 excluding 1 mm around the AlN plate 1.
A thickness of 30 μm was applied to the range of mm by screen printing. Dry it in air at 120 ° C for 10 minutes,
10 -2 30 min heating and degreasing at 450 ° C. in a low pressure vacuum from Pa, and heat treated further as 1 × 10 -2 10 minutes at 850 ° C. than in the low pressure vacuum Pa. Thus, a brazing material layer 4 firmly joined to the AlN plate 1 was formed. In addition,
At this time, the thickness of the brazing material layer 4 is about 10 μm, and the warpage is 10 μm.
μm or less.
【0017】このロウ材層4の上に、寸法が28mm×
58mmで厚さ0.1mmの鉛/錫(Pb95%、Sn
5%)はんだシートを周囲1mmを除く所定の位置に設
置し、さらに寸法が28mm×58mmで厚さが0.2
〜5.0mmである銅板2をその上に積層した。そし
て、窒素対水素が1:1の雰囲気中で350℃で5分間
熱処理して接合し、AlN基板を作製した。On this brazing material layer 4, a size of 28 mm ×
58 mm lead / tin (Pb 95%, Sn 0.1 mm thick)
5%) A solder sheet is placed at a predetermined position excluding the surrounding area of 1 mm, and the dimensions are 28 mm × 58 mm and the thickness is 0.2 mm.
A copper plate 2 5.0 mm was laminated thereon. Then, heat treatment was performed at 350 ° C. for 5 minutes in an atmosphere of nitrogen to hydrogen at a ratio of 1: 1 to perform bonding, thereby forming an AlN substrate.
【0018】こうして得られたAlN基板をカラーチェ
ックし、また顕微鏡でクラックおよび剥離を観察した。
次に、接触式の反り測定装置で表面の反りを測定した。
さらに、剥離強度を調べるためにエッチングで2mm×
2mmのパッドを作製し、各パッドに直径0.6mmの
はんだめっき銅線を200℃ではんだ付けし、90度ピ
ールテストをおこなった。その結果を表1に示す。The AlN substrate thus obtained was checked for color, and cracks and peeling were observed under a microscope.
Next, the surface warpage was measured by a contact-type warpage measuring device.
Furthermore, 2mm ×
A 2-mm pad was prepared, and a solder-plated copper wire having a diameter of 0.6 mm was soldered to each pad at 200 ° C., and a 90 ° peel test was performed. Table 1 shows the results.
【0019】[0019]
【表1】 [Table 1]
【0020】厚さが0.2〜5.0mmの銅板2をはん
だ接合したいずれのサンプルにおいても、クラック、剥
離ともに観察されなかった。また反りは、銅板2の厚さ
が0.2mmから5.0mmまで増すに従って12μm
から40μmまで増大したが、半導体の接合に差し支え
る程大きくはならなかった。 剥離強度は、いずれのサ
ンプルについても40N/mm2 以上であり、はんだめ
っき銅線の接合部で剥がれた。No crack or peeling was observed in any of the samples obtained by soldering the copper plate 2 having a thickness of 0.2 to 5.0 mm. Also, the warpage is 12 μm as the thickness of the copper plate 2 increases from 0.2 mm to 5.0 mm.
To 40 μm, but did not become large enough to hinder semiconductor bonding. The peel strength of all samples was 40 N / mm 2 or more, and peeled off at the joint of the solder-plated copper wire.
【0021】表1の結果から、AlN板に活性金属を含
んだ銅−銀系のろう材層を形成した窒化物板と銅板とを
はんだで接合したAlN基板は、クラック、剥離等の欠
陥がなく、接合強度も大きい窒化物セラミックス基板と
なると考えられる。この場合、活性金属を含むロウ材は
窒化物系セラミックスと強固な接合をするが、銅板2を
接合しないため、780℃以上の高温を経ても発生する
応力は小さい。一方、回路導体/冷却体として必要な銅
板2は、はんだ付けにより350℃以下の低温で接合す
る。そのために熱膨張による差が小さく発生する応力は
小さい。よって、残留応力が小さくなるのである。From the results in Table 1, it can be seen that the AlN substrate formed by bonding a copper plate with a nitride plate having a copper-silver brazing material layer containing an active metal formed on the AlN plate by solder has defects such as cracks and peeling. Therefore, it is considered that a nitride ceramic substrate having high bonding strength is obtained. In this case, the brazing material containing the active metal forms a strong bond with the nitride-based ceramic, but does not bond the copper plate 2, so that the stress generated even at a high temperature of 780 ° C. or more is small. On the other hand, the copper plate 2 required as a circuit conductor / cooling body is joined at a low temperature of 350 ° C. or less by soldering. For this reason, the difference due to thermal expansion is small and the generated stress is small. Therefore, the residual stress is reduced.
【0022】[実験2]図2は本発明の第2の方法によ
る窒化物セラミックス基板の部分断面図である。AlN
板1の上に活性ロウ材層4で下地銅板5が接合され、そ
の上に銅板2がはんだ層3で接合されている。[Experiment 2] FIG. 2 is a partial sectional view of a nitride ceramics substrate according to the second method of the present invention. AlN
A base copper plate 5 is joined to the plate 1 with an active brazing material layer 4, and a copper plate 2 is joined to the base copper plate 5 with a solder layer 3.
【0023】図2のAlN基板は、次のような工程で作
製した。実験1と同様にして、AlN板1に銀−銅−チ
タン系ロウ材のペーストを塗布し、大気中で120℃で
10分間乾燥した後、ロウ材層4の上に寸法が28mm
×58mmで厚さが0.05、0.1、0.2mmの下
地銅板5を積み重ねた。次に、実施例1と同じ条件すな
わち、1×10-2Paより低圧の真空中で450℃で3
0分間加熱脱脂し、さらにそのまま1×10-2Paより
低圧の真空中で850℃で10分間熱処理した。そうし
てAlN板1の上に強固に薄い下地銅板5を接合した。
なお、この時点での反りは、厚さ0.05mmの下地銅
板で7μm、厚さ0.1mmのもので12μm、厚さ
0.2mmのもので65μmであった。The AlN substrate shown in FIG. 2 was manufactured by the following steps. In the same manner as in Experiment 1, a paste of a silver-copper-titanium brazing material was applied to the AlN plate 1 and dried at 120 ° C. for 10 minutes in the air.
The base copper plates 5 of × 58 mm and thicknesses of 0.05, 0.1 and 0.2 mm were stacked. Next, at 450 ° C. in a vacuum at a pressure lower than 1 × 10 −2 Pa,
The resultant was degreased by heating for 0 minutes, and then heat-treated at 850 ° C. for 10 minutes in a vacuum at a pressure lower than 1 × 10 −2 Pa. Thus, the thin copper base plate 5 was firmly joined onto the AlN plate 1.
The warpage at this time was 7 μm for a 0.05 mm thick base copper plate, 12 μm for a 0.1 mm thick plate, and 65 μm for a 0.2 mm thick plate.
【0024】この下地銅板5の上に、実験1と同様に鉛
/錫はんだシートを所定の位置に置き、さらに厚さが
0.2〜5.0mmである銅板2をその上に積み重ね
た。そして、窒素対水素が1:1の雰囲気中で350℃
で5分間熱処理しサンプルを作製した。こうして得られ
た厚さ0.05mmと0.1mmの下地銅板5を持つサ
ンプルを実験1と同様にクラック・剥離観察、反り測
定、剥離強度測定を行った。その結果を表2に示す。A lead / tin solder sheet was placed at a predetermined position on the base copper plate 5 as in Experiment 1, and a copper plate 2 having a thickness of 0.2 to 5.0 mm was further stacked thereon. And 350 ° C. in an atmosphere of 1: 1 nitrogen to hydrogen.
For 5 minutes to produce a sample. Crack / peeling observation, warpage measurement, and peel strength measurement were performed on the thus obtained sample having the base copper plate 5 having a thickness of 0.05 mm and 0.1 mm in the same manner as in Experiment 1. Table 2 shows the results.
【0025】なお、厚さ0.2mmの下地銅板5を用い
たサンプルにおいては、下地銅板5をろう付けした段階
では、クラックの発生が見られなかったが、銅板2をは
んだづけしたところ全てのサンプルでAlN板1にクラ
ックが発生し、接合することができなかったので、表2
には記載しなかった。In the sample using the base copper plate 5 having a thickness of 0.2 mm, no crack was observed at the stage where the base copper plate 5 was brazed, but all the samples were soldered when the copper plate 2 was soldered. As a result, cracks occurred in the AlN plate 1 and joining was not possible.
Was not listed.
【0026】[0026]
【表2】 [Table 2]
【0027】厚さが0.2〜5.0mmの銅板2をはん
だ接合したいずれのサンプルにおいても、クラック、剥
離ともに観察されなかった。また反りは、0.2mmか
ら5.0mmまで厚さを増すに従って下地銅板が0.0
5mmのものでは14μmから44μmまで、下地銅板
が0.1mmのものでは16μmから45μmまで増大
したが、半導体の接合に差し支える程大きくはならなか
った。No crack or peeling was observed in any of the samples in which the copper plate 2 having a thickness of 0.2 to 5.0 mm was soldered. In addition, the warpage is increased by increasing the thickness from 0.2 mm to 5.0 mm,
The thickness increased from 14 μm to 44 μm in the case of 5 mm and from 16 μm to 45 μm in the case of the base copper plate of 0.1 mm, but did not become large enough to support the bonding of the semiconductor.
【0028】剥離強度は、いずれのサンプルについても
40N/mm2 以上であり、はんだめっき銅線の接合部
で剥がれた。活性金属を含むロウ材は窒化物系セラミッ
クスと強固な接合をするが、下地銅板5の厚さが薄いた
め、780℃以上の高温で接合しても発生する応力は小
さく、下地銅板5で吸収される。一方回路導体/冷却体
として必要な銅板2は、はんだ付けにより350℃以下
の低温で接合する。そのために熱膨張による差が小さく
発生する応力は小さい。よって、残留応力が小さくなる
のである。The peel strength of each sample was 40 N / mm 2 or more, and peeled off at the joint of the solder-plated copper wire. Although the brazing filler metal containing the active metal forms a strong bond with the nitride ceramics, the thickness of the base copper plate 5 is small, so that the stress generated even when bonded at a high temperature of 780 ° C. or more is small, and is absorbed by the base copper plate 5. Is done. On the other hand, the copper plate 2 required as a circuit conductor / cooling body is joined at a low temperature of 350 ° C. or less by soldering. For this reason, the difference due to thermal expansion is small and the generated stress is small. Therefore, the residual stress is reduced.
【0029】厚さ0.2mmの下地銅板5を用いると、
780℃以上の高温で接合したときの応力が大きくて下
地銅板5で吸収しきれず、AlN板1にクラックが発生
すると考えられる。 [実験3]図3は本発明の第3の方法による銅貼り窒化
物セラミックス基板に銅板をはんだ接合した半導体装置
の部分断面図である。When a base copper plate 5 having a thickness of 0.2 mm is used,
It is considered that the stress at the time of joining at a high temperature of 780 ° C. or more is so large that it cannot be absorbed by the base copper plate 5 and cracks occur in the AlN plate 1. [Experiment 3] FIG. 3 is a partial cross-sectional view of a semiconductor device in which a copper plate is soldered to a copper-clad nitride ceramic substrate according to the third method of the present invention.
【0030】AlN板1の上に下地銅板5が直接接合さ
れ、その上に銅板2がはんだ層3で接合されている。6
は銅と亜酸化銅との共晶層である。図3のAlN基板
は、次のような工程で作製した。寸法が30mm×60
mmで厚さ0.635mmのAlN板1を大気中で12
00℃で10分間熱処理した。これにより、AlN板1
の表面に約5μmの厚さの酸化物層が生成した。An underlying copper plate 5 is directly bonded on the AlN plate 1, and a copper plate 2 is bonded thereon with a solder layer 3. 6
Is a eutectic layer of copper and cuprous oxide. The AlN substrate of FIG. 3 was manufactured by the following steps. Dimension is 30mm x 60
AlN plate 1 having a thickness of 0.635 mm and a thickness of
Heat treatment was performed at 00 ° C. for 10 minutes. Thereby, the AlN plate 1
An oxide layer having a thickness of about 5 μm was formed on the surface of.
【0031】この表面酸化させたAlN板1の上の周囲
1mmを除く所定の位置に寸法が28mm×58mmで
厚さが0.05、0.1、0.2mmの200〜300
ppmの酸素を含有するタフピッチ銅からなる下地銅板
5を積層し、窒素雰囲気中で1070℃で10分間熱処
理した。そうしてAlN板1の上に薄い下地銅板5を接
合した。なお、この時点での反りは、厚さ0.05の下
地銅板で5μm、厚さ0.1mmのもので10μm、厚
さ0.2mmのもので60μmであった。Except for 1 mm around the AlN plate 1 whose surface has been oxidized, 200 to 300 mm of dimensions 28 mm × 58 mm and thickness 0.05, 0.1, 0.2 mm
The base copper plate 5 made of tough pitch copper containing ppm of oxygen was laminated and heat-treated at 1070 ° C. for 10 minutes in a nitrogen atmosphere. Thus, the thin copper base plate 5 was joined onto the AlN plate 1. The warpage at this time was 5 μm for a 0.05-thick underlying copper plate, 10 μm for a 0.1-mm-thick plate, and 60 μm for a 0.2-mm-thick plate.
【0032】この薄い下地銅板5上に、実験1、2と同
様にして鉛/錫はんだシートを用いて厚さが0.2〜
5.0mmの銅板2を積層し、窒素対水素の流量比が
1:1の雰囲気中で350℃で5分間熱処理し、実験3
のサンプルを作製した。こうして得られたサンプルにつ
いて、実験1と同様にクラック・剥離観察、反り測定、
剥離強度測定をおこなった。厚さ0.05mmと0.1
mmの下地銅板を持つサンプルについての結果を表3に
示す。On this thin base copper plate 5, a lead / tin solder sheet was used in a thickness of 0.2 to
A copper plate 2 having a thickness of 5.0 mm was laminated and heat-treated at 350 ° C. for 5 minutes in an atmosphere in which the flow ratio of nitrogen to hydrogen was 1: 1.
Was prepared. For the sample thus obtained, crack / peel observation, warpage measurement,
Peel strength was measured. Thickness 0.05mm and 0.1
Table 3 shows the results of the samples having the base copper plate of mm.
【0033】なお、この実験3においても厚さ0.2m
mの下地銅板をもつサンプルでは、はんだ付け後の全て
のサンプルでAlN板にクラックが発生し、接合するこ
とができなかったので、表3には記載していない。In this experiment 3, the thickness was 0.2 m.
Table 3 does not describe the samples having the m base copper plate, since cracks occurred in the AlN plate in all the samples after soldering and could not be joined.
【0034】[0034]
【表3】 [Table 3]
【0035】厚さが0.2〜5.0mmの銅板2をはん
だ接合したいずれのサンプルにおいても、クラック、剥
離ともに観察されなかった。また反りは、0.2mmか
ら5.0mmまで厚さを増すに従って下地銅板が0.0
5mmのものでは10μmから42μmまで、下地銅板
が0.1mmのものでは15μmから42μmまで増大
したが、半導体の接合に差し支える程大きくはならなか
った。No crack or peeling was observed in any of the samples obtained by soldering the copper plate 2 having a thickness of 0.2 to 5.0 mm. In addition, the warpage is increased by increasing the thickness from 0.2 mm to 5.0 mm,
The thickness increased from 10 μm to 42 μm in the case of 5 mm and from 15 μm to 42 μm in the case of the base copper plate of 0.1 mm, but did not become large enough to support the bonding of the semiconductor.
【0036】剥離強度は、いずれのサンプルについても
40N/mm2 以上であり、はんだめっき銅線の接合部
で剥がれた。直接接合法においてAlN板1と下地銅板
5とは強固に接合される。また下地銅板5が薄いため、
直接接合法で1050℃以上の高温で接合しても発生す
る応力は小さく、下地銅板5で吸収される。そして、回
路導体/冷却体となる厚い銅板2は下地銅板5にはんだ
付けにより低温で接合される。そのために熱膨張による
差が小さく発生する応力は小さい。よって、本発明の方
法により残留応力が小さくなるのである。The peel strength of each sample was 40 N / mm 2 or more, and peeled off at the joint of the solder-plated copper wire. In the direct joining method, the AlN plate 1 and the base copper plate 5 are firmly joined. Also, since the base copper plate 5 is thin,
Even when joining is performed at a high temperature of 1050 ° C. or more by the direct joining method, the generated stress is small and is absorbed by the base copper plate 5. Then, the thick copper plate 2 serving as a circuit conductor / cooling body is joined to the base copper plate 5 at a low temperature by soldering. For this reason, the difference due to thermal expansion is small and the generated stress is small. Therefore, the residual stress is reduced by the method of the present invention.
【0037】直接接合法によって厚さ0.2mmの下地
銅板5を用いたときも、1050℃の高温で接合したと
きの応力が大きくて下地銅板5で吸収しきれず、銅板2
のハンダ付け時にAlN板1にクラックが発生したと考
えられる。 [比較実験1]比較実験1として従来の活性化金属法で
AlN板に銅板を接合した。Even when the base copper plate 5 having a thickness of 0.2 mm is used by the direct bonding method, the stress at the time of bonding at a high temperature of 1050 ° C. is too large to be absorbed by the base copper plate 5 and the copper plate 2
It is considered that cracks occurred in the AlN plate 1 at the time of soldering. Comparative Experiment 1 As Comparative Experiment 1, a copper plate was joined to an AlN plate by a conventional activated metal method.
【0038】実験1と同様にして寸法が30mm×60
mm、厚さ0.635mmのAlN板1の表面に、銀−
銅−チタン系ロウ材のペーストをスクリーン印刷により
厚さ30μm塗布し、大気中で乾燥した。その上に寸法
が28mm×58mm、厚さが0.2〜5.0mmであ
る銅板2を積層した。そして、実験1と同様の条件で、
真空加熱脱脂し、さらにそのまま真空中で850℃10
分間熱処理してAlN板1と銅板2とを接合した。接合
したAlN基板の断面は、図4に示すようになる。The size was 30 mm × 60 in the same manner as in Experiment 1.
mm, the surface of an AlN plate 1 having a thickness of 0.635 mm
A paste of a copper-titanium brazing material was applied by screen printing to a thickness of 30 μm and dried in air. A copper plate 2 having a size of 28 mm × 58 mm and a thickness of 0.2 to 5.0 mm was laminated thereon. Then, under the same conditions as in Experiment 1,
Degreasing by heating under vacuum, and 850 ° C 10 in vacuum as it is
The AlN plate 1 and the copper plate 2 were joined by heat treatment for one minute. The cross section of the joined AlN substrate is as shown in FIG.
【0039】こうして得られた比較実験サンプルを実験
1〜3のサンプルと同様にクラック・剥離観察、反り測
定、剥離強度測定をおこなった。その結果を表4に示
す。The thus obtained comparative test samples were subjected to crack / peel observation, warpage measurement, and peel strength measurement in the same manner as the samples of Experiments 1 to 3. Table 4 shows the results.
【0040】[0040]
【表4】 [Table 4]
【0041】厚さ0.2mmと0.5mmの銅板の場合
は、クラック、剥離とも認められなかったが、厚さ0.
2mmのもので反りが70μm、0.5mmのもので2
00μmあり、シリコンチップなどを接合することが困
難であった。剥離強度試験においても、0.2mmのも
のでは20N/mm2 、0.5mmの銅板のものでは1
0N/mm2 でAlN板1にクラックが発生し、AlN
基板としては使えない。この原因は、接合時の残留応力
のためと考えられる。In the case of the copper plates having a thickness of 0.2 mm and 0.5 mm, neither cracking nor peeling was recognized, but the thickness was 0.1 mm.
70 mm for 2 mm and 2 mm for 0.5 mm
It was difficult to bond a silicon chip or the like. Also in the peel strength test, 20 N / mm 2 for 0.2 mm and 1 N for 0.5 mm copper plate.
At 0 N / mm 2 , cracks occur in the AlN plate 1
It cannot be used as a substrate. This is considered to be due to residual stress at the time of joining.
【0042】厚さ1mmの銅板の場合は、接合後にクラ
ックの発生があったし、厚さ2mmの銅板の場合は、ク
ラックと剥離が認められた。そのためこれらでは、剥離
強度試験をおこなえなかった。反りも250μm以上と
大きかった。 [比較実験2]比較実験2として従来の直接接合法でA
lN板1に銅板2を接合した。In the case of a copper plate having a thickness of 1 mm, cracks occurred after joining, and in the case of a copper plate having a thickness of 2 mm, cracks and peeling were observed. Therefore, in these, the peel strength test could not be performed. The warpage was as large as 250 μm or more. [Comparative experiment 2] As comparative experiment 2, A
The copper plate 2 was joined to the 1N plate 1.
【0043】実験3と同様にして寸法が30mm×60
mm、厚さ0.635mmのAlN板1を大気中で熱処
理し、表面酸化させたAlN板1の上に寸法が28mm
×58mm、厚さが0.2〜5.0mmで、200〜3
00ppmの酸素を含有するタフピッチ銅板2を積層
し、窒素雰囲気中で1070℃で10分間熱処理して直
接接合した。接合したAlN基板の断面は、図5に示す
ようになる。The dimensions were 30 mm × 60 as in Experiment 3.
An AlN plate 1 having a thickness of 0.635 mm and a thickness of 0.635 mm is subjected to a heat treatment in the air, and the size is 28 mm on the AlN plate 1 whose surface has been oxidized.
× 58 mm, thickness of 0.2 to 5.0 mm, 200 to 3
A tough pitch copper plate 2 containing 00 ppm of oxygen was laminated and heat-treated at 1070 ° C. for 10 minutes in a nitrogen atmosphere to directly join. The cross section of the joined AlN substrate is as shown in FIG.
【0044】こうして得られたサンプルを実験1〜3の
サンプルと同様にクラック・剥離観察、反り測定、剥離
強度測定をおこなった。その結果を表5に示す。The samples thus obtained were subjected to crack / peel observation, warpage measurement, and peel strength measurement in the same manner as the samples of Experiments 1 to 3. Table 5 shows the results.
【0045】[0045]
【表5】 [Table 5]
【0046】厚さ0.2mmと0.5mmの銅板の場合
は、クラック、剥離とも認められなかったが、反りが厚
さ0.2mmのもので60μm、0.5mmのものでは
170μmあり、シリコンチップなどを接合することが
困難であった。剥離強度試験においても、0.2mmの
ものでは20N/mm2 、0.5mmの銅板のものでは
10N/mm2 でAlN板1にクラックが発生し、半導
体用基板としては使えない。この原因は、接合時の残留
応力のためと考えられる。In the case of the copper plates having a thickness of 0.2 mm and 0.5 mm, neither cracking nor peeling was observed, but the warpage was 60 μm for the one having a thickness of 0.2 mm and 170 μm for the one having a thickness of 0.5 mm. It was difficult to join chips and the like. Also in peel strength test, intended for 0.2 mm 20 N / mm 2, is intended 0.5mm copper plate cracks occur in AlN plate 1 with 10 N / mm 2, can not be used as a semiconductor substrate. This is considered to be due to residual stress at the time of joining.
【0047】厚さ1mmの銅板の場合は、接合後にクラ
ックの発生があったし、厚さ2mmの銅板の場合は、ク
ラックと剥離が認められた。そのためこれらでは、剥離
強度試験をおこなえなかった。反りも250μm以上と
大きかった。以上の実験を総合すると、本発明のいずれ
の例でも、厚い銅板を接合したAlN板にクラックの発
生がなく、また銅板の剥離がないのものが得られた。反
り量も45μm以下と小さく、半導体チップの搭載に支
障となることは無かった。これらは、はんだ層または下
地銅板で応力が緩和され、接合による残留応力が小さく
なったためと考えられる。さらに、剥離強度も40N/
mm2 以上と高く、半導体装置用基板として適当な、信
頼性の高いセラミックス基板ができたと考えられる。In the case of a copper plate having a thickness of 1 mm, cracks occurred after bonding, and in the case of a copper plate having a thickness of 2 mm, cracks and peeling were observed. Therefore, in these, the peel strength test could not be performed. The warpage was as large as 250 μm or more. When the above experiments were combined, in any of the examples of the present invention, an AlN plate joined with a thick copper plate was free of cracks and had no peeling of the copper plate. The amount of warpage was as small as 45 μm or less, and did not hinder the mounting of the semiconductor chip. These are considered to be because the stress was alleviated by the solder layer or the underlying copper plate, and the residual stress due to bonding was reduced. Further, the peel strength is 40 N /
mm 2 or more, which is high, and suitable as a substrate for a semiconductor device, believed could reliable ceramic substrate.
【0048】特に、5mmと厚い銅板に対しても信頼性
があることは驚異的であり、反り量もほぼ飽和する傾向
にあることから、更に厚い銅板にも適用できると考えら
れ、特に大電力用のパワーデバイスにとって極めて有望
な基板となると思われる。上記の実験では、窒化物セラ
ミックスとしてAlNを例示したが、AlNに限ること
はなく窒化けい素、或いはAlNと窒化ほう素との混合
物などの窒化物セラミックスで同様の効果が得られた。
また、活性金属ロウ材としてチタンを2重量%含み銀が
70質量%、銅が28質量%である銀−銅−チタン系ロ
ウ材を例示したが、チタンの代わりにジルコニウムやハ
フニウムなどの活性金属でもよく、また、重量比もこれ
に限ることはなくチタンであれば0.5〜5質量%でほ
ぼ同様の効果が得られる。銅板2をAlN板1の片側だ
けに接合した例だけを示したが、両側に接合しても良
い。In particular, it is surprising that the reliability is high even for a copper plate as thick as 5 mm, and the warpage tends to be almost saturated. It is expected to be a very promising substrate for power devices for use. In the above experiment, AlN was exemplified as the nitride ceramic, but the same effect was obtained with nitride ceramic such as silicon nitride or a mixture of AlN and boron nitride without being limited to AlN.
Also, the silver-copper-titanium brazing material containing 2% by weight of titanium, 70% by weight of silver, and 28% by weight of copper has been exemplified as the active metal brazing material, but instead of titanium, an active metal such as zirconium or hafnium is used. The weight ratio is not limited to this, and if titanium is used, the same effect can be obtained at 0.5 to 5% by mass. Although only the example in which the copper plate 2 is joined to only one side of the AlN plate 1 is shown, the copper plate 2 may be joined to both sides.
【0049】[0049]
【発明の効果】以上説明したように本発明によれば、窒
化物セラミックス板に活性金属を含むろう材層を形成
し、そのろう材層と銅板とをはんだにより接合し、また
は、窒化物セラミックス板と、薄い下地銅板とを活性金
属を含む銅系、銀系、または銅―銀系のろう材層により
接合し、その下地銅板と下地銅板より厚い銅板とをはん
だにより接合することによって、従来銅板との接合が困
難で問題の多かった、窒化物セラミックスを用いた窒化
物セラミックス基板の問題が解決され、高信頼性の基板
を実現できた。窒化物セラミックス板と薄い下地銅板と
を直接接合法により接合し、その下地銅板と下地銅板よ
り厚い銅板とをはんだにより接合しても良い。As described above, according to the present invention, a brazing material layer containing an active metal is formed on a nitride ceramic plate, and the brazing material layer and the copper plate are joined by soldering. Conventionally, the board and the thin underlying copper sheet are joined by a copper-based, silver-based, or copper-silver-based brazing filler metal layer containing an active metal, and the underlying copper sheet and the copper sheet thicker than the underlying copper sheet are joined by soldering. The problem of the nitride ceramics substrate using nitride ceramics, which was difficult to join with the copper plate, was solved, and a highly reliable substrate was realized. The nitride ceramic plate and the thin base copper plate may be joined by a direct joining method, and the base copper plate and a copper plate thicker than the base copper plate may be joined by solder.
【0050】よって、伝導率の大きい窒化アルミニウ
ム、窒化けい素等を用いて低い熱抵抗と共に、熱衝撃や
熱履歴に対する優れた耐久性をもつトランジスタモジュ
ール等の半導体装置が実現できることとなった。厚い銅
板に対しても適用できるため、特に電力用のパワーモジ
ュール等の普及、発展に貢献するものであり、工業的、
経済的な効果は大である。Accordingly, it is possible to realize a semiconductor device such as a transistor module having high thermal resistance and excellent durability against thermal shock and thermal history, with low thermal resistance using aluminum nitride, silicon nitride, or the like having high conductivity. Because it can be applied to thick copper plates, it contributes to the spread and development of power modules, especially for electric power.
The economic effect is great.
【図1】実験1の方法により銅板を接合したAlN基板
の断面図FIG. 1 is a cross-sectional view of an AlN substrate bonded to a copper plate according to the method of Experiment 1.
【図2】実験2の方法により銅板を接合したAlN基板
の断面図FIG. 2 is a cross-sectional view of an AlN substrate bonded to a copper plate according to the method of Experiment 2.
【図3】実験3の方法により銅板を接合したAlN基板
の断面図FIG. 3 is a cross-sectional view of an AlN substrate to which a copper plate has been bonded by the method of Experiment 3.
【図4】活性金属法により銅板を接合したAlN基板の
断面図FIG. 4 is a cross-sectional view of an AlN substrate bonded to a copper plate by an active metal method.
【図5】直接接合法により銅板を接合したAlN基板の
断面図FIG. 5 is a cross-sectional view of an AlN substrate bonded to a copper plate by a direct bonding method.
1 AlN板 2 銅板 3 はんだ層 4 ロウ材層 5 下地銅板 6 共晶層 Reference Signs List 1 AlN plate 2 Copper plate 3 Solder layer 4 Brazing material layer 5 Base copper plate 6 Eutectic layer
Claims (8)
窒化物セラミックス基板において、窒化物セラミックス
板と銅板との間にはんだ層を有することを特徴とする窒
化物セラミックス基板。1. A nitride ceramic substrate comprising a nitride ceramic plate and a copper plate joined to each other, wherein the nitride ceramic substrate has a solder layer between the nitride ceramic plate and the copper plate.
系、銀系、または銅―銀系のろう材層を形成し、ろう材
層と銅板とをはんだにより接合したことを特徴とする窒
化物セラミックス基板。2. A nitriding method comprising forming a copper-based, silver-based, or copper-silver-based brazing material layer containing an active metal on a nitride ceramic plate, and joining the brazing material layer and the copper plate by soldering. Object ceramic substrate.
性金属を含む銅系、銀系、または銅―銀系のろう材層に
より接合し、その下地銅板と下地銅板より厚い銅板とを
はんだにより接合したことを特徴とする窒化物セラミッ
クス基板。3. A nitride ceramic plate and a base copper plate are joined by a copper-based, silver-based, or copper-silver-based brazing material layer containing an active metal, and the base copper plate and a copper plate thicker than the base copper plate are soldered. A nitride ceramics substrate, characterized by being joined by:
の範囲にあることを特長とする請求項3記載の窒化物セ
ラミックス基板。4. The thickness of a base copper plate is 0.03 to 0.15 mm.
4. The nitride ceramic substrate according to claim 3, wherein
ニウム、ハフニウムのいずれかであることを特徴とする
請求項2ないし4のいずれかに記載の窒化物セラミック
ス基板。5. The nitride ceramic substrate according to claim 2, wherein the active metal in the brazing material layer is any one of titanium, zirconium and hafnium.
接接合法により接合し、その下地銅板と下地銅板より厚
い銅板とをはんだにより接合したことを特徴とする窒化
物セラミックス基板。6. A nitride ceramics substrate, wherein a nitride ceramics plate and a base copper plate are bonded by a direct bonding method, and the base copper plate and a copper plate thicker than the base copper plate are bonded by soldering.
の範囲にあることを特長とする請求項6記載の窒化物セ
ラミックス基板。7. The base copper plate has a thickness of 0.03 to 0.15 mm.
7. The nitride ceramics substrate according to claim 6, wherein:
または窒化けい素を主成分とする焼結体であることを特
徴とする請求項1ないし7のいずれかに記載の窒化物セ
ラミックス基板。8. The nitride ceramic substrate according to claim 1, wherein the nitride ceramic plate is a sintered body containing aluminum nitride or silicon nitride as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26117798A JP3794454B2 (en) | 1998-09-16 | 1998-09-16 | Nitride ceramic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26117798A JP3794454B2 (en) | 1998-09-16 | 1998-09-16 | Nitride ceramic substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000086368A true JP2000086368A (en) | 2000-03-28 |
JP3794454B2 JP3794454B2 (en) | 2006-07-05 |
Family
ID=17358208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26117798A Expired - Lifetime JP3794454B2 (en) | 1998-09-16 | 1998-09-16 | Nitride ceramic substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3794454B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005439A (en) * | 2005-06-22 | 2007-01-11 | Mitsubishi Electric Corp | Hermetic seal package and its manufacturing method |
JP2007326078A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Metals Ltd | Hydrogen producing substrate and its manufacturing method |
JP2014205609A (en) * | 2013-03-20 | 2014-10-30 | ジョンソン エレクトリック ソシエテ アノニム | Method for manufacturing commutator using brazing and soldering process |
JP2014224030A (en) * | 2013-03-20 | 2014-12-04 | シェンジェン ジョイント ウェルディング マテリアル カンパニー リミテッド | Method for applying metallic sheet to graphite structure using brazing and soldering step |
CN114029573A (en) * | 2021-11-19 | 2022-02-11 | 武汉理工大学 | Preparation method of ultrathin soft soldering modified layer on surface of graphene film |
CN114325332A (en) * | 2021-12-30 | 2022-04-12 | 上海埃积半导体有限公司 | Power chip rapid test method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848926A (en) * | 1981-09-18 | 1983-03-23 | Hitachi Ltd | Insulated type semiconductor device |
JPS6032343A (en) * | 1983-08-02 | 1985-02-19 | Toshiba Corp | Power semiconductor module substrate |
JPS60177635A (en) * | 1984-02-24 | 1985-09-11 | Toshiba Corp | Manufacture of good heat conductive substrate |
JPH0288482A (en) * | 1988-09-26 | 1990-03-28 | Hitachi Ltd | Method for metallizing or joining ceramics |
-
1998
- 1998-09-16 JP JP26117798A patent/JP3794454B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5848926A (en) * | 1981-09-18 | 1983-03-23 | Hitachi Ltd | Insulated type semiconductor device |
JPS6032343A (en) * | 1983-08-02 | 1985-02-19 | Toshiba Corp | Power semiconductor module substrate |
JPS60177635A (en) * | 1984-02-24 | 1985-09-11 | Toshiba Corp | Manufacture of good heat conductive substrate |
JPH0288482A (en) * | 1988-09-26 | 1990-03-28 | Hitachi Ltd | Method for metallizing or joining ceramics |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005439A (en) * | 2005-06-22 | 2007-01-11 | Mitsubishi Electric Corp | Hermetic seal package and its manufacturing method |
JP2007326078A (en) * | 2006-06-09 | 2007-12-20 | Hitachi Metals Ltd | Hydrogen producing substrate and its manufacturing method |
JP2014205609A (en) * | 2013-03-20 | 2014-10-30 | ジョンソン エレクトリック ソシエテ アノニム | Method for manufacturing commutator using brazing and soldering process |
JP2014224030A (en) * | 2013-03-20 | 2014-12-04 | シェンジェン ジョイント ウェルディング マテリアル カンパニー リミテッド | Method for applying metallic sheet to graphite structure using brazing and soldering step |
CN114029573A (en) * | 2021-11-19 | 2022-02-11 | 武汉理工大学 | Preparation method of ultrathin soft soldering modified layer on surface of graphene film |
CN114029573B (en) * | 2021-11-19 | 2022-08-30 | 武汉理工大学 | Preparation method of ultrathin soft soldering modified layer on surface of graphene film |
CN114325332A (en) * | 2021-12-30 | 2022-04-12 | 上海埃积半导体有限公司 | Power chip rapid test method and system |
Also Published As
Publication number | Publication date |
---|---|
JP3794454B2 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4077888B2 (en) | Ceramic circuit board | |
JP6319643B2 (en) | Ceramics-copper bonded body and method for manufacturing the same | |
JP4664816B2 (en) | Ceramic circuit board, manufacturing method thereof and power module | |
JP3845925B2 (en) | Semiconductor device member using aluminum nitride substrate and method for manufacturing the same | |
JPH07202063A (en) | Ceramic circuit board | |
KR20180056681A (en) | Thermoelectric conversion module and thermoelectric conversion device | |
JPH04162756A (en) | Semiconductor module | |
WO2021033421A1 (en) | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board | |
JPH06296084A (en) | Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof | |
JPH08255973A (en) | Ceramic circuit board | |
JP3834351B2 (en) | Ceramic circuit board | |
JPH05347469A (en) | Ceramic circuit board | |
KR20180107163A (en) | A metal member on which an Ag base layer is formed, an insulating circuit board on which an Ag base layer is formed, a semiconductor device, an insulating circuit board on which a heat sink is mounted, and a method of manufacturing a metal member on which an Ag base layer is formed | |
JPS62287649A (en) | Semiconductor device | |
JP3794454B2 (en) | Nitride ceramic substrate | |
JP3934966B2 (en) | Ceramic circuit board | |
JP2001135902A (en) | Ceramic circuit board | |
JP2001308519A (en) | Aluminum nitride circuit board | |
JP2002043481A (en) | Ceramic module and its manufacturing method | |
JPH0748180A (en) | Ceramic-metal conjugate | |
JP2004134703A (en) | Circuit board with terminal | |
JP2000340716A (en) | Wiring substrate | |
JP2002076213A (en) | Semiconductor device module | |
JP2000349098A (en) | Bonded body of ceramic substrate and semiconductor device, and its manufacture | |
JP7379813B2 (en) | Joined body and method for manufacturing the joined body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100421 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110421 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120421 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130421 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140421 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |