Nothing Special   »   [go: up one dir, main page]

JP2000054855A - External heating type gas turbine - Google Patents

External heating type gas turbine

Info

Publication number
JP2000054855A
JP2000054855A JP10234912A JP23491298A JP2000054855A JP 2000054855 A JP2000054855 A JP 2000054855A JP 10234912 A JP10234912 A JP 10234912A JP 23491298 A JP23491298 A JP 23491298A JP 2000054855 A JP2000054855 A JP 2000054855A
Authority
JP
Japan
Prior art keywords
gas turbine
regenerator
temperature
incinerator
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10234912A
Other languages
Japanese (ja)
Inventor
Nobuo Nakada
信夫 中田
Tadashi Konno
忠 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10234912A priority Critical patent/JP2000054855A/en
Publication of JP2000054855A publication Critical patent/JP2000054855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an external heating type gas turbine in which the exhaust gas of a small gasification combustion type incinerator can be efficiently utilized to heat gas turbine compressed air. SOLUTION: This external heating type gas turbine is provided with an open cycle gas turbine 7 equipped with a gas turbine compressor 5, an internal combustor 8 and a regenerator 9, a refuse batch throwing gasification combustion type incinerator 1 and an external heater 2 arranged in the exhaust gas passage of the incinerator 1, and is equipped with a compressed air passage by which the compressed air from the compressor 5 is passed through the external heater 2 through a regenerator bypass valve 12 connected to a regenerator bypass circuit and led to the gas turbine 7 via the internal combustor 8. The amount of compressed air to be passed through the regenerator 9 can be increased, and the temperature of the compressed air to be entered in the external heater 2 is raised by providing at the time of starting/stopping of the incinerator 1 a control device 15 which detects the outlet temperature air of the external heater 2 by a device 13 and controls by the regenerator bypass valve 12 the amount of the compressed air 4' to be passed through the regenerator 9 so as to retain the outlet temperature of the heater 2 to a high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部加熱式ガスタ
ービンに係り、特に、小型焼却炉の高温の燃焼ガスと空
気の熱交換を行う発電用の外部加熱式ガスタービンに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an externally heated gas turbine, and more particularly, to an externally heated gas turbine for power generation for exchanging heat between hot combustion gas and air in a small incinerator.

【0002】[0002]

【従来の技術】外部加熱式ガスタービンは、圧縮機出口
空気を石炭や木材など固体燃料の燃焼排ガスにより加熱
し、内部燃焼器の燃料使用量を減少させることを目的と
して開発されている。外部加熱式ガスタービンの実施事
例として、1200℃の微粉炭バーナー燃焼ガスによ
り、1000℃に空気を加熱して、500kWガスター
ビンを運転できることが実証されている。このプロジェ
クトは、アメリカエネルギー省の補助プロジェクトであ
り、既設の10万kW以下の石炭炊きボイラー・蒸気タ
ービンシステムの高効率化を目的としている。このプロ
ジェクトのガスタービン用外部加熱器には、セラミック
製のシェル&チューブ方式の熱交換器が用いられてい
る。
2. Description of the Related Art Externally heated gas turbines have been developed for the purpose of heating compressor outlet air with the combustion exhaust gas of solid fuel such as coal or wood to reduce the amount of fuel used in an internal combustor. As an example of an externally heated gas turbine, it has been demonstrated that a 500 kW gas turbine can be operated by heating air to 1000 ° C. with a pulverized coal burner combustion gas at 1200 ° C. This project is a subsidized project of the US Department of Energy and aims to increase the efficiency of existing coal-fired boiler / steam turbine systems of 100,000 kW or less. The external heater for the gas turbine in this project uses a ceramic shell-and-tube heat exchanger.

【0003】一方、電気と燃料の両方を使うハイブリッ
ド自動車用として、小型ガスタービン発電機の開発が行
われ、出力50kW程度のガスタービン発電機の商用化
が可能となっている。このような小型のガスタービンは
マイクロガスタービンと呼ばれ、ガスエンジンに較べ
て、部品点数が10分の1以下で格段に少なく、保守費
用が安価なコージェネレーション用原動機として期待さ
れている。マイクロガスタービンは、圧力比が4程度、
タービン入口温度が1000℃であるので、安価な外部
加熱器が得られれば、木くずなどバイオマスの熱源を有
効に活用できるようになる。
[0003] On the other hand, a small gas turbine generator has been developed for a hybrid vehicle using both electricity and fuel, and a gas turbine generator having an output of about 50 kW can be commercialized. Such a small gas turbine is called a micro gas turbine, and is expected to be a cogeneration prime mover having a number of parts that is one tenth or less compared to a gas engine and having much lower maintenance costs. The micro gas turbine has a pressure ratio of about 4,
Since the turbine inlet temperature is 1000 ° C., if an inexpensive external heater can be obtained, a heat source of biomass such as wood chips can be effectively used.

【0004】また、ダイオキシンの原因となる塩化ビニ
ールが混入しないように分別された小型ガス化燃焼方式
焼却炉は、燃焼ガス温度を800℃以上に保持し、煙、
ばいじん及びダイオキシン発生量が極めてすくない小型
焼却炉であり、焼却炉起動停止時も排ガス温度を高温に
維持する外部燃料バーナを備えることができる。また、
ごみ焼却能力が200kg/h未満の焼却炉の排熱回収
は、温水回収が一般的であり、安価に電力に変換する方
法がなかった。小型の焼却炉では、ごみを一括投入する
バッチ式が採用されており、大型の連続式焼却炉で使用
されるボイラー・蒸気タービン式は発電効率、稼働率の
面から実施されることはなかった。
[0004] In addition, a small gasification combustion type incinerator which is separated so that vinyl chloride which causes dioxin is not mixed is kept at a combustion gas temperature of 800 ° C or more, and smoke and
It is a small incinerator that generates very little soot and dioxin, and can be equipped with an external fuel burner that keeps the exhaust gas temperature high even when the incinerator starts and stops. Also,
Exhaust heat recovery of an incinerator with a garbage incineration capacity of less than 200 kg / h generally involves recovery of hot water, and there is no method of inexpensively converting it into electric power. Small incinerators employ a batch type in which refuse is batch-injected, and boiler / steam turbine types used in large continuous incinerators were not implemented in terms of power generation efficiency and availability. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、小型ガス化燃焼式焼却炉の排ガスをガスター
ビン圧縮空気の加熱に高率よく利用することができる外
部加熱式ガスタービンを提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, the present invention provides an externally heated gas turbine capable of efficiently using the exhaust gas of a small gasification combustion type incinerator for heating the compressed air of a gas turbine. The task is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、ガスタービン圧縮機、内部燃焼器及び
再生器を備える開放サイクルガスタービンと、ごみ一括
投入型ガス化燃焼式焼却炉と、該焼却炉の排ガスとガス
タービン圧縮機からの圧縮空気を熱交換する外部加熱器
とを有し、該圧縮機からの圧縮空気が再生器バイパス回
路に接続する再生器バイパス弁を介して、前記外部加熱
器を通り、内部燃焼器を経てガスタービンに至る圧縮空
気経路を備える外部加熱式ガスタービンにおいて、前記
外部加熱器の出口温度空気を検知し、該加熱器の出口温
度を高温に保つように再生器に通す圧縮空気の量を再生
器バイパス弁で制御する制御装置を備えたことを特徴と
する外部加熱式ガスタービンとしたものである。
In order to solve the above-mentioned problems, the present invention provides an open-cycle gas turbine having a gas turbine compressor, an internal combustor, and a regenerator, and a refuse lump-type gasification combustion type incinerator. And an external heater that exchanges heat between the exhaust gas of the incinerator and the compressed air from the gas turbine compressor, and the compressed air from the compressor is connected to a regenerator bypass circuit via a regenerator bypass valve. In an externally heated gas turbine having a compressed air path that passes through the external heater and passes through an internal combustor to a gas turbine, an outlet temperature air of the external heater is detected and the outlet temperature of the heater is increased. An externally heated gas turbine is provided with a control device for controlling the amount of compressed air passing through the regenerator by a regenerator bypass valve so as to maintain the same.

【0007】[0007]

【発明の実施の形態】小型焼却炉では、ごみを一括投入
するバッチ方式が一般的であり、ガス化室からのガス量
は起動から停止までの間、一定ではない。小型ガス化燃
焼方式焼却炉の2次燃焼室は、2次空気と灯油などのク
リーン燃料が投入され、完全燃焼するとともに、燃焼温
度が800℃以上に保持されるが、排ガス量は起動から
停止までの間、変動している。一方、ガスタービン発電
機が、圧縮機、タービン、発電機が同一軸にある1軸式
ガスタービンの場合、軸回転数は交流発電機の同期回転
数と同一となり、圧縮機出口流量、温度は発電量とは無
関係に一定に保たれている。発電出力は、燃焼器におけ
る燃料投入量を増加させることにより、圧縮機出口空気
を加熱すると、タービン入口温度があがり、発電量がふ
える。外部加熱器は、小型ガス化燃焼方式焼却炉の排ガ
スを熱回収し、燃焼器室への灯油などのクリーン燃料の
使用量を減らすことができる。発電量が一定とすると外
部加熱器からの戻り空気温度が高いほど、クリーン燃料
の使用量を減らすことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a small incinerator, a batch system in which refuse is supplied at a time is generally used, and the amount of gas from a gasification chamber is not constant from start to stop. The secondary combustion chamber of the small gasification combustion type incinerator is charged with secondary air and clean fuel such as kerosene, complete combustion, and the combustion temperature is maintained at 800 ° C or higher, but the amount of exhaust gas stops from startup. Until it fluctuates. On the other hand, when the gas turbine generator is a single-shaft gas turbine in which the compressor, turbine, and generator are on the same shaft, the shaft rotation speed is the same as the synchronous rotation speed of the AC generator, and the compressor outlet flow rate and temperature are It is kept constant regardless of the amount of power generated. When the compressor output air is heated by increasing the fuel input amount in the combustor, the power generation output increases the turbine inlet temperature and increases the power generation amount. The external heater can recover the heat of the exhaust gas from the small gasification combustion type incinerator and reduce the amount of clean fuel such as kerosene used in the combustor room. Assuming that the amount of power generation is constant, the higher the return air temperature from the external heater, the more the amount of clean fuel used can be reduced.

【0008】外部加熱器の伝熱面積、圧縮機出口流量、
圧縮機出口温度、焼却炉排ガス温度が与えられると、焼
却炉排ガス量から加熱空気温度は決められる。焼却炉の
設計排ガス量、排ガス温度とガスタービン圧縮空気流
量、ガスタービン圧縮機出口温度が与えられると、加熱
器の熱交換材料許容温度より、加熱器許容出口温度が決
められる。ガスタービン再生器を全量バイパスされてい
る状態で、加熱器許容出口温度が決められているとする
と、焼却炉の起動停止時は燃焼排ガス量が少なく、加熱
器出口温度は設計値よりも下がり、ガスタービン発電量
が一定ならば、灯油等の追加燃料の消費量が増えてしま
う。本発明は、圧縮器出口空気の一部を再生器に導き、
加熱器入口温度を高くすることにより、焼却炉排ガス量
が定格値より少ない時でも、加熱器出口空気温度を加熱
器チューブ材料の許容値限度近くに保持する。
[0008] Heat transfer area of the external heater, compressor outlet flow rate,
Given the compressor outlet temperature and the incinerator exhaust gas temperature, the heating air temperature is determined from the incinerator exhaust gas amount. Given the design exhaust gas amount of the incinerator, the exhaust gas temperature, the gas turbine compressed air flow rate, and the gas turbine compressor outlet temperature, the heater allowable outlet temperature is determined from the heat exchange material allowable temperature of the heater. Assuming that the heater allowable outlet temperature is determined with the gas turbine regenerator fully bypassed, when the incinerator starts and stops, the amount of combustion exhaust gas is small, and the heater outlet temperature falls below the design value, If the gas turbine power generation is constant, the consumption of additional fuel such as kerosene increases. The present invention directs a portion of the compressor outlet air to a regenerator,
By increasing the heater inlet temperature, the heater outlet air temperature is kept close to the allowable limit of the heater tube material even when the incinerator exhaust gas amount is smaller than the rated value.

【0009】外部加熱器のないマイクロガスタービンの
再生器のバイパス弁は、再生器出口に設置された温水熱
交換器の温水量を制御することに使用され、温水需要が
少ない時は再生熱量を増やし、再生器出口ガスタービン
排気温度を下げることにより、温水量を制御している。
外部加熱器を備えた本発明のガスタービンシステムで
は、再生器バイパス弁は加熱器入口温度を上げる手段と
して使用される。温水の制御は、加熱器出口温度制御を
優先させるため、温水温度があがりすぎる時は放熱回路
により、放熱される。温水の放熱回路は、温水熱交換器
のチューブの保護のために必要な装置であり、ディーゼ
ルエンジンやガスエンジンのジャケット冷却装置と同様
に、温水需要がない時に放熱させる機能をもつ。
A bypass valve of a regenerator of a micro gas turbine without an external heater is used to control the amount of hot water of a hot water heat exchanger installed at the outlet of the regenerator. The amount of hot water is controlled by increasing the gas turbine exhaust gas temperature at the outlet of the regenerator.
In the gas turbine system of the present invention with an external heater, a regenerator bypass valve is used as a means to increase the heater inlet temperature. Since the control of the hot water is given priority to the control of the outlet temperature of the heater, when the temperature of the hot water is too high, heat is radiated by the heat radiating circuit. The hot water radiating circuit is a device necessary for protecting the tubes of the hot water heat exchanger, and has a function of releasing heat when there is no demand for hot water, similarly to a jacket cooling device of a diesel engine or a gas engine.

【0010】以下、本発明を図面に基づいて詳細に説明
する。図1は、本発明の外部加熱式ガスタービンを用い
た発電装置の一例を示す概略構成図である。図1におい
て、1は一括ごみ投入形ガス化燃焼焼却炉、2は高温加
熱器、3は焼却炉の燃焼排ガス、4はガスタービン用の
空気、4′はバイパス回路空気、5は圧縮機、6は発電
機、7はタービン、8は内部燃焼器、9は再生器、10
は温水熱交換器、11はガスタービン排ガス、12は再
生器バイパス弁である。図1のガスタービン発電では、
圧縮機5とガスタービン7と発電機6は同一の軸につな
がり、1.5t/hの空気4は圧縮機5により圧力0.
4MPa・abs、温度230℃に圧縮加温される。焼
却炉1が定格運転されている時は、再生器バイパス弁1
2は全量の圧縮空気4を高温加熱器2に導く。高温加熱
器2の焼却炉排ガス温度は、1200℃から750℃に
冷却される。圧縮空気4は230℃から750℃に加熱
される。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram illustrating an example of a power generation device using the externally heated gas turbine of the present invention. In FIG. 1, 1 is a lump-type gasification combustion incinerator, 2 is a high-temperature heater, 3 is an exhaust gas from an incinerator, 4 is air for a gas turbine, 4 'is bypass circuit air, 5' is a compressor, 6 is a generator, 7 is a turbine, 8 is an internal combustor, 9 is a regenerator, 10
Denotes a hot water heat exchanger, 11 denotes a gas turbine exhaust gas, and 12 denotes a regenerator bypass valve. In the gas turbine power generation shown in FIG.
The compressor 5, the gas turbine 7, and the generator 6 are connected to the same shaft.
It is compressed and heated to a temperature of 230 ° C. at 4 MPa · abs. When the incinerator 1 is in rated operation, the regenerator bypass valve 1
2 guides the entire amount of compressed air 4 to the high-temperature heater 2. The incinerator exhaust gas temperature of the high temperature heater 2 is cooled from 1200 ° C. to 750 ° C. The compressed air 4 is heated from 230 ° C. to 750 ° C.

【0011】高温加熱器のチューブは材料許容温度が1
000℃以下のクロム含有量が25%程度の耐熱鋼が使
用される。加熱器出口温度は750℃と低く設定されて
いるので、加熱伝熱面積を小さくすることができ、高価
なセラミックスではなく、安価な金属管が使用できる。
また、塩化ビニールを含まない分別ごみの燃焼ガスであ
るため、塩化水素による金属管高温腐食の恐れもない。
ガスタービンに入るガスの入口温度は、1000℃であ
り、加熱器出口空気の750℃から1000℃まで、内
部燃焼器8に外部燃料16(灯油など)を投入して加熱
され、タービン7に導かれ、圧縮機5、発電機6を駆動
する。高温加熱器2がない単純開放サイクルガスタービ
ンと比較すると、230℃から750℃まで外部で加熱
されているので、内部燃焼器8の燃料使用量は68%節
約される。
[0011] The tube of the high temperature heater has a material allowable temperature of 1
A heat-resistant steel having a chromium content of about 2,000 ° C. or less and about 25% is used. Since the heater outlet temperature is set as low as 750 ° C., the heat transfer area can be reduced, and an inexpensive metal tube can be used instead of expensive ceramics.
In addition, since it is a combustion gas of separated garbage that does not contain vinyl chloride, there is no danger of high temperature corrosion of metal tubes due to hydrogen chloride.
The inlet temperature of the gas entering the gas turbine is 1000 ° C., the external fuel 16 (such as kerosene) is injected into the internal combustor 8 and heated from 750 ° C. to 1000 ° C. at the outlet air of the heater. Then, the compressor 5 and the generator 6 are driven. Compared to a simple open cycle gas turbine without the high temperature heater 2, the fuel consumption of the internal combustor 8 is reduced by 68% because it is heated externally from 230 ° C. to 750 ° C.

【0012】上記の単純開放サイクルガスタービンの発
電効率を15%とし、外部加熱器入熱を除いた外部燃料
の入熱量と発電量の比を外部燃料発電効率と定義する
と、本発明の外部加熱器を用いた発電効率は47%にな
る。大形の最新鋭の単純解放サイクルのガスタービン、
ディーゼルエンジン、燃料電池の発電効率は40%程度
であるので、本発明のマイクロガスタービンにより、廃
棄物の未利用エネルギの有効活用が図られた。ガスター
ビン再生器9は、焼却炉起動停止時に焼却炉排ガス量が
減った場合、圧縮機出口空気を加温するのに使用され
る。焼却炉排ガス量が減少すると、加熱器出口空気は7
50℃以下に低下するため、再生器バイパス弁12を再
生器側に動かし、圧縮器出口空気4′の一部を再生器9
に導き、加熱器2の空気入口温度を高くする。内部燃焼
器8に入る前の空気温度を検出する温度検知器13を設
置し、温度設定値を750℃とする調節計14の出力
を、再生器バイパス弁12の駆動装置15の入力とする
ことにより、加熱器出口空気を焼却炉の運転状態に係わ
らず、750℃一定に保つことができる。
When the power generation efficiency of the above simple open cycle gas turbine is set to 15% and the ratio of the heat input amount of the external fuel excluding the heat input to the external heater to the power generation amount is defined as the external fuel power generation efficiency, The power generation efficiency using the heater becomes 47%. Large state-of-the-art simple open cycle gas turbines,
Since the power generation efficiency of the diesel engine and the fuel cell is about 40%, the micro gas turbine of the present invention has effectively utilized the unused energy of the waste. The gas turbine regenerator 9 is used to heat the compressor outlet air when the incinerator exhaust gas volume decreases when the incinerator is stopped. When the amount of exhaust gas from the incinerator decreases, the air at the heater outlet becomes 7
To reduce the temperature to 50 ° C. or less, the regenerator bypass valve 12 is moved to the regenerator side, and a part of the compressor outlet air 4 ′ is removed from the regenerator 9.
To increase the air inlet temperature of the heater 2. A temperature detector 13 for detecting the air temperature before entering the internal combustor 8 is installed, and the output of the controller 14 that sets the temperature set value to 750 ° C. is used as the input of the driving device 15 of the regenerator bypass valve 12. Thereby, the heater outlet air can be kept constant at 750 ° C. regardless of the operating state of the incinerator.

【0013】再生器バイパス弁が全量再生器に導かれた
場合、加熱器空気入口温度は590℃まで上がり、焼却
炉起動停止時、加熱器2の入熱が減っても、外部燃料1
6の使用量が増えないようにすることができる。再生器
9の出口にガスタービン排ガス11と温水17を熱交換
する温水熱交換器10を設置し、温水回収を行い、この
温水を用いて温水駆動吸収式冷凍機を駆動することによ
り冷水をえることができる。ディーゼルエンジンやガス
エンジンのコージェネレーションでは、シリンダジャケ
ット冷却水を高温水とすることは、エンジン冷却に悪影
響があり通常行われていないが、ガスタービンの温水熱
交換器では、高温水取り出しすることが可能である。温
水取り出し温度を83℃から110℃に挙げると、温水
吸収式冷凍機の成績係数は約7%向上する。
When the regenerator bypass valve is led to the full regenerator, the temperature of the heater air inlet rises to 590 ° C., and when the incinerator starts and stops, even if the heat input of the heater 2 decreases, the external fuel 1
6 can be prevented from increasing. A hot water heat exchanger 10 for exchanging heat between the gas turbine exhaust gas 11 and the hot water 17 is installed at the outlet of the regenerator 9 to recover hot water, and cool water is obtained by driving a hot water drive absorption refrigerator using the hot water. be able to. In diesel and gas engine cogeneration, making cylinder jacket cooling water high-temperature water is not usually performed because it has a bad effect on engine cooling, but hot water heat exchangers in gas turbines can remove high-temperature water. It is possible. When the temperature of taking out hot water is raised from 83 ° C. to 110 ° C., the coefficient of performance of the hot water absorption refrigerator is improved by about 7%.

【0014】[0014]

【発明の効果】本発明によれば、一括ごみ投入形ガス化
燃焼焼却炉を外部加熱形ガスタービンの外部加熱源とす
る場合、焼却炉の排ガスの変動に対して、ガスタービン
再生器と再生器バイパス弁により、外部加熱器に導入す
る空気温度を調整し、外部加熱器出口空気温度を一定に
保つことができ、焼却器の起動停止時においても、ガス
タービン燃焼器の外部燃料の使用量を減らすことができ
る。
According to the present invention, in the case where a lump-input gasification combustion incinerator is used as an external heating source of an externally heated gas turbine, a gas turbine regenerator and a regenerator can be used in response to fluctuations in exhaust gas from the incinerator. By controlling the temperature of the air introduced into the external heater by the heater bypass valve, the air temperature at the outlet of the external heater can be kept constant, and the external fuel consumption of the gas turbine combustor can be maintained even when the incinerator starts and stops. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の外部加熱式ガスタービンを用いた発電
装置の一例を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of a power generation device using an externally heated gas turbine of the present invention.

【符号の説明】 1:一括ごみ投入形ガス化燃焼焼却炉、2:高温空気加
熱器、3:焼却炉排ガス、4:ガスタービン用空気、
4′:バイパス回路空気、5:圧縮機、6:発電機、
7:ガスタービン、8:内部燃焼器、9:再生器、1
0:温水熱交換器、11:ガスタービン排ガス、12:
再生器バイパス弁、13:温度検出器、14:温度調節
計、15:再生器バイパス弁駆動部、16:外部燃料、
17:温水、
[Explanation of Signs] 1: Lump input type gasification combustion incinerator, 2: High temperature air heater, 3: Incinerator exhaust gas, 4: Air for gas turbine,
4 ': bypass circuit air, 5: compressor, 6: generator,
7: gas turbine, 8: internal combustor, 9: regenerator, 1
0: hot water heat exchanger, 11: gas turbine exhaust gas, 12:
Regenerator bypass valve, 13: temperature detector, 14: temperature controller, 15: regenerator bypass valve drive unit, 16: external fuel,
17: warm water,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン圧縮機、内部燃焼器及び再
生器を備える開放サイクルガスタービンと、ごみ一括投
入型ガス化燃焼式焼却炉と、該焼却炉の排ガスとガスタ
ービン圧縮機からの圧縮空気を熱交換する外部加熱器と
を有し、該圧縮機からの圧縮空気が再生器バイパス回路
に接続する再生器バイパス弁を介して、前記外部加熱器
を通り、内部燃焼器を経てガスタービンに至る圧縮空気
経路を備える外部加熱式ガスタービンにおいて、前記外
部加熱器の出口温度空気を検知し、該加熱器の出口温度
を高温に保つように再生器に通す圧縮空気の量を再生器
バイパス弁で制御する制御装置を備えたことを特徴とす
る外部加熱式ガスタービン。
An open cycle gas turbine having a gas turbine compressor, an internal combustor and a regenerator, a lump-type gasification combustion incinerator, exhaust gas from the incinerator, and compressed air from the gas turbine compressor. An external heater for exchanging heat with compressed gas from the compressor, through a regenerator bypass valve connected to a regenerator bypass circuit, through the external heater, through an internal combustor to a gas turbine. An externally heated gas turbine having a compressed air path leading to the regenerator bypass valve by detecting the temperature of the outlet air of the external heater and controlling the amount of compressed air to be passed through the regenerator so as to keep the outlet temperature of the heater high. An externally heated gas turbine, comprising: a control device that controls the temperature of the gas turbine.
JP10234912A 1998-08-07 1998-08-07 External heating type gas turbine Pending JP2000054855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10234912A JP2000054855A (en) 1998-08-07 1998-08-07 External heating type gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10234912A JP2000054855A (en) 1998-08-07 1998-08-07 External heating type gas turbine

Publications (1)

Publication Number Publication Date
JP2000054855A true JP2000054855A (en) 2000-02-22

Family

ID=16978243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10234912A Pending JP2000054855A (en) 1998-08-07 1998-08-07 External heating type gas turbine

Country Status (1)

Country Link
JP (1) JP2000054855A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296817A (en) * 2004-04-12 2005-10-27 Mitsubishi Heavy Ind Ltd System and method for impurity disposal
JP2011007101A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Regenerative cycle gas turbine system
JP2012508345A (en) * 2008-12-16 2012-04-05 マン・ディーゼル・アンド・ターボ・エスイー Switchable solar heating device for gas turbine
US8499874B2 (en) 2009-05-12 2013-08-06 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US8669670B2 (en) 2010-09-03 2014-03-11 Icr Turbine Engine Corporation Gas turbine engine configurations
US8866334B2 (en) 2010-03-02 2014-10-21 Icr Turbine Engine Corporation Dispatchable power from a renewable energy facility
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
WO2019123305A1 (en) * 2017-12-22 2019-06-27 Darienzo Giovanni Cogeneration system for a boiler
WO2022134200A1 (en) * 2020-12-21 2022-06-30 李华玉 Dual-fuel gas turbine apparatus
WO2022152006A1 (en) * 2021-01-12 2022-07-21 李华玉 Dual-fuel gas-steam combined cycle power apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099890A1 (en) * 2004-04-12 2005-10-27 Mitsubishi Heavy Industries, Ltd. Impurity disposal system and method
US7544337B2 (en) 2004-04-12 2009-06-09 Mitsubishi Heavy Industries, Ltd. Impurity disposal system and method
JP4585222B2 (en) * 2004-04-12 2010-11-24 三菱重工業株式会社 Impurity disposal system and method
JP2005296817A (en) * 2004-04-12 2005-10-27 Mitsubishi Heavy Ind Ltd System and method for impurity disposal
JP2012508345A (en) * 2008-12-16 2012-04-05 マン・ディーゼル・アンド・ターボ・エスイー Switchable solar heating device for gas turbine
US8708083B2 (en) 2009-05-12 2014-04-29 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
US8499874B2 (en) 2009-05-12 2013-08-06 Icr Turbine Engine Corporation Gas turbine energy storage and conversion system
JP2011007101A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Regenerative cycle gas turbine system
US8866334B2 (en) 2010-03-02 2014-10-21 Icr Turbine Engine Corporation Dispatchable power from a renewable energy facility
US8984895B2 (en) 2010-07-09 2015-03-24 Icr Turbine Engine Corporation Metallic ceramic spool for a gas turbine engine
US8669670B2 (en) 2010-09-03 2014-03-11 Icr Turbine Engine Corporation Gas turbine engine configurations
US9051873B2 (en) 2011-05-20 2015-06-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine shaft attachment
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
WO2019123305A1 (en) * 2017-12-22 2019-06-27 Darienzo Giovanni Cogeneration system for a boiler
US11022035B2 (en) 2017-12-22 2021-06-01 Giovanni D'ARIENZO Cogeneration system for a boiler
WO2022134200A1 (en) * 2020-12-21 2022-06-30 李华玉 Dual-fuel gas turbine apparatus
WO2022152006A1 (en) * 2021-01-12 2022-07-21 李华玉 Dual-fuel gas-steam combined cycle power apparatus

Similar Documents

Publication Publication Date Title
US5678401A (en) Energy supply system utilizing gas and steam turbines
JP7154278B2 (en) Cogeneration system and method of operation
US6141955A (en) Gas turbine generator with dual steam-injected turbines
JPH0339166B2 (en)
WO2006111362A1 (en) Energy recovery system
CN105485649A (en) Efficient waste heat recycling comprehensive utilizing system
JP2000054855A (en) External heating type gas turbine
CN203201684U (en) Internal combustion engine generator set waste heat cascade recycling system based on Rankine cycle
Legmann Recovery of industrial heat in the cement industry by means of the ORC process
CN102606237A (en) Open forward and inverse cycle coupling triple supply system of electricity, heat and cold based on combustion gas turbine
JPS61250306A (en) Hot air turbine and steam turbine combination power plant
JP2003161164A (en) Combined-cycle power generation plant
EP1456521B1 (en) A domestic combined heat and power unit
JPS6232181A (en) Device for energy recovery from gas generated in regeneration tower of fluid catalytic cracking equipment
CN114961906A (en) System for quickly starting gas-steam combined cycle unit and operation method
JP7497666B2 (en) Gas Turbine Systems
JPH10325336A (en) Gas turbine power generating system
JP2001090510A (en) Power generating system having external heating type micro gas turbine
JP3936123B2 (en) Operation control method for small capacity gas turbine cogeneration system
EP4176163B1 (en) Waste heat recovery system as a backup system for a machine for the production of energy
JP2000054856A (en) External heating type gas turbine power generating system
CN220791326U (en) Heat storage peak shaving system applied to CCPP power generation
CN211450944U (en) Biomass incineration power generation system
JPH06330709A (en) Power generation plant
JPH0874518A (en) Garbage power generating system using two operating fluid gas turbine