JP2003161164A - Combined-cycle power generation plant - Google Patents
Combined-cycle power generation plantInfo
- Publication number
- JP2003161164A JP2003161164A JP2001358649A JP2001358649A JP2003161164A JP 2003161164 A JP2003161164 A JP 2003161164A JP 2001358649 A JP2001358649 A JP 2001358649A JP 2001358649 A JP2001358649 A JP 2001358649A JP 2003161164 A JP2003161164 A JP 2003161164A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- temperature
- exhaust heat
- combustor
- recovery boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、コンバインドサイ
クル発電プラントに関する。TECHNICAL FIELD The present invention relates to a combined cycle power plant.
【0002】[0002]
【従来の技術】ガスタービン排ガスの一部を圧縮機入口
に戻して圧縮機入口吸気温度を上昇させ、部分負荷時の
サイクル熱効率の低下を防ぐ排気再循環型コンバインド
プラントに関して特開平7−34900号公報に記載さ
れている。また、ガスタービン排ガスの再循環経路に液
滴を噴霧する装置を備え、部分負荷時のサイクル熱効率
の低下を防ぐ排気再循環型コンバインドプラントに関し
て特開平11−72027 号公報に記載されている。2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 7-34900 discloses an exhaust gas recirculation type combined plant which returns a part of gas turbine exhaust gas to a compressor inlet to raise a compressor inlet intake temperature to prevent a decrease in cycle thermal efficiency at a partial load. It is described in the official gazette. Further, Japanese Patent Application Laid-Open No. 11-72027 discloses an exhaust gas recirculation type combined plant which is equipped with a device for spraying liquid droplets in a gas turbine exhaust gas recirculation path and prevents a decrease in cycle thermal efficiency under partial load.
【0003】[0003]
【発明が解決しようとする課題】コンバインドサイクル
発電プラントでは、プラント効率が最大となる大気温度
が存在し、その大気温度以外ではプラント効率が低下す
るという特性を有する。特開平7−34900号公報お
よび特開平11−72027号公報に記載の方法では、
吸気の組成変化に伴ってガスタービン性能,プラント性
能が変化してしまう可能性があった。In the combined cycle power plant, there is an atmospheric temperature at which the plant efficiency is maximized, and the plant efficiency is lowered at a temperature other than the atmospheric temperature. In the methods described in JP-A-7-34900 and JP-A-11-72027,
There was a possibility that the gas turbine performance and plant performance would change as the intake composition changed.
【0004】本発明の目的は、ガスタービンの吸気温度
がプラント効率が最大となる大気温度よりも低い場合で
あっても、吸気の組成を変化させることなく、吸気の温
度だけを上昇させることでプラント効率を向上させるこ
とができるコンバインドサイクル発電プラントを提供す
ることにある。An object of the present invention is to raise only the temperature of intake air without changing the composition of intake air even when the intake temperature of the gas turbine is lower than the atmospheric temperature at which the plant efficiency is maximized. It is to provide a combined cycle power plant that can improve plant efficiency.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明のコンバインドサイクル発電プラントは、空
気を圧縮する圧縮機と、該圧縮機で圧縮した空気と燃料
とを燃焼させる燃焼器と、該燃焼器の燃焼ガスで駆動さ
れるガスタービンと、該ガスタービンの排ガスから排熱
回収する排熱回収ボイラと、該排熱回収ボイラで発生し
た蒸気で駆動される蒸気タービンと、前記圧縮機の吸気
を加熱する熱交換器とを備え、該熱交換器に供給する熱
交換媒体量あるいは媒体温度を調節する制御装置を備え
る。In order to achieve the above object, a combined cycle power plant of the present invention comprises a compressor for compressing air and a combustor for combusting the air compressed by the compressor and fuel. A gas turbine driven by combustion gas of the combustor, an exhaust heat recovery boiler for recovering exhaust heat from exhaust gas of the gas turbine, a steam turbine driven by steam generated in the exhaust heat recovery boiler, and the compression A heat exchanger for heating the intake air of the machine, and a controller for adjusting the amount of heat exchange medium or medium temperature supplied to the heat exchanger.
【0006】[0006]
【発明の実施の形態】本発明の第1の実施例を図1のコ
ンバインドサイクル発電プラントの系統図を用いて説明
する。コンバインドサイクル発電プラントは気体を圧縮
して吐出する圧縮機1,圧縮機1により圧縮された気体
が供給される燃焼器2,燃焼器2にて生成された燃焼ガ
スにより駆動されるガスタービン3,ガスタービン3か
ら排出された排ガスの保有する熱エネルギーを回収する
排熱回収ボイラ4,排熱回収ボイラ4で発生した蒸気に
より駆動する蒸気タービン5,蒸気タービン5で排気さ
れた蒸気を回収する復水器6,ガスタービン3および蒸
気タービン5の回転軸に連結されている発電機7、を備
えている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to the system diagram of the combined cycle power plant of FIG. The combined cycle power generation plant has a compressor 1 for compressing and discharging gas, a combustor 2 to which the gas compressed by the compressor 1 is supplied, and a gas turbine 3 driven by combustion gas generated in the combustor 2. Exhaust heat recovery boiler 4 for recovering the thermal energy of the exhaust gas discharged from the gas turbine 3, steam turbine 5 driven by the steam generated in the exhaust heat recovery boiler 4, and recovery for recovering the steam exhausted by the steam turbine 5. A water generator 6, a gas turbine 3, and a generator 7 connected to the rotating shafts of the steam turbine 5 are provided.
【0007】なお、図1に示す本実施例では、発電機7
はガスタービン3および蒸気タービン5の回転軸が同一
な軸で連結されているが、ガスタービン3と蒸気タービ
ン5の発電機が別々であってもよい。また図1では、排
熱回収ボイラ4の構成として節炭器10,蒸発器11,
過熱器12および節炭器循環ポンプ13が各1台である
が、例えば節炭器が2台、あるいは再熱器やスプレなど
が含まれていてもよい。In this embodiment shown in FIG. 1, the generator 7
Although the rotating shafts of the gas turbine 3 and the steam turbine 5 are connected by the same shaft, the generators of the gas turbine 3 and the steam turbine 5 may be separate. Further, in FIG. 1, as a configuration of the exhaust heat recovery boiler 4, a economizer 10, an evaporator 11,
Although one superheater 12 and one economizer economizer circulation pump 13 are provided, two economizers or a reheater or spray may be included, for example.
【0008】圧縮機1の入口には圧縮機入口での吸気温
度を検知する温度検知器14と、温度検知器14の上流
側に加熱器15と、加熱器15に媒体を供給する媒体供
給手段16と、が備えられている。媒体供給手段16に
は、熱交換器として設置された加熱器15に供給する媒
体の量を調節する調節弁17が備えられている。調節弁
17の弁開度は温度検知器14で計測された圧縮機入口
での吸気温度に応じて弁開度制御装置18で決定され
る。その例を図2に示す。A temperature detector 14 for detecting the intake air temperature at the compressor inlet, a heater 15 upstream of the temperature detector 14, and a medium supply means for supplying a medium to the heater 15 at the inlet of the compressor 1. 16 are provided. The medium supply means 16 is equipped with a control valve 17 for adjusting the amount of medium supplied to the heater 15 installed as a heat exchanger. The valve opening degree of the control valve 17 is determined by the valve opening degree control device 18 according to the intake air temperature at the compressor inlet measured by the temperature detector 14. An example thereof is shown in FIG.
【0009】図2では、プラント効率が最大となる大気
温度が15℃であり、弁開度制御装置18の設定温度を
例えば15℃としている。吸気温度が15℃以下の場合
には、弁開度制御装置18の設定温度と吸気温度との差
に比例して弁開度は大きくする。すなわち、吸気温度が
15℃に近づくにつれて弁開度は小さくし、吸気温度が
15℃以上で弁は全閉する。In FIG. 2, the atmospheric temperature at which the plant efficiency is maximum is 15 ° C., and the set temperature of the valve opening control device 18 is set to 15 ° C., for example. When the intake air temperature is 15 ° C. or less, the valve opening is increased in proportion to the difference between the set temperature of the valve opening control device 18 and the intake air temperature. That is, the valve opening degree is reduced as the intake air temperature approaches 15 ° C, and the valve is fully closed when the intake air temperature is 15 ° C or higher.
【0010】加熱器15に供給する媒体としては、例え
ば節炭器循環ポンプ13出口の給水を用いる。節炭器循
環ポンプ13は節炭器10の入口での給水温度が例えば
60℃となるように節炭器10の出口での給水の一部を
節炭器10の入口まで循環させることにより60℃に保
つことができる。節炭器循環ポンプ13の出口の給水温
度は約130〜150℃であるので、この給水の一部は
調節弁17の弁開度に応じて加熱器15に供給される。
加熱器15では、節炭器循環ポンプ13の出口で約13
0〜150℃の給水と、15℃よりも低い吸気が加熱器
を構成する伝熱チューブを介して熱交換し、吸気は給水
から熱を受取って所望の温度となり、給水は吸気に熱を
奪われ温度が低下する。この温度が低下した給水は加熱
器への分岐よりも下流でかつ節炭器10よりも上流部で
合流する。加熱器15に供給する給水と加熱器15を通
過した後の給水との温度差が大きくなるに従って節炭器
循環ポンプ13を通過する給水量は増大するが、節炭器
10の入口での給水温度は制御しているので、排熱回収
ボイラ4で発生する蒸気に与える影響は微小である。As a medium to be supplied to the heater 15, for example, feed water at the outlet of the economizer circulation pump 13 is used. The economizer circulation pump 13 circulates a part of the economizer 10 at the outlet of the economizer 10 to the inlet of the economizer 10 such that the feedwater temperature at the entrance of the economizer 10 is, for example, 60 ° C. Can be kept at ° C. Since the temperature of the water supply at the outlet of the economizer circulation pump 13 is about 130 to 150 ° C., part of this water supply is supplied to the heater 15 according to the valve opening of the control valve 17.
In the heater 15, approximately 13 at the outlet of the economizer circulation pump 13.
Water supply of 0 to 150 ° C and intake air lower than 15 ° C exchange heat via the heat transfer tube that constitutes the heater, and intake air receives heat from the supply water to reach the desired temperature, and the intake water absorbs heat to the intake air. Our temperature drops. The feed water having the lowered temperature joins downstream of the branch to the heater and upstream of the economizer 10. As the temperature difference between the water supplied to the heater 15 and the water supplied after passing the heater 15 increases, the amount of water supplied through the economizer circulation pump 13 increases, but the water supplied at the inlet of the economizer 10 increases. Since the temperature is controlled, the influence on the steam generated in the exhaust heat recovery boiler 4 is small.
【0011】また本例では、節炭器循環ポンプ13の出
口から加熱器15の高温媒体を供給するので、既設のプ
ラントに対しては、循環量増大による節炭器循環ポンプ
の容量アップか、もしくはポンプの追設で対応できる。
これにより、大気温度が最大効率点よりも低い場合に対
して、圧縮機1に取り込む吸気の温度をプラント効率が
最大となる温度まで上昇させることができ、高効率なコ
ンバインドサイクル発電プラントを提供することができ
る。Further, in this example, since the high temperature medium of the heater 15 is supplied from the outlet of the economizer circulation pump 13, the capacity of the economizer circulation pump is increased by increasing the circulation amount for the existing plant. Or you can add a pump.
As a result, the temperature of the intake air taken into the compressor 1 can be increased to a temperature at which the plant efficiency is maximized even when the atmospheric temperature is lower than the maximum efficiency point, and a highly efficient combined cycle power generation plant is provided. be able to.
【0012】このように、本実施例では圧縮機入口で前
記燃焼用気体を加熱する非接触式の加熱器とを備えて、
加熱器に供給する高温の媒体量を調節することで、前記
燃焼用気体の組成が変化することなく、前記燃焼用気体
の温度を変化させることができるようになる。冬期など
の大気温度がプラント効率最大点となる大気温度よりも
低い場合に、大気温度よりも高温の媒体を前記加熱器に
供給することで前記圧縮機に取り込む燃焼用気体の組成
が変化することなく、前記燃焼用気体の温度を上昇させ
ることが可能となる。As described above, in this embodiment, the non-contact type heater for heating the combustion gas at the compressor inlet is provided,
By adjusting the amount of the high temperature medium supplied to the heater, the temperature of the combustion gas can be changed without changing the composition of the combustion gas. When the atmospheric temperature such as winter is lower than the atmospheric temperature that is the maximum point of plant efficiency, the composition of the combustion gas taken into the compressor is changed by supplying a medium having a temperature higher than the atmospheric temperature to the heater. Without this, it is possible to raise the temperature of the combustion gas.
【0013】ここでいう非接触式の加熱器とは、前記加
熱器に供給する高温の媒体と、前記圧縮機に取り込む吸
気とが例えば、チューブなどを介して間接的に熱交換を
行うことで、高温の媒体の熱量を吸気に与え、吸気の温
度を上昇させることをいい、吸気を構成する酸素,窒素
濃度などの組成が変化しないことをいう。前記圧縮機入
口での吸気の温度をプラント効率が最大となるようにす
るために、前記圧縮機入口に吸気温度を検知する計測器
と、前記吸気温度に対応して前記加熱器に供給する媒体
量を決定する調節弁が備えられる。The non-contact type heater mentioned here means that the high temperature medium supplied to the heater and the intake air taken into the compressor indirectly exchange heat via, for example, a tube. It means that the amount of heat of a high-temperature medium is given to the intake air to raise the temperature of the intake air, and that the composition of oxygen, nitrogen concentration, etc. constituting the intake air does not change. In order to maximize the plant efficiency of the intake air temperature at the compressor inlet, a measuring device for detecting the intake air temperature at the compressor inlet, and a medium supplied to the heater corresponding to the intake air temperature A control valve for determining the quantity is provided.
【0014】調節弁は、プラント効率最大点を含み例え
ば±1℃以内の温度を設定温度として吸気温度と設定温
度との温度差に比例して媒体を供給する量が決定され
る。加熱器の高温媒体としては、前記排熱回収ボイラで
加熱された給水または蒸気の一部を用いてもよいし、排
熱回収ボイラ出口の前記ガスタービン排ガスを用いても
よい。これにより、吸気の組成が変化することなく、吸
気の温度を変化させるコンバインドサイクル発電プラン
トを提供できる。For the control valve, the amount of medium supplied is determined in proportion to the temperature difference between the intake air temperature and the set temperature, with the temperature within ± 1 ° C. including the maximum point of plant efficiency set as the set temperature. As the high temperature medium of the heater, a part of the feed water or steam heated by the exhaust heat recovery boiler may be used, or the gas turbine exhaust gas at the outlet of the exhaust heat recovery boiler may be used. This makes it possible to provide a combined cycle power generation plant that changes the temperature of intake air without changing the composition of intake air.
【0015】次に、本発明の第2の実施例について図3
を用いて説明する。本実施例では第1の実施例と比較し
て、加熱器15に供給する高温媒体の取得位置が異な
る。すなわち、蒸発器11の出口で蒸気の一部を加熱器
15に供給する。この場合、図1の実施例と比べて加熱
器15に供給する媒体の温度が高いので供給量は少なく
て済む。加熱器15を通過後の蒸気は温度が低下してい
るため循環後の蒸気条件(圧力,温度など)は悪くなり
蒸気タービンの出力が低下する可能性はあるが、蒸気条
件変化による蒸気タービン出力減少よりも吸気温度上昇
によるガスタービン出力上昇効果の方が大きい。これに
より、圧縮機1に取り込む吸気の温度をプラント効率が
最大となる温度まで上昇させることができ、大気温度が
最大効率点よりも低い場合に対しても、高効率なコンバ
インドサイクル発電プラントを提供することができる。Next, a second embodiment of the present invention will be described with reference to FIG.
Will be explained. In this embodiment, the acquisition position of the high temperature medium supplied to the heater 15 is different from that in the first embodiment. That is, a part of the steam is supplied to the heater 15 at the outlet of the evaporator 11. In this case, since the temperature of the medium supplied to the heater 15 is higher than that in the embodiment of FIG. 1, the supply amount can be small. Since the temperature of the steam after passing through the heater 15 has decreased, the steam conditions (pressure, temperature, etc.) after circulation may deteriorate and the output of the steam turbine may decrease, but the steam turbine output due to changes in the steam conditions The effect of increasing the gas turbine output by increasing the intake air temperature is larger than the decrease. As a result, the temperature of the intake air taken into the compressor 1 can be raised to a temperature at which the plant efficiency becomes maximum, and a highly efficient combined cycle power plant is provided even when the atmospheric temperature is lower than the maximum efficiency point. can do.
【0016】本発明の第3の実施例を図4のコンバイン
ドサイクル発電プラントの系統図を用いて説明する。本
実施例では図1の実施例と比較して、加熱器15に供給
する高温の媒体を冷却するための冷却器19を高温の媒
体を供給する経路に備えている点が異なる。冷却器19
は冷却媒体供給手段20で低温の媒体を供給し、冷却媒
体供給手段20には調節弁17bと弁開度制御装置18
bが備えられている。調節弁17bの弁開度は温度検知
器14で計測された圧縮機入口での吸気温度に応じて弁
開度制御装置18bで決定される。弁開度は弁開度制御
装置18bの設定温度と吸気温度との差に逆比例して小
さくする。すなわち、吸気温度が15℃に近づくにつれ
て弁開度は大きくし、冷却媒体供給手段20で供給する
低温の媒体量を増加させることで、加熱器15に供給す
る媒体の温度を変化させることができる。A third embodiment of the present invention will be described with reference to the system diagram of the combined cycle power plant of FIG. This embodiment is different from the embodiment of FIG. 1 in that a cooler 19 for cooling the high temperature medium supplied to the heater 15 is provided in the path for supplying the high temperature medium. Cooler 19
Supplies a low-temperature medium by the cooling medium supply means 20, and the cooling medium supply means 20 includes a control valve 17b and a valve opening control device 18
b is provided. The valve opening degree of the control valve 17b is determined by the valve opening degree control device 18b according to the intake air temperature at the compressor inlet measured by the temperature detector 14. The valve opening is reduced in inverse proportion to the difference between the set temperature of the valve opening control device 18b and the intake air temperature. That is, the valve opening is increased as the intake air temperature approaches 15 ° C., and the temperature of the medium supplied to the heater 15 can be changed by increasing the amount of low-temperature medium supplied by the cooling medium supply means 20. .
【0017】本実施例では、加熱器に供給する高温の媒
体温度を調節することで、前記燃焼用気体の組成が変化
することなく、前記燃焼用気体の温度を変化させること
ができる。圧縮機入口での吸気の温度をプラント効率が
最大となるようにするために、圧縮機入口に吸気温度を
検知する計測器と、加熱器に供給する高温の媒体を供給
する経路に冷却器と、前記吸気温度に対応して冷却器に
供給する冷却媒体量を決定する調節弁が備えられる。調
節弁は、プラント効率最大点を含み例えば±1℃以内の
温度を設定温度として前記吸気温度と前記設定温度との
温度差に逆比例して媒体を供給する量が決定される。こ
れにより、加熱器に供給する高温の媒体の温度を調節す
ることができ、吸気の組成が変化することなく、吸気の
温度を変化させるコンバインドサイクル発電プラントを
提供できる。In this embodiment, the temperature of the combustion gas can be changed without changing the composition of the combustion gas by adjusting the temperature of the high temperature medium supplied to the heater. In order to maximize the plant efficiency of the intake air temperature at the compressor inlet, a measuring device that detects the intake air temperature at the compressor inlet and a cooler in the path that supplies the high-temperature medium that is supplied to the heater are installed. A control valve that determines the amount of the cooling medium supplied to the cooler according to the intake air temperature is provided. The amount of the control valve that supplies the medium is determined in inverse proportion to the temperature difference between the intake temperature and the set temperature, with the temperature within ± 1 ° C. including the maximum plant efficiency point set as the set temperature. Thereby, the temperature of the high-temperature medium supplied to the heater can be adjusted, and a combined cycle power plant that changes the temperature of the intake air without changing the composition of the intake air can be provided.
【0018】[0018]
【発明の効果】本発明によれば、ガスタービンの吸気温
度がプラント効率が最大となる大気温度よりも低い場合
であっても、プラント効率を向上させることができるコ
ンバインドサイクル発電プラントを提供できるという効
果を奏する。According to the present invention, it is possible to provide a combined cycle power generation plant capable of improving the plant efficiency even when the intake temperature of the gas turbine is lower than the atmospheric temperature at which the plant efficiency is maximized. Produce an effect.
【図1】本発明の一実施例であるコンバインドサイクル
発電プラントの概略系統図。FIG. 1 is a schematic system diagram of a combined cycle power generation plant that is an embodiment of the present invention.
【図2】熱交換器に供給する調節弁の開度制御を示す
図。FIG. 2 is a diagram showing an opening control of a control valve supplied to a heat exchanger.
【図3】本発明の他の実施例であるコンバインドサイク
ル発電プラントの概略系統図。FIG. 3 is a schematic system diagram of a combined cycle power plant that is another embodiment of the present invention.
【図4】本発明の他の実施例であるコンバインドサイク
ル発電プラントの概略系統図。FIG. 4 is a schematic system diagram of a combined cycle power plant that is another embodiment of the present invention.
【図5】コンバインドサイクル発電プラントにおけるプ
ラント効率の大気温度特性図。FIG. 5 is an atmospheric temperature characteristic diagram of plant efficiency in a combined cycle power plant.
1…圧縮機、2…燃焼器、3…ガスタービン、4…排熱
回収ボイラ、5…蒸気タービン、6…復水器、7…発電
機、8…ガスタービン排ガス、9…煙突、10…節炭
器、11…蒸発器、12…過熱器、13…節炭器循環ポ
ンプ、14…温度検知器、15…加熱器、16…媒体供
給手段、17…調節弁、18…弁開度制御装置、19…
冷却器、20…冷却媒体供給手段。1 ... Compressor, 2 ... Combustor, 3 ... Gas turbine, 4 ... Exhaust heat recovery boiler, 5 ... Steam turbine, 6 ... Condenser, 7 ... Generator, 8 ... Gas turbine exhaust gas, 9 ... Chimney, 10 ... Economizer, 11 ... Evaporator, 12 ... Superheater, 13 ... Economizer circulation pump, 14 ... Temperature detector, 15 ... Heater, 16 ... Medium supply means, 17 ... Control valve, 18 ... Valve opening control Device, 19 ...
Cooler, 20 ... Cooling medium supply means.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒瀬 央 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 宇多村 元昭 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 Fターム(参考) 3G081 BA02 BA16 BB00 BC07 BD00 DA21 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroshi Arase Hitachi 2-3-1, Saiwaicho, Hitachi-shi, Ibaraki Engineering Co., Ltd. (72) Inventor Motoaki Utamura Hitachi 2-3-1, Saiwaicho, Hitachi-shi, Ibaraki Engineering Co., Ltd. F term (reference) 3G081 BA02 BA16 BB00 BC07 BD00 DA21
Claims (9)
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンと、前
記圧縮機の吸気を加熱する非接触式の熱交換器とを備
え、該熱交換器に供給する熱交換媒体量を調節する制御
装置を備えたことを特徴とするコンバインドサイクル発
電プラント。1. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and exhaust gas from the gas turbine. An exhaust heat recovery boiler for recovering exhaust heat, a steam turbine driven by steam generated in the exhaust heat recovery boiler, and a non-contact type heat exchanger for heating intake air of the compressor are provided. A combined cycle power plant, comprising a control device for adjusting the amount of heat exchange medium supplied to the.
る大気の設定温度と前記圧縮機の吸気温度との差に基づ
いて、前記熱交換器に供給する熱交換媒体量を制御する
ものであることを特徴とする請求項1に記載のコンバイ
ンドサイクル発電プラント。2. The controller controls the amount of heat exchange medium supplied to the heat exchanger based on the difference between the set temperature of the atmosphere that maximizes plant efficiency and the intake temperature of the compressor. The combined cycle power plant according to claim 1, wherein the combined cycle power plant is provided.
る大気の設定温度より前記圧縮機の吸気温度が低い場合
に、前記吸気温度と前記設定温度との温度差を小さくす
るように前記熱交換器に供給する熱交換媒体量を制御す
るものであることを特徴とする請求項1に記載のコンバ
インドサイクル発電プラント。3. The control device is configured to reduce the temperature difference between the intake air temperature and the set temperature when the intake air temperature of the compressor is lower than the atmospheric set temperature at which plant efficiency is maximized. The combined cycle power plant according to claim 1, wherein the combined cycle power plant is for controlling the amount of heat exchange medium supplied to the exchanger.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンと、前
記排熱回収ボイラの節炭器出口の給水によって前記圧縮
機の吸気を加熱する非接触式の加熱器と、該加熱器に供
給する前記給水の供給量を調節する調節弁を備え、プラ
ント効率が最大となる大気の設定温度と前記圧縮機の吸
気温度との差に基づいて、前記調節弁の開度を制御する
制御装置を備えたことを特徴とするコンバインドサイク
ル発電プラント。4. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and an exhaust gas of the gas turbine. Exhaust heat recovery boiler for recovering exhaust heat, steam turbine driven by steam generated in the exhaust heat recovery boiler, and non-contact for heating intake air of the compressor by water supply at the outlet of the economizer of the exhaust heat recovery boiler Type heater and a control valve for adjusting the supply amount of the feed water supplied to the heater, and based on the difference between the preset temperature of the atmosphere that maximizes plant efficiency and the intake temperature of the compressor, A combined cycle power plant comprising a control device for controlling the opening of a control valve.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンと、前
記排熱回収ボイラの蒸発器出口から供給される蒸気の一
部によって前記圧縮機の吸気を加熱する非接触式の加熱
器と、該加熱器に供給する蒸気量を調節する調節弁を備
え、プラント効率が最大となる大気の設定温度と前記圧
縮機の吸気温度との差に基づいて、前記調節弁の開度を
制御する制御装置を備えたことを特徴とするコンバイン
ドサイクル発電プラント。5. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and exhaust gas from the gas turbine. An exhaust heat recovery boiler for recovering exhaust heat, a steam turbine driven by steam generated in the exhaust heat recovery boiler, and an intake air of the compressor by a part of steam supplied from an evaporator outlet of the exhaust heat recovery boiler Equipped with a non-contact type heater that heats the heater, and a control valve that adjusts the amount of steam supplied to the heater, based on the difference between the set temperature of the atmosphere that maximizes plant efficiency and the intake temperature of the compressor. A combined cycle power plant comprising a control device for controlling the opening of the control valve.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンと、前
記圧縮機の吸気を加熱する非接触式の加熱器と、前記圧
縮機に供給する吸気温度を測定する吸気温度測定器とを
備え、プラント効率が最大となる大気の設定温度と前記
圧縮機の吸気温度との差に基づいて、前記加熱器に供給
する加熱媒体の温度を調節する制御装置を備えたことを
特徴とするコンバインドサイクル発電プラント。6. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and an exhaust gas of the gas turbine. Exhaust heat recovery boiler for recovering exhaust heat, steam turbine driven by steam generated in the exhaust heat recovery boiler, non-contact type heater for heating intake air of the compressor, and intake air supplied to the compressor An intake temperature measuring device for measuring the temperature, and a control for adjusting the temperature of the heating medium supplied to the heater based on the difference between the set temperature of the atmosphere that maximizes plant efficiency and the intake temperature of the compressor. A combined cycle power plant, which is equipped with a device.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンとを備
えたコンバインドサイクル発電プラントであって、前記
排熱回収ボイラから導かれる給水によって前記圧縮機の
吸気を加熱する非接触式の加熱器と、該加熱器に供給す
る給水の温度を冷却媒体によって冷却する冷却器と、プ
ラント効率が最大となる大気の設定温度と前記圧縮機の
吸気温度との差に基づいて、前記冷却器に供給する冷却
媒体量を制御する制御装置とを備えたことを特徴とする
コンバインドサイクル発電プラント。7. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and an exhaust gas of the gas turbine. A combined cycle power plant comprising an exhaust heat recovery boiler for recovering exhaust heat and a steam turbine driven by steam generated in the exhaust heat recovery boiler, wherein the compressor is provided by water supplied from the exhaust heat recovery boiler. A non-contact type heater that heats the intake air, a cooler that cools the temperature of the feed water supplied to the heater with a cooling medium, the set temperature of the atmosphere that maximizes plant efficiency, and the intake temperature of the compressor. And a control device that controls the amount of the cooling medium supplied to the cooler based on the difference between the above.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、該ガスタービンの
排ガスから排熱回収する排熱回収ボイラと、該排熱回収
ボイラで発生した蒸気で駆動される蒸気タービンと、前
記圧縮機の吸気を加熱する非接触式の加熱器とを備えた
コンバインドサイクル発電プラントの運転方法であっ
て、プラント効率が最大となる大気の設定温度と前記圧
縮機の吸気温度との差に基づいて、前記加熱器に供給す
る加熱媒体量を調節することを特徴とするコンバインド
サイクル発電プラントの運転方法。8. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and an exhaust gas of the gas turbine. Exhaust heat recovery boiler for recovering exhaust heat, a steam turbine driven by steam generated in the exhaust heat recovery boiler, and a combined cycle power plant equipped with a non-contact type heater for heating intake air of the compressor A method for operating combined cycle power generation, characterized in that the amount of heating medium supplied to the heater is adjusted based on the difference between the set temperature of the atmosphere that maximizes plant efficiency and the intake temperature of the compressor. How to operate the plant.
した空気と燃料とを燃焼させる燃焼器と、該燃焼器の燃
焼ガスで駆動されるガスタービンと、前記圧縮機の吸気
を加熱する非接触式の加熱器とを備え、プラント効率が
最大となる設定温度と前記圧縮機の吸気温度との差に基
づいて、前記加熱器に供給する吸気の加熱媒体量を調節
する制御装置を備えたことを特徴とするガスタービン発
電プラント。9. A compressor for compressing air, a combustor for combusting air and fuel compressed by the compressor, a gas turbine driven by combustion gas of the combustor, and an intake air of the compressor. A non-contact heating device for heating, and a control device for adjusting the amount of intake heating medium supplied to the heater based on the difference between the set temperature at which plant efficiency is maximized and the intake temperature of the compressor. A gas turbine power plant, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001358649A JP2003161164A (en) | 2001-11-26 | 2001-11-26 | Combined-cycle power generation plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001358649A JP2003161164A (en) | 2001-11-26 | 2001-11-26 | Combined-cycle power generation plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003161164A true JP2003161164A (en) | 2003-06-06 |
Family
ID=19169793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001358649A Pending JP2003161164A (en) | 2001-11-26 | 2001-11-26 | Combined-cycle power generation plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003161164A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285298A (en) * | 2006-04-18 | 2007-11-01 | General Electric Co <Ge> | Gas turbine intake control system and method |
JP2007315213A (en) * | 2006-05-24 | 2007-12-06 | Mitsubishi Heavy Ind Ltd | Intake air heating system of combined cycle plant |
WO2008062678A1 (en) | 2006-11-21 | 2008-05-29 | Mitsubishi Heavy Industries, Ltd. | Intake air heating control apparatus for gas turbine |
JP2009057950A (en) * | 2007-09-04 | 2009-03-19 | Mitsubishi Heavy Ind Ltd | Intake heating control device for gas turbine |
JP2009228678A (en) * | 2008-03-24 | 2009-10-08 | General Electric Co <Ge> | System for extending turndown range of turbomachine |
JP2010121623A (en) * | 2008-11-21 | 2010-06-03 | General Electric Co <Ge> | Method for controlling air preheating system for gas turbine |
JP2010190217A (en) * | 2009-02-16 | 2010-09-02 | General Electric Co <Ge> | Method for preheating turbine inlet air using external fired heater and reducing overboard bleed in low-btu applications |
US8001760B2 (en) | 2008-10-09 | 2011-08-23 | Mitsubishi Heavy Industries, Ltd. | Intake air heating system of combined cycle plant |
CN104314691A (en) * | 2014-10-15 | 2015-01-28 | 东方电气集团东方汽轮机有限公司 | Air suction warming method and warming system of gas turbine compressor |
KR20150050443A (en) * | 2013-10-31 | 2015-05-08 | 알스톰 테크놀러지 리미티드 | Combined cycle power plant with improved efficiency |
KR20160047859A (en) * | 2014-10-23 | 2016-05-03 | 현대중공업 주식회사 | Air Filtration System of using Steem |
CN106014644A (en) * | 2016-07-11 | 2016-10-12 | 南京力合联升电力节能科技有限公司 | Gas turbine intake heating control system |
KR101753526B1 (en) * | 2016-04-29 | 2017-07-11 | 인하대학교 산학협력단 | Combined cycle power generation system |
CN109209648A (en) * | 2017-07-05 | 2019-01-15 | 上海电气燃气轮机有限公司 | Gas turbine inlet air heating device, method and Combined-cycle Gas Turbine Unit |
WO2020241543A1 (en) * | 2019-05-31 | 2020-12-03 | 三菱パワー株式会社 | Gas turbine, method for controlling same, and combined cycle plant |
-
2001
- 2001-11-26 JP JP2001358649A patent/JP2003161164A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285298A (en) * | 2006-04-18 | 2007-11-01 | General Electric Co <Ge> | Gas turbine intake control system and method |
JP2007315213A (en) * | 2006-05-24 | 2007-12-06 | Mitsubishi Heavy Ind Ltd | Intake air heating system of combined cycle plant |
US8141335B2 (en) | 2006-11-21 | 2012-03-27 | Mitsubishi Heavy Industries, Ltd. | Intake air heating control device for gas turbine |
WO2008062678A1 (en) | 2006-11-21 | 2008-05-29 | Mitsubishi Heavy Industries, Ltd. | Intake air heating control apparatus for gas turbine |
JP2009057950A (en) * | 2007-09-04 | 2009-03-19 | Mitsubishi Heavy Ind Ltd | Intake heating control device for gas turbine |
EP2184465A4 (en) * | 2007-09-04 | 2015-07-01 | Mitsubishi Hitachi Power Sys | Intake air heating control device for gas turbine |
US8386147B2 (en) | 2007-09-04 | 2013-02-26 | Mitsubishi Heavy Industries, Ltd. | Apparatus for controlling intake air heating of gas turbine |
JP2009228678A (en) * | 2008-03-24 | 2009-10-08 | General Electric Co <Ge> | System for extending turndown range of turbomachine |
US8001760B2 (en) | 2008-10-09 | 2011-08-23 | Mitsubishi Heavy Industries, Ltd. | Intake air heating system of combined cycle plant |
US8181439B2 (en) | 2008-10-09 | 2012-05-22 | Mitsubishi Heavy Industries, Ltd. | Intake air heating system of combined cycle plant |
JP2010121623A (en) * | 2008-11-21 | 2010-06-03 | General Electric Co <Ge> | Method for controlling air preheating system for gas turbine |
JP2010190217A (en) * | 2009-02-16 | 2010-09-02 | General Electric Co <Ge> | Method for preheating turbine inlet air using external fired heater and reducing overboard bleed in low-btu applications |
EP2218889A3 (en) * | 2009-02-16 | 2014-07-16 | General Electric Company | Gas turbine plant with preheated combustion air and corresponding operating method |
KR20150050443A (en) * | 2013-10-31 | 2015-05-08 | 알스톰 테크놀러지 리미티드 | Combined cycle power plant with improved efficiency |
KR102326406B1 (en) * | 2013-10-31 | 2021-11-17 | 제네럴 일렉트릭 테크놀러지 게엠베하 | Combined cycle power plant with improved efficiency |
US10914200B2 (en) | 2013-10-31 | 2021-02-09 | General Electric Technology Gmbh | Combined cycle power plant with improved efficiency |
US11655736B2 (en) | 2013-10-31 | 2023-05-23 | General Electric Technology Gmbh | Combined cycle power plant with improved efficiency |
CN104314691A (en) * | 2014-10-15 | 2015-01-28 | 东方电气集团东方汽轮机有限公司 | Air suction warming method and warming system of gas turbine compressor |
KR20160047859A (en) * | 2014-10-23 | 2016-05-03 | 현대중공업 주식회사 | Air Filtration System of using Steem |
KR101753526B1 (en) * | 2016-04-29 | 2017-07-11 | 인하대학교 산학협력단 | Combined cycle power generation system |
CN106014644A (en) * | 2016-07-11 | 2016-10-12 | 南京力合联升电力节能科技有限公司 | Gas turbine intake heating control system |
CN109209648A (en) * | 2017-07-05 | 2019-01-15 | 上海电气燃气轮机有限公司 | Gas turbine inlet air heating device, method and Combined-cycle Gas Turbine Unit |
WO2020241543A1 (en) * | 2019-05-31 | 2020-12-03 | 三菱パワー株式会社 | Gas turbine, method for controlling same, and combined cycle plant |
TWI742695B (en) * | 2019-05-31 | 2021-10-11 | 日商三菱動力股份有限公司 | Gas turbine and its control method and double cycle power plant |
CN113874611A (en) * | 2019-05-31 | 2021-12-31 | 三菱动力株式会社 | Gas turbine, control method thereof, and combined cycle plant |
KR20220002437A (en) * | 2019-05-31 | 2022-01-06 | 미츠비시 파워 가부시키가이샤 | Gas turbine and its control method and combined cycle plant |
JP2020197157A (en) * | 2019-05-31 | 2020-12-10 | 三菱パワー株式会社 | Gas turbine, control method thereof and combined cycle plant |
JP7349266B2 (en) | 2019-05-31 | 2023-09-22 | 三菱重工業株式会社 | Gas turbine and its control method and combined cycle plant |
US11859548B2 (en) | 2019-05-31 | 2024-01-02 | Mitsubishi Heavy Industries, Ltd. | Gas turbine and control method thereof, and combined cycle plant |
CN113874611B (en) * | 2019-05-31 | 2024-07-23 | 三菱重工业株式会社 | Gas turbine, control method thereof, and combined cycle plant |
KR102718207B1 (en) * | 2019-05-31 | 2024-10-15 | 미츠비시 파워 가부시키가이샤 | Gas turbine and its control method and combined cycle plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6782703B2 (en) | Apparatus for starting a combined cycle power plant | |
US5799481A (en) | Method of operating a gas-turbine group combined with a waste-heat steam generator and a steam consumer | |
JP5399565B2 (en) | Combined cycle power plant using solar heat | |
US5678401A (en) | Energy supply system utilizing gas and steam turbines | |
JPH0758043B2 (en) | Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator | |
JP2007032568A (en) | Combined cycle power generation plant | |
JP2003161164A (en) | Combined-cycle power generation plant | |
JP2000000076U (en) | Combined gas / steam turbine power plant | |
JP2005534883A (en) | Waste heat steam generator | |
JP2012117517A (en) | Heat exchanger for combined cycle power plant | |
WO2011082949A2 (en) | Combined cycle power plant and method of operating such power plant | |
JP5909429B2 (en) | Moisture gas turbine system | |
JPH10196316A (en) | Combined power generating plant and closed air cooling gas turbine system | |
JP2005315127A (en) | Gas turbine | |
JP6905329B2 (en) | Heat exchange system and its operation method, gas turbine cooling system and cooling method, and gas turbine system | |
CN105508055B (en) | The system and method for distributed busbar protection cooling circulating water | |
JP2009097735A (en) | Feed-water warming system and exhaust heat recovering boiler | |
JPH09209715A (en) | Low-temperature corrosion preventing device for exhaust gas re-combustion type combined plant | |
CN105041394B (en) | A kind of electricity generation system and progress control method thereof | |
JPH09170405A (en) | Pressurized fluidized bed compound power generation facility | |
KR20220002437A (en) | Gas turbine and its control method and combined cycle plant | |
RU2144994C1 (en) | Combined-cycle plant | |
JP2001214758A (en) | Gas turbine combined power generation plant facility | |
KR101696297B1 (en) | Combined Heat and Power System for Energy-saving type | |
JP3872407B2 (en) | Combined power plant and closed air cooled gas turbine system |