EP4337761A1 - Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue apres amplification et procede de preparation - Google Patents
Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue apres amplification et procede de preparationInfo
- Publication number
- EP4337761A1 EP4337761A1 EP22728823.0A EP22728823A EP4337761A1 EP 4337761 A1 EP4337761 A1 EP 4337761A1 EP 22728823 A EP22728823 A EP 22728823A EP 4337761 A1 EP4337761 A1 EP 4337761A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cells
- microcompartment
- cell
- microcompartments
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001413 cellular effect Effects 0.000 title claims abstract description 30
- 230000003321 amplification Effects 0.000 title claims description 53
- 238000003199 nucleic acid amplification method Methods 0.000 title claims description 53
- 238000002360 preparation method Methods 0.000 title description 4
- 230000035772 mutation Effects 0.000 claims abstract description 92
- 238000000034 method Methods 0.000 claims abstract description 47
- 239000000017 hydrogel Substances 0.000 claims abstract description 45
- 210000004027 cell Anatomy 0.000 claims description 383
- 238000005538 encapsulation Methods 0.000 claims description 58
- 210000000130 stem cell Anatomy 0.000 claims description 42
- 230000002759 chromosomal effect Effects 0.000 claims description 32
- 239000001963 growth medium Substances 0.000 claims description 31
- 241000282414 Homo sapiens Species 0.000 claims description 29
- 230000032823 cell division Effects 0.000 claims description 24
- 230000001747 exhibiting effect Effects 0.000 claims description 23
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 22
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 22
- 210000002744 extracellular matrix Anatomy 0.000 claims description 22
- 229940088872 Apoptosis inhibitor Drugs 0.000 claims description 20
- 239000000158 apoptosis inhibitor Substances 0.000 claims description 20
- 235000010443 alginic acid Nutrition 0.000 claims description 17
- 229920000615 alginic acid Polymers 0.000 claims description 17
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 16
- 229940072056 alginate Drugs 0.000 claims description 16
- 239000002609 medium Substances 0.000 claims description 16
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 13
- 210000001519 tissue Anatomy 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000010494 dissociation reaction Methods 0.000 claims description 12
- 230000005593 dissociations Effects 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 239000006285 cell suspension Substances 0.000 claims description 11
- 210000005260 human cell Anatomy 0.000 claims description 11
- 239000000644 isotonic solution Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 241001465754 Metazoa Species 0.000 claims description 7
- 210000002894 multi-fate stem cell Anatomy 0.000 claims description 7
- 238000012258 culturing Methods 0.000 claims description 6
- 230000001973 epigenetic effect Effects 0.000 claims description 6
- 210000004102 animal cell Anatomy 0.000 claims description 5
- 231100000590 oncogenic Toxicity 0.000 claims description 5
- 230000002246 oncogenic effect Effects 0.000 claims description 5
- 230000002255 enzymatic effect Effects 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 91
- 210000001778 pluripotent stem cell Anatomy 0.000 description 28
- 239000000725 suspension Substances 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 230000002068 genetic effect Effects 0.000 description 16
- 239000000523 sample Substances 0.000 description 15
- 239000002775 capsule Substances 0.000 description 13
- 230000008672 reprogramming Effects 0.000 description 13
- 238000004113 cell culture Methods 0.000 description 10
- 238000007847 digital PCR Methods 0.000 description 10
- 108010082117 matrigel Proteins 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 9
- 210000001671 embryonic stem cell Anatomy 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 8
- 208000031513 cyst Diseases 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 239000011435 rock Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 238000002135 phase contrast microscopy Methods 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000002659 cell therapy Methods 0.000 description 5
- 230000004069 differentiation Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- -1 laminins Proteins 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000004049 epigenetic modification Effects 0.000 description 4
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 3
- 206010011732 Cyst Diseases 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- 108010076089 accutase Proteins 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 238000010835 comparative analysis Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000000306 recurrent effect Effects 0.000 description 3
- 235000010413 sodium alginate Nutrition 0.000 description 3
- 239000000661 sodium alginate Substances 0.000 description 3
- 229940005550 sodium alginate Drugs 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000004114 suspension culture Methods 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000005623 Carcinogenesis Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 208000031448 Genomic Instability Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 description 2
- 108020005196 Mitochondrial DNA Proteins 0.000 description 2
- 102000001253 Protein Kinase Human genes 0.000 description 2
- 102100024270 Transcription factor SOX-2 Human genes 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000036952 cancer formation Effects 0.000 description 2
- 231100000504 carcinogenesis Toxicity 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 230000002028 premature Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 108060006633 protein kinase Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000012604 3D cell culture Methods 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 208000036086 Chromosome Duplication Diseases 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 102100030011 Endoribonuclease Human genes 0.000 description 1
- 101710199605 Endoribonuclease Proteins 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 206010058490 Hyperoxia Diseases 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102100037369 Nidogen-1 Human genes 0.000 description 1
- 101710113029 Serine/threonine-protein kinase Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001369 bisulfite sequencing Methods 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000012888 bovine serum Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 230000008809 cell oxidative stress Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000004637 cellular stress Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000005081 epithelial layer Anatomy 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000000222 hyperoxic effect Effects 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000001001 laser micro-dissection Methods 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- DOBKQCZBPPCLEG-UHFFFAOYSA-N n-benzyl-2-(pyrimidin-4-ylamino)-1,3-thiazole-4-carboxamide Chemical compound C=1SC(NC=2N=CN=CC=2)=NC=1C(=O)NCC1=CC=CC=C1 DOBKQCZBPPCLEG-UHFFFAOYSA-N 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 108010008217 nidogen Proteins 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 229920003213 poly(N-isopropyl acrylamide) Polymers 0.000 description 1
- 108010004131 poly(beta-D-mannuronate) lyase Proteins 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000012175 pyrosequencing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 108091006082 receptor inhibitors Proteins 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000009394 selective breeding Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000007482 whole exome sequencing Methods 0.000 description 1
- 238000012070 whole genome sequencing analysis Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0012—Cell encapsulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2513/00—3D culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/74—Alginate
Definitions
- Cellular microcompartments comprising cells whose genomic integrity is maintained after amplification and preparation method
- the invention relates to the maintenance of the genomic integrity of cells during their division ex vivo over several cycles of cell divisions, in particular within the framework of a three-dimensional cell culture.
- Ex vivo cell culture is an area of growing interest.
- the cultured cells can be of any type. They may be differentiated cells with different phenotypes, progenitor cells or stem cells.
- An important advance in cell culture techniques is the introduction of three-dimensional culture systems. Three-dimensional cultures are indeed closer to natural systems in vivo, and can be used for many applications, particularly in the development of therapies.
- any transmissible genetic or epigenetic modification that confers a gain or loss of function or loss of potential function to cultured cells may be in particular a growth advantage, a reduction in susceptibility to cell death, a modification of the genes involved in tumorigenesis or the repression of tumorigenesis.
- the most impactful mutations are those allowing an expansion clonal cells that become dominant in culture.
- pluripotent stem cells such as for example:
- the object of the invention is therefore to meet all of these needs and to overcome the drawbacks and limitations of the prior art.
- the inventors have developed a system allowing mass culture of cells while preserving their genomic integrity.
- the subject of the invention is a three-dimensional cell microcompartment comprising at least one outer layer of hydrogel and inside said outer layer at least one layer of cells and/or at least one layer of cells, in which less of 20% of the total population of cells present in the microcompartment are cells presenting at least one mutation, preferentially between 0 and 10%, even more preferentially between 0 and 5%, preferentially between 0 and 3%, even after several cell divisions .
- the invention relates to a set of at least two cellular microcompartments in three dimensions, preferably in liquid suspension, each compartment comprising at least one outer layer of hydrogel and inside said outer layer at least one layer of cells and/or at least one layer of cells, in which less than 20% of the total population of cells present in all the microcompartments are cells exhibiting at least one mutation, preferentially between 0 and 10%, even more preferentially between 0 and 5%, in particular between 0 and 2%.
- this level of mutant cells is lower than that of existing cell culture systems.
- Maintaining the genomic integrity of the cells makes it possible to use the microcompartments with the cell cultures according to the invention for various applications and in particular in the prevention and/or treatment of pathologies.
- the cellular microcompartments according to the invention can be obtained in particular by implementing a specific preparation process comprising the following steps:
- step (f) optionally recovering the cell microcompartments obtained, the method being characterized in that all of the cells initially encapsulated in step (b) (at the time of encapsulation) represent a volume of less than 50% of the volume of the microcompartment in which they are encapsulated.
- This method makes it possible to obtain microcompartments according to the invention with a population of cells whose genomic integrity is maintained and stabilized.
- the invention also relates to the use of a cell microcompartment and/or of such a method for maintaining the genomic integrity of cells during their amplification.
- Figure 2a is a phase contrast microscopy image showing the results of the “2D culture” experimental arm on final day 28 before final sampling. Scale bar 500pm.
- Figure 2b is a phase contrast microscopy image showing the results of the “aggregate bioreactor” experimental arm on final day 28 before final sampling.
- the aggregates represented were taken from their culture in suspension and temporarily deposited in a Petri dish to carry out the microscopic observation. Scale bar 500pm.
- Figure 2c is a phase contrast microscopy image showing the results of the “Invention” experimental arm on final day 28 before final sampling.
- the microcompartments represented were taken from their culture in suspension and temporarily deposited in a Petri dish to carry out the microscopic observation. Scale bar 500pm.
- Figure 3 is a representation of the apparent growth of the cells over the time in culture calculated by counting the cells before and after each passage.
- the cumulative theoretical amplification factor is represented as a function of time; the y-axis (amplification) is shown in logarithmic scale. The data points represented correspond to all the counts that were made at the time of the runs.
- Figure 4 is a representation of the results of the phenotypic evaluation of the stem cells by flow cytometry.
- the dissociated cells are fixed and labeled for the pluripotency markers OCT4 and NANOG.
- the percentage of cells doubly positive for these 2 markers during successive passages for 28 days is shown here (Mean and standard deviation).
- Figure 5 is a high-resolution karyotype by SNP Cytoscan HD array chip for comparative analysis of the analysis of the initial sample day 0 and the 3 experimental arms "2D culture", "Aggregate bioreactor” and “Invention” at 28 days.
- CytoScan ® HD Array Affymetrix sold by thermo fisher, quantifies the average copy number per cell for 2.67 million probes spread over the entire genome. Circled areas are centered on chromosome 20.
- Figure 6 represents the results of the evaluation by digital PCR of the number of average copy of the 20qll chromosomal region during the 28 days of culture for the 3 experimental arms (Analysis carried out with the 24-probe ddPCR iPS test from the company Stemgenomics). Left: 20qll copy number as a function of the number of days in culture. Right: 20qll copy number relative to theoretical amplification accumulated over time.
- the associated curves correspond to the corresponding regressions. Note that the standard deviations for these measurements are on average 0.12 (copy number 20qll), the stars point to the measurements which are significantly increased.
- Figure 7 represents the synthesis of the percentages of mutated cells during 28 days of culture for the "2D culture” “aggregate bioreactor” and “Invention" arms for example 1.
- Figure 8 shows the karyotype, obtained by digital PCR, of the two cell lines (GHE and AAVS1_GFP) used in Example 2.
- Figures 10A and 10B are phase contrast microscopy images showing the results of experimental arms A: “aggregate bioreactor” and B: “Invention” on day 19 for “aggregate bioreactor” and on day 21 for “ invention”.
- the aggregates as well as the microcompartments represented were taken from their culture in suspension and temporarily deposited in a Petri dish to carry out the microscopic observation. Scale bar 500pm.
- Figure 11 is a representation of the apparent growth of the cells over time in culture calculated by counting the cells before and after each passage.
- the cumulative theoretical amplification factor is represented as a function of time; the y-axis (amplification) is shown in logarithmic scale. The data points represented correspond to all the counts that were made at the time of the runs.
- Figure 12 is a representation of the results of the phenotypic evaluation of the stem cells by flow cytometry.
- the dissociated cells are fixed and labeled for the pluripotency markers OCT4 and NANOG.
- the percentage of cells doubling positive for these 2 markers during successive passages for 28 days is represented here (Mean and standard deviation).
- Figure 15 represents the summary of the percentages of mutated cells during 28 days of culture for the “aggregate bioreactor” and “Invention” arms for the example
- alginate within the meaning of the invention is meant linear polysaccharides formed from b-D-mannuronate and a-L-guluronate, salts and derivatives thereof.
- hydrogel capsule within the meaning of the invention, is meant a three-dimensional structure formed from a matrix of polymer chains, swollen with a liquid and preferably water.
- cell “expressing a gene” within the meaning of the invention is meant a cell which contains at least 5 times more copies of the RNA transcribed from the DNA sequence of the gene concerned in comparison with a pluripotent cell , preferentially 10 times more copies, preferentially 20 times more copies, preferentially 100 times more copies.
- differentiated cells within the meaning of the invention is meant cells which have a particular phenotype, as opposed to pluripotent stem cells which are not differentiated or progenitor cells which are in the process of differentiation.
- human cells within the meaning of the invention is meant human cells or immunologically humanized non-human mammalian cells. Even when this is not specified, the cells, stem cells, progenitor cells and tissues according to the invention consist of or are obtained from human cells or from immunologically humanized non-human mammalian cells.
- mutant cell within the meaning of the invention, is meant a cell carrying at least one mutation.
- progenitor cell within the meaning of the invention, is meant a stem cell already engaged in cell differentiation but not yet differentiated.
- embryonic stem cell within the meaning of the invention is meant a pluripotent stem cell of a cell derived from the internal cell mass of the blastocyst.
- the pluripotency of embryonic stem cells can be assessed by the presence of markers such as the transcription factors OCT4, NANOG and SOX2 and surface markers such as SSEA3/4, Tra-1-60 and Tra-1-81.
- the embryonic stem cells used in the context of the invention are obtained without destroying the embryo from which they originate, for example using the technique described in Chang et al. (Cell Stem Cell, 2008, 2(2):113-117).
- the embryonic stem cells of human beings can be excluded from the invention and in this case the object of the invention excludes the embryonic stem cells of human beings.
- pluripotent stem cell or “pluripotent cell” within the meaning of the invention, is meant a cell which has the capacity to form all the tissues present in the entire organism of origin, without however being able to form an entire organism by as such.
- Human pluripotent stem cells may be referred to as hPSCs in this application. They may in particular be induced pluripotent stem cells (iPSC or hiPSC for human induced pluripotent stem cells), embryonic stem cells or MUSE cells (for “Multilineage-differentiating Stress Enduring”).
- induced pluripotent stem cell within the meaning of the invention is meant a pluripotent stem cell induced to pluripotency by genetic reprogramming of differentiated somatic cells.
- pluripotent stem cells are notably positive for pluripotency markers, such as alkaline phosphatase staining and expression of NANOG, SOX2, OCT4 and SSEA3/4.
- pluripotency markers such as alkaline phosphatase staining and expression of NANOG, SOX2, OCT4 and SSEA3/4.
- Examples of methods for obtaining induced pluripotent stem cells are described in the articles Yu et al. (Science 2007, 318 (5858): 1917-1920), Takahashi et al (Cell, 207, 131(5): 861-872) and Nakagawa et al (Nat Biotechnol, 2008, 26(1): 101-106) .
- Fret diameter of a microcompartment is meant the distance “d” comprised between two tangents of said microcompartment, these two tangents being parallel, such that the entire projection of said microcompartment is comprised between these two parallel tangents.
- variable thickness of the inner layer of human cells in the process of cell differentiation is meant within the meaning of the invention the fact that the inner layer in the same microcompartment does not have the same thickness everywhere.
- microcompartment or “capsule” within the meaning of the invention, is meant a partially or completely closed three-dimensional structure, containing several cells.
- ⁇ culture medium within the meaning of the invention is meant a culture medium animated by internal movements.
- mutation within the meaning of the invention, is meant a genetic or epigenetic mutation, preferably a functional mutation. It may in particular be a specific modification of the genetic sequence, a structural variant, an epigenetic modification, or a modification of the mitochondrial DNA. It may be a mutation by amplification of a chromosomal region, such as for example a mutation by amplification of the chromosomal region 20q, in particular 20qll, or even 7q.
- “functional mutation” within the meaning of the invention is meant a transmissible genetic or epigenetic modification which confers a gain or loss of function or potential loss of function on the mutant cell concerned. It is preferentially a mutation resulting in a modification of the phenotype of the mutant cell concerned. Very preferably it is a change in the sequence of the genome and/or the epigenome which alters the therapeutic potential of a population of cells, either by increasing the risk associated with the therapy produced or by reducing the benefit provided by the therapy produced.
- smallest dimension of a microcompartment or of a cluster of cells or of a layer of cells or of a layer of cells within the meaning of the invention is meant the value of the largest diameter of Feret of said microcompartment .
- smallest dimension of a microcompartment or of a cluster of cells or of a layer of cells or of a layer of cells within the meaning of the invention is meant the value of the smallest diameter of Feret of said microcompartment .
- tissue or “biological tissue” within the meaning of the invention, is meant the common sense of tissue in biology, that is to say the intermediate level of organization between the cell and the organ.
- a tissue is a set of similar cells of the same origin (most often from a common cell lineage, although they can find their origin by association of distinct cell lineages), grouped into clusters, networks or bundles (fibers) .
- a tissue forms a functional whole, that is to say that its cells contribute to the same function.
- Biological tissues regenerate regularly and are assembled together to form organs.
- light or “lumen” within the meaning of the invention, is meant a volume of aqueous solution topologically surrounded by cells. Preferably, its content is not in diffusive equilibrium with the volume of convective liquid present outside the microcompartment.
- Cell microcompartments The subject of the invention is therefore a three-dimensional cell microcompartment comprising at least one outer layer of hydrogel and inside said outer layer at least one layer of cells and/or at least one layer of cells, in which less 20% of the total population of cells present are cells with at least one mutation.
- the microcompartment includes an outer hydrogel layer.
- the hydrogel used is biocompatible, that is to say it is not toxic to the cells.
- the hydrogel layer must allow the diffusion of oxygen and nutrients to supply the cells contained in the microcompartment and allow their survival.
- the outer layer of hydrogel comprises at least alginate. It may consist exclusively of alginate.
- the alginate may in particular be a sodium alginate, composed of 80% a-L-guluronate and 20% b-D-mannuronate, with an average molecular weight of 100 to 400 kDa and a total concentration of between 0.5 and 5% by mass.
- the hydrogel layer is devoid of cells.
- the hydrogel layer makes it possible in particular to protect the cells from the external environment and to limit the uncontrolled proliferation of the cells.
- the microcompartment according to the invention comprises at least one layer of cells and/or at least one layer of cells. This or these layer(s) and/or layer(s) of cells is (are) organized in three dimensions in the microcompartment.
- the microcompartment may include in particular:
- the cells present in the microcompartment can be any type of cell.
- the cells are human or animal cells.
- the microcompartment comprises pluripotent stem cells.
- a pluripotent stem cell, or pluripotent cell means a cell that has the capacity to form all the tissues present in the entire organism of origin, without however being able to form an entire organism as such.
- the pluripotent stem cells may be in particular induced pluripotent stem cells (IPS), MUSE (Multilineage-differentiating Stress Enduring) cells found in the skin and bone marrow of adult mammals, or embryonic stem cells (ES).
- IPS induced pluripotent stem cells
- MUSE Multilineage-differentiating Stress Enduring
- the microcompartment according to the invention comprises human or animal induced pluripotent stem cells.
- the microcompartment according to the invention comprises human or animal multipotent cells and/or human or animal progenitor cells derived from these multipotent cells.
- the multipotent and/or progenitor cells have preferably been obtained from pluripotent stem cells, in particular from human pluripotent stem cells, or possibly from non-pluripotent human cells whose transcriptional profile has been artificially modified to join that of multipotent cells and / or particular progenitors, typically by forced expression of transcription factors specific to the target cell phenotype.
- the multipotent and/or progenitor cells have been obtained from pluripotent stem cells after bringing them into contact with a solution capable of initiating the differentiation of said stem cells.
- the microcompartment according to the invention comprises differentiated human or animal cells.
- the differentiated cells were preferentially obtained from pluripotent stem cells or progenitor cells, in particular human pluripotent stem cells or human progenitor cells, or optionally from non-pluripotent human cells whose transcriptional profile has been artificially modified to join that of particular differentiated cells, typically by forced expression of transcription factors specific for the target cell phenotype.
- the differentiated cells were obtained from pluripotent or multipotent or progenitor stem cells after contacting with a solution capable of initiating the differentiation of said stem cells.
- the cellular content of the microcompartment comprises homogeneous or mixed cellular identities.
- the differentiated cells may in particular be in the form of a three-dimensional tissue or micro-tissue or in the form of several tissues or micro-tissues in the microcompartment. It may be a compacted fabric or micro-fabric.
- microcompartment according to the invention can comprise several types of cells.
- a microcompartment according to the invention can comprise, for example, stem cells induced to pluripotency and/or multipotent cells and/or progenitor cells and/or differentiated cells.
- the cells encapsulated in the microcompartment are intended for use in cell therapy in humans, the cells may be immuno-compatible with the person intended to receive them to avoid any risk of rejection.
- the cells present in the microcompartment carry few, if any, functional mutations. According to the invention less than 20% of the total population of cells present are cells exhibiting at least one mutation, in particular at least one functional, genetic or epigenetic mutation.
- the invention relates in particular to microcompartments in which less than 20% of the total population of cells present are cells exhibiting at least one functional mutation, preferably microcompartments in which less than 20% of the total population of cells present are cells exhibiting at least one mutation resulting in a modification of the phenotype of the mutant cell concerned.
- the invention also relates to microcompartments in which less than 20% of the total population of cells present are cells exhibiting at least one mutation allowing clonal expansion of the cells which becomes dominant in culture.
- the subject of the invention is a microcompartment wherein less than 20% of the total population of cells present are cells exhibiting at least one mutation selected from oncogenic mutations. At least one mutation is an oncogenic mutation.
- the subject of the invention is a microcompartment in which less than 20% of the total population of cells present are cells exhibiting at least one mutation of a gene and/or a mutation by amplification of a region chromosomal.
- less than 20% of the total population of cells present in the microcompartment are cells presenting at least one mutation of the P53 gene and/or an amplification of the chromosomal region 20q and/or 7q ( 20q and/or 7q chromosomal region amplification mutation), in particular 20qll chromosomal region amplification (20qll chromosomal region amplification mutation).
- the cells exhibiting at least one mutation according to one of the embodiments of the invention represent between 0 and 15% of the total population of cells present in the microcompartment, in particular between 0 and 14%, between 0 and 12 %, in particular between 0 and 10%, even more preferably between 0 and 8%, between 0 and 5%, between 0 and 2%.
- the percentage of mutant cells among a population of cells can be measured by various methods known to those skilled in the art. For the detection of point mutations, sequencing methods with high reading depth are preferred (Whole Genome sequencing, Exome sequencing, Amplicon, etc.). For the detection of structural variants, high resolution methods are preferred (High resolution SNP array, optical genome mapping bionano, digital PCR). For the detection of epigenetic variants, several tools can be considered (RRBS methylation arrays, bisulphite sequencing/pyrosequencing, etc.).
- the microcompartments according to the invention have a very low rate of mutant cells, after several cycles of cell division.
- the cells according to the invention are indeed cells obtained by amplification, from at least one cell. Indeed, the cells present in the microcompartment according to the invention were obtained after at least two cycles of cell division after the encapsulation in an outer layer of hydrogel of at least one cell.
- the cells present in the microcompartment according to the invention have been obtained after at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles of cell division after encapsulation in an outer layer of hydrogel of at least 1 cell, preferably between 1 and 5, between 1 and 10, between 1 and 15, between 1 and 20, between 1 and 30, between 1 and 40, between 1 and 50, between 1 and 60, between 1 and 100 cells.
- the cells present in the microcompartment were obtained after at least six cycles of cell division after the encapsulation in an outer layer of hydrogel of at least 1 cell, preferentially between 1 and 50 cells.
- the microcompartment is obtained after at least 2 passes after encapsulation, more preferably at least 3, 4, 5, 6, 7, 8, 9 or 10 passes.
- Each passage can last for example between 2 and 15 days, in particular between 3 and 10 days.
- the microcompartment is obtained after at least one re-encapsulation, more preferably between 1 and 14 re-encapsulations, in particular between 2 and 7 re-encapsulations.
- a re-encapsulation corresponds to a new pass and each encapsulation cycle corresponds to a pass.
- all of the cells initially encapsulated in the microcompartment before the first cycle of cell division represents a volume less than 50% of the volume of the microcompartment in which they are encapsulated, more preferably less than 40%, 30%, 20%, 10% of the volume of the microcompartment in which they are encapsulated.
- the cells present in the microcompartment according to the invention have been obtained after at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles of cell division, after encapsulation in an outer layer of hydrogel of cell(s) representing a volume less than 50% of the volume of the microcompartment in which they are encapsulated, plus preferably less than 40%, 30%, 20%, 10% of the volume of the microcompartment in which they are encapsulated.
- the cells represent more than 50% by volume relative to the volume of the microcompartment, even more preferably more than 60%, 70%, 75%, 80%, 85%, 90% by volume relative to the volume of the microcompartment.
- the microcompartment according to the invention comprises several cells, preferably at least 20 cells, even more preferably at least 100, at least 500, at least 1000, at least 10000.
- microcompartment according to the invention may comprise other elements, in particular:
- the culture medium is a medium adapted to the cells present in the microcompartment according to the knowledge of those skilled in the art.
- the intermediate layer of isotonic aqueous solution preferentially contains extracellular matrix elements, such as in particular peptide or peptidomimetic sequences capable of binding to integrins.
- isotonic aqueous solution is meant an aqueous solution having an osmolarity of between 200 and 400 mOsm/L.
- This layer is preferably located between (a) the layer(s) of cells and/or cell base(s), and (b) the outer hydrogel layer.
- the intermediate layer may consist of elements which have been added during the manufacture of the microcompartment and/or of elements added in the microcompartment and/or of elements secreted or induced by the other constituents of the microcompartment.
- the intermediate layer may in particular comprise or consist of an extracellular matrix and/or a culture medium. If it comprises extracellular matrix, it may be extracellular matrix secreted by cells of the inner layer and/or by extracellular matrix added at the time of preparation/manufacture of the microcompartment.
- the intermediate layer preferably comprises a mixture of proteins and extracellular compounds necessary for the culture of the cells in the process of differentiation.
- the intermediate layer comprises structural proteins, such as collagen, laminins, entactin, vitronectin, as well as growth factors, such as TGF-beta and/or EGF.
- the intermediate layer can consist of or comprise Matrigel ® and/or Geltrex ® and/or a hydrogel type matrix of vegetable origin such as modified alginates or of synthetic origin or of poly(N- isopropylacrylamide) and poly(ethylene glycol) (PNIPAAm-PEG) of the Mebiol ® type.
- the intermediate layer can form a gel.
- the intermediate layer may optionally contain one or more cells.
- the intermediate layer has a Young's modulus of between 0.05 and 3 kDa. Young's modulus can be measured by any method known to those skilled in the art, in particular by measuring the rheology of gels of the same composition as the intermediate layer or else by AFM (atomic force microscopy).
- An intermediate layer of isotonic aqueous solution and/or comprising extracellular matrix elements preferably an intermediate layer of extracellular matrix, with such Young's modulus values make it possible to improve the maintenance of the cellular phenotype and the genomic integrity of the cells contained in this intermediate layer during cell divisions.
- the microcompartment also comprises at least one light or lumen.
- the microcompartment comprises an internal lumen.
- the microcompartment according to the invention may also optionally comprise several openings.
- the lumen(s) may contain a liquid, in particular culture medium and/or a liquid secreted by the cells.
- the presence of this hollow part allows the cells to have a small diffusive volume, the composition of which they can control, promoting cellular communication.
- the microcompartment comprises successively, organized around a light:
- At least one layer of cells and/or at least one layer of cells preferably epithelial cells, in particular stem cells and in particular human or animal induced pluripotent strains.
- the internal layer of cells within the microcompartment according to the invention is hollow.
- This three-dimensional arrangement of monolayer or spherical epithelial layer surrounding a central lumen may also be called a cyst.
- the light or lights is (are) preferentially generated, at the time of the formation of the cyst, by the cells which multiply and grow on the extracellular matrix layer.
- the cellular microcompartment according to the invention is closed or partially closed, ie the outer layer is closed or partially closed.
- the microcompartment is closed.
- the microcompartment according to the invention can be in any three-dimensional form, that is to say it can have the shape of any object in space.
- the microcompartment can have any shape compatible with cell encapsulation.
- the microcompartment according to the invention is in a spherical or elongated shape. It can have the shape of an ovoid, a cylinder, a spheroid or a sphere. It may in particular be in the form of a hollow spheroid, a hollow ovoid, a hollow cylinder or a hollow sphere.
- the external layer of the microcompartment that is to say the hydrogel layer, which gives its size and its shape to the microcompartment according to the invention.
- the smallest dimension of the microcompartment according to the invention is between 10 ⁇ m and 1 mm, preferably between 100 ⁇ m and 700 ⁇ m. It may be between 10 ⁇ m and 600 ⁇ m, in particular between 10 ⁇ m and 500 ⁇ m.
- Its largest dimension is preferably greater than 10 ⁇ m, more preferably between 10 ⁇ m and 1 m, even more preferably between 10 ⁇ m and 50 cm.
- the microcompartment according to the invention contains cells whose genomic integrity has been preserved and/or maintained, a very small percentage of cells present in the microcompartment being carriers of mutations. It can be used for any application, in particular as a drug in cell therapy in humans or animals.
- microcompartment according to the invention can optionally be frozen in order to be stored. It must then be thawed before use.
- the invention also relates to several microcompartments together. Also, the invention also relates to a set or a series of cellular microcompartments as described previously comprising at least two cellular microcompartments according to the invention.
- the invention also relates to a set or a series of microcompartments of at least two cellular microcompartments in three dimensions, each microcompartment comprising at least one outer layer of hydrogel and inside said outer layer at least one layer of cells and/or or at least one layer of cells, in which at least one microcompartment is a microcompartment according to the invention.
- Another particular object of the invention is a set or series of at least two cellular microcompartments in three dimensions, each microcompartment comprising at least one outer layer of hydrogel and inside said outer layer at least one layer of cells and /or at least one layer of cells, in which less than 20% of the total population of cells present in all the microcompartments of the set are cells exhibiting at least one mutation.
- the cells exhibiting at least one mutation represent between 0 and 15% of the total population of cells present in all the microcompartments, in particular between 0 and 14%, between 0 and 12%, in particular between 0 and 10%, even more preferably between 0 and 8%, between 0 and 5%, between 0 and 2%.
- At least one microcompartment is a microcompartment according to the invention.
- one or more microcompartments of the series may comprise more than 20% of mutant cells in number relative to the number of cells present in said microcompartment(s), but for all of the microcompartments forming the set of microcompartments according to the invention, less 20% of the total population of cells present in all the microcompartments of the set are cells exhibiting at least one mutation, in particular at least one functional, genetic or epigenetic mutation.
- at least one microcompartment is a microcompartment according to the invention.
- the invention relates in particular to a set of microcompartments in which less than 20% of the total population of cells present in the set are cells exhibiting at least one functional mutation, preferably a set of microcompartments in which less than 20% of the total population of cells present in the assembly are cells exhibiting at least one mutation resulting in a modification of the phenotype of the mutant cell concerned.
- the invention also relates to a set of microcompartments in which less than 20% of the total population of cells present in the set are cells exhibiting at least one mutation allowing clonal expansion of the cells which becomes dominant in culture.
- the subject of the invention is a set of microcompartments in which less than 20% of the total population of cells present in the set are cells exhibiting at least one mutation chosen from oncogenic mutations. At least one mutation is an oncogenic mutation.
- the subject of the invention is a set of microcompartments in which less than 20% of the total population of cells present in the set are cells exhibiting at least one mutation of a gene and/or one mutation by amplification of a chromosomal region.
- less than 20% of the total population of cells present in the set of microcompartments are cells presenting at least one mutation of the P53 gene and/or an amplification of the chromosomal region 20q and/ or 7q (mutation by amplification of the chromosomal region 20q and/or 7q)., in particular an amplification of the chromosomal region 20qll (mutation by amplification of the chromosomal region 20qll).
- the cells exhibiting at least one mutation according to one of the embodiments of the invention represent between 0 and 15% of the total population of cells present in the set of microcompartments, in particular between 0 and 14%, between 0 and 12%, in particular between 0 and 10%, even more preferably between 0 and 8%, between 0 and 5%, between 0 and 2%.
- the cells present in the microcompartments of the set of microcompartments according to the invention have been obtained after at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles of cell division after encapsulation in an outer hydrogel layer of at least 1 cell per microcompartment.
- the microcompartment(s) present in this set of microcompartments may have one or more characteristics of a microcompartment according to the invention (size, shape, number of cells, volume of cells, intermediate layer, light, etc.).
- the set of microcompartments according to the invention preferably comprises between 2 and 10 16 microcompartments.
- the series of microcompartments according to the invention is in a culture medium, in particular in an at least partially convective culture medium.
- the subject of the invention is a series of cellular microcompartments in a closed enclosure, such as a bioreactor, preferably in a culture medium in a closed enclosure, such as a bioreactor.
- a closed enclosure such as a bioreactor
- a culture medium in a closed enclosure, such as a bioreactor.
- an outer layer of hydrogel and optionally of an intermediate layer of isotonic aqueous solution allows a uniform distribution of cells between the microcompartments.
- this layer of hydrogel makes it possible to avoid fusions of microcompartments which are a major source of unfavorable variability for the phenotypic homogeneity of the cells.
- the invention also relates to a process for preparing microcompartments according to the invention.
- the process for preparing a microcompartment or a set of microcompartments according to the invention may comprise at least the implementation of the steps which consist in:
- the invention also relates to the use of this method for maintaining the genomic integrity of the encapsulated cells.
- all of the cells initially encapsulated in step (b) represent a volume of less than 50% of the volume of the microcompartment in which they are encapsulated, more preferably less than 40%, 30%, 20%, 10% of the volume of microcompartment in which they are encapsulated.
- the apoptosis inhibitor can for example be one or more inhibitor(s) of the RHO/ROCK (“Rho-associated protein kinase”) pathways, or any other apoptosis inhibitor known to those skilled in the art.
- the apoptosis inhibitor should help promote cell survival, and in the case of the presence of an extracellular matrix, the adhesion of cells to the extracellular matrix at the time of formation of the outer hydrogel layer around said extracellular matrix.
- the method according to the invention may comprise, prior to or simultaneously with step (a), a step of dissociation of the cells by chemical, enzymatic or mechanical dissociation. This step is particularly important in the case of adherent cells.
- the encapsulated cells are in suspension in the form of single cells and/or of clusters or set(s) of cell(s) (“cluster(s)”).
- cluster(s) Preferably, the single cells represent less than 50% in number of all the cells initially encapsulated in step (b).
- it is preferable to encapsulate clusters of cells because this reduces chromosomal desegregation and consequently reduces the appearance of new mutations and participates in maintaining the genomic integrity of the cells.
- each cluster of cells encapsulated initially in step (b) has a greatest dimension less than 20% of the greatest dimension of a microcompartment in which it is encapsulated, even more preferably less than 10%.
- the cell clusters should not be too large in size compared to the size of the microcompartment because too large a size of these initial cell clusters could lead, during cell divisions, to earlier cell confluence in the capsule; this too early confluence of all or part of the capsules, could lead to an increase in intracellular pressures and lead to cellular stress, impacting in particular chromosomal segregation.
- the method according to the invention may comprise a step of mixing the cells with an extracellular matrix, either between step (a) and step (b), or simultaneously with the encapsulation in step ( b).
- steps (c), (d) and (e) are carried out with permanent or sequential stirring.
- This agitation is important because it maintains the homogeneity of the culture environment and avoids the formation of any diffusive gradient. For example, it allows homogeneous control of the level of cellular oxygenation; thus avoiding the phenomena of necrosis linked to hypoxia, or oxidative stress linked to hyperoxia. By avoiding an increase in cell death and/or oxidative stress, agitation contributes to the maintenance of genetic integrity.
- the method according to the invention is preferably implemented in a closed enclosure such as a closed bioreactor.
- the number of cell division cycles in step (e) is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 cell division cycles.
- the microcompartment is obtained after at least 2 passes (one pass corresponding here to a complete cycle of steps (a), (b), and (e), optionally (c) and (d)), more preferably at least 3, 4, 5, 6, 7, 8, 9 or 10 passes.
- Each passage can last for example between 2 and 15 days, in particular between 3 and 8 days.
- the method according to the invention comprises at least one re-encapsulation of the cells after step (e), that is to say at least two encapsulation cycles.
- each encapsulation cycle corresponds to one pass.
- the number of cell divisions of the entire process (for all the passages) is at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30 cycles of cell division.
- Each re-encapsulation may include:
- the removal of the outer hydrogel layer can be carried out in particular by hydrolysis, dissolution, piercing and/or rupture by any means that is biocompatible, that is to say non-toxic for the cells.
- removal can be achieved using phosphate buffered saline, a divalent ion chelator, an enzyme such as alginate lyase if the hydrogel includes alginate, and/or laser microdissection, and
- Re-encapsulation is a suitable means for increasing the cellular amplification obtained from the pluripotent stage, and reducing the risks of mutation.
- the re-encapsulation comprises the following steps: - (i) removing the outer hydrogel layer,
- Compartmentalization in microcompartments makes it possible to eliminate the microcompartments containing more mutated cells than the other capsules. Even if the mutated cells grow rapidly they will reach capsular confluence which will contain their multiplication. Compartmentalization also makes it possible not to contaminate the entire cell population, and also to eliminate the capsules containing mutant cells, at any time, in particular before a re-encapsulation step. This sorting can be done either by online analysis, or by eliminating the capsules filled more quickly than the others, for example.
- the method according to the invention may comprise one or more stages of elimination of the microcompartments comprising mutant cells, in particular microcompartments comprising more than 20% of mutant cells.
- the cells are pluripotent stem cells organized into cysts directly from pluripotent stem cells, or from differentiated cells which will be reprogrammed into pluripotent cells inside the hydrogel capsule during the formation of microcompartments.
- step (a) and/or (ii) is preferably carried out for a time comprised between a few minutes and a few hours, preferably between 2 minutes and 2 hours, more preferably between 10 minutes and 1 hour.
- Step (c) and/or (iv) of culture with an apoptosis inhibitor is carried out for a time comprised between 2 and 72 hours, preferentially for a time comprised between 6 and 48 hours, more preferentially for a time comprised between 24 and 48 hours.
- the rinsing step can be carried out by one or more rinsings, in successive culture media free of inhibitors of the RHO/ROCK pathways, less than 96 hours, preferably less than 72 hours, more preferably between 24 and 48 hours after the start of step (c) and/or (iv).
- At least one of the steps is carried out at a temperature adapted to the survival of the cells, comprised between 4 and 42°C.
- the temperature during cell proliferation should preferably be between 32 and 37°C to avoid triggering mutations by lowering the performance of repair enzymes.
- the temperature should be low (ideally about 4°C) to manage the stress of the cells in step (b).
- the cell reprogramming agents can be added in step (a) and/or (b) and/or (c) and/or (ii) and/or (iii) and/or (iv).
- these are cell reprogramming agents that are non-permeable with respect to the hydrogel layer.
- the addition of reprogramming agents is particularly relevant when the initially encapsulated cells are differentiated cells which it is desired to dedifferentiate in particular up to the pluripotent stage.
- a person skilled in the art knows how to proceed with the reprogramming of a differentiated cell into a stem cell by reactivating the expression of the genes associated with the embryonic stage by means of specific factors, designated in the present invention as “reprogramming agents”.
- the reprogramming agents are advantageously co-encapsulated with the differentiated cells, so as to concentrate the product and promote contact with all of the cells.
- reprogramming agents that are permeable to the hydrogel layer, it is possible to add said agents to the culture medium after the encapsulation step.
- Reprogramming Agents make it possible to impose on the cells a succession of phenotypic changes up to the pluripotent stage.
- the reprogramming step is carried out using specific culture media, favoring these phenotypic changes.
- the cells are cultured in a first medium comprising 10% human or bovine serum, in Eagle's minimum essential medium (DMEM) supplemented with a serine/threonine protein kinase receptor inhibitor (such as the product SB -431542 (C 22 H 16 N 4 O 3 )), one or more inhibitors of the RHO/ROCK (“Rho-associated protein kinase”) pathways, such as thiazovivin and/or Y-27632, fibroblast growth factors , such as FGF-2, ascorbic acid and antibiotics, such as Trichostatin A (C 17 H 22 N 2 O 3 ).
- DMEM Eagle's minimum essential medium
- a serine/threonine protein kinase receptor inhibitor such as the product SB -431542 (C 22 H 16 N 4 O 3 )
- RHO/ROCK Ras-associated protein kinase” pathways
- thiazovivin and/or Y-27632 fibroblast growth factors , such as FGF-2
- the method according to the invention may comprise a step consisting in verifying the phenotype of the cells contained in the microcompartment. This verification can be carried out by identifying the expression by at least some of the cells contained in the microcompartment, of at least one gene specific for the desired phenotype.
- the cellular microcompartments obtained according to the methods of the invention can then be frozen before any use.
- the freezing is preferably carried out at a temperature between -190°C and -80°C.
- Thawing can be done in a lukewarm water bath (preferably 37 degrees) so that the cells thaw fairly quickly.
- the microcompartments according to the invention before their use can be maintained at more than 4°C for a limited period before their use, preferably between 4°C and 38°C.
- the method according to the invention makes it possible to maintain the genomic integrity of the cells during the culture, the final microcompartments presenting cells carrying little or no mutation.
- the 3-dimensional structure of the cells in the microcompartment and the low, or even zero, percentage of cells isolated during encapsulation reduces chromosomal desegregation and by consequently decreases the appearance of new mutations.
- the invention also promotes amplification with a high amplification factor, which consequently reduces the culture time and the number of divisions to obtain a very large number of cells, and therefore limits mutagenesis.
- the protection of the cells thanks to the external layer and the presence of extracellular matrix when it is present decreases the chromosomal desegregation and limits the mechanical stress of the cells, and consequently decreases the appearance of new mutations.
- Control of culture parameters in a bioreactor also reduces oxidative stress, which contributes to the reduction of new mutations.
- the invention also relates to the use of a method according to the invention for maintaining the genomic integrity of cells during their amplification.
- the invention also relates to the use, to maintain the genomic integrity of cells during their amplification, of a three-dimensional microcompartment, preferably closed, preferably of spherical or elongated shape, comprising at least one outer layer of hydrogel defining an internal part.
- a three-dimensional microcompartment preferably closed, preferably of spherical or elongated shape, comprising at least one outer layer of hydrogel defining an internal part.
- it involves the use of a cellular microcompartment according to the invention in its various variants as described in the present application.
- the invention also relates to the use, to maintain the genomic integrity of cells during their amplification, of a set of these microcompartments, preferably in a closed bioreactor, even more preferably a set of microcompartments according to all the variants according to the invention and as described in the present application.
- iPS induced human pluripotent stem cells
- ÎPS-IMAGINE005 The cell line used here, named ÎPS-IMAGINE005, has previously been described in this publication: E. Pavennec, C. Banal, M. Hamlin, D. Clémantine, M. Michael, N. Lefort, Generation of two induced pluripotent stem cell Unes IMAGINÎ004-A and IMAGINI005-A from healthy donors. Stem Cell Research, 101959 (2020).
- the iPS line was generated according to the usual standards for iPS culture in 2 dimensions. In order to monitor the almost inevitable emergence of mutations during the prolonged culture of this line, monitoring of the karyotype is carried out regularly (every 5 to 10 passages).
- the experiment conducted here has as its starting point a frozen cell sample of iPS, 2D passage number 23 post reprogramming. At this stage of culture and for this sample, the tests high-resolution karyotypes were unable to detect amplification of the 20qll chromosomal region, but it was found that brief culture (less than 10 2D passages) of this sample results in the emergence of an amplification mutation of the 20qll chromosomal region.
- This cellular starting point is particularly relevant for testing the positive selection over time of a mutant clone in a cultured cell population.
- the mutation by amplification of the chromosomal region 20qll confers a growth advantage on the mutated clone; the higher the selection pressure of the cropping system, the greater the risk of this clone being selected quickly and becoming the majority.
- An encapsulated culture system in agitated suspension (hereinafter referred to as the "Invention") was compared to two standard culture systems in the field of the production of pluripotent stem cells: 2-dimensional culture (hereinafter referred to as by the term “2D culture”) and unprotected stirred suspension culture in the form of aggregates (hereinafter referred to by the term “Aggregate Bioreactor”).
- 2-dimensional culture hereinafter referred to as by the term “2D culture”
- Aggregate Bioreactor unprotected stirred suspension culture in the form of aggregates
- the initial sample (described previously and cultured in 2D) was used to initiate in parallel 3 experimental arms associated with the 3 culture systems, and this, over a period of 28 days.
- cells are sampled to allow genetic testing to be carried out (see results section).
- the frequency of the mutation by amplification of the chromosomal region 20qll is evaluated at the initiation and at the end of this prolonged culture of 28 days.
- the frequency of passages for each culture system scrupulously follows the optimal recommendations for each condition.
- the 2D cultures are passed every 4 to 5 days when the confluence is between 70 and 90%; the cultures in aggregates are passed every 5 days according to the recommendations of the supplier (Minibio, ABLE® Bioreactor Systems); encapsulated cultures are passaged every 7 days when mean capsular confluence is between 50 and 100%.
- the 2 experimental arms cultivating stem cells in the form of three-dimensional groupings of cells in suspension "aggregate bioreactor" and "Invention” use enzymatic dissociation for the successive passages: the aggregates on the one hand and the encapsulated cysts on the other hand, are dissociated using a TryplE bath for 20 minutes at 37°C. The cells and small groupings (clusters) of cells resulting from this dissociation are then used to seed a new culture.
- Matrigel For cultures using an extracellular matrix, Matrigel (Corning) is used. Thus, for 2D cultures, the flasks (T-Flask T75) are first graded with matrigel; for the encapsulations or re-encapsulations the cells are mixed with the matrigel before injection into the central microfluidic pathway; culture in aggregates does not require the use of extracellular matrix.
- the “2D culture” is established in flasks (T-Flask T75) previously coated/pissed with matrigel ® , the seeding cell concentration is between 10,000 and 30,000 cells per cm 2 .
- the passages are carried out by the method of small aggregates, by brief use (less than 5 minutes) of a calcium chelator, RelesR (Stem cell technologies).
- the culture medium is completely changed on day 1 to remove the inhibitor rock treatment (constant volume) then daily.
- the “aggregate bioreactor” culture is initiated with the same cell suspension used to inoculate the “2D culture” and the “Invention” culture but with an initial concentration of 175,000 cells per ml of medium, for a total of 20 ml of medium.
- the culture medium is completely changed on day 1 to remove the inhibitor rock treatment (constant volume), then 75% of the medium is renewed daily (constant volume of 20ml).
- Ethylene tetrafluoroethylene (ETFE,) tubes are connected to the three inlets of a 3D printed co-laminar flow microfluidic device.
- An extruded, polished glass microcapillary tip (about 100 ⁇ m nozzle diameter for most experiments or 150 ⁇ m nozzle diameter) is glued to the nozzle outlet for better flow control. flow.
- the cell/matrix suspension is loaded into the internal channel of the 3-way device, which is kept chilled with an in-line cooling system to prevent premature gelation of the Matrigel.
- a solution of sodium alginate (Novamatrix Pronova SLG100, 0.25 g at 2% in distilled water) is injected into the outer canal.
- a calcium-free solution (300mM Sorbitol, Sigma-Aldrich) is used in the intermediate channel of the co-extrusion chip and acts as a barrier against the diffusion of calcium.
- the flow rates for the 3 solutions were of the order of 120 ml/h for the three channels (alginate solution, sorbitol solution and cell+matrix suspension). At these flow rates, the composite solution forms a liquid jet which breaks up into droplets (about twice the size of the nozzle) due to spontaneous Rayleigh-Plateau instability.
- an alginate charging piece and a copper ring are connected to a high voltage generator (2000V).
- 2000V high voltage generator
- the composite droplets come into contact with the calcium collecting bath (at 100 mM)
- the outer layer of alginate gels Therefore, the internal cell/matrix solution remains trapped inside a closed, spherical and permeable microcompartment.
- the capsules are rinsed with medium (DMEM) to reduce the basal calcium concentration. Finally, they are transferred to a suspension culture medium.
- the passages of the “Invention” experimental arm correspond to re-encapsulations. These re-encapsulations are carried out by dissolving the alginate capsules using a short ReleSR rinse, followed by cell dissociation using TrypLE (trypsin-based dissociation enzyme, ThermoFischer) for 20 minutes at 37°C. Then, the cells obtained were treated according to an encapsulation protocol according to the invention. Results :
- the cells are counted using the cell counter (Nucleo Counter NC 3000) which makes it possible to establish the cell amplification factors during the culture (FIG. 3).
- the cumulative theoretical amplifications are 151 million, 71 million and 13,330 respectively for the experimental arms “Invention”, “2D culture” and “aggregate bioreactor”. These cumulative amplification factors correspond to an average number of apparent cell divisions in 28 days of 27.2; 26.2 and 13.7 respectively for the “Invention”, “2D culture” and “aggregate bioreactor” culture arms. It is observed that the final cellular amplification is higher in the “Invention” experimental arm compared to the other 2 experimental arms.
- Digital PCR analyzes were also carried out at each passage for all the experimental arms to detect the possible appearance of recurrent genetic mutations for the pluripotent stem cells (iCS-digital PSC 24 probes, StemGenomics).
- a PCR probe of this test made it possible to quantify over time the number of copies of the chromosomal region 20qll (FIG. 6).
- the average number of copies of the 20qll region increases over time in culture for the cells of the 3 experimental arms. This increase is greater and faster for the “2D culture” and “aggregate bioreactor” arms compared to the “Invention” arm.
- an average copy number lower than 2.2 corresponds to a percentage of mutant cells in the cell population lower than 20%.
- the digital PCR and SNP chip results are consistent and suggest that the selection of mutant cells during the 28 days of culture was at least 5 times lower in the "Invention” arm compared to the "2D culture” arms. and “Aggregate bioreactor” ( Figure 7).
- the encapsulated culture system (Invention), made it possible to achieve an average of 6.8 cell divisions per passage, while maintaining the percentage of mutant cells below 20% for each encapsulation, or by placing the 4 encapsulations end to end carried out.
- iPSC-GHE Gibco
- iPSC-AAVS1-GFP Coriell, Allen Institute for Cell Science
- the two lines are cultured independently in 2D.
- a karyotype analysis by digital PCR iCS-digital PSC 24 probes, StemGenomics
- iPSC-GHE line has two karyotype abnormalities with amplifications of the 7q and 20q chromosomal regions, while the iPSC-AAVSl-GFP line does not present any abnormality. over the 24 areas studied ( Figure 8).
- the use of the iPSC-GHE line exhibiting the amplifications of the 7q and 20q chromosomal regions is particularly relevant for testing the positive selection over time of a mutant clone in a population of cells in culture.
- the mutations by amplification of the chromosomal regions 7q and 20q confer a growth advantage on the mutated clone; the higher the selection pressure of the cropping system, the greater the risk of this clone being selected quickly and becoming the majority.
- the encapsulated culture system in agitated suspension "Invention” was compared to the standard culture system in the field of the production of pluripotent stem cells: culture in unprotected agitated suspension in the form of aggregates "Aggregate bioreactor", over a period of 21 days.
- the sample used to initiate the 2 experimental arms associated with the 2 culture systems in parallel corresponds to a mixture of the iPSC-AAVS1-GFP and iPSC-GHE lines.
- the mixture corresponds to 80% iPSC-AAVS1-GFP with 20% iPSC-GHE.
- the analyzes aim to follow the evolution of the frequency of the iPSC-GHE population containing the karyotype anomalies within the culture.
- the frequency of passages for each culture system scrupulously follows the optimal recommendations for each condition.
- the aggregate cultures are passaged every 5 days according to the supplier's recommendations (Minibio, ABLE ® Bioreactor Systems) and the encapsulated cultures are passaged every 7 days when the average capsular confluence is between 50 and 100%.
- All cultures are maintained in a cell culture incubator at 37°C and 5% C02.
- the 2 experimental arms “Aggregate Bioreactor” and “Invention” use 30ml mini bioreactors from Minibio, ABLE ® Bioreactor Systems; the stirring speed being constant, was set at 55 rotations per minute for the “Aggregate Bioreactor” condition and 100 rotations per minute for the “Invention” condition.
- the 2 experimental arms "aggregate bioreactor” and “Invention” use enzymatic dissociation for the successive passages: the aggregates on the one hand and the encapsulated cysts on the other hand, are dissociated by using a TryplE bath at 37°C . The cells and small groupings (clusters) of cells resulting from this dissociation are then used to seed a new culture.
- the cells are mixed with matrigel ® before injection into the central microfluidic pathway; cultivation in aggregates does not require it the use of extracellular matrix.
- the “aggregate bioreactor” culture is initiated with the same cell suspension used to inoculate the “Invention” culture but with an initial concentration of 175,000 cells per ml of medium, for a total of 10 ml of medium.
- the culture medium is completely changed on day 1 to remove the inhibitor rock treatment.
- Ethylene tetrafluoroethylene (ETFE,) tubes are connected to the three inlets of a 3D printed co-laminar flow microfluidic device.
- An extruded, polished glass microcapillary tip (about 100 ⁇ m nozzle diameter for most experiments or 150 ⁇ m nozzle diameter) is glued to the nozzle outlet for better flow control. flow.
- the cell/matrix suspension is loaded into the internal channel of the 3-way device, which is kept chilled with an in-line cooling system to prevent premature gelation of the Matrigel.
- a solution of sodium alginate (Novamatrix Pronova SLG100, 0.25 g at 2% in distilled water) is injected into the outer canal.
- a calcium-free solution (300mM Sorbitol, Sigma-Aldrich) is used in the intermediate channel of the co-extrusion chip and acts as a barrier against the diffusion of calcium.
- the flow rates for the 3 solutions were of the order of 120 ml/h for the three channels (alginate solution, sorbitol solution and cell+matrix suspension). At these flow rates, the composite solution forms a liquid jet which breaks up into droplets (about twice the size of the nozzle) due to spontaneous Rayleigh-Plateau instability.
- an alginate charging piece and a copper ring are connected to a high voltage generator (2000V).
- 2000V high voltage generator
- the composite droplets come into contact with the calcium collecting bath (at 100 mM)
- the outer layer of alginate gels Therefore, the internal cell/matrix solution remains trapped inside a closed microcompartment, spherical and permeable.
- the capsules are rinsed with medium (DMEM) to reduce the basal calcium concentration. Finally, they are transferred to a suspension culture medium.
- the passages of the “Invention” experimental arm correspond to re-encapsulations. These re-encapsulations are carried out by dissolving the alginate capsules using a short rinsing with ReleSR, followed by cell dissociation using Accutase. Then, the cells obtained were treated according to an encapsulation protocol according to the invention. Results :
- the cells are counted using the cell counter (Nucleo Counter NC 3000) which makes it possible to establish the cell amplification factors during the culture (FIG. 11).
- the cumulative theoretical amplifications are 55776699 million and 40481 respectively for the experimental arms “Invention” and “aggregate bioreactor”. These cumulative amplification factors correspond to an average number of apparent cell divisions in 21 days of 25.73 and 15.30 respectively for the “Invention” and “aggregate bioreactor” culture arms. It is observed that the final cellular amplification is higher in the “Invention” experimental arm compared to the “aggregate bioreactor” experimental arm.
- iPSC-GHE cells (GFP negative) contain amplifications of the 7q and 20q chromosomal regions that confer a selective advantage when culturing hiPSCs.
- the iPSC-AAVS1-GFP cells (GFP positive) do not contain any chromosomal abnormality.
- Analysis by flow cytometry at each passage for all the experimental arms made it possible to quantify over time the frequency of iPSC-GHE and iPSC-AAVS1-GFP cells ( Figure 13) and therefore by extrapolation of the number of copies of the regions chromosomes 7q and 20q.
- the frequency of the iPSC-GHE population (GFP negative) within the cell culture increases over time for the “aggregate bioreactor” arm but decreases over time for the “invention” arm.
- the encapsulated culture system (Invention), made it possible to achieve an average of 8.6 cell divisions per passage, while maintaining the percentage of mutant cells below 20% (lower than 3%) for each encapsulation, or by putting end to end the 4 encapsulations made.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Transplantation (AREA)
- Developmental Biology & Embryology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
L'invention concerne un microcompartiment cellulaire en trois dimensions ou un ensemble de microcompartiments cellulaires en trois dimensions comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de celluleset/ou au moins une assise de cellules, dont moins de 20% de la population totale de cellules présentes dans le microcompartiment ou dans l'ensemble de microcompartiments sont des cellules présentant au moins une mutation.L'invention a également pour objet un procédé de préparation d'un tel microcompartiment ou ensemble de microcompartiment.
Description
Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue après amplification et procédé de préparation
Domaine technique
L'invention concerne le maintien de l'intégrité génomique des cellules lors de leur division ex vivo sur plusieurs cycles de divisions cellulaires, en particulier dans le cadre d'une culture cellulaire en trois dimensions. Art antérieur
La culture de cellules ex vivo est un domaine qui suscite un intérêt croissant. Les cellules cultivées peuvent être de tout type. Il peut s'agir aussi bien de cellules différenciées avec différents phénotypes, de cellules progénitrices que de cellules souches. Une avancée importante dans les techniques de culture cellulaire est l'introduction de systèmes de culture tridimensionnels. Les cultures en trois dimensions sont en effet plus proches des systèmes naturels in vivo, et peuvent être utilisées pour de nombreuses applications en particulier dans le développement de thérapies.
Toutefois, la thérapie cellulaire et l'ingénierie tissulaire sont conditionnées par la disponibilité de quantités industrielles de cellules qui nécessite d'avoir recours à une multiplication importante du nombre de cellules et donc un nombre élevé de divisions sur un temps court. Dans la plupart des systèmes de culture cellulaire actuels, cette multiplication entraîne l'apparition et la sélection de mutations, en particulier de mutations fonctionnelles délétères, génomiques et/ou épigénétiques à chaque division sur de nombreuses cellules pendant l'expansion de la culture, compromettant ainsi leur utilisation notamment en thérapie. Les mutations peuvent être des mutations ponctuelles de la séquence génétique (codantes ou non codantes, silencieuses ou non en termes de séquence peptidique), des variants structuraux, des modifications épigénétiques, voir des modifications de l'ADN mitochondrial. Seules les cellules mutantes porteuses d'une ou plusieurs mutations fonctionnelles ou potentiellement fonctionnelles sont problématiques pour l'utilisation des cellules en thérapie, c'est-à-dire toute modification génétique ou épigénétique transmissible qui confère un gain ou perte de fonction ou perte de fonction potentielle aux cellules cultivées. Il peut s'agir notamment d'un avantage de croissance, d'une diminution de la susceptibilité à la mort cellulaire, d'une modification des gènes impliqués dans la tumorigenèse ou la répression de la tumorigenèse. Les mutations les plus impactantes sont celles permettant une expansion
clonale des cellules qui deviennent dominantes en culture.
Des exemples de mutations génétiques particulièrement récurrentes sont décrites notamment dans Y. Avior, K. Eggan, N. Benvenisty, Cancer-Related Mutations Identified in Primed and Naïve Human Pluripotent Stem Cells. Cell Stem Cell. 25, 456-461 (2019). Parmi les plus connues on peut citer en particulier les mutations du gène P53 (F. T. Merkle, S. Ghosh, N. Kamitaki, J. Mitchell, Y. Avior, C. Mello, S. Kashin, S. Mekhoubad, D. Ilic, M. Charlton, G. Saphier,
R. E. Handsaker, G. Genovese, S. Bar, N. Benvenisty, S. A. McCarroll, K. Eggan, Human pluripotent stem cells recurrently acquire and expand dominant négative P53 mutations. Nature. 545, 229-233 (2017)), et les mutations par amplification de la région chromosomique 20qll (N. Lefort, M. Feyeux, C. Bas, O. Féraud, A. Bennaceur-Griscelli, G. Tachdjian, M. Peschanski, A. L. Perrier, Human embryonic stem cells reveal récurrent genomic instability at 20qll.21. Nature Biotechnology. 26, 1364-1366 (2008)).
Le problème de la stabilité et l'intégrité génétique des cellules en culture est connu et il a en particulier été largement étudié pour les cellules souches pluripotentes, comme par exemple :
S. Attwood, M. Edel, iPS-Cell Technology and the Problem of Genetic Instability— Can It Ever Be Safe for Clinical Use? Journal of Clinical Medicine. 8, 288 (2019); ou encore P. Andrews, Human pluripotent stem cells: genetic instability or stability? Regenerative medicine, vol. 16, No 2, 2 mar 2021. On sait aussi que la mutagenèse est un problème très présent pour la culture des cellules souches dès leur reprogrammation tel que décrit dans Ji, S. Ng, V. Sharma, D. Neculai, S. Hussein, M. Sam, Q. Trinh, G. M. Church, J. D. McPherson, A. Nagy, N. N. Batada, Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells. 30, 435-440 (2012), ou encore dans V. Turinetto, L. Orlando, C. Giachino, Induced pluripotent stem cells: Advances in the quest for genetic stability during reprogramming process. International Journal of Molecular Sciences. 18 (2017), doi:10.3390/ijmsl8091952.
Cette instabilité génétique nuit fortement au développement des thérapies cellulaires, et en particulier aux applications cliniques des cellules souches (Yamanaka, Pluripotent Stem Cell- Based Cell Therapy-Promise and Challenges. Cell stem cell. 27, 523-531 (2020); S. E. Peterson, J. F. Loring, Genomic instability in pluripotent stem cells: Implications for clinical applications. Journal ofBiological Chemistry. 289, 4578-4584 (2014); K. Garber, RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nature biotechnology. 33, 890-891 (2015)).
Il existe donc un besoin important pour une solution permettant le maintien de l'intégrité
génétique des cellules en culture, en particulier pour la production à grande échelle de thérapies cellulaire.
L'objectif de l'invention est par conséquent de répondre à l'ensemble de ces besoins et de pallier les inconvénients et limites de l'art antérieur.
Résumé de l'invention
En travaillant sur le développement de microcompartiments cellulaires pour la culture de cellules en 3D, les inventeurs ont mis au point un système permettant une culture de masse de cellules tout en conservant leur intégrité génomique.
A cet effet l'invention a pour objet un microcompartiment cellulaire en trois dimensions comprenant au moins une couche externe en hydrogel et à l'intérieurde ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, dans lequel moins de 20% de la population totale de cellules présentes dans le microcompartiment sont des cellules présentant au moins une mutation, préférentiellement entre 0 et 10%, encore plus préférentiellement entre 0 et 5%, préférentiellement entre 0 et 3%, même après plusieurs divisions cellulaires.
Selon un autre objet, l'invention concerne un ensemble d'au moins deux microcompartiments cellulaires en trois dimensions, préférentiellement en suspension liquide, chaque compartiment comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, dans lesquels moins de 20% de la population totale de cellules présentes dans tous les microcompartiments sont des cellules présentant au moins une mutation, préférentiellement entre 0 et 10%, encore plus préférentiellement entre 0 et 5%, notamment entre 0 et 2%. Avantageusement, ce taux de cellules mutantes est inférieur à celui des systèmes de cultures cellulaires existants. Par exemple, certaines études suggèrent qu'une mutation inactivatrice du gène P53 confère, dans un système de culture de cellules souches conventionnel 2D, un avantage de sélection jusqu'à xl,9 par passage (iPS-Cell Technology and the Problem of Genetic Instability— Can It Ever Be Safe for Clinical Use ? Attwood & Edel) + Merkle, F.T. ; Ghosh, S.; Kamitaki, N.; Mitchell, J.; Avior, Y.; Mello, C.; Kashin, S.; Mekhoubad, S.; Ilic, D.; Charlton, M.; et al. Human pluripotent stem cells recurrently acquire and expand dominant négative P53 mutations. Nature 2017, 545, 229-233.). Ceci implique une probabilité de fixation de 97% après émergence de cette mutation (Haldane, J. B. S. A Mathematical Theory of Natural and
Artificial Sélection, Part V: Sélection and Mutation. Math. Proc. Camb. Philos. Soc. 1927, 23, 838-844.)
Le maintien de l'intégrité génomique des cellules permet d'utiliser les microcompartiments avec les cultures cellulaires selon l'invention pour différentes applications et notamment dans la prévention et/ou le traitement de pathologies.
Les microcompartiments cellulaires selon l'invention peuvent être obtenus en particulier par la mise en œuvre d'un procédé de préparation spécifique comprenant les étapes suivantes :
- (a) préparer une suspension de cellules comprenant des cellules uniques et/ou au moins un amas (« cluster ») de cellules dans un milieu isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose,
- (b) encapsuler la suspension de cellules dans une couche d'hydrogel ;
- (c) cultiver les microcompartiments obtenus dans une solution isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose ;
- (d) préférentiellement rincer les microcompartiments, de manière à éliminer l'inhibiteur de l'apoptose ;
- (e) cultiver les microcompartiments pendant au moins deux cycles de division cellulaire (amplification), et
- (f) optionnellement récupérer les microcompartiments cellulaires obtenus, le procédé étant caractérisé en ce que la totalité des cellules encapsulées initialement à l'étape (b) (au moment de l'encapsulation) représentent un volume inférieur à 50% du volume du microcompartiment dans lequel elles sont encapsulées.
Ce procédé permet d'obtenir des microcompartiments selon l'invention avec une population de cellules dont l'intégrité génomique est maintenue et stabilisée.
L'invention vise aussi l'utilisation d'un microcompartiment cellulaire et/ou d'un tel procédé pour maintenir l'intégrité génomique de cellules lors de leur amplification.
D'autres caractéristiques et avantages ressortiront de la description détaillée de l'invention et des exemples qui vont suivre.
Brève description des figures
- Figure 1 : la figure 1 est une vue d'ensemble des trois bras expérimentaux « culture 2D » « bioréacteur agrégats » et « Invention » ainsi que la numérotation et chronologie des passages effectués (indiqués dans les rectangles J4 = jour 4, J8 = jour 8, etc....). Toutes les
cultures sont arrêtées au jour final J28 pour comparaison génétique détaillée.
- Figure 2a : la figure 2a est une image de microscopie a contraste de phase montrant les résultats du bras expérimental « culture 2D » au jour final 28 avant échantillonnage finale. Barre d'échelle 500pm.
- Figure 2b : la figure 2b est une image de microscopie a contraste de phase montrant les résultats du bras expérimental « bioréacteur agrégats » au jour final 28 avant échantillonnage finale. Les agrégats représentés ont été prélevés de leur culture en suspension et déposés temporairement dans une boite de pétri pour réaliser l'observation microscopique. Barre d'échelle 500pm.
- Figure 2c : la figure 2c est une image de microscopie a contraste de phase montrant les résultats du bras expérimental « Invention » au jour final 28 avant échantillonnage finale. Les microcompartiments représentés ont été prélevés de leur culture en suspension et déposés temporairement dans une boite de pétri pour réaliser l'observation microscopique. Barre d'échelle 500pm.
- Figure 3 : la figure 3 est une représentation de la croissance apparentes des cellules au cours du temps en culture calculé par comptage des cellules avant et après chaque passage. Le facteur d'amplification théorique cumulée est représenté en fonction du temps ; l'axe des ordonnée (amplification) est représentée en échelle logarithmique. Les points de données représentés correspondent à l'ensemble des comptages qui ont été réalisés au moment des passages.
- Figure 4 : la figure 4 est une représentation des résultats de l'évaluation phénotypique des cellules souches par cytométrie en flux. Les cellules dissociées sont fixées et marquées pour les marqueurs de pluripotences OCT4 et NANOG. Le pourcentage de cellules doublement positives pour ces 2 marqueurs lors des passages successifs pendant 28 jours est représenté ici (Moyenne et écart type).
- Figure 5 : la figure 5 est un caryotype haute résolution par puce SNP Cytoscan HD array pour analyse comparative de l'analyse de l'échantillon initial jour 0 et des 3 bras expérimentaux « culture 2D », « Bioréacteur agrégats » et « Invention » à 28 jours. CytoScan® HD Array Affymetrix, vendu par la société thermo fisher, quantifie le nombre de copie moyen par cellules pour 2.67 millions de sondes réparties sur l'ensemble du génome. Les zones entourées sont centrées sur le chromosome 20.
- Figure 6 : la figure 6 représente les résultats de l'évaluation par PCR digitale du nombre de
copie moyen de la région chromosomique 20qll au cours des 28 jours de culture pour les 3 bras expérimentaux (Analyse réalisé avec le test 24 sondes ddPCR iPS de la société Stemgenomics). Agauche : nombre de copie 20qll en fonction du nombre de jours en culture. A droite : nombre de copie 20qll rapport à l'amplification théorique cumulée au cours du temps. Les points de données correspondent aux échantillonnages réalisés lors des différents passages : Carrés = « bioréacteur agrégats », Ronds = « culture 2D » et Triangles = « Invention ». Les courbes associées correspondent aux régressions correspondantes. A noter que les écarts types pour ces mesures sont en moyenne de 0.12 (nombre de copie 20qll), les étoiles pointent les mesures qui sont significativement augmentées.
- Figure 7 : la figure 7 représente la synthèse des pourcentages de cellules mutées au cours de 28 jours de culture pour les bras « culture 2D » « bioréacteur agrégats » et « Invention » pour l'exemple 1.
- Figure 8 : la figure 8 représente le caryotype, obtenu par PCR digitale, des deux lignées cellulaires (GHE et AAVS1_GFP) utilisées à l'exemple 2.
- Figure 9 : la figure 9 est une vue d'ensemble des deux bras expérimentaux « bioréacteur agrégats » et « Invention » ainsi que la numérotation et chronologie des passages effectués (indiqués dans les rectangles d4 = jour 4, d8 = jour 8, etc....).
- Figure 10 : les figures 10A et 10B sont des images de microscopie à contraste de phase montrant les résultats des bras expérimentaux A : « bioréacteur agrégats » et B : « Invention » au jour 19 pour « bioréacteur agrégats » et au jour 21 pour « Invention ». Les agrégats ainsi que les microcompartiments représentés ont été prélevés de leur culture en suspension et déposés temporairement dans une boite de pétri pour réaliser l'observation microscopique. Barre d'échelle 500pm.
- Figure 11 : la figure 11 est une représentation de la croissance apparente des cellules au cours du temps en culture calculée par comptage des cellules avant et après chaque passage. Le facteur d'amplification théorique cumulée est représenté en fonction du temps ; l'axe des ordonnée (amplification) est représentée en échelle logarithmique. Les points de données représentés correspondent à l'ensemble des comptages qui ont été réalisés au moment des passages.
- Figure 12 : la figure 12 est une représentation des résultats de l'évaluation phénotypique des cellules souches par cytométrie en flux. Les cellules dissociées sont fixées et marquées pour les marqueurs de pluripotences OCT4 et NANOG. Le pourcentage de cellules doublement
positives pour ces 2 marqueurs lors des passages successifs pendant 28 jours est représenté ici (Moyenne et écart type).
- Figure 13 :1a figure 13 représente les résultats de l'évaluation par PCR digitale du pourcentage de cellules GFP- (iPSC-GHE) et GPFP+ (iPSC-AAVSl) au cours des 21 jours de culture pour les 2 bras expérimentaux. A gauche : pourcentage de cellules GFP- et GFP+ en fonction du nombre de jours en culture. A droite : pourcentage de cellules GFP- et GFP+ rapport à l'amplification théorique cumulée au cours du temps. Les points de données correspondent aux échantillonnages réalisés lors des différents passages : Carrés = « bioréacteur agrégats » et Triangles = « Invention ».
- Figure 14 : la figure 14 représente les résultats de l'évaluation par PCR digitale du nombre de copies moyen des régions chromosomiques 7q et 20q au cours des 28 jours de culture pour les 2 bras expérimentaux (Analyse réalisé avec le test 24 sondes ddPCR iPS de la société Stemgenomics). A gauche : nombre de copie 7q et 20q en fonction du nombre de jours en culture. A droite : nombre de copie 7q et 20q rapport à l'amplification théorique cumulée au cours du temps. Les points de données correspondent aux échantillonnages réalisés lors des différents passages : Carrés = « bioréacteur agrégats » et Triangles = « Invention ».
- Figure 15 : la figure 15 représente la synthèse des pourcentages de cellules mutées au cours de 28 jours de culture pour les bras « bioréacteur agrégats » et « Invention » pour l'exemple
2.
Description détaillée de l'invention
Définitions
Par « alginate » au sens de l'invention, on entend des polysaccharides linéaires formés à partir de b-D-mannuronate et a-L-guluronate, des sels et des dérivés de ceux-ci.
Par « capsule en hydrogel » au sens de l'invention, on entend une structure tridimensionnelle formée à partir d'une matrice de chaînes de polymères, gonflée par un liquide et préférentiellement de l'eau.
Par cellule « exprimant un gène » au sens de l'invention, on entend une cellule qui contient au moins 5 fois plus de copies de l'ARN transcrit à partir de la séquence d'ADN du gène concerné en comparaison d'une cellule pluripotente, préférentiellement 10 fois plus de copies, préférentiellement 20 fois plus de copies, préférentiellement 100 fois plus de copies.
Par cellules « différenciées » au sens de l'invention on entend des cellules qui présentent un
phénotype particulier, par opposition à des cellules souches pluripotentes qui ne sont pas différenciées ou des cellules progénitrices qui sont en cours de différenciation.
Par « cellules humaines » au sens de l'invention on entend des cellules humaines ou des cellules de mammifères non humains immunologiquement humanisées. Même lorsque cela n'est pas précisé, les cellules, les cellules souches, les cellules progénitrices et les tissus selon l'invention sont constitués ou sont obtenus à partir de cellules humaines ou à partir de cellules de mammifères non humains immunologiquement humanisées.
Par « cellule mutante » au sens de l'invention, on entend une cellule porteuse d'au moins une mutation.
Par « cellule progénitrice » au sens de l'invention, on entend une cellule souche déjà engagée dans la différenciation cellulaire mais pas encore différenciée.
Par « cellule souche embryonnaire » au sens de l'invention on entend une cellule souche pluripotente de cellule dérivée de la masse cellulaire interne du blastocyste. La pluripotence des cellules souches embryonnaires peut être évaluée par la présence de marqueurs tels que les facteurs de transcription OCT4, NANOG et SOX2 et des marqueurs de surface comme SSEA3/4, Tra-1-60 et Tra-1-81. Les cellules souches embryonnaires utilisées dans le cadre de l'invention sont obtenues sans destruction de l'embryon dont elles sont issues, par exemple à l'aide de la technique décrite dans Chang et al. (Cell Stem Cell, 2008, 2(2) : 113-117). Eventuellement les cellules souches embryonnaires d'êtres humains peuvent être exclues de l'invention et dans ce cas l'objet de l'invention exclue les cellules souches embryonnaires d'êtres humains.
Par « cellule souche pluripotente » ou « cellule pluripotente » au sens de l'invention, on entend une cellule qui a la capacité de former tous les tissus présents dans l'organisme d'origine entier, sans pour autant pouvoir former un organisme entier en tant que tel. Les cellules souches pluripotentes humaines peuvent être appelées hPSC dans la présente demande. Il peut s'agir en particulier de cellules souches pluripotentes induites (iPSC ou hiPSC pour les cellules souches pluripotentes induites humaines), de cellules souches embryonnaires ou de cellules MUSE (pour « Multilineage-differentiating Stress Enduring »). Par « cellule souche pluripotente induite » au sens de l'invention on entend une cellule souche pluripotente induite à la pluripotence par reprogrammation génétique de cellules somatiques différenciées. Ces cellules sont notamment positives pour les marqueurs de pluripotence, comme la coloration à la phosphatase alcaline et l'expression des protéines NANOG, SOX2,
OCT4 et SSEA3/4. Des exemples de procédés permettant l'obtention de cellules souches pluripotentes induites sont décrits dans les articles Yu et al. (Science 2007, 318 (5858) : 1917- 1920), Takahashi et al (Cell, 207, 131(5) : 861-872) et Nakagawa et al (Nat Biotechnol, 2008, 26(1) : 101-106).
Par « diamètre de Feret » d'un microcompartiment selon l'invention, on entend la distance « d » comprise entre deux tangentes dudit microcompartiment, ces deux tangentes étant parallèles, de telle sorte que l'ensemble de la projection dudit microcompartiment soit compris entre ces deux tangentes parallèles.
Par « épaisseur variable » de la couche interne de cellules humaines en cours de différenciation cellulaire, on entend au sens de l'invention le fait que la couche interne dans un même microcompartiment, n'a pas la même épaisseur partout.
Par « microcompartiment » ou « capsule » au sens de l'invention, on entend une structure tridimensionnelle partiellement ou totalement close, contenant plusieurs cellules.
Par « milieu de culture convectif » au sens de l'invention on entend un milieu de culture animé par des mouvements internes.
Par « mutation » au sens de l'invention, on entend une mutation génétique ou épigénétique, préférentiellement une mutation fonctionnelle. Il peut s'agir en particulier d'une modification ponctuelle de la séquence génétique, d'un variant structurel, d'une modification épigénétique, ou d'une modification de l'ADN mitochondrial. Il peut s'agir d'une mutation par amplification d'une région chromosomique, telle que par exemple une mutation par amplification de la région chromosomique 20q, notamment 20qll, ou encore 7q.
Par « mutation fonctionnelle » au sens de l'invention, on entend une modification génétique ou épigénétique transmissible qui confère un gain ou perte de fonction ou perte de fonction potentielle à cellule mutante concernée. Il s'agit préférentiellement d'une mutation entraînant une modification du phénotype de la cellule mutante concernée. Très préférentiellement il s'agit d'un changement de la séquence du génome et/ou de l'épigénome qui altère le potentiel thérapeutique d'une population de cellules, soit en augmentant le risque associé à la thérapie produite soit en diminuant le bénéfice apporté par la thérapie produite.
Par « plus grande dimension » d'un microcompartiment ou d'un amas de cellule ou d'une couche de cellules ou d'une assise de cellules au sens de l'invention, on entend la valeur du plus grand diamètre de Feret dudit microcompartiment.
Par « plus petite dimension » d'un microcompartiment ou d'un amas de cellule ou d'une couche de cellules ou d'une assise de cellules au sens de l'invention, on entend la valeur du plus petit diamètre de Feret dudit microcompartiment.
Par « tissu » ou « tissu biologique » au sens de l'invention, on entend le sens commun de tissu en biologie c'est-à-dire le niveau d'organisation intermédiaire entre la cellule et l'organe. Un tissu est un ensemble de cellules semblables et de même origine (le plus souvent issus d'un lignage cellulaire commun, bien qu'elles puissent trouver leur origine par association de lignages cellulaires distincts), regroupées en amas, réseau ou faisceau (fibre). Un tissu forme un ensemble fonctionnel, c'est-à-dire que ses cellules concourent à une même fonction. Les tissus biologiques se régénèrent régulièrement et sont assemblés entre eux pour former des organes.
Par« lumière » ou « lumen » au sens de l'invention, on entend un volume de solution aqueuse topologiquement entouré de cellules. Préférentiellement son contenu n'est pas en équilibre diffusif avec le volume de liquide convectif présent à l'extérieur du microcompartiment. Microcompartiments cellulaires L'invention a donc pour objet un microcompartiment cellulaire en trois dimensions comprenant au moins une couche externe en hydrogel et à l'intérieurde ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, dans lequel moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation.
Le microcompartiment comprend une couche externe en hydrogel. Préférentiellement l'hydrogel utilisé est biocompatible, c'est-à-dire qu'il n'est pas toxique pour les cellules. La couche d'hydrogel doit permettre la diffusion d'oxygène et de nutriment pour alimenter les cellules contenues dans le microcompartiment et permettre leur survie. Selon un mode de réalisation, la couche externe d'hydrogel comprend au moins de l'alginate. Elle peut être constituée exclusivement d'alginate. L'alginate peut être en particulier un alginate de sodium, composé à 80% d'a-L-guluronate et 20% de b-D-mannuronate, avec une masse moléculaire moyenne de 100 à 400 kDa et une concentration totale comprise entre 0,5 et 5% en masse. La couche en hydrogel est dépourvue de cellules.
La couche d'hydrogel permet notamment de protéger les cellules du milieu extérieur et de limiter la prolifération incontrôlée des cellules.
Le microcompartiment selon l'invention comprend au moins une couche de cellules et/ou au
moins une assise de cellules. Cette ou ces couche(s) et/ou assise(s) de cellules est (sont) organisée(s) en trois dimensions dans le microcompartiment.
Le microcompartiment peut comprendre notamment :
- une ou plusieurs couches de cellules et/ou une ou plusieurs assises de cellules, organisée(s) en trois dimensions, ou
- une ou plusieurs couches de cellules et/ou une ou plusieurs assises de cellules organisée(s) en trois dimensions, et des cellules en suspension dans le microcompartiment.
Les cellules présentes dans le microcompartiment peuvent être tout type de cellules. Préférentiellement les cellules sont des cellules humaines ou animales.
Dans un mode de réalisation particulier, le microcompartiment comprend des cellules souches pluripotentes. Une cellule souche pluripotente, ou cellule pluripotente, s'entend d'une cellule qui a la capacité de former tous les tissus présents dans l'organisme d'origine entier, sans pour autant pouvoir former un organisme entier en tant que tel. Les cellules souches pluripotentes peuvent être en particulier des cellules souches pluripotentes induites (IPS), des cellules MUSE (« Multilineage-differentiating Stress Enduring ») que l'on trouve dans la peau et la moelle osseuse des mammifères adultes, ou des cellules souches embryonnaires (ES).
Selon une variante particulièrement adaptée de l'invention, le microcompartiment selon l'invention comprend des cellules souches pluripotentes induites humaines ou animales. Dans un autre mode de réalisation particulier, le microcompartiment selon l'invention comprend des cellules multipotentes humaines ou animales et/ou des cellules progénitrices humaines ou animales issues de ces cellules multipotentes. Les cellules multipotentes et/ou progénitrices ont préférentiellement été obtenues à partir de cellules souches pluripotentes, en particulier de cellules souches pluripotentes humaines, ou éventuellement à partir de cellules humaines non pluripotentes dont le profil transcriptionnel a été modifié artificiellement pour rejoindre celui de cellules multipotentes et/ou de progéniteurs particuliers, typiquement par expression forcée de facteurs de transcriptions spécifiques du phénotype cellulaire cible. Préférentiellement, les cellules multipotentes et/ou progénitrices ont été obtenues à partir de cellules souches pluripotentes après mise en contact avec une solution capable d'initier la différenciation desdites cellules souches.
Selon une autre variante, le microcompartiment selon l'invention comprend des cellules différenciées humaines ou animales. Les cellules différenciées ont préférentiellement été obtenues à partir de cellules souches pluripotentes ou de cellules progénitrices, en particulier
de cellules souches pluripotentes humaines ou de cellules progénitrices humaines, ou éventuellement à partir de cellules humaines non pluripotentes dont le profil transcriptionnel a été modifié artificiellement pour rejoindre celui de cellules différenciées particulières, typiquement par expression forcée de facteurs de transcriptions spécifiques du phénotype cellulaire cible. Préférentiellement, les cellules différenciées ont été obtenues à partir de cellules souches pluripotentes ou multipotentes ou progénitrices après mise en contact avec une solution capable d'initier la différenciation desdites cellules souches. Selon une variante, le contenu cellulaire du microcompartiment comprend des identités cellulaires homogènes ou mixtes.
Les cellules différenciées peuvent en particulier se présenter sous forme d'un tissu ou micro tissu en trois dimensions ou sous forme de plusieurs tissus ou micro-tissus dans le microcompartiment. Il peut s'agir d'un tissu ou micro-tissu compacté.
Le microcompartiment selon l'invention peut comprendre plusieurs types de cellules. En particulier un microcompartiment selon l'invention peut comprendre par exemple des cellules souches induites à la pluripotence et/ou des cellules multipotentes et/ou des cellules progénitrices et/ou des cellules différenciées.
Si les cellules encapsulées dans le microcompartiment sont destinées à être utilisées en thérapie cellulaire chez l'être humain, les cellules peuvent être immuno-compatibles avec la personne destinée à les recevoir pour éviter tout risque de rejet.
Les cellules présentes dans le microcompartiment sont porteuses de peu, voire d'aucune mutation fonctionnelle. Selon l'invention moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation, en particulier au moins une mutation fonctionnelle, génétique ou épigénétique.
L'invention vise en particulier les microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation fonctionnelle, préférentiellement les microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation entraînant une modification du phénotype de la cellule mutante concernée.
L'invention vise également les microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation permettant une expansion clonale des cellules qui devient dominante en culture.
Selon une variante particulièrement adaptée, l'invention a pour objet un microcompartiment
dans lequel moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation choisie parmi les mutations oncogènes. Au moins une mutation est une mutation oncogène.
Selon un mode de réalisation, l'invention a pour objet un microcompartiment dans lequel moins de 20% de la population totale de cellules présentes sont des cellules présentant au moins une mutation d'un gène et/ou une mutation par amplification d'une région chromosomique.
Dans un mode de réalisation de l'invention, moins de 20% de la population totale de cellules présentes dans le microcompartiment sont des cellules présentant au moins une mutation du gène P53 et/ou une amplification de la région chromosomique 20q et/ou 7q (mutation par amplification de la région chromosomique 20q et/ou 7q)., en particulier une amplification de la région chromosomique 20qll (mutation par amplification de la région chromosomique 20qll).
Préférentiellement, les cellules présentant au moins une mutation selon l'un des modes de réalisation de l'invention, représentent entre 0 et 15% de la population totale de cellules présentes dans le microcompartiment, notamment entre 0 et 14%, entre 0 et 12%, en particulier entre 0 et 10%, encore plus préférentiellement entre 0 et 8%, entre 0 et 5%, entre 0 et 2%.
Le pourcentage de cellules mutantes parmi une population de cellules, peut être mesurée par différentes méthodes connues de l'homme du métier. Pour la détection de mutations ponctuelles des méthodes de séquençage à forte profondeur de lecture sont préférées (Whole Genome sequencing, Exome sequencing, Amplicon, ...). Pour la détection des variants structuraux des méthodes à haute résolutions sont préférées (High resolution SNP array, optical genome mapping bionano, PCR digitale...). Pour la détection des variants épigénétiques plusieurs outils peuvent être envisagés (RRBS méthylation arrays, bisulfite sequencing/pyrosequencing, ...).
Avantageusement, les microcompartiments selon l'invention présentent un taux très faible de cellules mutantes, et ce après plusieurs cycles de division cellulaire. Les cellules selon l'invention sont en effet des cellules obtenues par amplification, à partir d'au moins une cellule. En effet, les cellules présentes dans le microcompartiment selon l'invention ont été obtenues après au moins deux cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins une cellule.
De façon préférée, les cellules présentes dans le microcompartiment selon l'invention ont été obtenues après au moins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins 1 cellule, préférentiellement entre 1 et 5, entre 1 et 10, entre 1 et 15, entre 1 et 20, entre 1 et 30, entre 1 et 40, entre 1 et 50, entre 1 et 60, entre 1 et 100 cellules. Par exemple, les cellules présentes dans le microcompartiment ont été obtenues après au moins six cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins 1 cellule, préférentiellement entre 1 et 50 cellules.
Préférentiellement le microcompartiment est obtenu après au moins 2 passages après l'encapsulation, plus préférentiellement au moins 3, 4, 5, 6, 7, 8, 9 ou 10 passages. Chaque passage peut durer par exemple entre 2 et 15 jours, notamment entre 3 et 10 jours.
De façon préférée le microcompartiment est obtenu après au moins une ré-encapsulation, plus préférentiellement entre 1 et 14 ré-encapsulations, notamment entre 2 et 7 ré encapsulations. Très préférentiellement une ré-encapsulation correspond à un nouveau passage et chaque cycle d'encapsulation correspond à un passage.
Préférentiellement la totalité des cellules encapsulées initialement dans le microcompartiment avant le premier cycle de division cellulaire représente un volume inférieur à 50% du volume du microcompartiment dans lequel elles sont encapsulées, plus préférentiellement inférieur à 40%, 30%, 20%, 10% du volume du microcompartiment dans lequel elles sont encapsulées.
Ainsi, selon l'un mode de réalisation, les cellules présentes dans le microcompartiment selon l'invention ont été obtenues après au moins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles de division cellulaire, après l'encapsulation dans une couche externe d'hydrogel de cellule(s) représentant un volume inférieur à 50% du volume du microcompartiment dans lequel elles sont encapsulées, plus préférentiellement inférieur à 40%, 30%, 20%, 10% du volume du microcompartiment dans lequel elles sont encapsulées.
Préférentiellement, dans le microcompartiment selon l'invention, les cellules représentent plus de 50% en volume par rapport au volume du microcompartiment, encore plus préférentiellement plus de 60%, 70%, 75%, 80%, 85%, 90% en volume par rapport au volume du microcompartiment.
Le microcompartiment selon l'invention comprend plusieurs cellules, préférentiellement au moins 20 cellules, encore plus préférentiellement au moins 100, au moins 500, au moins 1000,
au moins 10000.
En plus de la couche externe et des cellules, le microcompartiment selon l'invention peut comprendre d'autres éléments, en particulier :
- un milieu de culture, et/ou
- au moins une couche intermédiaire de solution aqueuse isotonique et/ou des éléments de matrice extracellulaire.
Le milieu de culture est un milieu adapté aux cellules présentes dans le microcompartiment selon les connaissances de l'homme du métier.
La couche intermédiaire de solution aqueuse isotonique contient préférentiellement des éléments de matrice extracellulaire, telles que en particulier des séquences peptidiques ou peptidomimétiques capables de se lier aux intégrines. Par solution aqueuse isotonique on entend une solution aqueuse présentant une osmolarité comprise entre 200 et 400 mOsm/L. Cette couche est préférentiellement située entre (a) la ou les couche(s) de cellules et/ou d'assise(s) de cellules, et (b) la couche externe en hydrogel.
La couche intermédiaire peut être constituée d'éléments qui ont été ajoutés lors de la fabrication du microcompartiment et/ou d'éléments ajoutés dans le microcompartiment et/ou d'éléments sécrétés ou induits par les autres constituants du microcompartiment.
La couche intermédiaire peut notamment comprendre ou être constituée par une matrice extracellulaire et/ou un milieu de culture. Si elle comprend de la matrice extracellulaire, il peut s'agir de matrice extracellulaire sécrétée par des cellules de la couche interne et/ou par de la matrice extracellulaire ajoutée au moment de la préparation/fabrication du microcompartiment.
La couche intermédiaire comprend préférentiellement un mélange de protéines et de composés extracellulaires nécessaires à la culture des cellules en cours de différenciation. Préférentiellement, la couche intermédiaire comprend des protéines structurelles, telles que du collagène, des laminines, de l'entactine, de la vitronectine, ainsi que des facteurs de croissance, tels que du TGF-béta et/ou de l'EGF. Selon une variante, la couche intermédiaire peut consister en ou comprendre du Matrigel® et/ou de la Geltrex® et/ou une matrice type hydrogel d'origine végétale comme des alginates modifiés ou d'origine synthétique ou de copolymère de poly(N-isopropylacrylamide) et de poly(éthylène glycol) (PNIPAAm-PEG) type Mebiol®.
Selon une variante, la couche intermédiaire peut former un gel.
Au niveau de la surface de la couche intermédiaire en contact avec la couche interne de cellules humaines en cours de différenciation, la couche intermédiaire peut éventuellement contenir une ou plusieurs cellules.
Préférentiellement la couche intermédiaire présente un module d'Young compris entre 0,05 et 3 kDa. Le module d'Young peut être mesuré par toute méthode connue de l'homme du métier, en particulier par mesure de la rhéologie de gels de même composition que la couche intermédiaire ou bien par AFM (microscopie à force atomique).
Une couche intermédiaire de solution aqueuse isotonique et/ou comprenant des éléments de matrice extracellulaire, préférentiellement une couche intermédiaire de matrice extracellulaire, avec de telles valeurs de module d'Young permettent d'améliorer le maintien du phénotype cellulaire et l'intégrité génomique des cellules contenues dans cette couche intermédiaire pendant les divisions cellulaires.
Selon un mode de réalisation particulier de l'invention, le microcompartiment comprend également au moins une lumière ou lumen. De façon préférée, le microcompartiment comprend une lumière interne. Le microcompartiment selon l'invention peut aussi éventuellement comprendre plusieurs lumières. La ou les lumières peuvent contenir un liquide, notamment du milieu de culture et/ou un liquide sécrété par les cellules. Avantageusement la présence de cette partie creuse permet aux cellules de disposer d'un petit volume diffusif dont elles peuvent contrôler la composition, favorisant une communication cellulaire.
Dans une variante de l'invention, le microcompartiment comprend successivement, organisées autour d'une lumière :
- au moins une couche de cellules et/ou au moins une assise de cellules, préférentiellement des cellules épithéliales, en particulier des cellules souches et notamment des souches pluripotentes induites humaines ou animales.
- une couche intermédiaire de solution aqueuse isotonique et/ou des éléments de matrice extracellulaire, préférentiellement une couche de matrice extracellulaire ;
- une couche externe en hydrogel.
Dans cette variante, la couche interne de cellules au sein du microcompartiment selon l'invention est creuse. Cet agencement tridimensionnel en monocouche ou assise épithélial sphérique entourant un lumen central peut être également appelé un cyste. La ou les lumières est (sont) préférentiellement générée(s), au moment de la formation du cyste, par les cellules
qui se multiplient et se développent sur la couche de matrice extracellulaire.
La conformation sous forme de cyste permet de réduire les pressions subies par les cellules souches par rapport aux cultures 2D ou en agrégats. Cette configuration permet de diminuer la mortalité cellulaire, d'augmenté le facteur d'amplification de la culture. Par conséquence cela permet de réduire le nombre de passages et dissociation nécessaire ; de réduire le temps en culture nécessaire pour atteindre le nombre de cellules final nécessaire. Collectivement ces améliorations participent aussi au maintien de l'intégrité génétique des cellules souches dans les microcompartiments.
Le microcompartiment cellulaire selon l'invention est clos ou partiellement clos, c'est à dire que la couche externe est close ou partiellement close. Préférentiellement le microcompartiment est clos.
Le microcompartiment selon l'invention peut se présenter sous toute forme en trois dimensions, c'est-à-dire qu'il peut avoir la forme de tout objet de l'espace. Le microcompartiment peut avoir n'importe quelle forme compatible avec l'encapsulation de cellules. Préférentiellement le microcompartiment selon l'invention se présente sous une forme sphérique ou allongée. Il peut avoir la forme d'un ovoïde, d'un cylindre, d'un sphéroïde ou d'une sphère. Il peut en particulier se présenter sous la forme d'un sphéroïde creux, d'un ovoïde creux, d'un cylindre creux ou d'une sphère creuse.
C'est la couche externe du microcompartiment, c'est-à-dire la couche d'hydrogel, qui confère sa taille et sa forme au microcompartiment selon l'invention. Préférentiellement la plus petite dimension du microcompartiment selon l'invention est comprise entre 10 pm et 1 mm, préférentiellement entre 100 pm et 700 pm. Elle peut être comprise entre 10 pm et 600 pm, notamment entre 10pm et 500 pm.
Sa plus grande dimension est préférentiellement supérieure à 10pm, plus préférentiellement comprise entre 10pm et lm, encore plus préférentiellement entre 10pm et 50cm.
Le microcompartiment selon l'invention contient des cellules dont l'intégrité génomique a été préservée et/ ou maintenu, un très faible pourcentage de cellules présentes dans le microcompartiment étant porteuses de mutations. Il peut être utilisé pour toute application, en particulier comme médicament en thérapie cellulaire chez l'Homme ou l'animal.
Le microcompartiment selon l'invention peut être éventuellement congelé pour être stocké. Il devra ensuite être décongelé avant son utilisation.
L'invention a également pour objet plusieurs microcompartiments ensemble.
Aussi, l'invention vise aussi un ensemble ou une série de microcompartiments cellulaires tels que décrits précédemment comprenant au moins deux microcompartiments cellulaires selon l'invention.
L'invention vise aussi un ensemble ou une série de microcompartiments d'au moins deux microcompartiments cellulaires en trois dimensions, chaque microcompartiment comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, dans lequel au moins un microcompartiment est un microcompartiment selon l'invention.
Un autre objet particulier de l'invention est un ensemble ou série d'au moins deux microcompartiments cellulaires en trois dimensions, chaque microcompartiment comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, dans lequel moins de 20% de la population totale de cellules présentes dans tous les microcompartiments de l'ensemble sont des cellules présentant au moins une mutation. Préférentiellement, les cellules présentant au moins une mutation représentent entre 0 et 15% de la population totale de cellules présentes dans tous les microcompartiments, notamment entre 0 et 14%, entre 0 et 12%, en particulier entre 0 et 10%, encore plus préférentiellement entre 0 et 8%, entre 0 et 5%, entre 0 et 2%. De façon préférée, au moins un microcompartiment est un microcompartiment selon l'invention. Ainsi un ou plusieurs microcompartiments de la série peut comprendre plus de 20% de cellules mutantes en nombre par rapport au nombre de cellules présentes dans le ou lesdits microcompartiments, mais pour la totalité des microcompartiments formant l'ensemble de microcompartiments selon l'invention, moins de 20% de la population totale de cellules présentes dans tous les microcompartiments de l'ensemble sont des cellules présentant au moins une mutation, en particulier au moins une mutation fonctionnelle, génétique ou épigénétique. Préférentiellement, au moins un microcompartiment est un microcompartiment selon l'invention.
L'invention vise en particulier un ensemble de microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes dans l'ensemble sont des cellules présentant au moins une mutation fonctionnelle, préférentiellement un ensemble de microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes dans l'ensemble sont des cellules présentant au moins une mutation entraînant une modification du phénotype de la cellule mutante concernée.
L'invention vise également un ensemble de microcompartiments dans lesquels moins de 20% de la population totale de cellules présentes dans l'ensemble sont des cellules présentant au moins une mutation permettant une expansion clonale des cellules qui devient dominante en culture.
Selon une variante particulièrement adaptée, l'invention a pour objet un ensemble de microcompartiments dans lequel moins de 20% de la population totale de cellules présentes dans l'ensemble sont des cellules présentant au moins une mutation choisie parmi les mutations oncogènes. Au moins une mutation est une mutation oncogène.
Selon un mode de réalisation, l'invention a pour objet un ensemble de microcompartiments dans lequel moins de 20% de la population totale de cellules présentes dans l'ensemble sont des cellules présentant au moins une mutation d'un gène et/ou une mutation par amplification d'une région chromosomique.
Dans un mode de réalisation de l'invention, moins de 20% de la population totale de cellules présentes dans l'ensemble de microcompartiments sont des cellules présentant au moins une mutation du gène P53 et/ou une amplification de la région chromosomique 20q et/ou 7q (mutation par amplification de la région chromosomique 20q et/ou 7q)., en particulier une amplification de la région chromosomique 20qll (mutation par amplification de la région chromosomique 20qll).
Préférentiellement, les cellules présentant au moins une mutation selon l'un des modes de réalisation de l'invention, représentent entre 0 et 15% de la population totale de cellules présentes dans l'ensemble de microcompartiments, notamment entre 0 et 14%, entre 0 et 12%, en particulier entre 0 et 10%, encore plus préférentiellement entre 0 et 8%, entre 0 et 5%, entre 0 et 2%.
De façon préférée, les cellules présentes dans les microcompartiments de l'ensemble de microcompartiments selon l'invention ont été obtenues après au moins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 28, 30 cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins 1 cellule par microcompartiment. Le ou les microcompartiments présents dans cet ensemble de microcompartiments peuvent présenter une ou plusieurs caractéristiques d'un microcompartiment selon l'invention (taille, forme, nombre de cellules, volume de cellules, couche intermédiaire, lumière, etc.).
L'ensemble de microcompartiments selon l'invention comprend préférentiellement entre 2 et 1016 microcompartiments.
De façon préférée la série de microcompartiments selon l'invention est dans un milieu de culture, en particulier dans un milieu de culture au moins partiellement convectif.
Selon un mode de réalisation particulièrement adapté, l'invention a pour objet une série de microcompartiments cellulaires dans une enceinte close, telle qu'un bioréacteur, préférentiellement dans un milieu de culture dans une enceinte close, telle qu'un bioréacteur. La présence d'une couche externe d'hydrogel et éventuellement d'une couche intermédiaire de solution aqueuse isotonique permet une distribution uniforme des cellules entre les microcompartiments. Par ailleurs cette couche d'hydrogel permet d'éviter les fusions de microcompartiments qui sont une source majeure de variabilité défavorable pour l'homogénéité phénotypique des cellules.
Procédé d'obtention de microcompartiments selon l'invention L'invention vise également un procédé de préparation de microcompartiments selon l'invention.
Le procédé de préparation d'un microcompartiment ou d'un ensemble de microcompartiments selon l'invention, peut comprendre au moins la mise en oeuvre des étapes qui consistent à :
- (a) préparer une suspension de cellules comprenant des cellules uniques et/ou au moins un ensemble de cellules dans un milieu isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose,
- (b) encapsuler la suspension de cellules dans une couche d'hydrogel ;
- (c) préférentiellement cultiver les microcompartiments obtenus dans une solution isotonique (préférentiellement un milieu de culture) contenant un inhibiteur de l'apoptose ;
- (d) préférentiellement rincer les microcompartiments, de manière à éliminer l'inhibiteur de l'apoptose ;
- (e) cultiver les microcompartiments dans une solution isotonique, préférentiellement un milieu de culture, pendant au moins deux cycles de division cellulaire, et
- (f) optionnellement récupérer les microcompartiments cellulaires obtenus.
L'invention vise aussi l'utilisation de ce procédé pour maintenir l'intégrité génomique des cellules encapsulées.
Dans le procédé selon l'invention la totalité des cellules encapsulées initialement à l'étape (b) représentent un volume inférieur à 50% du volume du microcompartiment dans lequel elles sont encapsulées, plus préférentiellement inférieur à 40%, 30%, 20%, 10% du volume du
microcompartiment dans lequel elles sont encapsulées.
L'inhibiteur de l'apoptose peut par exemple être un ou plusieurs inhibiteur(s) des voies RHO/ROCK (« Rho-associated protein kinase »), ou tout autre inhibiteur de l'apoptose connu de l'homme du métier. L'inhibiteur de l'apoptose doit permettre de promouvoir la survie des cellules, et dans le cas de la présence d'une matrice extracellulaire, l'adhérence des cellules à la matrice extracellulaire au moment de la formation de la couche externe d'hydrogel autour de ladite matrice extracellulaire.
Le procédé selon l'invention peut comprendre préalablement ou simultanément à l'étape (a), une étape de dissociation des cellules par une dissociation chimique, enzymatique ou mécanique. Cette étape est particulièrement importante dans le cas de cellules adhérentes. Les cellules encapsulées sont en suspension sous forme de cellules uniques et/ou d'amas ou ensemble(s) de cellule(s) (« cluster(s) »). De façon préférée, les cellules uniques représentent moins de 50% en nombre de la totalité des cellules encapsulées initialement à l'étape (b). En effet il est préférable d'encapsuler des amas de cellules car cela diminue la déségrégation chromosomique et par conséquent diminue l'apparition de nouvelles mutations et participe au maintien l'intégrité génomique des cellules.
Préférentiellement chaque amas de cellules encapsulé initialement à l'étape (b) a une plus grande dimension inférieure à 20% de la plusgrande dimension d'un microcompartiment dans lequel il est encapsulé, encore plus préférentiellement inférieure à 10%. En effet les amas de cellules ne doivent pas avoir une trop grande taille par rapport à la taille du microcompartiment car un dimension trop grande de ces amas cellulaires initiaux, pourrait entraîner, lors des divisions cellulaires, une confluence cellulaire plus précoce dans la capsule ; cette confluence trop précoce de toute ou partie des capsules, pourrait entraîner une augmentation des pressions intracellulaires et entraîner un stress cellulaire, impactant notamment la ségrégation chromosomique.
Selon une variante, le procédé selon l'invention peut comprendre une étape de mélange des cellules à une matrice extracellulaire, soit entre l'étape (a) et l'étape (b), soit simultanément à l'encapsulation à l'étape (b).
Très préférentiellement, les étapes (c), (d) et (e) sont mises en oeuvre sous agitation permanente ou séquentielle. Cette agitation est importante car elle maintient l'homogénéité de l'environnement de culture et évite la formation de tout gradient diffusif. Par exemple, elle permet un contrôle homogène de niveau d'oxygénation cellulaire ; évitant ainsi les
phénomènes de nécrose liés à l'hypoxie, ou de stress oxydatif liés à l'hyperoxie. En évitant une augmentation de la mortalité cellulaire et/ou du stress oxydatif, l'agitation participe au maintien de l'intégrité génétique.
Le procédé selon l'invention est préférentiellement mis en oeuvre dans une enceinte close tel qu'un bioréacteur clos.
Le nombre cycles de divisions cellulaires à l'étape (e) est d'au moins 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 cycles de division cellulaire.
Préférentiellement le microcompartiment est obtenu après au moins 2 passages (un passage correspondant ici à un cycle complet des étapes (a), (b), et (e), optionnellement (c) et (d)), plus préférentiellement au moins 3, 4, 5, 6, 7, 8, 9 ou 10 passages. Chaque passage peut durer par exemple entre 2 et 15 jours, notamment entre 3 et 8 jours.
Dans une variante préférée, le procédé selon l'invention comprend au moins une ré encapsulation des cellules après l'étape (e), c'est-à-dire au moins deux cycles d'encapsulations. Préférentiellement chaque cycle d'encapsulation correspond à un passage. Dans cette variante du procédé (au moins une ré-encapsulation des cellules après l'étape (e)) le nombre de divisions cellulaires de l'ensemble du procédé (pour l'ensemble des passages) est d'au moins 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30 cycles de division cellulaire. Dans un procédé selon l'invention il peut y avoir plusieurs ré-encapsulations, préférentiellement entre 1 et 100, notamment entre 1 et 10 ré-encapsulations.
Chaque ré-encapsulation peut comprendre :
- une étape qui consiste à dissocier le microcompartiment ou la série de microcompartiments pour obtenir une suspension de cellules ou une suspension d'amas de cellules ; l'élimination de la couche externe en hydrogel peut être réalisée notamment par hydrolyse, dissolution, perçage et/ou rupture par tout moyen biocompatible, c'est-à-dire non toxique pour les cellules. Par exemple, l'élimination peut être réalisée en utilisant un tampon phosphate salin, un chélateur d'ions divalents, une enzyme comme l'alginate lyase si l'hydrogel comprend de l'alginate et/ou la microdissection laser, et
- une étape de ré-encapsulation de tout ou partie des cellules ou amas de cellules dans une capsule d'hydrogel.
La ré-encapsulation est un moyen adapté pour une augmentation de l'amplification cellulaire obtenue depuis l'étape pluripotente, et diminuer les risques de mutation.
Selon un mode de réalisation la ré-encapsulation comprend les étapes suivantes :
- (i) éliminer la couche externe en hydrogel,
- (ii) remettre en suspension les cellules qui étaient contenues dans le microcompartiment de façon à obtenir des cellules uniques et/ou au moins un ensemble ou amas de cellules dans un milieu isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose,
- (iii) encapsuler la suspension de cellules dans une couche d'hydrogel ;
- (iv) préférentiellement cultiver les microcompartiments obtenus dans une solution isotonique contenant un inhibiteur de l'apoptose, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose ;
- (v) préférentiellement rincer les microcompartiments, de manière à éliminer l'inhibiteur de l'apoptose ;
- (vi) cultiver les microcompartiments dans une solution isotonique, préférentiellement un milieu de culture, pendant au moins un cycle de division cellulaire, et
- (vii) optionnellement récupérer les microcompartiments cellulaires obtenus.
La compartimentalisation dans des microcompartiments permet d'éliminer les microcompartiments contenant d'avantage de cellules mutées que les autres capsules. Même si les cellules mutées ont une croissance rapide elles vont atteindre la confluence capsulaire qui va contenir leur multiplication. La compartimentalisation permet aussi de ne pas contaminer l'intégralité de la population cellulaire, et également d'éliminer les capsules contenant des cellules mutantes, à tout moment, en particulier avant une étape de ré encapsulation. Ce tri peut être fait soit par analyse en ligne, soit par élimination des capsules remplies plus rapidement que les autres par exemple. Ainsi, le procédé selon l'invention peut comprendre une ou plusieurs étapes d'élimination des microcompartiments comportant des cellules mutantes, en particulier des microcompartiments comprenant plus de 20% de cellules mutantes.
Selon une variante de l'invention, les cellules sont des cellules souches pluripotentes organisées en cystes directement à partir de cellules souches pluripotentes, ou à partir de cellules différenciées qui seront reprogrammées en cellules pluripotentes à l'intérieur de la capsule d'hydrogel lors de la formation des microcompartiments.
L'incubation de l'étape (a) et/ou (ii) est conduite préférentiellement pendant un temps compris entre quelques minutes et quelques heures, préférentiellement entre 2 minutes et 2 heures, plus préférentiellement entre 10 minutes et 1 heure.
L'étape (c) et/ou (iv) de culture avec un inhibiteur de l'apoptose est conduite pendant un temps compris entre 2 et 72 heures, préférentiellement pendant un temps compris entre 6 et 48 heures, plus préférentiellement pendant un temps compris entre 24 et 48 heures.
L'étape de rinçage peut être réalisée par un ou plusieurs rinçages, dans des milieux de culture successifs exempts d'inhibiteurs des voies RHO/ROCK, moins de 96h, préférentiellement moins de 72 heures, plus préférentiellement entre 24 et 48 heures après le début de l'étape (c) et/ou (iv).
Dans un mode de mise en oeuvre, au moins une des étapes (préférentiellement toutes les étapes) est réalisée à une température adaptée à la survie des cellules, comprise entre 4 et 42°C. La température lors de la prolifération cellulaire doit être préférentiellement entre 32 et 37°C pour éviter de déclencher des mutations en baissant la performance des enzymes de réparation. De même, de façon préférée, la température doit être basse (idéalement environ 4°c) pour gérer le stress des cellules à l'étape (b).
Selon une variante, les agents de reprogrammation cellulaire peuvent être ajoutés à l'étape (a) et/ou (b) et/ou (c) et/ou (ii) et/ou (iii) et/ou (iv). Préférentiellement il s'agit d'agents de reprogrammation cellulaire non perméants vis-à-vis de la couche d'hydrogel. L'ajout d'agents de reprogrammation est particulièrement pertinent lorsque les cellules encapsulées initialement sont des cellules différenciées que l'on veut dédifférencier notamment jusqu'au stade pluripotent. L'homme du métier sait procéder à la reprogrammation d'une cellule différenciée en une cellule souche en réactivant l'expression des gènes associés au stade embryonnaire au moyen de facteurs spécifiques, désignés dans la présente invention comme « agents de reprogrammation ». A titre d'exemples, on peut citer les méthodes décrites dans Takahashi et al., 2006 (« Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors » Cell, 2006 Vol 126, pages 663-676), Ban et al., 2009 (« Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome » Proc Jpn Acad Ser B Phys Biol Sci. 2009; 85(8):348-62) et dans la demande internationale W02010/105311 ayant pour titre « Production of reprogrammed pluripotent cells ». Les agents de reprogrammation sont avantageusement co-encapsulés avec les cellules différenciées, de manière à concentrer le produit et à favoriser le contact avec l'ensemble des cellules. Dans le cas d'agents de reprogrammation perméants à la couche d'hydrogel, il est possible d'ajouter lesdits agents dans le milieu de culture après l'étape d'encapsulation. Les agents de reprogrammation
permettent d'imposer aux cellules une succession de changements phénotypiques jusqu'au stade pluripotent. Avantageusement, l'étape de reprogrammation est réalisée en utilisant des milieux de culture spécifiques, favorisant ces changements phénotypiques. Par exemple, les cellules sont mises en culture dans un premier milieu comprenant 10% de sérum humain, ou bovin, dans un milieu minimum essentiel de Eagle (DMEM) supplémenté avec un inhibiteur des récepteurs sérine/thréonine protéine kinase (tel que le produit SB-431542 (C22H16N4O3)), un ou plusieurs inhibiteurs des voies RHO/ROCK (« Rho-associated protein kinase »), tels que du thiazovivin et/ou Y-27632, des facteurs de croissance des fibroblastes, tel que du FGF-2, de l'acide ascorbique et des antibiotiques, tels que la Trichostatin A (C17H22N2O3). Puis le milieu de culture est remplacé par du milieu favorisant la multiplication des cellules pluripotentes, tel que le milieu mTeSR®l.
À tout moment, le procédé selon l'invention peut comprendre une étape consistant à vérifier le phénotype des cellules contenues dans le microcompartiment. Cette vérification peut être réalisée en identifiant l'expression par au moins une partie des cellules contenues dans le microcompartiment, d'au moins un gène spécifique du phénotype recherché.
Les microcompartiments cellulaires obtenus selon les procédés de l'invention peuvent ensuite être congelés avant toute utilisation. La congélation est préférentiellement réalisée à une température comprise entre -190°C et -80°C. La décongélation peut être réalisée dans un bain d'eau tiède (37 degrés préférentiellement) pour que les cellules décongèlent assez rapidement. Les microcompartiments selon l'invention avant leur utilisation peuvent être maintenus à plus de 4°C pendant une durée limitée avant leur utilisation, préférentiellement entre 4°C et 38°C.
Le procédé selon l'invention, avec ses caractéristiques particulières, permet de maintenir l'intégrité génomique des cellules pendant la culture, les microcompartiments finaux présentant des cellules porteuses de peu ou pas de mutation.
En particulier la structure en 3 dimensions des cellules dans le microcompartiment et le pourcentage faible, voire nul, de cellules isolées lors de l'encapsulation (la majorité des cellules étant encapsulées sous forme d'amas de cellules), diminue la déségrégation chromosomique et par conséquent diminue l'apparition de nouvelles mutations.
L'invention favorise aussi l'amplification avec un facteur d'amplification élevé, ce qui par conséquent diminue le temps de culture et le nombre de divisions pour obtenir un nombre de cellules très important, et limite donc la mutagenèse.
La protection des cellules grâce à la couche externe et la présence de matrice extracellulaire lorsqu'elle est présente diminue la déségrégation chromosomique et limite le stress mécanique des cellules, et par conséquent diminue l'apparition de nouvelles mutations.
Le contrôle des paramètres de culture en bioréacteur diminue aussi le stress oxydatif ce qui participe à la diminution de nouvelles mutations.
Aussi, l'invention a également pour objet l'utilisation d'un procédé selon l'invention pour maintenir l'intégrité génomique de cellules lors de leur amplification.
L'invention a également pour objet l'utilisation, pour maintenir l'intégrité génomique de cellules lors de leur amplification, d'un microcompartiment en trois dimensions, préférentiellement clos, préférentiellement de forme sphérique ou allongée, comprenant au moins une couche externe en hydrogel définissant une partie interne. De façon préférée il s'agit de l'utilisation d'un microcompartiment cellulaire selon l'invention dans ses différentes va riantes telles que décrites dans la présente demande. L'invention vise également l'utilisation, pour maintenir l'intégrité génomique de cellules lors de leur amplification, d'un ensemble de ces microcompartiments, préférentiellement dans un bioréacteur clos, encore plus préférentiellement un ensemble de microcompartiments selon toutes les variantes selon l'invention et telles que décrites dans la présente demande.
L'invention est à présent illustrée par deux exemples et des résultats comparatifs.
Ces exemples concernent la culture de cellules souches pluripotentes humaines, et plus particulièrement de cellules souches pluripotentes humaines induites (iPS).
EXEMPLE 1 :
Protocole :
La lignée cellulaire utilisée ici, nommée ÎPS-IMAGINE005, a préalablement été décrite dans cette publication : E. Quelennec, C. Banal, M. Hamlin, D. Clémantine, M. Michael, N. Lefort, Génération of two induced pluripotent stem cell Unes IMAGINÎ004-A and IMAGINI005-A from healthy donors. Stem Cell Research, 101959 (2020).
La lignée d'iPS a été générée selon les standards habituels de la culture iPS en 2 dimensions. Afin de monitorer l'émergence quasi inévitable de mutations lors de la culture prolongée de cette lignée, une surveillance du caryotype est effectuée régulièrement (tous les 5 à 10 passages).
L'expérience menée ici, a pour point de départ un échantillon cellulaire congelé d'iPS, passage 2D numéro 23 post reprogrammation. A ce stade de culture et pour cet échantillon, les tests
caryotipiques hautes résolutions n'ont pas été capables de détecter une amplification de la région chromosomique 20qll, mais il a été constaté qu'une culture brève (moins de 10 passages 2D) de cet échantillon entraîne l'émergence d'une mutation par amplification de la région chromosomique 20qll.
Ce point de départ cellulaire est particulièrement pertinent pour tester la sélection positive au cours du temps d'un clone mutant dans une population de cellules en culture.
En effet, la mutation par amplification de la région chromosomique 20qll confère un avantage de croissance au clone muté ; plus la pression de sélection du système de culture sera élevée, plus ce clone aura de risque d'être sélectionné rapidement et de devenir majoritaire.
Un système de culture encapsulée en suspension agitée (ci-après désignée par le terme « Invention ») a été comparé à deux systèmes de culture standards dans le domaine de la production de cellules souches pluripotentes : la culture en 2 dimensions (ci-après désignée par le terme « culture 2D ») et la culture en suspension agitée non protégée sous forme d'agrégats (ci-après désignée par le terme « Bioréacteur agrégats »).
L'échantillon initial (décrit précédemment et cultivé en 2D), a été utilisé pour initier en parallèle 3 bras expérimentaux associés aux 3 systèmes de cultures, et ce, sur une durée de 28 jours. A chaque passage, et pour chaque bras expérimental, des cellules sont échantillonnées pour permettre la réalisation de tests génétiques (cf. partie résultats). En particulier, la fréquence de la mutation par amplification de la région chromosomique 20qll est évaluée à l'initiation et à la fin de cette culture prolongée de 28 jours.
Le rythme des passages pour chaque système de culture suit scrupuleusement les recommandations optimales pour chaque condition. Ainsi les cultures 2D sont passées tous les 4 à 5 jours lorsque la confluence est comprise entre 70 et 90% ; les cultures en agrégats sont passées tous les 5 jours selon les recommandations du fournisseur (Minibio, ABLE® Bioreactor Systems) ; les cultures encapsulées sont passées tous les 7 jours lorsque la confluence capsulaire moyenne est comprise entre 50 et 100%.
Toutes les cultures décrites ci-après sont menées avec le milieu de culture mTeSR 1 (« Stemcell Technologies »). Un traitement par inhibiteur Rock à 10mM est initié pendant les 24 premières heures après passage.
Toutes les cultures (2D, Bioréacteur agrégats et Invention) sont_maintenues dans un incubateur de culture cellulaire à 37°C et 5% de C02.
Les 2 bras expérimentaux cultivant des cellules souches en suspension « Bioréacteur agrégats » et « Invention » utilisent des mini bioréacteurs de 30ml de marque Minibio, ABLE® Bioreactor Systems ; la vitesse d'agitation étant constante a été fixée à 35 rotations par minute depuis l'ensemencement jusqu'à la collecte des cellules.
Les 2 bras expérimentaux cultivant des cellules souches sous forme de regroupements de cellules tridimensionnels en suspension « bioréacteur agrégats » et « Invention » utilisent une dissociation enzymatique pour les passages successifs : les agrégats d'une part et les cystes encapsulés d'autre part, sont dissociés par utilisation d'un bain de TryplE pendant 20 minutes à 37°C. Les cellules et petits regroupements (amas) de cellules résultant de cette dissociation servent ensuite à ensemencer une nouvelle culture.
Pour les cultures utilisant une matrice extracellulaire, du Matrigel (Corning) est utilisé. Ainsi pour les cultures 2D, les flasques (T-Flask T75) sont préalablement cotées avec du matrigel ; pour les encapsulations ou ré-encapsulations les cellules sont mélangées au matrigel avant injection dans la voie microfluidique centrale ; la culture en agrégats ne requiert pas quant à elle l'utilisation de matrice extracellulaire.
La « culture 2D » est établie dans des flasques (T-Flask T75) préalablement coatées/ta pissées avec du matrigel®, la concentration cellulaire d'ensemencement est comprise entre 10000 et 30000 cellules par cm2. Les passages sont réalisés par la méthode des petits agrégats, par utilisation brève (inférieure à 5 minutes) d'un chélateur du calcium, RelesR (Stem cell technologies). Le milieu de culture est changé complètement à jour 1 pour enlever le traitement rock inhibiteur (volume constant) puis quotidiennement.
La culture « bioréacteur agrégats » est initiée avec la même suspension cellulaire servant à ensemencée la « culture 2D » et la culture « Invention » mais avec une concentration initiale de 175000 cellules par ml de milieu, pour un total de 20 ml de milieu. Le milieu de culture est changé complètement à jour 1 pour enlever le traitement rock inhibiteur (volume constant), puis 75% du milieux est renouvelé quotidiennement (volume constant de 20ml).
Culture des hiPSC selon l'invention (encapsulation selon l'invention) :
Avant l'encapsulation, les colonies de cellules souches 2D ont été détachées à l'aide de ReLeSR pendant 1 minute puis dissociées à l'aide d'Accutase (StemCell Technologies). Les HiPSCs ont ensuite été mélangées dans un rapport de volume de 50/50 avec du Matrigel à 4°C pour maintenir la suspension à l'état liquide. La concentration finale de cellules dans la solution cellule/matrice était donc comprise entre 0,4 et 1,0x10e cellules viables/mL, appelée densité
d'encapsulation. Des tubes d'éthylène tétrafluoroéthylène (ETFE,) sont connectés aux trois entrées d'un dispositif microfluidique à flux co-laminaire imprimé en 3D. Une pointe microcapillaire en verre extrudé et poli (d'un diamètre de de buse d'environ 100 pm pour la plupart des expériences ou un diamètre de buse de 150 pm) est collée à la sortie de la buse pour un meilleur contrôle de l'écoulement. La suspension de cellules/matrice est chargée dans le canal interne du dispositif à 3 voies, qui est maintenu réfrigéré grâce à un système de refroidissement en ligne afin d'éviter une gélification prématurée du Matrigel. Une solution d'alginate de sodium (Novamatrix Pronova SLG100, 0,25 g à 2% dans de l'eau distillée) est injectée dans le canal extérieur. Pour éviter la gélification de l'alginate dans le dispositif microfluidique due à la libération de calcium par les cellules en suspension, une solution sans calcium (Sorbitol 300mM, Sigma-Aldrich) est utilisée dans le canal intermédiaire de la puce de co-extrusion et sert de barrière contre la diffusion du calcium. Les débits pour les 3 solutions étaient de l'ordre de 120 ml/h pour les trois canaux (solution d'alginate, la solution de sorbitol et la suspension cellule+matrice). À ces débits, la solution composite forme un jet liquide qui se fragmente en gouttelettes (d'environ deux fois la taille de la buse) en raison de l'instabilité spontanée de Rayleigh-Plateau. Pour éviter la coalescence ultérieure du train de gouttelettes, une pièce de charge en alginate et un anneau de cuivre sont connectés à un générateur de haute tension (2000V). Lorsque les gouttelettes composites entrent en contact avec le bain collecteur de calcium (à lOOmM), la couche externe d'alginate se gélifie. Par conséquent, la solution interne de cellules/matrice reste piégée à l'intérieur d'un microcompartiment fermé, sphérique et perméable. Dans les minutes qui suivent l'encapsulation, les capsules sont rincées avec du milieu (DMEM) pour réduire la concentration basale de calcium. Enfin, elles sont transférées dans un milieu de culture en suspension.
Les passages du bras expérimental « Invention » correspondent à des ré-encapsulations. Ces ré-encapsulations sont effectuées par dissolution des capsules d'alginate à l'aide d'un court rinçage au ReleSR, suivie d'une dissociation cellulaire à l'aide de TrypLE (enzyme de dissociation à base de trypsine, ThermoFischer) pendant 20 minutes à 37°C. Ensuite, les cellules obtenues ont été traitées selon un protocole d'encapsulation selon l'invention. Résultats :
4 encapsulations successives, d'une durée de 7 jours chacune, ont été réalisées. 6 passages successifs ont été réalisés pour le bras « bioréacteur agrégats » et 7 passages successifs ont été réalisés pour le bras « culture 2D ». L'échantillonnage de cellules à chaque passage et à 28
jours a permis une évaluation comparative des 3 bras de culture au cours du temps (Figure 1). L'évaluation par microscopie a contraste de phase confirme la formation avec succès de colonies bi-dimensionnelles, d'agrégats et des cystes encapsulés de cellules souches comme il était attendu pour les bras « culture 2D » « bioréacteur agrégats » et « Invention » (Figures 2a, 2b, 2c).
A chaque passage, les cellules sont comptées à l'aide du compteur cellulaire (Nucleo Counter NC 3000) ce qui permet d'établir les facteurs d'amplifications cellulaires au cours de la culture (Figure 3). Les amplifications théoriques cumulées sont de 151 millions, 71 millions et 13 330 respectivement pour les bras expérimentaux « Invention », « culture 2D » et « bioréacteur agrégats ». Ces facteurs d'amplifications cumulées correspondent à un nombre de divisions cellulaires apparents moyen en 28 jours de 27,2 ; 26,2 et 13,7 respectivement pour les bras de cultures « Invention », « culture 2D » et « bioréacteur agrégats ». On observe que l'amplification cellulaire finale est plus élevée dans le bras expérimental « Invention » comparée aux 2 autres bras expérimentaux.
Les 3 systèmes de culture ont été menés avec succès selon les meilleurs standards, comme suggéré par les marqueurs de pluripotences OCT4 et NANOG similairement exprimés dans les 3 systèmes de cultures comparés (Figure 4).
L'évaluation génétique a tout d'abord été réalisée par puce SNP très haute définition (CytoScan® HD Array Affymetrix, thermo fisher) (Figure 5). On observe l'apparition d'une mutation structurelle (duplication chromosomique englobant la zone 20qll et une délétion) au niveau du chromosome 20 clairement visualisable pour les échantillons finaux (J28) des bras expérimentaux « culture 2D » (environ 50% de cellules mutantes) et « bioréacteur agrégats » (environ 50% de cellules mutantes). Les profils similaires de remaniement du chromosome 20 pour ces 2 échantillons indiquent qu'il ne s'agit pas d'événements indépendants et que cette mutation est héritée d'une antériorité commune. Ainsi, même si cette mutation est indétectable lors de l'échantillonnage initial, ceci suggère fortement sa présence à un faible pourcentage au moment initial de l'expérience. Pour l'échantillon J28 du bras « Invention » on note une amplitude plus faible du nombre de copie, qui correspond à un pourcentage de cellules mutées en population inférieur à 10%.
Des analyses par PCR digitale ont également été réalisées à chaque passage pour tous les bras expérimentaux pour détecter l'éventuelle apparition de mutations génétiques récurrentes pour les cellules souches pluripotentes (iCS-digital PSC 24 probes, StemGenomics).
Notamment, une sonde PCR de ce test a permis de quantifier au cours du temps le nombre de copie de la région chromosomique 20qll (Figure 6). Le nombre moyen de copies de la région 20qll augmente au cours du temps en culture pour les cellules des 3 bras expérimentaux. Cette augmentation est plus importante et plus rapide pour les bras « culture 2D » et « bioréacteur agrégats » comparée au bras « Invention ». Considérant que le nombre de copie de la région 20qll pour chaque cellule mutante est de 3 (gain de 1 copie cf. figure 5), un nombre moyen de copie inférieur à 2.2 correspond à un pourcentage de cellules mutantes dans la population de cellules inférieur à 20 %.
Au total, les résultats de PCR digitale et de puce SNP sont concordants et suggèrent que la sélection des cellules mutantes au cours des 28 jours de culture a été au moins 5 fois plus faible dans le bras « Invention » par rapport aux bras « culture 2D » et « bioréacteur agrégats » (Figure 7). Notamment, le système de culture encapsulé (Invention), a permis de réaliser en moyenne 6,8 divisions cellulaires par passage, tout en maintenant le pourcentage de cellules mutantes inférieur à 20% pour chaque encapsulation, ou en mettant bout à bout les 4 encapsulations réalisées.
EXEMPLE 2 :
Protocole :
Dans cet exemple deux lignées cellulaires sont utilisées : une lignée commerciale nommée iPSC-GHE (Gibco) et une lignée transgénique exprimant de manière constitutive la protéine fluorescente GFP, nommée iPSC-AAVSl-GFP (Coriell, Allen Institute for Cell Science).
Au départ de l'expérience, les deux lignées sont cultivées de manière indépendante en 2D. Une analyse caryotipique par PCR digitale (iCS-digital PSC 24 probes, StemGenomics) révèle que la lignée iPSC-GHE possède deux anomalies caryotipiques avec des amplifications des régions chromosomiques 7q et 20q, tandis que la lignée iPSC-AAVSl-GFP ne présente aucune anomalie sur les 24 zones étudiées (Fiqure 8).
L'utilisation de la lignée iPSC-GHE présentant les amplifications des régions chromosomiques 7q et 20q est particulièrement pertinente pour tester la sélection positive au cours du temps d'un clone mutant dans une population de cellules en culture. En effet, les mutations par amplification des régions chromosomiques 7q et 20q confèrent un avantage de croissance au clone muté ; plus la pression de sélection du système de culture sera élevée, plus ce clone aura de risque d'être sélectionné rapidement et de devenir majoritaire.
Le système de culture encapsulée en suspension agitée « Invention » a été comparé au système de culture standard dans le domaine de la production de cellules souches pluripotentes : la culture en suspension agitée non protégée sous forme d'agrégats « Bioréacteur agrégats », sur une durée de 21 jours.
L'échantillon utilisé pour initier en parallèle les 2 bras expérimentaux associés aux 2 systèmes de cultures, correspond à un mélange des lignées iPSC-AAVSl-GFP et iPSC-GHE. Le mélange correspond à 80% d'iPSC-AAVSl-GFP avec 20% d'iPSC-GHE.
A chaque passage, et pour chaque bras expérimental, des cellules sont échantillonnées pour permettre la réalisation de tests cytométriques et génétiques (cf ; partie résultats). En particulier, les analyses visent à suivre l'évolution de la fréquence de la population iPSC-GHE contenant les anomalies caryotipiques au sein de la culture.
Le rythme des passages pour chaque système de culture suit scrupuleusement les recommandations optimales pour chaque condition. Ainsi les cultures en agrégats sont passées tous les 5 jours selon les recommandations du fournisseur (Minibio, ABLE® Bioreactor Systems) et les cultures encapsulées sont passées tous les 7 jours lorsque la confluence capsulaire moyenne est comprise entre 50 et 100%.
Toutes les cultures décrites ci-après sont menées avec le milieu de culture mTeSRl plus (Stemcell Technologies). Un traitement par inhibiteur Rock à 10mM est initié pendant les 24 premières heures après passage.
Toutes les cultures (Bioréacteur agrégats et Invention) sont maintenues dans un incubateur de culture cellulaire à 37°C et 5% de C02.
Les 2 bras expérimentaux « Bioréacteur agrégats » et « Invention » utilisent des mini bioréacteur de 30ml de marque Minibio, ABLE® Bioreactor Systems ; la vitesse d'agitation étant constante a été fixée à 55 rotations par minute pour la condition « Bioréacteur agrégats » et 100 rotations par minutes pour la condition « Invention ».
Les 2 bras expérimentaux « bioréacteur agrégats » et « Invention » utilisent une dissociation enzymatique pour les passages successifs : les agrégats d'une part et les cystes encapsulés d'autre part, sont dissociés par utilisation d'un bain de TryplE à 37°C. Les cellules et petits regroupements (amas) de cellules résultant de cette dissociation servent ensuite à ensemencer une nouvelle culture.
Pour les encapsulations ou ré-encapsulations les cellules sont mélangées au matrigel® avant injection dans la voie microfluidique centrale ; la culture en agrégats ne requiert pas quant à
elle l'utilisation de matrice extracellulaire.
La culture « bioréacteur agrégats » est initiée avec la même suspension cellulaire servant à ensemencer la culture « Invention » mais avec une concentration initiale de 175000 cellules par ml de milieu, pour un total de 10 ml de milieu. Le milieu de culture est changé complètement à jour 1 pour enlever le traitement rock inhibiteur.
Culture des hiPSC selon l'invention (encapsulation selon l'invention) :
Avant l'encapsulation, les colonies de cellules souches 2D des lignées iPSC-GHE et iPSC-AAVSl- GFP ont été dissociées à l'aide d'Accutase (StemCell Technologies). Les deux lignées iPSCs ont ensuite été mélangées selon les ratios précédemment indiqués (80%-20%) et cette suspension cellulaire à elle-même été mélangée dans un rapport de volume de 50/50 avec du Matrigel à 4°C pour maintenir la suspension à l'état liquide. La concentration finale de cellules dans la solution cellule/matrice était donc comprise entre 0,4 et 1,0x10e cellules viables/mL, appelée densité d'encapsulation. Des tubes d'éthylène tétrafluoroéthylène (ETFE,) sont connectés aux trois entrées d'un dispositif microfluidique à flux co-laminaire imprimé en 3D. Une pointe microcapillaire en verre extrudé et poli (d'un diamètre de de buse d'environ 100 pm pour la plupart des expériences ou un diamètre de buse de 150 pm) est collée à la sortie de la buse pour un meilleur contrôle de l'écoulement. La suspension de cellules/matrice est chargée dans le canal interne du dispositif à 3 voies, qui est maintenu réfrigéré grâce à un système de refroidissement en ligne afin d'éviter une gélification prématurée du Matrigel. Une solution d'alginate de sodium (Novamatrix Pronova SLG100, 0,25 g à 2% dans de l'eau distillée) est injectée dans le canal extérieur. Pour éviter la gélification de l'alginate dans le dispositif microfluidique due à la libération de calcium par les cellules en suspension, une solution sans calcium (Sorbitol 300mM, Sigma-Aldrich) est utilisée dans le canal intermédiaire de la puce de co-extrusion et sert de barrière contre la diffusion du calcium. Les débits pour les 3 solutions étaient de l'ordre de 120 ml/h pour les trois canaux (solution d'alginate, la solution de sorbitol et la suspension cellule+matrice). À ces débits, la solution composite forme un jet liquide qui se fragmente en gouttelettes (d'environ deux fois la taille de la buse) en raison de l'instabilité spontanée de Rayleigh-Plateau. Pour éviter la coalescence ultérieure du train de gouttelettes, une pièce de charge en alginate et un anneau de cuivre sont connectés à un générateur de haute tension (2000V). Lorsque les gouttelettes composites entrent en contact avec le bain collecteur de calcium (à lOOmM), la couche externe d'alginate se gélifie. Par conséquent, la solution interne de cellules/matrice reste piégée à l'intérieur d'un microcompartiment fermé,
sphérique et perméable. Dans les minutes qui suivent l'encapsulation, les capsules sont rincées avec du milieu (DMEM) pour réduire la concentration basale de calcium. Enfin, elles sont transférées dans un milieu de culture en suspension.
Les passages du bras expérimentale « Invention » correspondent à des ré-encapsulations. Ces ré-encapsulations sont effectuées par dissolution des capsules d'alginate à l'aide d'un court rinçage au ReleSR, suivie d'une dissociation cellulaire à l'aide de d'Accutase. Ensuite, les cellules obtenues ont été traitées selon un protocole d'encapsulation selon l'invention. Résultats :
3 encapsulations successives, d'une durée de 7 jour chacune, ont été réalisées et 4 passages successifs ont été réalisés pour le bras « bioréacteur agrégats ». L'échantillonnage de cellules à chaque passage et à 21 jours a permis une évaluation comparative des 2 bras de culture au cours du temps (Figure 9).
L'évaluation par microscopie a contraste de phase confirme la formation avec succès d'agrégats et des cystes encapsulés de cellules souches comme il était attendu pour les bras « bioréacteur agrégats » et « Invention » (Figure 10).
A chaque passage, les cellules sont comptées à l'aide du compteur cellulaire (Nucleo Counter NC 3000) ce qui permet d'établir les facteurs d'amplifications cellulaires au cours de la culture (Figure 11). Les amplifications théoriques cumulées sont de 55776699 millions et 40481 respectivement pour les bras expérimentaux « Invention » et « bioréacteur agrégats ». Ces facteurs d'amplifications cumulées correspondent à un nombre de divisions cellulaires apparents moyen en 21 jours de 25,73 et 15,30 respectivement pour les bras de cultures « Invention » et « bioréacteur agrégats ». On observe que l'amplification cellulaire finale est plus élevée dans le bras expérimental « Invention » comparée au bras expérimental « bioréacteur agrégats ».
Les 2 systèmes de culture ont été menés avec succès selon les meilleurs standards, comme suggéré par les marqueurs de pluripotences OCT4 et NANOG similairement exprimés dans les 2 systèmes de cultures comparés (Figure 12).
Une première analyse par cytométrie en flux a été réalisée pour suivre l'évolution de la population de la lignée iPSC-GHE au sein de la culture cellulaire. Les cellules iPSC-GHE (GFP négatives) contiennent des amplifications des régions chromosomiques 7q et 20q qui confèrent un avantage sélectif lors de la culture des hiPSC. Les cellules iPSC-AAVSl-GFP (GFP positives) ne contiennent pas d'anomalie chromosomique.
L'analyse par cytométrie en flux à chaque passage pour tous les bras expérimentaux a permis de quantifier au cours du temps la fréquence de cellules iPSC-GHE et iPSC-AAVSl-GFP (Figure 13) et donc par extrapolation du nombre de copie des régions chromosomiques 7q et 20q. La fréquence de la population iPSC-GHE (GFP négative) au sein de la culture cellulaire augmentent au cours du temps pour le bras « bioréacteur agrégat » mais diminue dans le temps pour le bras « invention ».
L'analyse par cytométrie en flux à ensuite était confirmée par une analyse par PCR digitale pour détecter l'évolution du taux de mutations génétiques dans la population de cellules souches pluripotentes (iCS-digital PSC 24 probes, StemGenomics). Notamment, deux sondes PCR de ce test ont permis de quantifier au cours du temps le nombre de copies des régions chromosomiques 7q et 20q (Figure 14). Le nombre moyen de copies des régions 7q et 20q augmente au cours du temps en culture pour le bras « bioréacteur agrégat ». Pour le bras « invention » le nombre moyen de copies de la région 7q diminue au cours du temps, et le nombre moyen de copie de la région 20q diminue puis augmente très légèrement au cours du temps mais de façon beaucoup moins importante et moins rapide que pour le bras « bioréacteur agrégat ». Considérant que le nombre de copies des régions 7q et 20q pour chaque cellule mutante iPSC-GHE est de 3 (gain de 1 copie cf. Figure 8), un nombre moyen de copies équivalent à 2.3 correspond à un pourcentage de cellules mutantes dans la population de cellules de 30 %. Au total, les résultats de cytométrie en flux et de PCR digitale sont concordants et suggèrent que la sélection des cellules mutantes au cours des 21 jours de culture a été au moins 14,7 fois plus faible dans le bras « Invention » par rapport au bras « bioréacteur agrégats » (Figure 15). Notamment, le système de culture encapsulé (Invention), a permis de réaliser en moyenne 8,6 divisions cellulaires par passage, tout en maintenant le pourcentage de cellules mutantes inférieur à 20% (inférieure à 3%) pour chaque encapsulation, ou en mettant bout à bout les 4 encapsulations réalisées.
Claims
[Revendication 1] Microcompartiment cellulaire en trois dimensions comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, caractérisé en ce que moins de 20% de la population totale de cellules présentes dans le microcompartiment sont des cellules présentant au moins une mutation.
[Revendication 2] Microcompartiment selon la revendication 1, caractérisé en ce que les cellules représentent plus de 50% en volume par rapport au volume du microcompartiment, préférentiellement plus de 70% en volume par rapport au volume du microcompartiment.
[Revendication 3] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que la ou les mutation(s) sont choisies parmi les mutations génétiques et les mutations épigénétiques.
[Revendication 4] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que la ou les mutation(s) sont des mutations fonctionnelles.
[Revendication 5] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'au moins une mutation est une mutation oncogène.
[Revendication 6] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que moins de 20% des cellules sont des cellules présentant au moins une mutation du gène P53 et/ou au moins une mutation par amplification de la région chromosomique 20q et/ou au moins une mutation par amplification de la région chromosomique 7q.
[Revendication 7] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que moins de 20% des cellules sont des cellules présentant au moins une mutation par amplification de la région chromosomique 20qll.
[Revendication 8] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que les cellules présentant au moins une mutation représentent entre 0 et 10% de la population totale de cellules présentes dans le microcompartiment, préférentiellement entre 0 et 5%.
[Revendication 9] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que les cellules sont organisées sous forme d'un tissu ou d'un micro-tissu.
[Revendication 10] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'il comprend une lumière interne.
[Revendication 11] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'il comprend également, entre (a) la ou les couche(s) de cellules et/ou la ou les assises de cellule(s) et (b) la couche d'hydrogel, au moins une couche intermédiaire de solution aqueuse isotonique et/ou comprenant des éléments de matrice extracellulaire.
[Revendication 12] Microcompartiment selon la précédente revendication, caractérisé en ce que la couche intermédiaire de solution aqueuse isotonique est une couche de matrice extracellulaire.
[Revendication 13] Microcompartiment selon la revendication 11 ou 12, caractérisé en ce que la couche intermédiaire de solution aqueuse isotonique présente un module d'Young compris entre 0,05 et 3 kDa.
[Revendication 14] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que les cellules sont des cellules humaines ou animales.
[Revendication 15] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'il comprend successivement organisées autour d'une lumière :
- au moins une couche de cellules et/ou au moins une assise de cellules,
- une couche intermédiaire de solution aqueuse isotonique,
- une couche externe en hydrogel.
[Revendication 16] Microcompartiment cellulaire selon l'une des précédentes revendications, caractérisé en ce que les cellules sont des cellules souches pluripotentes induites (iPSC) humaines ou animales, et/ou des cellules multipotentes humaines ou animales, et/ou des cellules progénitrices humaines ou animales et/ou des cellules différenciées humaines ou animales.
[Revendication 17] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'il est clos.
[Revendication 18] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que la couche externe comprend de l'alginate.
[Revendication 19] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce qu'il a la forme d'un ovoïde, d'un cylindre, d'un sphéroïde ou d'une sphère.
[Revendication 20] Microcompartiment cellulaire selon l'une des précédentes revendications, caractérisé en ce qu'il comprend au moins 20 cellules, préférentiellement au moins 1000 cellules.
[Revendication 21] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que les cellules présentes dans le microcompartiment ont été obtenues après au moins deux cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins une cellule, préférentiellement entre 1 et 50 cellules.
[Revendication 22] Microcompartiment selon l'une des précédentes revendications, caractérisé en ce que les cellules présentes dans le microcompartiment ont été obtenues après au moins 5 cycles de division cellulaire après l'encapsulation dans une couche externe d'hydrogel d'au moins une cellule, préférentiellement entre une et cinquante cellules.
[Revendication 23] Ensemble d'au moins deux microcompartiments cellulaires en trois dimensions, chaque microcompartiment comprenant au moins une couche externe en hydrogel et à l'intérieur de ladite couche externe au moins une couche de cellules et/ou au moins une assise de cellules, caractérisée en ce que moins de 20% des cellules constituant la population totale de cellules présentes dans tous les microcompartiments sont des cellules présentant au moins une mutation.
[Revendication 24] Ensemble de microcompartiments selon la précédente revendication, caractérisé en ce qu'au moins un microcompartiment est un microcompartiment selon l'une des revendications 1 à 21.
[Revendication 25] Ensemble de microcompartiments selon la précédente revendication, caractérisé en ce que les microcompartiments sont disposés dans un milieu de culture dans un bioréacteur clos.
[Revendication 26] Procédé de préparation d'un microcompartiment cellulaire selon l'une des revendications 1 à 22 ou d'un ensemble de microcompartiments cellulaires selon l'une des revendications 23 à 25, comprenant les étapes suivantes :
- (a) préparer une suspension de cellules comprenant des cellules uniques et/ou au moins un amas de cellules dans un milieu isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose,
- (b) encapsuler la suspension de cellules dans une couche d'hydrogel ;
- (c) préférentiellement cultiver les microcompartiments obtenus dans une solution isotonique contenant un inhibiteur de l'apoptose ;
- (d) préférentiellement rincer les microcompartiments, de manière à éliminer l'inhibiteur de l'apoptose ;
- (e) cultiver les microcompartiments dans une solution isotonique pendant au moins deux cycles de division cellulaire, et
- (f) optionnellement récupérer les microcompartiments cellulaires obtenus, ledit procédé étant caractérisé en ce que la totalité des cellules encapsulées initialement à l'étape (b) représentent un volume inférieur à 50% du volume du microcompartiment dans lequel elles sont encapsulées.
[Revendication 27] Procédé selon la précédente revendication, caractérisé en ce que chaque amas de cellules encapsulé initialement à l'étape (b) a une plus grande dimension inférieure à 20% de la plus grande dimension d'un microcompartiment dans lequel il est encapsulé.
[Revendication 28] Procédé selon l'une des revendications 26 ou 27, caractérisé en ce qu'il comprend une étape de mélange des cellules à une matrice extracellulaire, soit entre l'étape (a) et l'étape (b), soit simultanément à l'encapsulation à l'étape (b).
[Revendication 29] Procédé selon l'une des revendications 26 à 28, caractérisé en ce que les étapes (c), (d) et (e) sont mises en oeuvre sous agitation permanente ou séquentielle.
[Revendication 30] Procédé selon l'une des revendications 26 à 29, caractérisé en ce qu'il est mis en oeuvre dans un bioréacteur clos.
[Revendication 31] Procédé selon l'une des revendications 26 à 30, caractérisé en ce que le procédé comprend au moins une ré-encapsulation des cellules après l'étape (e).
[Revendication 32] Procédé selon la précédente revendication, caractérisé en ce que le procédé comprend entre 2 et 15 ré-encapsulations des cellules.
[Revendication 33] Procédé selon l'une des revendications 31 ou 32, caractérisé en ce que chaque ré-encapsulation correspond à un passage.
[Revendication 34] Procédé selon l'une des revendications 31 à 33, caractérisé en ce que la ré-encapsulation comprend les étapes suivantes :
- (i) éliminer la couche externe en hydrogel,
- (ii) remettre en suspension les cellules qui étaient contenues dans le microcompartiment de façon à obtenir des cellules uniques et/ou au moins un amas de cellules dans un milieu isotonique, préférentiellement un milieu de culture contenant un inhibiteur de l'apoptose,
- (iii) encapsuler la suspension de cellules dans une couche d'hydrogel ;
- (iv) préférentiellement cultiver les microcompartiments obtenus dans une solution isotonique contenant un inhibiteur de l'apoptose ;
- (v) préférentiellement rincer les microcompartiments, de manière à éliminer l'inhibiteur de l'apoptose ; - (vi) cultiver les microcompartiments dans une solution isotonique pendant au moins un cycle de division cellulaire, et
- (vii) optionnellement récupérer les microcompartiments cellulaires obtenus.
[Revendication 35] Procédé selon l'une des revendications 26 à 34, caractérisé en ce que pourchaque microcompartiment, les cellules uniques représentent moins de 50% en nombre de la totalité des cellules encapsulées initialement à l'étape (b).
[Revendication 36] Procédé selon l'une des revendications 26 à 35, caractérisé en ce que préalablement ou simultanément à l'étape (a), le procédé comprend une étape de dissociation des cellules par une dissociation chimique, enzymatique ou mécanique.
[Revendication 37] Procédé selon l'une des revendications 26 à 36, caractérisé en ce qu'il comprend une ou plusieurs étapes d'élimination des microcompartiments comportant des cellules mutantes.
[Revendication 38] Utilisation d'un procédé selon l'une des revendications 26 à 37, pour maintenir l'intégrité génomique de cellules lors de leur amplification.
[Revendication 39] Utilisation d'un microcompartiment selon l'une des revendications 1 à 22 ou d'un ensemble de microcompartiments selon l'une des revendications 23 à 25, pour maintenir l'intégrité génomique de cellules lors de leur amplification.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2104988A FR3122883A1 (fr) | 2021-05-11 | 2021-05-11 | Microcompartiments cellulaires comprenant des cellules dont l’intégrité génomique est maintenue après amplification et procédé de préparation |
PCT/EP2022/062792 WO2022238485A1 (fr) | 2021-05-11 | 2022-05-11 | Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue apres amplification et procede de preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4337761A1 true EP4337761A1 (fr) | 2024-03-20 |
Family
ID=78049276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22728823.0A Pending EP4337761A1 (fr) | 2021-05-11 | 2022-05-11 | Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue apres amplification et procede de preparation |
Country Status (10)
Country | Link |
---|---|
US (1) | US20240301346A1 (fr) |
EP (1) | EP4337761A1 (fr) |
JP (1) | JP2024516703A (fr) |
KR (1) | KR20240004941A (fr) |
AU (1) | AU2022273180A1 (fr) |
CA (1) | CA3220831A1 (fr) |
FR (1) | FR3122883A1 (fr) |
IL (1) | IL308188A (fr) |
MX (1) | MX2023013366A (fr) |
WO (1) | WO2022238485A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023235884A1 (fr) | 2022-06-03 | 2023-12-07 | Flagship Pioneering Innovations Vi, Llc | Compositions et méthodes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2755870C (fr) | 2009-03-20 | 2019-04-09 | Angioblast Systems, Inc. | Production de cellules pluripotentes reprogrammees |
FR3073751B1 (fr) * | 2017-11-21 | 2021-09-24 | Univ Bordeaux | Procede de fabrication de capsules formees d'une enveloppe externe d'hydrogel reticule entourant un noyau central |
-
2021
- 2021-05-11 FR FR2104988A patent/FR3122883A1/fr active Pending
-
2022
- 2022-05-11 CA CA3220831A patent/CA3220831A1/fr active Pending
- 2022-05-11 AU AU2022273180A patent/AU2022273180A1/en active Pending
- 2022-05-11 JP JP2023568053A patent/JP2024516703A/ja active Pending
- 2022-05-11 MX MX2023013366A patent/MX2023013366A/es unknown
- 2022-05-11 US US18/270,924 patent/US20240301346A1/en active Pending
- 2022-05-11 WO PCT/EP2022/062792 patent/WO2022238485A1/fr active Application Filing
- 2022-05-11 IL IL308188A patent/IL308188A/en unknown
- 2022-05-11 KR KR1020237041791A patent/KR20240004941A/ko unknown
- 2022-05-11 EP EP22728823.0A patent/EP4337761A1/fr active Pending
Also Published As
Publication number | Publication date |
---|---|
MX2023013366A (es) | 2024-03-14 |
FR3122883A1 (fr) | 2022-11-18 |
KR20240004941A (ko) | 2024-01-11 |
AU2022273180A1 (en) | 2023-12-14 |
IL308188A (en) | 2024-01-01 |
CA3220831A1 (fr) | 2022-11-17 |
JP2024516703A (ja) | 2024-04-16 |
WO2022238485A1 (fr) | 2022-11-17 |
US20240301346A1 (en) | 2024-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018096277A1 (fr) | Microcompartiment cellulaire et procédés de préparation | |
CA3101003A1 (fr) | Systeme de culture cellulaire en bioreacteur | |
WO2022238485A1 (fr) | Microcompartiments cellulaires comprenant des cellules dont l'intégrité génomique est maintenue apres amplification et procede de preparation | |
WO2004011596A2 (fr) | Procede de preparation d'une matrice extracellulaire et son utilisation pour la culture de cellules tumorales | |
WO2022263601A1 (fr) | Microcompartiments cellulaires de grande taille comprenant plusieurs cystes | |
EP4214305A1 (fr) | Microcompartiments cellulaires comprenant des cellules humaines en cours de differenciation cardiaque, tissus obtenus a partir de ces microcompartiments et utilisations | |
FR3124193A3 (fr) | Microcompartiments cellulaires de grande taille comprenant plusieurs cystes | |
FR3134117A1 (fr) | Microcompartiments cellulaires comprenant des lymphocytes adaptés pour la culture à grande échelle | |
FR3134114A1 (fr) | Microcompartiments cellulaires comprenant des lymphocytes adaptés pour la culture à grande échelle | |
FR3134115A1 (fr) | Microcompartiments cellulaires comprenant des lymphocytes formant une culture groupée en 3D et ayant une faible teneur en granzyme B | |
WO2023194479A1 (fr) | Microcompartiments cellulaires comprenant des lymphocytes formant une culture groupee en 3d et ayant une faible teneur en granzyme b | |
FR3141945A1 (fr) | Substitut de matrice extracellulaire dans un microcompartiment cellulaire | |
FR3135279A1 (fr) | Microtissu hépatique particulier et utilisations dans le traitement de l’insuffisance hépatique | |
EP4214306A1 (fr) | Tissu cardiaque particulier et utilisation dans le traitement de pathologies cardiaque | |
WO2023214055A1 (fr) | Microtissu hepatique particulier en trois dimensions et utilisations dans le traitement de l'insuffisance hepathique | |
FR3135278A1 (fr) | Microtissu hépatique particulier et utilisations dans le traitement de l’insuffisance hépatique | |
FR3138661A1 (fr) | Substitut de matrice extracellulaire dans un microcompartiment cellulaire | |
WO2024033284A1 (fr) | Substitut de matrice extracellulaire dans un microcompartiment cellulaire | |
Wang | CHARACTERIZING PHYSIOCHEMICAL PROPERTIES OF DIFFERENTIALLY TUNED HYDROGELS, AND INVESTIGATING BEHAVIOR AND FUNCTION OF CELLS WITHIN | |
WO2024182609A1 (fr) | Procédés de différenciation de cellules souches pluripotentes en cellules stromales mésenchymateuses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20231110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |